

REGULATORY COMPLIANCE REPORT

TITLE: FCC & IC MPE Report for 15.247 & RSS-210 Frequency Hopping Device

Actaris FCC ID: EWQ100GDLBS IC: 864D-100GDLBS

AUTHOR: Mark Kvamme

REV	CCO	DESCRIPTION OF CHANGE	DATE	<u>APPROVALS</u>		
001		INITIAL RELEASE		Engineering		
				Regulatory		

REVISION HISTORY

002	updated for new RSS102i5_march2015 limits and updated for +50kHz		Engineering	
		02sep15	Regulatory	/s/jay r. holcomb
003	Updated for class II permissive change , inductor update	03mar17	Engineering	Mark Kvamme
		03mar17	Regulatory	/s/jay r. holcomb
			Engineering	
			Regulatory	

NOTICE OF PROPRIETARY INFORMATION

Information contained herein is proprietary and is property of ITRON, Inc. where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer it shall be used solely for the purposes of inspection, installation or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted for this company. The information shall not be used or disclosed by the recipient for any other purpose, whatsoever.

Test Data Summary

FCC 15.247 / ISED RSS-247; Frequency Hopping Transmitter;

100G DLS - Residential, 903MHz - 926.85 MHz

FCC ID: EWQ100GDLBS IC: 864D-100GDLBS HVIN: 10S

Rule	Description	Spec Limit	Max. Reading	Pass/ Fail
Ruie	'	Spec Lilling	Max. Reduting	1 011
	Limits for Maximum			
Parts 2.1091(mobile)	Permissible Exposure			
& 1.1310	(MPE)	0.601 mw/cm ² @ 20cm	0.07375 mW / cm ²	Pass
	RF Field Strength			
	Limits for Devices Used			
RSS-102 Sec 4.2	by the General Public	2.7 W/M ² @ 0.2M	0.7375 W/M ²	Pass

Rule versions: FCC Part 1; FCC Part 2; FCC Part 15, RSS-102 Issue 5 (03-2015); RSS-247 Issue 1 (5-2015); RSS-Gen Issue 4 (12-2014).

Reference docs: ANSI C63.4-2014; ANSI C63.10-2013; DA 00-705 (03-30-2000); OET65 (08-1997); OET65C (06-2001); IEEE C95.3-2002.

Cognizant Personnel						
<u>Name</u>	<u>Title</u>					
Mark Kvamme	Test Technician <u>Title</u> Regulatory Manager					
<u>Name</u> Jay Holcomb						
<u>Name</u>	<u>Title</u>					
Johann De Jager	Project Lead					

CONDITIONS DURING TESTING

No Modifications to the EUT were necessary during the testing.

ANSI C63.4 - Temperature and Humidity During Testing

The temperature during testing was within +10° C and +40° C. The Relative humidity was between 10% and 90%.

RSS-Gen 4.3: Tests shall be performed at ambient temperature

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Itron declares that the EUT tested was representative of a production unit.

EQUIPMENT UNDER TEST

EUT Module

Manuf: Itron, Inc.
Itron p/n: ERG-5006-005/006

Serial Number(s) Conducted power test unit id: 105

Radiated power test unit id:10101010

Power source Fresh Batteries were used

Peripheral Devices

None

1.1310 & 2.1091(mobile) or 2.1093(portable) / RSS-102 Sec 4.2-Canada Safety Code 6; Table 5

Maximum Permissible Exposure (MPE) (reference from FCC)

Radiofrequency radiation exposure limits. - The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in $\S1.1307(b)$, except in the case of portable devices which shall be evaluated according to the provisions of $\S2.1093$ of this chapter.

1.1307 (b) In addition to the actions listed in paragraph (a) of this section, Commission actions granting construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities, require the preparation of an Environmental Assessment (EA) if the particular facility, operation or transmitter would cause human exposure to levels of radiofrequency radiation in excess of the limits in §§1.1310 and 2.1093 of this chapter.

Determine the maximum power density for the general / uncontrolled population minimum separation distance of 20 cm. (fMHz / 1500 mW/cm2 == fMHz / 150 W/M2)

The power density is calculated as:

 P_d = power density in mW/cm^2

 P_t = transmit power in milliwatts

$$P_d = \frac{P_t \times G}{4 \times \pi \times r^2}$$

G = numeric antenna gain

r = distance between body and transmitter in centimeters.

FCC Limits: $903MHz / 1500 = 0.602 \text{ mW} / \text{cm}^2 @ 20 \text{cm}$

IC Limits: $903MHz / 150 = 6.02 W / M^2 (@ 0.2M)$

← issue4

f=903; 0.02619 x f^0.6834 w/m^2 = 2.74 W / M^2 (@ 0.2M) \leftarrow issue5

ISED max limit for calculation: 1.31 x 10-2 f^0 0.6834 watts eirp = 1.37 watts EIRP

Power level	Field strength (dBuV/m)	EIRP ¹ (dBm)	Conducted power (dBm)	Conducted power (milliwatts)	antenna gain² (dBi)	antenna gain numeric	mW / cm ² @ 20cm ³	W/M ² @ 0.2 M ⁴	Max EIRP (Watts)
1	105.12	9.92	6.09	4.0644	3.8300	2.4155	0.0019531	0.0195313	0.0098175
2	117.9	22.7	21.76	149.9685	0.9400	1.2417	0.0370450	0.3704505	0.1862087
3	120.89	25.69	25.16	328.0953	0.5300	1.1298	0.0737446	0.7374459	0.3706807

- (1) EIRP (dBm) used 412172 D01 Determining ERP and EIRP v01r01 to calculate EIRP
- (2) Antenna gain (dBi) = EIRP (dBm) Conducted power (dBm)
- (3) $P_D = (mW \times ant. gain numeric) / (4 \times pi \times 20cm^2) = mW / cm^2 @ 20 cm$
- (4) W/m^2 @ 0.2M = 10 x mW/cm^2 @ 20 cm
- (5) $dBm = 10log_{10}(mW)$