



# SAR TEST REPORT

## Applicant: VTech Telecommunications Ltd

Address: 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po NT, Hong Kong

FCC ID: EW780-S151-00

**Product Name: BT HEADSET** 

Model Number: A350M

Multiple Model: N/A

**Standard(s): 47 CFR Part 2(2.1093)** 

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230637037-SAA

Date Of Issue: 2023-09-23

**Reviewed By: Karl Gong** 

Karl Gong

Title: SAR Engineer

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

## SAR TEST RESULTS SUMMARY

| Operation Frequency<br>Bands | Highest Reported 1g SAR<br>(W/kg)<br>Head SAR | Limits<br>(W/kg) |
|------------------------------|-----------------------------------------------|------------------|
| Bluetooth                    | 0.01                                          | 1.6              |
|                              | Maximum Simultaneous Transmission SAR         |                  |
| Items                        | Head SAR                                      | Limits           |
| Bluetooth                    | NA                                            | 1.6              |
| EUT Received Date:           | 2023/06/28                                    |                  |
| Tested Date:                 | 2023/09/19                                    |                  |
| Tested Result:               | Pass                                          |                  |

#### **Test Facility**

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

#### Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " $\star$ ".

## CONTENTS

| DOCUMENT REVISION HISTORY                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)7                                                                                                                                                                                                                                                                                                                                                         |
| 1.2 TEST SPECIFICATION, METHODS AND PROCEDURES                                                                                                                                                                                                                                                                                                                                                                  |
| 1.3 SAR LIMITS                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2. SAR MEASUREMENT SYSTEM10                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. EQUIPMENT LIST AND CALIBRATION17                                                                                                                                                                                                                                                                                                                                                                             |
| 3.1 EQUIPMENTS LIST & CALIBRATION INFORMATION17                                                                                                                                                                                                                                                                                                                                                                 |
| 4. SAR MEASUREMENT SYSTEM VERIFICATION                                                                                                                                                                                                                                                                                                                                                                          |
| 4.1 LIQUID VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.2 System Accuracy Verification                                                                                                                                                                                                                                                                                                                                                                                |
| 4.3 SAR SYSTEM VALIDATION DATA20                                                                                                                                                                                                                                                                                                                                                                                |
| 5. EUT TEST STRATEGY AND METHODOLOGY21                                                                                                                                                                                                                                                                                                                                                                          |
| 5.1 TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR                                                                                                                                                                                                                                                                                                                                                  |
| 5.2 TEST POSITION FOR INTEGRATED WIRELESS COMMUNICATION HEAD-MOUNTED DEVICES 22                                                                                                                                                                                                                                                                                                                                 |
| 5.3 SAR EVALUATION PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6. CONDUCTED OUTPUT POWER MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                           |
| 6. CONDUCTED OUTPUT POWER MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                           |
| 6.1 Test Procedure                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.1 TEST PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.1 Test Procedure                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:25                                                                                                                                                                                                                                                                                                                                        |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations27                                                                                                                                                                                                                                                                                       |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:27                                                                                                                                                                                                                                                               |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:277.2 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS28                                                                                                                                                                                                             |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:277.2 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS287.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS:28                                                                                                                                                          |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:277.2 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS287.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS:287.4 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT28                                                                                           |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:277.2 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS287.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS:287.4 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT288. SAR MEASUREMENT RESULTS29                                                               |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:277.2 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS287.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS:287.4 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT288. SAR MEASUREMENT RESULTS298.1 SAR TEST DATA29                                            |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:277.2 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS287.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS:287.4 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT288. SAR MEASUREMENT RESULTS298.1 SAR TEST DATA299. Measurement Variability30                |
| 6.1 TEST PROCEDURE246.2 MAXIMUM TARGET OUTPUT POWER256.3 TEST RESULTS:257. Standalone SAR test exclusion considerations277.1 ANTENNAS LOCATION:277.2 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS287.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS:287.4 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT288. SAR MEASUREMENT RESULTS298.1 SAR TEST DATA299. Measurement Variability3010. SAR Plots31 |

| APPENDIX C CALIBRATION CERTIFICATES        |  |
|--------------------------------------------|--|
| APPENDIX D DIPOLE CALIBRATION CERTIFICATES |  |

## **DOCUMENT REVISION HISTORY**

| <b>Revision Number</b> | Report Number   | Description of Revision | Date of Revision |
|------------------------|-----------------|-------------------------|------------------|
| 1.0                    | CR230637037-SAA | Original Report         | 2023-09-23       |

## **1. GENERAL INFORMATION**

## **1.1 Product Description for Equipment under Test (EUT)**

| Device Type:        | Portable                                       |
|---------------------|------------------------------------------------|
| Exposure Category:  | Population / Uncontrolled                      |
| Antenna Type(s):    | Internal Antenna                               |
| Proximity Sensor:   | None                                           |
| Operation modes:    | Bluetooth                                      |
| Frequency Band:     | Bluetooth: 2402 MHz-2480 MHz                   |
| Conducted RF Power: | Bluetooth(BDR/EDR): 12.87 dBm<br>BLE: 9.97 dBm |
| Power Source:       | DC 3.8V from battery                           |
| Serial Number:      | 27GP-2                                         |
| Normal Operation:   | Head                                           |

#### **1.2 Test Specification, Methods and Procedures**

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528-2013, the following FCC Published RF exposure KDB procedures:

KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02

TCB Workshop April 2019: RF Exposure Procedures

## 1.3 SAR Limits

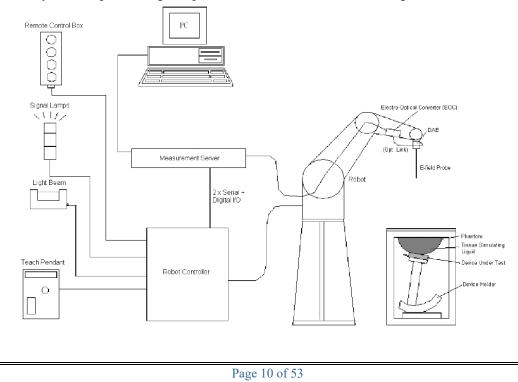
#### FCC Limit

|                                                                  | SAR (W/kg)                                                     |                                                        |
|------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| EXPOSURE LIMITS                                                  | (General Population /<br>Uncontrolled Exposure<br>Environment) | (Occupational /<br>Controlled Exposure<br>Environment) |
| Spatial Average<br>(averaged over the whole body)                | 0.08                                                           | 0.4                                                    |
| Spatial Peak<br>(averaged over any 1 g of tissue)                | 1.60                                                           | 8.0                                                    |
| Spatial Peak<br>(hands/wrists/feet/ankles<br>averaged over 10 g) | 4.0                                                            | 20.0                                                   |

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg for 1g SAR applied to the EUT.


## 2. SAR MEASUREMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:



### **DASY5** System Description

The DASY5 system for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

#### **DASY5 Measurement Server**

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.



The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

#### **Data Acquisition Electronics**

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

#### ES3DV3 E-Field Probes

| Frequency        | 10 MHz to 4 GHz<br>Linearity: ± 0.2 dB (30 MHz to 4 GHz)                                                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Directivity      | $\pm$ 0.2 dB in TSL (rotation around probe axis)<br>$\pm$ 0.3 dB in TSL (rotation normal to probe axis)                                |
| Dynamic<br>Range | $5 \ \mu W/g \text{ to} > 100 \ m W/g$<br>Linearity: $\pm 0.2 \ dB$                                                                    |
| Dimensions       | Overall length: 337 mm (Tip: 20 mm)<br>Tip diameter: 3.9 mm (Body: 12 mm)<br>Typical distance from probe tip to dipole centers: 2.0 mm |
| Application      | General dosimetry up to 4 GHz<br>Dosimetry in strong gradient fields<br>Compliance tests of mobile phones                              |
| Compatibility    | DASY3, DASY4, DASY52, DASY6, DASY8, EASY6, EASY4/MRI                                                                                   |

## Calibration Frequency Points for ES3DV3 E-Field Probes SN: 3157 Calibrated: 2023/4/10

| Calibration Frequency | Frequency<br>Range(MHz) |      | <b>Conversion Factor</b> |      | actor |  |
|-----------------------|-------------------------|------|--------------------------|------|-------|--|
| Point(MHz)            | From                    | То   | X                        | Y    | Z     |  |
| 750 Head              | 650                     | 850  | 6.48                     | 6.48 | 6.48  |  |
| 900 Head              | 850                     | 1000 | 6.25                     | 6.25 | 6.25  |  |
| 1750 Head             | 1650                    | 1850 | 5.38                     | 5.38 | 5.38  |  |
| 1900 Head             | 1850                    | 2000 | 5.18                     | 5.18 | 5.18  |  |
| 2300 Head             | 2200                    | 2400 | 4.96                     | 4.96 | 4.96  |  |
| 2450 Head             | 2400                    | 2550 | 4.74                     | 4.74 | 4.74  |  |
| 2600 Head             | 2550                    | 2700 | 4.52                     | 4.52 | 4.52  |  |

#### **SAM Twin Phantom**

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6 mm). The phantom has three measurement areas:

- Left Head
- \_ Right Head
- Flat phantom

The phantom table for the DASY systems based on the robots have the size of  $100 \times 50 \times 85$  cm (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

#### Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.



#### **SAR Scan Procedures**

#### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

#### Step 2: Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

| Area Scan Parameters extracted from KDB 865664 D01 SAR Measurem | ent 100 MHz to 6 GHz |
|-----------------------------------------------------------------|----------------------|
|-----------------------------------------------------------------|----------------------|

|                                                                                                        | $\leq$ 3 GHz                                                                                                                                       | > 3 GHz                                                                           |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | $5 \text{ mm} \pm 1 \text{ mm}$                                                                                                                    | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$             |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location              | $30^{\circ} \pm 1^{\circ}$                                                                                                                         | $20^{\circ} \pm 1^{\circ}$                                                        |
|                                                                                                        | $\leq 2$ GHz: $\leq 15$ mm<br>2 - 3 GHz: $\leq 12$ mm                                                                                              | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm                                          |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                            | When the x or y dimension<br>measurement plane orientat<br>above, the measurement res<br>corresponding x or y dimen<br>at least one measurement po | ion, is smaller than the<br>olution must be ≤ the<br>sion of the test device with |

#### Step 3: Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of  $1000 \text{ kg/m}^3$  is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 5mm, with the side length of the 10g cube is 21.5mm.

|                                                                          |             |                                                                                            | $\leq$ 3 GHz                                                                | > 3 GHz                                                                                                        |
|--------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan                                                        | spatial res | olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$                                                | $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$ | 3 – 4 GHz: ≤ 5 mm*<br>4 – 6 GHz: ≤ 4 mm*                                                                       |
| Maximum zoom<br>scan spatial<br>resolution, normal to<br>phantom surface | uniform     | grid: ∆z <sub>Zoom</sub> (n)                                                               | ≤ 5 mm                                                                      | $3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$ |
|                                                                          | graded      | $\Delta z_{Zoom}(1)$ : between<br>1 <sup>st</sup> two points closest<br>to phantom surface | $\leq$ 4 mm                                                                 | $3-4$ GHz: $\leq 3$ mm<br>$4-5$ GHz: $\leq 2.5$ mm<br>$5-6$ GHz: $\leq 2$ mm                                   |
|                                                                          | grid        | $\Delta z_{Zoom}(n>1)$ :<br>between subsequent<br>points                                   | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1) mm$                                    |                                                                                                                |
| Minimum zoom<br>scan volume                                              | x, y, z     |                                                                                            | ≥ 30 mm                                                                     | 3 – 4 GHz: ≥ 28 mm<br>4 – 5 GHz: ≥ 25 mm<br>5 – 6 GHz: ≥ 22 mm                                                 |

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Note:  $\delta$  is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is  $\leq 1.4$  W/kg,  $\leq 8$  mm,  $\leq 7$  mm and  $\leq 5$  mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

#### **Tissue Dielectric Parameters for Head and Body Phantoms**

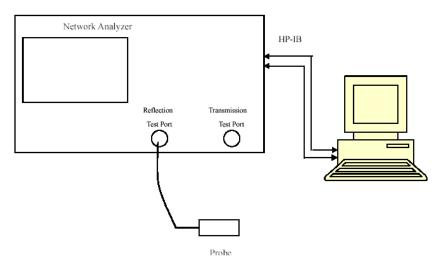
The head tissue dielectric parameters recommended by the IEC 62209-1:2016

#### **Recommended Tissue Dielectric Parameters for Head liquid**

#### Table A.3 – Dielectric properties of the head tissue-equivalent liquid

| Frequency | Relative permittivity | Conductivity (o) |
|-----------|-----------------------|------------------|
| MHz       | $\varepsilon_{\rm r}$ | S/m              |
| 300       | 45,3                  | 0,87             |
| 450       | 43,5                  | 0,87             |
| 750       | 41,9                  | 0,89             |
| 835       | 41,5                  | 0,90             |
| 900       | 41,5                  | 0,97             |
| 1 450     | 40,5                  | 1,20             |
| 1 500     | 40,4                  | 1,23             |
| 1 6 4 0   | 40,2                  | 1,31             |
| 1 750     | 40,1                  | 1,37             |
| 1 800     | 40,0                  | 1,40             |
| 1 900     | 40,0                  | 1,40             |
| 2 000     | 40,0                  | 1,40             |
| 2 100     | 39,8                  | 1,49             |
| 2 300     | 39,5                  | 1,67             |
| 2 450     | 39,2                  | 1,80             |
| 2 600     | 39,0                  | 1,96             |
| 3 000     | 38,5                  | 2,40             |
| 3 500     | 37,9                  | 2,91             |
| 4 000     | 37,4                  | 3,43             |
| 4 500     | 36,8                  | 3,94             |
| 5 000     | 36,2                  | 4,45             |
| 5 200     | 36,0                  | 4,66             |
| 5 400     | 35,8                  | 4,86             |
| 5 600     | 35,5                  | 5,07             |
| 5 800     | 35,3                  | 5,27             |
| 6 000     | 35,1                  | 5,48             |

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


## **3. EQUIPMENT LIST AND CALIBRATION**

## 3.1 Equipments List & Calibration Information

| Equipment                                     | Model           | S/N              | Calibration<br>Date | Calibration<br>Due Date |
|-----------------------------------------------|-----------------|------------------|---------------------|-------------------------|
| DASY5 Test Software                           | DASY52.10       | N/A              | NCR                 | NCR                     |
| DASY5 Measurement Server                      | DASY5 4.5.12    | 1567             | NCR                 | NCR                     |
| Data Acquisition Electronics                  | DAE4            | 1493             | 2023/3/17           | 2024/3/16               |
| E-Field Probe                                 | ES3DV3          | 3157             | 2023/4/10           | 2024/4/9                |
| Mounting Device                               | MD4HHTV5        | BJPCTC0152       | NCR                 | NCR                     |
| Twin SAM                                      | Twin SAM V5.0   | 1412             | NCR                 | NCR                     |
| Dipole, 2450 MHz                              | D2450V2         | 1102             | 2023/3/27           | 2026/3/26               |
| Simulated Tissue Liquid<br>Head(500-9500 MHz) | HBBL600-10000V6 | 220420-2         | Each Time           | /                       |
| Network Analyzer                              | 8753B           | 2828A00170       | 2022/10/24          | 2023/10/23              |
| Dielectric assessment kit                     | 1319            | SM DAK 040<br>CA | NCR                 | NCR                     |
| MXG Vector Signal Generator                   | N5182B          | MY51350144       | 2023/3/31           | 2024/3/30               |
| Power Meter                                   | ML2495A         | 1106009          | 2023/8/4            | 2024/8/3                |
| Pulse Power Sensor                            | MA2411A         | 10780            | 2023/8/4            | 2024/8/3                |
| Power Amplifier                               | ZVE-6W-83+      | 637202210        | NCR                 | NCR                     |
| Directional Coupler                           | 441493          | 520Z             | NCR                 | NCR                     |
| Attenuator                                    | 20dB, 100W      | LN749            | NCR                 | NCR                     |
| Attenuator                                    | 6dB, 150W       | 2754             | NCR                 | NCR                     |
| Thermometer                                   | DTM3000         | 3892             | 2023/3/31           | 2024/3/30               |

## 4. SAR MEASUREMENT SYSTEM VERIFICATION

## 4.1 Liquid Verification

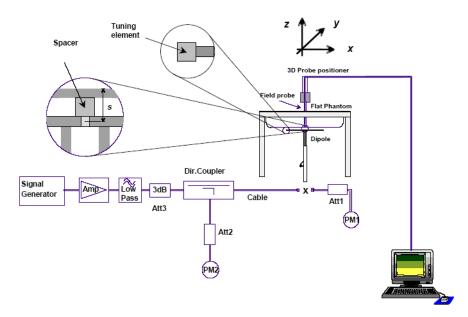


Liquid Verification Setup Block Diagram

## Liquid Verification Results

| Frequency | LiquidTune                   | Liquid<br>Parameter |            | Target Value   |             | Delta<br>(%)              |      | Tolerance |
|-----------|------------------------------|---------------------|------------|----------------|-------------|---------------------------|------|-----------|
| (MHz)     | LiquidType                   | ٤ <sub>r</sub>      | 0<br>(S/m) | ٤ <sub>r</sub> | 0'<br>(S/m) | $\Delta \epsilon_{\rm r}$ | ΔĊ   | (%)       |
| 2402      | Simulated Tissue Liquid Head | 40.369              | 1.808      | 39.30          | 1.76        | 2.72                      | 2.73 | ±5        |
| 2441      | Simulated Tissue Liquid Head | 40.195              | 1.836      | 39.22          | 1.79        | 2.49                      | 2.57 | ±5        |
| 2450      | Simulated Tissue Liquid Head | 40.149              | 1.852      | 39.20          | 1.80        | 2.42                      | 2.89 | ±5        |
| 2480      | Simulated Tissue Liquid Head | 39.910              | 1.896      | 39.16          | 1.83        | 1.92                      | 3.61 | ±5        |

\*Liquid Verification above was performed on 2023/09/19.


#### 4.2 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of  $\pm 10\%$ . The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a)  $s = 15 \text{ mm} \pm 0.2 \text{ mm}$  for 300 MHz  $\le f \le 1 000 \text{ MHz}$ ;
- b)  $s = 10 \text{ mm} \pm 0.2 \text{ mm}$  for 1 000 MHz < f  $\leq$  3 000 MHz;
- c)  $s = 10 \text{ mm} \pm 0.2 \text{ mm}$  for 3 000 MHz  $< f \le 6$  000 MHz.

#### System Verification Setup Block Diagram



#### System Accuracy Check Results

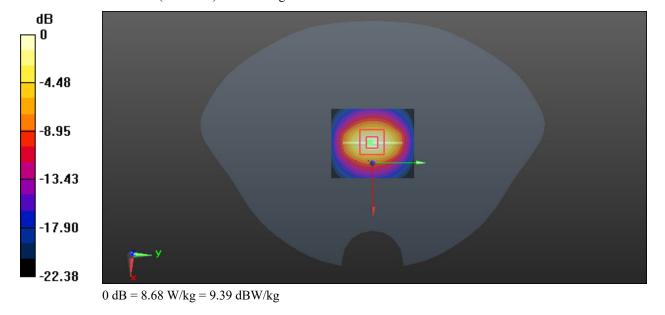
| Date       | Frequency<br>Band | Liquid Type                  | Input<br>Power<br>(mW) | Power SAR<br>(mW) (W/kg) |      | Normalized<br>to 1W<br>(W/kg) | Target<br>Value<br>(W/kg) | Delta<br>(%) | Tolerance<br>(%) |
|------------|-------------------|------------------------------|------------------------|--------------------------|------|-------------------------------|---------------------------|--------------|------------------|
| 2023/09/19 | 2450 MHz          | Simulated Tissue Liquid Head | 100                    | 1g                       | 5.52 | 55.2                          | 50.9                      | 8.45         | ±10              |

\*The SAR values above are normalized to 1 Watt forward power.

#### 4.3 SAR SYSTEM VALIDATION DATA

System Performance 2450MHz

#### DUT: D2450V2; Type: 2450 MHz; Serial: 1102


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.852 S/m;  $\epsilon_r$  = 40.149;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

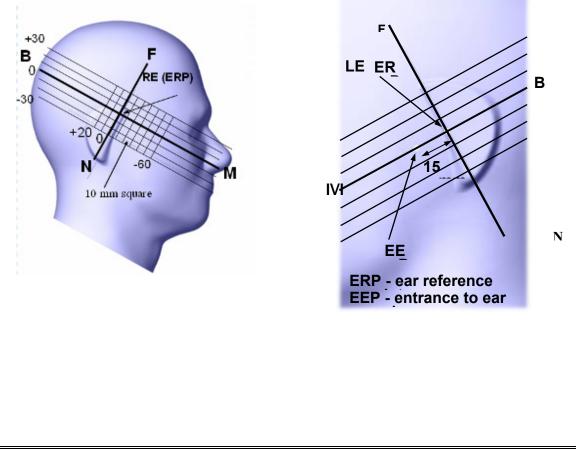
**DASY5** Configuration:

- Probe: ES3DV3 SN3157; ConvF(4.74, 4.74, 4.74) @ 2450 MHz; Calibrated: 2023/4/10
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (7x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 6.38 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 52.45 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 10.6 W/kg SAR(1 g) = 5.52 W/kg; SAR(10 g) = 2.49 W/kg Maximum value of SAR (measured) = 8.68 W/kg




Page 20 of 53

## 5. EUT TEST STRATEGY AND METHODOLOGY

#### 5.1 Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or PIFA Antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:



#### 5.2 Test position For Integrated Wireless Communication Head-mounted Devices

The specific anthropomorphic mannequin (SAM) phantom shall be used for evaluating exposure in the head. The rationale for choosing the specific head phantom model (i.e. SAM) for this document is based on the following criteria.

a) The psSAR shall provide conservative exposure.

b) The test results shall not unnecessarily overestimate the maximum SAR expected inactual users.

c) The phantom shall allow stable and repeatable device positioning for psSAR measurements, and be effective for verifying measurement repeatability according to system check procedures, and measurement reproducibility through inter-laboratory comparisons.

d) The phantom shall be practical for routine SAR evaluation use.

e) The phantom shall support these criteria for contemporary and future wireless device designs, and be unbiased with respect to any particular design or shape.

f) Based on the presently available science, literature, and experience, the design of the SAM phantom that meets the above criteria is a function of at least the following parameters:

1) size and shape of the head phantom shell;

2) dielectric properties and material homogeneity of the tissue-equivalent media and the phantom shell;

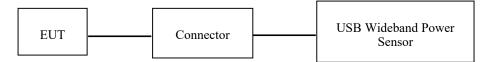
3) ear pinna size, shape, location, and material properties;

4) exclusion of the hand for measuring SAR in the head

A typical example of a clothing-integrated device is a wireless communication device integrated into a jacket to provide voice communications through an embedded speaker and microphone. This category also includes head-mounted devices with integrated wireless communication devices

This devices integrated in head-mounted devices be tested using the SAM phantom.

#### **5.3 SAR Evaluation Procedure**


The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
  - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
  - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
  - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

## 6. CONDUCTED OUTPUT POWER MEASUREMENT

#### **6.1 Test Procedure**

The RF output of the transmitter was connected to the input port of the USB Wideband Power Sensor through Connector.

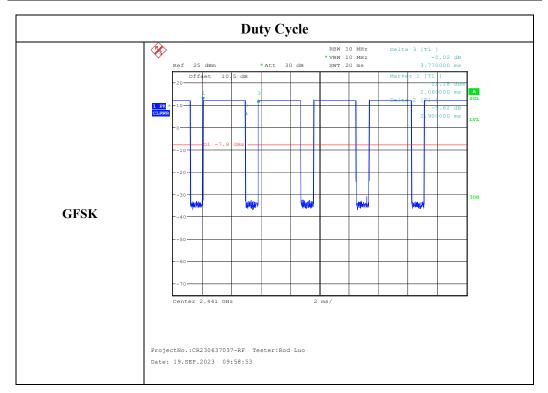


Bluetooth

## 6.2 Maximum Target Output Power

| Max Target Power(dBm) |         |        |      |  |  |  |  |
|-----------------------|---------|--------|------|--|--|--|--|
| Mode/Band             | Channel |        |      |  |  |  |  |
| wiode/ band           | Low     | Middle | High |  |  |  |  |
| Bluetooth             | 13      | 13     | 13   |  |  |  |  |
| BLE_1M                | 10      | 10     | 10   |  |  |  |  |
| BLE_2M                | 10      | 10     | 10   |  |  |  |  |

#### 6.3 Test Results:


#### Bluetooth:

| Mode                     | Channel frequency<br>(MHz)                    | Peak Conducted<br>Output Power<br>(dBm) |
|--------------------------|-----------------------------------------------|-----------------------------------------|
|                          | 2402                                          | 12.87                                   |
| BDR Mode<br>(GFSK)       | 2441                                          | 12.51                                   |
| (OI SK)                  | (MHz)<br>2402<br>2441<br>2480<br>2402<br>2441 | 12.39                                   |
|                          | 2402                                          | 12.27                                   |
| EDR Mode $(\pi/4-DQPSK)$ | 2441                                          | 11.98                                   |
| ( <i>M</i> DQI SK)       | 2480                                          | 11.97                                   |
|                          | 2402                                          | 12.73                                   |
| EDR Mode<br>(8DPSK)      | 2441                                          | 12.52                                   |
| (001 5K)                 | 2480                                          | 12.48                                   |
|                          | 2402                                          | 9.95                                    |
| BLE_1M                   | 2440                                          | 9.73                                    |
|                          | 2480                                          | 9.45                                    |
|                          | 2402                                          | 9.97                                    |
| BLE_2M                   | 2440                                          | 9.71                                    |
|                          | 2480                                          | 9.52                                    |

#### Report No.:CR230637037-SAA

## Duty cycle

| Test Modes | Ton  | Ton+off | Duty cycle |
|------------|------|---------|------------|
|            | (ms) | (ms)    | (%)        |
| GFSK       | 2.9  | 3.77    | 76.92      |



## 7. Standalone SAR test exclusion considerations

#### 7.1 Antennas Location:



#### 7.2 Standalone SAR test exclusion considerations

| Mode      | Frequency<br>(MHz) | Output<br>Power<br>(dBm) | Output<br>Power<br>(mW) | Distance<br>(mm) | Calculated value | Threshold<br>(1-g) | SAR Test<br>Exclusion |
|-----------|--------------------|--------------------------|-------------------------|------------------|------------------|--------------------|-----------------------|
| Bluetooth | 2480               | 13.0                     | 19.95                   | 0                | 6.3              | 3                  | NO                    |

#### NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances  $\leq$  50 mm are determined by:

[( max. power of channel, including tune-up tolerance, mW )/( min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$  for 1-g SAR and  $\le 7.5$  for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

#### 7.3 Standalone SAR test exclusion considerations:

| Mode      | Frequency<br>(MHz) | Output<br>Power<br>(dBm) | Output<br>Power<br>(mW) | Test exclusion<br>Threshold<br>(mm) |  |
|-----------|--------------------|--------------------------|-------------------------|-------------------------------------|--|
| Bluetooth | 2480               | 13.0                     | 19.95                   | 10.4                                |  |

Note: The maximum peak power is used for calculation..

#### 7.4 SAR test exclusion for the EUT edge considerations Result

| Antenna Distance To Edge(mm) |          |  |  |  |  |
|------------------------------|----------|--|--|--|--|
| Mode                         | Touch    |  |  |  |  |
| Left                         | Required |  |  |  |  |
| Right                        | Required |  |  |  |  |

#### Note:

**Required:** The distance is less than **Test Exclusion Distance**, the SAR test is required.

## **8. SAR MEASUREMENT RESULTS**

This page summarizes the results of the performed dosimetric evaluation.

#### 8.1 SAR Test Data

#### **Environmental Conditions**

| Temperature:              | 22.8~23.8°C |
|---------------------------|-------------|
| <b>Relative Humidity:</b> | 38~46 %     |
| ATM Pressure:             | 101.3 kPa   |
| Test Date:                | 2023/09/19  |

Testing was performed by Ken Zong.

#### **Bluetooth:**

|                       |                    |              | Max.                    | Max.                    | 1g SAR (W/Kg)             |                    |                                |              |               |      |
|-----------------------|--------------------|--------------|-------------------------|-------------------------|---------------------------|--------------------|--------------------------------|--------------|---------------|------|
| EUT<br>Position       | Frequency<br>(MHz) | Test<br>Mode | Meas.<br>Power<br>(dBm) | Rated<br>Power<br>(dBm) | Power<br>Scaled<br>Factor | duty<br>cycle<br>% | Duty cycle<br>Scaled<br>Factor | Meas.<br>SAR | Scaled<br>SAR | Plot |
| Head touch            | 2402               | GFSK         | 12.87                   | 13.0                    | 1.03                      | 76.92              | 1.3                            | 0.00431      | 0.01          | 1#   |
| Head touch            | 2441               | GFSK         | /                       | /                       | /                         | /                  | /                              | /            | /             | /    |
| (Left)                | 2480               | GFSK         | /                       | /                       | /                         | /                  | /                              | /            | /             | /    |
| II                    | 2402               | GFSK         | 12.87                   | 13.0                    | 1.03                      | 76.92              | 1.3                            | 0.00572      | 0.01          | 2#   |
| Head touch<br>(Right) | 2441               | GFSK         | 12.51                   | 13.0                    | 1.119                     | 76.92              | 1.3                            | 0.00599      | 0.01          | 3#   |
| (Right)               | 2480               | GFSK         | 12.39                   | 13.0                    | 1.151                     | 76.92              | 1.3                            | 0.00603      | 0.01          | 4#   |

#### Note:

1. When the 1-g SAR is  $\leq 0.8$ W/Kg, testing for other channels are optional. 2. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance. 3. According 2016 Oct. TCB, for SAR testing of GFSK signal with non-100% duty cycle, the measured

SAR is scaled-up by the duty cycle scaling factor which is equal to "1/( duty cycle)". 4. Since GFSK mode is the largest power mode of Bluetooth, GFSK mode is selected to test.

## 9. Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is  $\geq 0.80$  W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposureand a factor of 5 for occupational exposure to the corresponding SAR thresholds.

#### The Highest Measured SAR Configuration in Each Frequency Band

#### Head

| SAR probe calibration point | Frequency Freq.(MHz) |            | EUT Position  | Meas. SA | R (W/kg) | Largest to<br>Smallest SAR |  |
|-----------------------------|----------------------|------------|---------------|----------|----------|----------------------------|--|
|                             | Band                 | rieq.(MHZ) | EUT FOSILIOII | Original | Repeated | Ratio                      |  |
| /                           | /                    | /          | /             | /        | /        | /                          |  |

#### Note:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

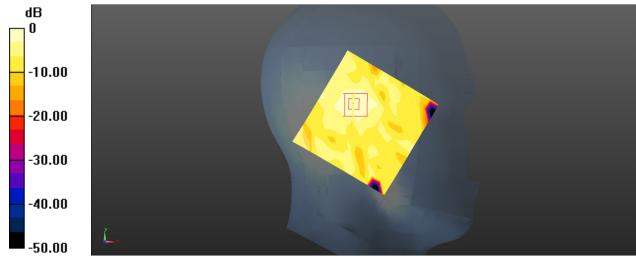
2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe** calibration point and tissue-equivalent medium used for the device measurements.

### **10. SAR Plots**

#### Plot 1#: Bluetooth\_Low\_Head Touch (Left)

#### DUT:BT HEADSET; Type: A350M; Serial: 27GP-2


Communication System: Bluetooth(GFSK); Frequency: 2402 MHz;Duty Cycle: 1:1.3 Medium parameters used: f = 2402 MHz;  $\sigma$  = 1.808 S/m;  $\epsilon_r$  = 40.369;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Left Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(4.74, 4.74, 4.74) @2402 MHz; Calibrated: 2023/4/10
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00600 W/kg

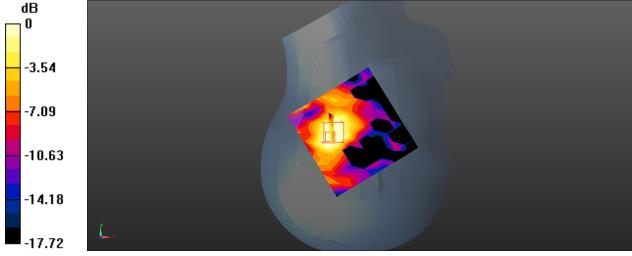
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.395 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.00967 W/kg SAR(1 g) = 0.00431 W/kg; SAR(10 g) = 0.00185 W/kg Maximum value of SAR (measured) = 0.00570 W/kg



0 dB = 0.00570 W/kg = -22.44 dBW/kg

#### Plot 2#: Bluetooth\_Low\_Head Touch (Right)

#### DUT:BT HEADSET; Type: A350M; Serial: 27GP-2


Communication System: Bluetooth(GFSK); Frequency: 2402 MHz;Duty Cycle: 1:1.3 Medium parameters used: f = 2402 MHz;  $\sigma = 1.808$  S/m;  $\epsilon_r = 40.369$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Right Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(4.74, 4.74, 4.74) @2402 MHz; Calibrated: 2023/4/10
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00685 W/kg

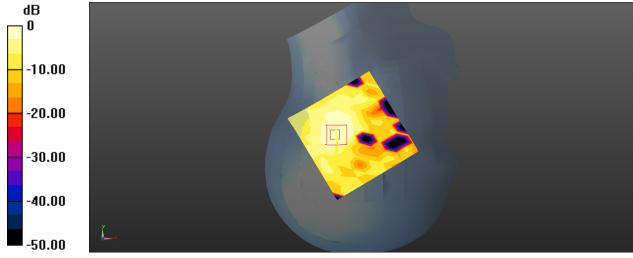
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 1.403 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.0170 W/kg SAR(1 g) = 0.00572 W/kg; SAR(10 g) = 0.00127 W/kg Maximum value of SAR (measured) = 0.00599 W/kg

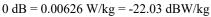


0 dB = 0.00599 W/kg = -22.23 dBW/kg

## Plot 3#: Bluetooth\_Mid\_Head Touch (Right)

#### DUT:BT HEADSET; Type: A350M; Serial: 27GP-2


Communication System: Bluetooth(GFSK); Frequency: 2441 MHz;Duty Cycle: 1:1.3 Medium parameters used: f = 2441 MHz;  $\sigma$  = 1.836 S/m;  $\epsilon_r$  = 40.195;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Right Section


DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(4.74, 4.74, 4.74) @2441 MHz; Calibrated: 2023/4/10
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00823 W/kg

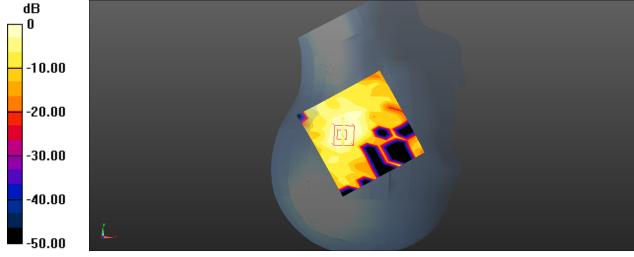
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.101 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.0190 W/kg SAR(1 g) = 0.00599 W/kg; SAR(10 g) = 0.00194 W/kg Maximum value of SAR (measured) = 0.00626 W/kg





#### Plot 4#: Bluetooth\_High\_Head Touch (Right)

#### DUT:BT HEADSET; Type: A350M; Serial: 27GP-2


Communication System: Bluetooth(GFSK); Frequency: 2480 MHz;Duty Cycle: 1:1.3 Medium parameters used: f = 2480 MHz;  $\sigma$  = 1.896 S/m;  $\epsilon_r$  = 39.91;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Right Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(4.74, 4.74, 4.74) @2480 MHz; Calibrated: 2023/4/10
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00820 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.363 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.0180 W/kg SAR(1 g) = 0.00603 W/kg; SAR(10 g) = 0.00127 W/kg Maximum value of SAR (measured) = 0.00627 W/kg



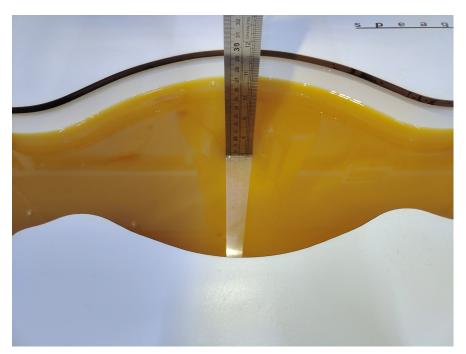
0 dB = 0.00627 W/kg = -22.03 dBW/kg

## APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

#### Measurement uncertainty evaluation for IEEE1528-2013 SAR test

| Source of<br>uncertainty                             | Tolerance/<br>uncertainty<br>±% | Probability<br>distribution | Divisor   | ci<br>(1 g) | ci<br>(10 g) | Standard<br>uncertainty<br>± %, (1 g) | Standard<br>uncertainty<br>± %, (10 g) |  |  |  |  |
|------------------------------------------------------|---------------------------------|-----------------------------|-----------|-------------|--------------|---------------------------------------|----------------------------------------|--|--|--|--|
| Measurement system                                   |                                 |                             |           |             |              |                                       |                                        |  |  |  |  |
| Probe calibration                                    | 6.55                            | N                           | 1         | 1           | 1            | 6.3                                   | 6.3                                    |  |  |  |  |
| Axial Isotropy                                       | 4.7                             | R                           | √3        | 1           | 1            | 2.7                                   | 2.7                                    |  |  |  |  |
| Hemispherical Isotropy                               | 9.6                             | R                           | √3        | 0           | 0            | 0.0                                   | 0.0                                    |  |  |  |  |
| Boundary effect                                      | 1.0                             | R                           | √3        | 1           | 1            | 0.6                                   | 0.6                                    |  |  |  |  |
| Linearity                                            | 4.7                             | R                           | √3        | 1           | 1            | 2.7                                   | 2.7                                    |  |  |  |  |
| Detection limits                                     | 1.0                             | R                           | √3        | 1           | 1            | 0.6                                   | 0.6                                    |  |  |  |  |
| Readout electronics                                  | 0.3                             | Ν                           | 1         | 1           | 1            | 0.3                                   | 0.3                                    |  |  |  |  |
| Response time                                        | 0.0                             | R                           | √3        | 1           | 1            | 0.0                                   | 0.0                                    |  |  |  |  |
| Integration time                                     | 0.0                             | R                           | √3        | 1           | 1            | 0.0                                   | 0.0                                    |  |  |  |  |
| RF ambient conditions –<br>noise                     | 1.0                             | R                           | √3        | 1           | 1            | 0.6                                   | 0.6                                    |  |  |  |  |
| RF ambient conditions–<br>reflections                | 1.0                             | R                           | √3        | 1           | 1            | 0.6                                   | 0.6                                    |  |  |  |  |
| Probe positioner mech.<br>Restrictions               | 0.8                             | R                           | √3        | 1           | 1            | 0.5                                   | 0.5                                    |  |  |  |  |
| Probe positioning with<br>respect to phantom shell   | 6.7                             | R                           | √3        | 1           | 1            | 3.9                                   | 3.9                                    |  |  |  |  |
| Post-processing                                      | 2.0                             | R                           | √3        | 1           | 1            | 1.2                                   | 1.2                                    |  |  |  |  |
|                                                      |                                 | Test sample                 | e related |             |              |                                       |                                        |  |  |  |  |
| Test sample positioning                              | 2.8                             | N                           | 1         | 1           | 1            | 2.8                                   | 2.8                                    |  |  |  |  |
| Device holder uncertainty                            | 6.3                             | N                           | 1         | 1           | 1            | 6.3                                   | 6.3                                    |  |  |  |  |
| Drift of output power                                | 5.0                             | R                           | √3        | 1           | 1            | 2.9                                   | 2.9                                    |  |  |  |  |
| Phantom and set-up                                   |                                 |                             |           |             |              |                                       |                                        |  |  |  |  |
| Phantom uncertainty (shape and thickness tolerances) | 4.0                             | R                           | √3        | 1           | 1            | 2.3                                   | 2.3                                    |  |  |  |  |
| Liquid conductivity target)                          | 5.0                             | R                           | √3        | 0.64        | 0.43         | 1.8                                   | 1.2                                    |  |  |  |  |
| Liquid conductivity meas.)                           | 2.5                             | N                           | 1         | 0.64        | 0.43         | 1.6                                   | 1.1                                    |  |  |  |  |
| Liquid permittivity target)                          | 5.0                             | R                           | √3        | 0.6         | 0.49         | 1.7                                   | 1.4                                    |  |  |  |  |
| Liquid permittivity meas.)                           | 2.5                             | N                           | 1         | 0.6         | 0.49         | 1.5                                   | 1.2                                    |  |  |  |  |
| Combined standard<br>uncertainty                     |                                 | RSS                         |           |             |              | 12.2                                  | 12.0                                   |  |  |  |  |
| Expanded uncertainty 95 % confidence interval)       |                                 |                             |           |             |              | 24.1                                  | 23.7                                   |  |  |  |  |


| Source of<br>uncertainty                                   | Tolerance/<br>uncertainty | Probability distribution | Divisor | ci<br>(1 g) | ci<br>(10 g) | Standard<br>uncertainty | Standard<br>uncertainty |  |  |  |
|------------------------------------------------------------|---------------------------|--------------------------|---------|-------------|--------------|-------------------------|-------------------------|--|--|--|
| •                                                          | ± %                       |                          |         |             | ι <b>υ</b> , | ± %, (1 g)              | ± %, (10 g)             |  |  |  |
| Measurement system                                         |                           |                          |         |             |              |                         |                         |  |  |  |
| Probe calibration                                          | 6.55                      | Ν                        | 1       | 1           | 1            | 6.3                     | 6.3                     |  |  |  |
| Axial Isotropy                                             | 4.7                       | R                        | √3      | 1           | 1            | 2.7                     | 2.7                     |  |  |  |
| Hemispherical Isotropy                                     | 9.6                       | R                        | √3      | 0           | 0            | 0.0                     | 0.0                     |  |  |  |
| Boundary effect                                            | 1.0                       | R                        | √3      | 1           | 1            | 0.6                     | 0.6                     |  |  |  |
| Linearity                                                  | 4.7                       | R                        | √3      | 1           | 1            | 2.7                     | 2.7                     |  |  |  |
| Detection limits                                           | 1.0                       | R                        | √3      | 1           | 1            | 0.6                     | 0.6                     |  |  |  |
| Readout electronics                                        | 0.3                       | Ν                        | 1       | 1           | 1            | 0.3                     | 0.3                     |  |  |  |
| Response time                                              | 0.0                       | R                        | √3      | 1           | 1            | 0.0                     | 0.0                     |  |  |  |
| Integration time                                           | 0.0                       | R                        | √3      | 1           | 1            | 0.0                     | 0.0                     |  |  |  |
| RF ambient conditions –<br>noise                           | 1.0                       | R                        | √3      | 1           | 1            | 0.6                     | 0.6                     |  |  |  |
| Probe positioning with<br>respect to phantom shell         | 6.7                       | R                        | √3      | 1           | 1            | 3.9                     | 3.9                     |  |  |  |
| Probe positioner mech.<br>Restrictions                     | 0.8                       | R                        | √3      | 1           | 1            | 0.5                     | 0.5                     |  |  |  |
| RF ambient conditions–<br>reflections                      | 1.0                       | R                        | √3      | 1           | 1            | 0.6                     | 0.6                     |  |  |  |
| Post-processing                                            | 2.0                       | R                        | √3      | 1           | 1            | 1.2                     | 1.2                     |  |  |  |
| Test sample related                                        |                           |                          |         |             |              |                         |                         |  |  |  |
| Test sample positioning                                    | 2.8                       | Ν                        | 1       | 1           | 1            | 2.8                     | 2.8                     |  |  |  |
| Device holder uncertainty                                  | 6.3                       | Ν                        | 1       | 1           | 1            | 6.3                     | 6.3                     |  |  |  |
| Drift of output power                                      | 5.0                       | R                        | √3      | 1           | 1            | 2.9                     | 2.9                     |  |  |  |
| Phantom and set-up                                         |                           |                          |         |             |              |                         |                         |  |  |  |
| Phantom uncertainty<br>(shape and thickness<br>tolerances) | 4.0                       | R                        | √3      | 1           | 1            | 2.3                     | 2.3                     |  |  |  |
| Liquid conductivity target)                                | 5.0                       | R                        | √3      | 0.64        | 0.43         | 1.8                     | 1.2                     |  |  |  |
| Liquid conductivity meas.)                                 | 2.5                       | Ν                        | 1       | 0.64        | 0.43         | 1.6                     | 1.1                     |  |  |  |
| Liquid permittivity target)                                | 5.0                       | R                        | √3      | 0.6         | 0.49         | 1.7                     | 1.4                     |  |  |  |
| Liquid permittivity meas.)                                 | 2.5                       | Ν                        | 1       | 0.6         | 0.49         | 1.5                     | 1.2                     |  |  |  |
| Combined standard<br>uncertainty                           |                           | RSS                      |         |             |              | 12.2                    | 12.0                    |  |  |  |
| Expanded uncertainty 95 % confidence interval)             |                           |                          |         |             |              | 24.0                    | 23.6                    |  |  |  |

#### Measurement uncertainty evaluation for IEC62209-1 SAR test

# **APPENDIX B EUT TEST POSITION PHOTOS**

Liquid depth  $\geq$  15cm

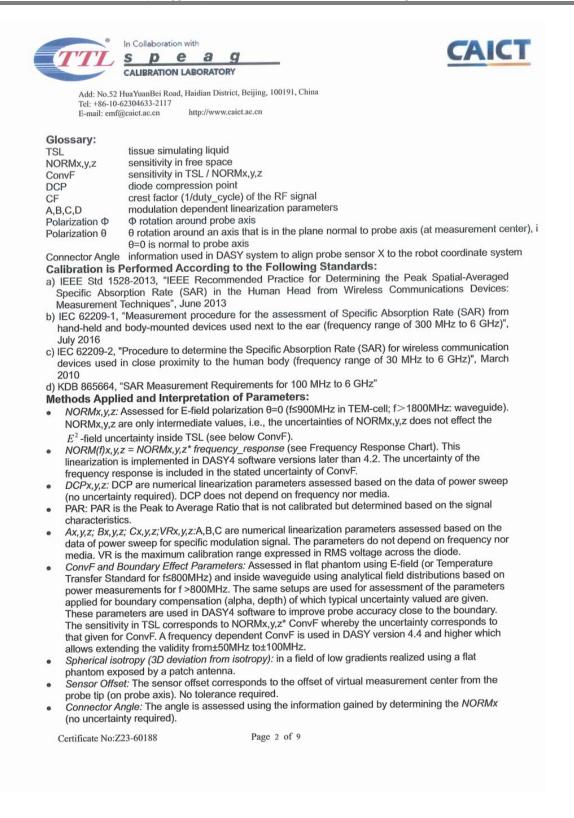
Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412





Head touch(Left) Setup Photo

Head touch(Right) Setup Photo




# **APPENDIX C CALIBRATION CERTIFICATES**

| Add: No.52 HuaYuanBei<br>Tel: +86-10-62304633-21                                                                                                                                                                                                                                                                 | Road, Haidian District, Beijii<br>117                                                                                                                                                              | ng, 100191, China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CALIBRATION<br>CNAS L0570                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-mail: emf@caict.ac.cn                                                                                                                                                                                                                                                                                          | http://www.caict.ac.cn                                                                                                                                                                             | Certificate No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z23-60188                                                                                                                                                                              |
| Client CCI                                                                                                                                                                                                                                                                                                       | CI                                                                                                                                                                                                 | Certificate NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 223-00100                                                                                                                                                                              |
| CALIBRATION                                                                                                                                                                                                                                                                                                      | CERTIFICATE                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |
| Object                                                                                                                                                                                                                                                                                                           | ES3DV3 - 5                                                                                                                                                                                         | SN : 3157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| Calibration Procedure(s)                                                                                                                                                                                                                                                                                         | FF-Z11-004<br>Calibration                                                                                                                                                                          | I-02<br>Procedures for Dosimetric E-field Probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                      |
| Calibration date:                                                                                                                                                                                                                                                                                                | April 10, 20                                                                                                                                                                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |
| pages and are part of the<br>All calibrations have be                                                                                                                                                                                                                                                            | certificate.                                                                                                                                                                                       | uncertainties with confidence probability<br>closed laboratory facility: environment                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |
| numiaity<70%.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        |
| Calibration Equipment us                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sahadulad Calibration                                                                                                                                                                  |
| Calibration Equipment us<br>Primary Standards                                                                                                                                                                                                                                                                    | ID #                                                                                                                                                                                               | Cal Date(Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2                                                                                                                                                                                                                                                | ID #<br>101919                                                                                                                                                                                     | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun-23                                                                                                                                                                                 |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9                                                                                                                                                                                                                         | ID #<br>101919<br>101547                                                                                                                                                                           | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9                                                                                                                                                                                                  | ID #<br>101919<br>11 101547<br>11 101548                                                                                                                                                           | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)                                                                                                                                                                                                                                                                                                                                                                                    | Jun-23<br>Jun-23                                                                                                                                                                       |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu                                                                                                                                                                          | ID #<br>101919<br>11 101547<br>11 101548<br>1ator 18N50W-10dB                                                                                                                                      | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)                                                                                                                                                                                                                                                                                                                                                   | Jun-23<br>Jun-23<br>Jun-23                                                                                                                                                             |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu                                                                                                                                                  | ID #<br>101919<br>11 101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB                                                                                                                 | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)                                                                                                                                                                                                                                                                                                                  | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25                                                                                                                                         |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30                                                                                                                          | ID #<br>101919<br>11 101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB                                                                                                                 | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma                                                                                                                                                                                                                                                                               | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23                                                                                                                          |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu                                                                                                                                                  | ID #<br>101919<br>11 101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB<br>DV4 SN 3846                                                                                                  | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)                                                                                                                                                                                                                                                                                                                  | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23                                                                                                          |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4                                                                                                                  | ID #<br>101919<br>11 101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB<br>DV4 SN 3846<br>SN 1555                                                                                       | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma<br>25-Aug-22(SPEAG, No.DAE4-1555_A                                                                                                                                                                                                                                            | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23                                                                                                          |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4<br>DAE4<br>Secondary Standards                                                                                   | ID #<br>101919<br>11 101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB<br>DV4 SN 3846<br>SN 1555<br>SN 549<br>ID #                                                                     | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma<br>25-Aug-22(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-549_Jar                                                                                                                                                                                                        | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23<br>µ23) Jan-24                                                                                           |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4<br>DAE4                                                                                                          | ID #<br>101919<br>11 101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB<br>DV4 SN 3846<br>SN 1555<br>SN 549<br>ID #<br>700A 6201052605                                                  | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma<br>25-Aug-22(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-549_Jar<br>Cal Date(Calibrated by, Certificate No.)                                                                                                                                                            | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23<br>ug22) Aug-23<br>scheduled Calibration<br>Jun-23<br>Jan-24                                             |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4<br>DAE4<br>Secondary Standards<br>SignalGenerator MG33                                                           | ID #<br>101919<br>11 101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB<br>DV4 SN 3846<br>SN 1555<br>SN 549<br>ID #<br>700A 6201052605                                                  | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma<br>25-Aug-22(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-549_Jar<br>Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04182)                                                                                                                           | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23<br>ug22) Aug-23<br>i23) Jan-24<br>Scheduled Calibration<br>Jun-23                                        |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4<br>DAE4<br>Secondary Standards<br>SignalGenerator MG33<br>Network Analyzer E50                                   | ID #<br>101919<br>101547<br>101548<br>1ator 18N50W-10dB<br>18N50W-20dB<br>DV4 SN 3846<br>SN 1555<br>SN 549<br>ID #<br>700A 6201052605<br>71C MY46110673                                            | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-549_Jar<br>Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04182)<br>10-Jan-23(CTTL, No.J23X00104)                                                                                          | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23<br>ug22) Aug-23<br>scheduled Calibration<br>Jun-23<br>Jan-24                                             |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4<br>DAE4<br>Secondary Standards<br>SignalGenerator MG33<br>Network Analyzer E50<br>Calibrated by:                 | ID #<br>101919<br>101547<br>11 101548<br>Jator 18N50W-10dB<br>Jator 18N50W-20dB<br>DV4 SN 3846<br>SN 1555<br>SN 549<br>ID #<br>700A 6201052605<br>71C MY46110673<br>Name                           | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma<br>25-Aug-22(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-549_Jar<br>Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04182)<br>10-Jan-23(CTTL, No.J23X00104)<br>Function                                                                              | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23<br>y23) Jan-24<br>Scheduled Calibration<br>Jun-23<br>Jan-24                                              |
| Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4<br>DAE4<br>Secondary Standards<br>SignalGenerator MG33                                                                                                                                | ID #<br>101919<br>101547<br>11 101548<br>uator 18N50W-10dB<br>uator 18N50W-20dB<br>DV4 SN 3846<br>SN 1555<br>SN 549<br>ID #<br>700A 6201052605<br>71C MY46110673<br>Name<br>Yu Zongying            | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma<br>25-Aug-22(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-549_Jar<br>Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04182)<br>10-Jan-23(CTTL, No.J23X00104)<br>Function<br>SAR Test Engineer                                                         | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23<br>ug22) Aug-23<br>scheduled Calibration<br>Jun-23<br>Jan-24                                             |
| Calibration Equipment us<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z9<br>Power sensor NRP-Z9<br>Reference 10dBAttenu<br>Reference 20dBAttenu<br>Reference Probe EX30<br>DAE4<br>DAE4<br>Secondary Standards<br>SignalGenerator MG33<br>Network Analyzer E50<br>Calibrated by:<br>Reviewed by: | ID #<br>101919<br>101547<br>11 101548<br>uator 18N50W-10dB<br>uator 18N50W-20dB<br>DV4 SN 3846<br>SN 1555<br>SN 549<br>ID #<br>700A 6201052605<br>71C MY46110673<br>Name<br>Yu Zongying<br>Lin Hao | Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>14-Jun-22(CTTL, No.J22X04181)<br>19-Jan-23(CTTL, No.J23X00212)<br>19-Jan-23(CTTL, No.J23X00211)<br>20-May-22(SPEAG, No.EX3-3846_Ma<br>25-Aug-22(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-1555_A<br>24-Jan-23(SPEAG, No.DAE4-549_Jar<br>Cal Date(Calibrated by, Certificate No.)<br>14-Jun-22(CTTL, No.J22X04182)<br>10-Jan-23(CTTL, No.J23X00104)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer | Jun-23<br>Jun-23<br>Jun-23<br>Jan-25<br>Jan-25<br>y22) May-23<br>ug22) Aug-23<br>ug22) Aug-23<br>ug22) Aug-23<br>i23) Jan-24<br>Scheduled Calibration<br>Jun-23<br>Jan-24<br>Signature |

Certificate No: Z23-60188

Page 1 of 9







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn

# DASY/EASY – Parameters of Probe: ES3DV3 – SN:3157

### **Basic Calibration Parameters**

|                                           | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|-------------------------------------------|----------|----------|----------|-----------|
| Norm(µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.97     | 1.14     | 0.96     | ±10.0%    |
| DCP(mV) <sup>B</sup>                      | 102.2    | 102.6    | 103.6    |           |

### **Modulation Calibration Parameters**

| UID | Communication<br>System Name |   | A<br>dB | B<br>dBõV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>( <i>k</i> =2) |
|-----|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------|
| 0   | CW                           | X | 0.0     | 0.0       | 1.0 | 0.00    | 224.4    | ±2.0%                              |
|     |                              | Y | 0.0     | 0.0       | 1.0 |         | 247.0    | 7                                  |
|     |                              | Z | 0.0     | 0.0       | 1.0 |         | 223.9    |                                    |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

 <sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 4).
<sup>B</sup> Numerical linearization parameter: uncertainty not required.
<sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is appressed for the sectors of the field unline. and is expressed for the square of the field value.

Certificate No:Z23-60188

Page 3 of 9

Page 41 of 53



CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn http://www.caiet.ac.cn

# DASY/EASY – Parameters of Probe: ES3DV3 – SN:3157

# Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>( <i>k</i> =2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------------------|
| 750                  | 41.9                                  | 0.89                               | 6.48    | 6.48    | 6.48    | 0.35               | 1.53                       | ±12.7%                  |
| 900                  | 41.5                                  | 0.97                               | 6.25    | 6.25    | 6.25    | 0.37               | 1.53                       | ±12.7%                  |
| 1750                 | 40.1                                  | 1.37                               | 5.38    | 5.38    | 5.38    | 0.60               | 1.31                       | ±12.7%                  |
| 1900                 | 40.0                                  | 1.40                               | 5.18    | 5.18    | 5.18    | 0.65               | 1.26                       | ±12.7%                  |
| 2300                 | 39.5                                  | 1.67                               | 4.96    | 4.96    | 4.96    | 0.90               | 1.10                       | ±12.7%                  |
| 2450                 | 39.2                                  | 1.80                               | 4.74    | 4.74    | 4.74    | 0.90               | 1.10                       | ±12.7%                  |
| 2600                 | 39.0                                  | 1.96                               | 4.52    | 4.52    | 4.52    | 0.90               | 1.16                       | ±12.7%                  |

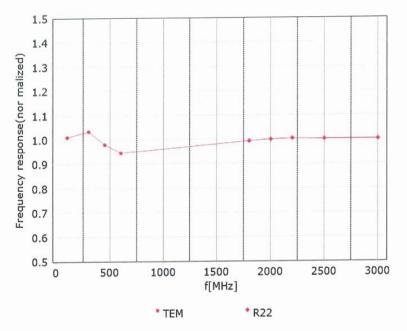
<sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>F</sup> At frequency up to 6 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z23-60188

Page 4 of 9

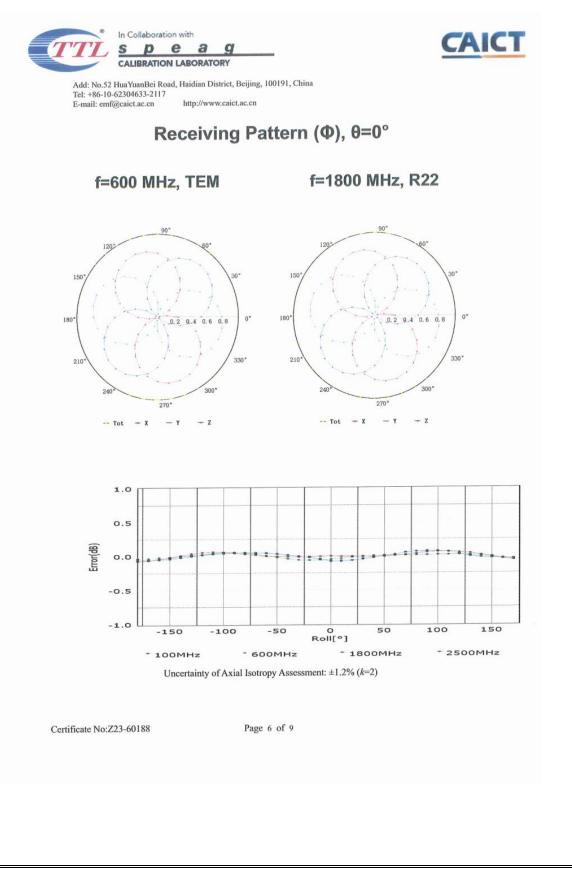

Report No.:CR230637037-SAA

**TOIA** 



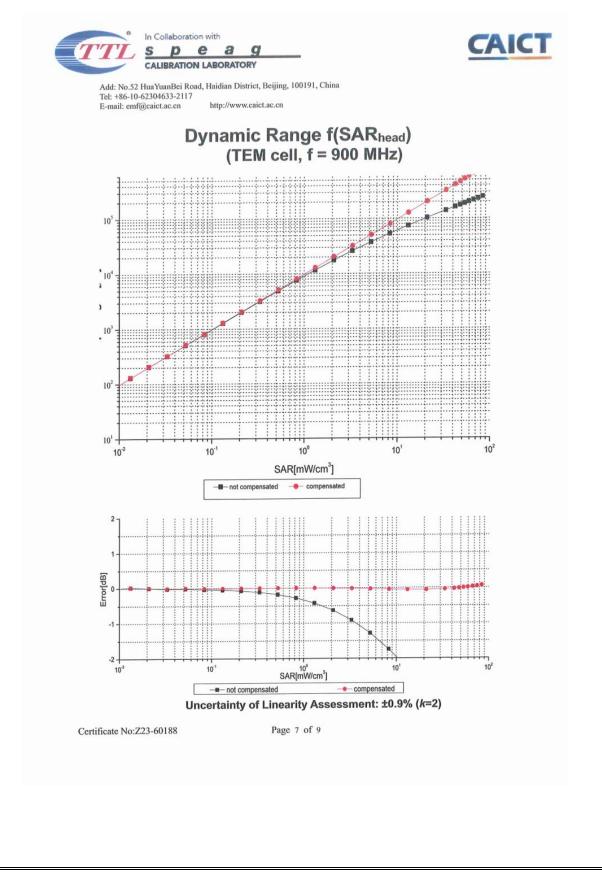
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

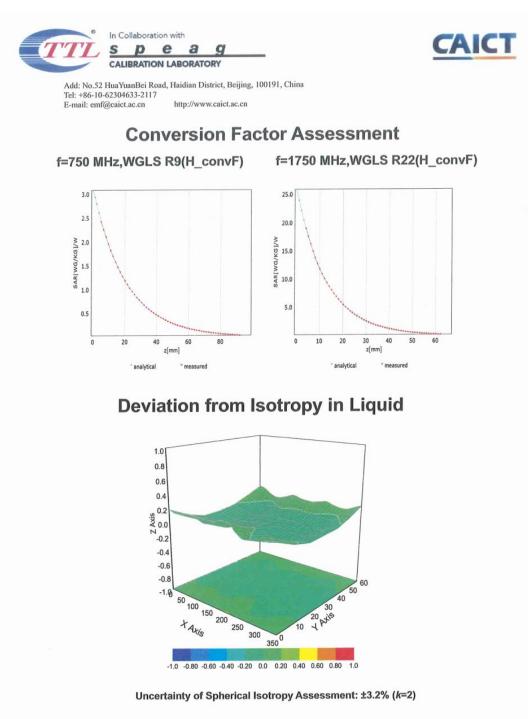
# Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z23-60188


Page 5 of 9


Page 43 of 53



Page 44 of 53

Report No.:CR230637037-SAA





Certificate No:Z23-60188

Page 8 of 9

Page 46 of 53

CAICT



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.en

# DASY/EASY – Parameters of Probe: ES3DV3 – SN:3157

### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 56.2       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disable    |
| Probe Overall Length                          | 337mm      |
| Probe Body Diameter                           | 10mm       |
| Tip Length                                    | 10mm       |
| Tip Diameter                                  | 4mm        |
| Probe Tip to Sensor X Calibration Point       | 2mm        |
| Probe Tip to Sensor Y Calibration Point       | 2mm        |
| Probe Tip to Sensor Z Calibration Point       | 2mm        |
| Recommended Measurement Distance from Surface | 3mm        |

Certificate No:Z23-60188

Page 9 of 9

Page 47 of 53

# APPENDIX D DIPOLE CALIBRATION CERTIFICATES

| Accredited by the Swiss Accredital                                                                                                                                                                                                                                                                                                                                                                                         | lion Service (SAS)                                                                                                                                                                                                                                                                | and have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Accreditation No.: SCS 0108                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Swiss Accreditation Service<br>Multilateral Agreement for the re                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |
| Client BACL<br>Sunnyvale, USA                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D2450V2-1102_Mar23                                                                                                                                                                                                                                                                                |
| CALIBRATION C                                                                                                                                                                                                                                                                                                                                                                                                              | ERTIFICAT                                                                                                                                                                                                                                                                         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                   |
| Object                                                                                                                                                                                                                                                                                                                                                                                                                     | D2450V2 - SN:1                                                                                                                                                                                                                                                                    | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                   |
| Calibration procedure(s)                                                                                                                                                                                                                                                                                                                                                                                                   | QA CAL-05.v12                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   | edure for SAR Validation Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | between 0.7-3 GHz                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |
| Calibration date:                                                                                                                                                                                                                                                                                                                                                                                                          | March 27, 2023                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |
| All calibrations have been conduct                                                                                                                                                                                                                                                                                                                                                                                         | ed in the closed laborator                                                                                                                                                                                                                                                        | robability are given on the following pages and<br>ry facility: environment temperature $(22 \pm 3)^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                            | ed in the closed laborator                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP                                                                                                                                                                                                                                                                                                             | ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778                                                                                                                                                                                                   | ry facility: environment temperature (22 ± 3)°C<br>Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23                                                                                                                                                                                                                                            |
| All calibrations have been conduct<br>Calibration Equipment used (M&Tf<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91                                                                                                                                                                                                                                                                                     | ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244                                                                                                                                                                                     | ry facility: environment temperature (22 ± 3)°C<br>Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03524)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23                                                                                                                                                                                                                                  |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91                                                                                                                                                                                                                                                             | critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245                                                                                                                                                                                                       | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03524)<br>04-Apr-22 (No. 217-03525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23                                                                                                                                                                                                                        |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator                                                                                                                                                                                                                               | ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244                                                                                                                                                                                     | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03527)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23                                                                                                                                                                                                    |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination                                                                                                                                                                                                | critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH9394 (20k)                                                                                                                                                                                   | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03524)<br>04-Apr-22 (No. 217-03525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23                                                                                                                                                                                                                        |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4                                                                                                                                                                      | ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 103245<br>SN: BH9394 (20k)<br>SN: 310982 / 06327                                                                                                                 | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03527)<br>04-Apr-22 (No. 217-03528)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23                                                                                                                                                                                          |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4                                                                                                                                                              | ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH3934 (20k)<br>SN: 310982 / 06327<br>SN: 7349                                                                                                                 | ry facility: environment temperature (22 ± 3)°C<br>Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03527)<br>04-Apr-22 (No. 217-03528)<br>10-Jan-23 (No. EX3-7349_Jan23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24                                                                                                                                                                                          |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                                                                                                       | ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH3394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601                                                                                                        | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03527)<br>04-Apr-22 (No. 217-03528)<br>10-Jan-23 (No. EX3-7349_Jan23)<br>19-Dec-22 (No. DAE4-601_Dec22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23                                                                                                                                                                                |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A                                                                                        | ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #                                                                                                | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03527)<br>04-Apr-22 (No. 217-03528)<br>10-Jan-23 (No. EX3-7349_Jan23)<br>19-Dec-22 (No. DAE4-601_Dec22)<br>Check Date (in house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23<br>Scheduled Check                                                                                                                                                             |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                                                       | ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 310982 / 06327<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: WY41093315                              | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03528)<br>10-Jan-23 (No. EX3-7349_Jan23)<br>19-Dec-22 (No. DAE4-601_Dec22)<br>Check Date (in house)<br>30-Oct-14 (in house check Oct-22)<br>07-Oct-15 (in house check Oct-22)<br>07-Oct-15 (in house check Oct-22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23<br>Scheduled Check<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24                                                                               |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                    | ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH3394 (20k)<br>SN: 310982 / 06327<br>SN: 310982 / 06327<br>SN: GB39512475<br>SN: GB39512475<br>SN: GB39512475<br>SN: U337292783<br>SN: MY41093315<br>SN: 100972 | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03527)<br>04-Apr-22 (No. 217-03528)<br>10-Jan-23 (No. EX3-7349-Jan23)<br>19-Dec-22 (No. DAE4-601_Dec22)<br>Check Date (in house)<br>30-Oct-14 (in house check Oct-22)<br>07-Oct-15 (in house check Oct-22)<br>15-Jun-15 (in house check Oct-22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23<br>Scheduled Check<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24                                     |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                                                       | ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 310982 / 06327<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: WY41093315                              | Cal Date (Certificate No.)<br>04-Apr-22 (No. 217-03525/03524)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03525)<br>04-Apr-22 (No. 217-03528)<br>10-Jan-23 (No. EX3-7349_Jan23)<br>19-Dec-22 (No. DAE4-601_Dec22)<br>Check Date (in house)<br>30-Oct-14 (in house check Oct-22)<br>07-Oct-15 (in house check Oct-22)<br>07-Oct-15 (in house check Oct-22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23<br>Scheduled Check<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24                                                                               |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A | ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103245<br>SN: 103245<br>SN: 8H9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477<br>Name  | Cal Date (Certificate No.)       04-Apr-22 (No. 217-03525/03524)       04-Apr-22 (No. 217-03525)       04-Apr-22 (No. 217-03525)       04-Apr-22 (No. 217-03525)       04-Apr-22 (No. 217-03527)       04-Apr-22 (No. 217-03528)       10-Jan-23 (No. EX3-7349_Jan23)       19-Dec-22 (No. DAE4-601_Dec22)       Check Date (in house check Oct-22)       07-Oct-15 (in house check Oct-22)       07-Oct-15 (in house check Oct-22)       15-Jun-15 (in house check Oct-22)       15-Jun-14 (in house check Oct-22)       16-Mar-14 (in house check Oct-22) | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23<br>Scheduled Check<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24<br>In house check: Oct-24                                     |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A | ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: US41080477                        | Cal Date (Certificate No.)     04-Apr-22 (No. 217-03525/03524)     04-Apr-22 (No. 217-03525)     04-Apr-22 (No. 217-03525)     04-Apr-22 (No. 217-03525)     04-Apr-22 (No. 217-03527)     04-Apr-22 (No. 217-03528)     10-Jan-23 (No. EX3-7349_Jan23)     19-Dec-22 (No. DAE4-601_Dec22)     Check Date (in house)     30-Oct-14 (in house check Oct-22)     07-Oct-15 (in house check Oct-22)     15-Jun-15 (in house check Oct-22)     31-Mar-14 (in house check Oct-22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23<br>Scheduled Check<br>In house check: Oct-24<br>In house check: Oct-24 |
| All calibrations have been conduct<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                    | ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103245<br>SN: 103245<br>SN: 8H9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477<br>Name  | Cal Date (Certificate No.)     04-Apr-22 (No. 217-03525/03524)     04-Apr-22 (No. 217-03525)     04-Apr-22 (No. 217-03525)     04-Apr-22 (No. 217-03527)     04-Apr-22 (No. 217-03528)     10-Jan-23 (No. EX3-7349_Jan23)     19-Dec-22 (No. DAE4-601_Dec22)     Check Date (in house check Oct-22)     07-Oct-15 (in house check Oct-22)     07-Oct-15 (in house check Oct-22)     07-Oct-15 (in house check Oct-22)     15-Jun-15 (in house check Oct-22)     31-Mar-14 (in house check Oct-22)     Function            | and humidity < 70%.<br>Scheduled Calibration<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Apr-23<br>Jan-24<br>Dec-23<br>Scheduled Check<br>In house check: Oct-24<br>In house check: Oct-24 |

#### Report No.:CR230637037-SAA

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



C

S

- Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura
  - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

tissue simulating liquid TSL ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

c) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-1102 Mar23

Page 2 of 6

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY52                 | V52.10.4                                                                     |
|------------------------|------------------------------------------------------------------------------|
| Advanced Extrapolation |                                                                              |
| Modular Flat Phantom   |                                                                              |
| 10 mm                  | with Spacer                                                                  |
| dx, dy, dz = 5 mm      |                                                                              |
| 2450 MHz ± 1 MHz       |                                                                              |
|                        | Advanced Extrapolation<br>Modular Flat Phantom<br>10 mm<br>dx, dy, dz = 5 mm |

Head TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.0 ± 6 %   | 1.81 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | 222527       |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 12.9 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 50.9 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 6.07 W/kg                |

Certificate No: D2450V2-1102\_Mar23

Page 3 of 6

Page 50 of 53

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.9 Ω + 4.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.6 dB       |

#### **General Antenna Parameters and Design**

| 1.155 ns |
|----------|
|          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

Certificate No: D2450V2-1102\_Mar23

Page 4 of 6

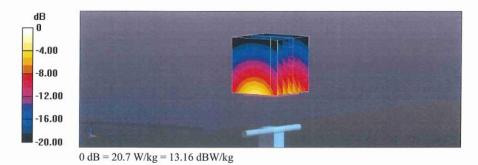
Page 51 of 53

Date: 27.03.2023

#### **DASY5 Validation Report for Head TSL**

Test Laboratory: SPEAG, Zurich, Switzerland

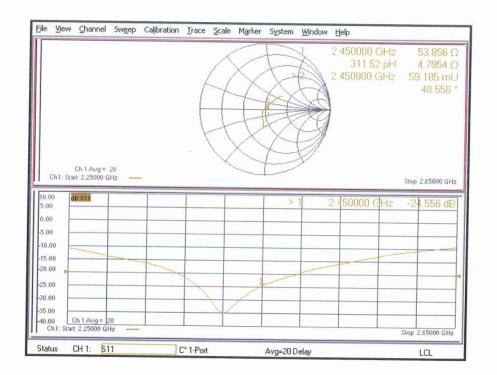
#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1102


 $\begin{array}{l} \mbox{Communication System: UID 0 - CW; Frequency: 2450 MHz} \\ \mbox{Medium parameters used: } f = 2450 \mbox{ MHz; } \sigma = 1.81 \mbox{ S/m; } \epsilon_r = 38; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$ 

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 24.7 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.07 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 20.7 W/kg



Certificate No: D2450V2-1102\_Mar23

Page 5 of 6

Impedance Measurement Plot for Head TSL



Certificate No: D2450V2-1102\_Mar23

Page 6 of 6

# \*\*\*\*\* END OF REPORT \*\*\*\*\*

Page 53 of 53