

SAR TEST REPORT

Applicant: VTech Telecommunications Ltd

Address: 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po NT, Hong Kong

FCC ID: EW780-S139-00

Product Name: SIP Phone

Model Number: D8M

Multiple Models: N/A

Standard(s): 47 CFR Part 2(2.1093)

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230738438-SAA

Date Of Issue: 2023-12-07

Reviewed By: Karl Gong

Karl Gong

Title: SAR Engineer

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

SAR TEST RESULTS SUMMARY

Operation Frequency Bands	Highest Reported 1g SAR (W/kg) Head SAR	Limits (W/kg)
DECT	0.02	1.6
EUT Received Date:	2023/08/29	
Tested Date:	2023/11/18	
Tested Result:	Pass	

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

SAR TEST RESULTS SUMMARY	2
DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 TEST SPECIFICATION, METHODS AND PROCEDURES	8
1.3 SAR LIMTS	
1.4 FACILITIES10	D
2. SAR MEASUREMENT SYSTEM1	1
3. EQUIPMENT LIST AND CALIBRATION18	
3.1 EQUIPMENTS LIST & CALIBRATION INFORMATION1	8
4. SAR MEASUREMENT SYSTEM VERIFICATION19	
4.1 LIQUID VERIFICATION	
4.2 System Accuracy Verification	D
4.3 SAR SYSTEM VALIDATION DATA2	1
5. EUT TEST STRATEGY AND METHODOLOGY	2
5.1 TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	2
5.2CHEEK/TOUCH POSITION	3
5.3 EAR/TILT POSITION	3
5.4 SAR EVALUATION PROCEDURE2	5
6. CONDUCTED OUTPUT POWER MEASUREMENT	6
6.1 TEST PROCEDURE	6
6.2 MAXIMUM TARGET OUTPUT POWER20	6
6.3 TEST RESULTS:	6
7. Standalone SAR test exclusion considerations2	8
8. SAR MEASUREMENT RESULTS	8
8.1 SAR TEST DATA2	9
9. Measurement Variability)
10. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	
11. SAR Plots	2
APPENDIX A MEASUREMENT UNCERTAINTY	8

APPENDIX B EUT TEST POSITION PHOTOS	.40
APPENDIX C CALIBRATION CERTIFICATES	.43
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	. 52

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR230738438-SAA	Original Report	2023-12-07

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Modulation:	DECT: GFSK
Frequency Band:	DECT: 1921.536-1928.448 MHz;
Power Source:	DC 3.7V from Battery
Dimensions (L*W*H):	209 mm (L) * 41 mm (W) * 30 mm (H)
Serial Number:	27SP-2
Normal Operation:	Head

1.2 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528-2013, the following FCC Published RF exposure KDB procedures:

KDB 447498 D01 General RF Exposure Guidance v06 KDB 648474 D04 Handset SAR v01r03. KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02

TCB Workshop April 2019: RF Exposure Procedures

1.3 SAR Limts

FCC Limit

	SAR (W/kg)	
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

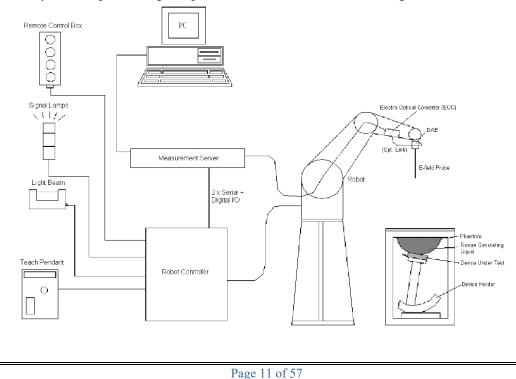
General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg for 1g SAR applied to the EUT.

1.4 FACILITIES

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The test sites and measurement facilities used to collect data are located at:

SAR Lab 1


2. SAR MEASUREMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

ES3DV3 E-Field Probes

Frequency	10 MHz to > 4 GHz Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	\pm 0.2 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 10 mm) Tip diameter: 4 mm (Body: 10 mm) Typical distance from probe tip to dipole centers: 4.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Calibration Frequency Points for ES3DV3 E-Field Probes SN: 3157 Calibrated: 2023/4/10

Calibration Frequency		uency e(MHz)	Co	onversion Fac	tor
Point(MHz)	From	То	X	Y	Z
750 Head	650	850	6.48	6.48	6.48
900 Head	850	1000	6.25	6.25	6.25
1750 Head	1650	1850	5.38	5.38	5.38
1900 Head	1850	2000	5.18	5.18	5.18
2300 Head	2200	2400	4.96	4.96	4.96
2450 Head	2400	2550	4.74	4.74	4.74
2600 Head	2550	2700	4.52	4.52	4.52

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6 mm). The phantom has three measurement areas:

- Left Head
- _ Right Head
- Flat phantom

The phantom table for the DASY systems based on the robots have the size of $100 \times 50 \times 85$ cm (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

SAR Scan Pricedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be ≤ the sion of the test device with

Step 3: Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 5mm, with the side length of the 10g cube is 21.5mm.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: ∆z _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$
	al to graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

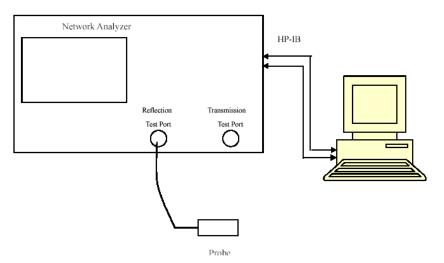
The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head liquid

Table A.3 – Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (o)
MHz	ε _r	S/m
300	45,3 0,87	
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 640	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


3. EQUIPMENT LIST AND CALIBRATION

3.1 Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.10	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 4.5.12	1567	NCR	NCR
Data Acquisition Electronics	DAE4	1493	2023/3/17	2024/3/16
E-Field Probe	ES3DV3	3157	2023/4/10	2024/4/9
Mounting Device	MD4HHTV5	BJPCTC0152	NCR	NCR
Twin SAM	Twin SAM V5.0	1412	NCR	NCR
Dipole, 1900 MHz	D1900V2	5d251	2023/3/27	2026/3/26
Simulated Tissue Liquid Head(500-9500 MHz)	HBBL600-10000V6	220420-2	Each Time	/
Network Analyzer	8753B	2828A00170	2023/10/24	2024/10/23
Dielectric assessment kit	1319	SM DAK 040 CA	NCR	NCR
MXG Vector Signal Generator	N5182B	MY51350144	2023/3/31	2024/3/30
Power Meter	EPM-441A/8484A	GB37481494	2023/3/31	2024/3/30
USB Wideband Power Sensor	U2021XA	MY54080015	2023/3/31	2024/3/30
Power Amplifier	ZVA-183-S+	5969001149	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR
Thermometer	DTM3000	3892	2023/3/31	2024/3/30
Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
Coaxial Cable	SMA-178	211001	Each time	N/A
Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
Coaxial Cable	SMA-178	211001	Each time	N/A
Coaxial Cable	SS402	SJ0100004	Each time	N/A
Coaxial Attenuator	2W-SMA-JK-18G	21060303	Each time	N/A
Power Splitter	ZFRSC-183-S+	S F448201619	Each time	N/A
Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
Temperature & Humidity Meter	HTC-1	CCE-100	2023/4/30	2024/4/29

4. SAR MEASUREMENT SYSTEM VERIFICATION

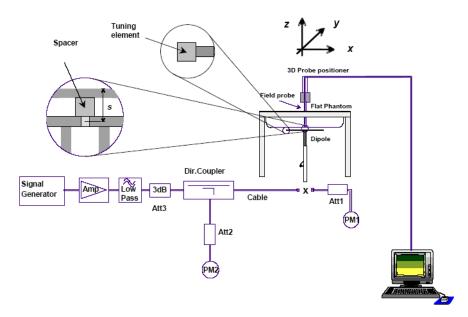
4.1 Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

		Liq Para	uid Imeter	Target	Value	-	lta 6)	
Frequency (MHz)	Liquid Type	٤ _r	0 (S/m)	٤ _r	0 (S/m)	Δε _r	ΔƠ (S/m)	Tolerance (%)
1900	Simulated Tissue Liquid Head	40.891	1.338	40.00	1.40	2.23	-4.43	±5
1921.54	Simulated Tissue Liquid Head	40.741	1.368	40.00	1.40	1.85	-2.29	±5
1924.99	Simulated Tissue Liquid Head	40.717	1.372	40.00	1.40	1.79	-2.00	±5
1928.45	Simulated Tissue Liquid Head	40.693	1.377	40.00	1.40	1.73	-1.64	±5

*Liquid Verification above was performed on 2023/11/18.


4.2 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1 000 \text{ MHz}$;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz < f \leq 3 000 MHz;
- c) s = 10 mm \pm 0,2 mm for 3 000 MHz < f \leq 6 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

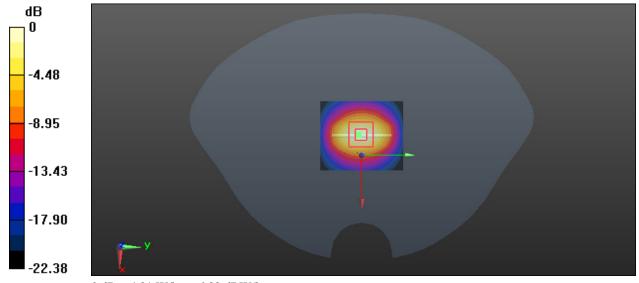
Date	Frequency Band	Liquid Type	Input Power (mW)	S	isured AR //kg)	Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2023/11/18	1900	Head	100	1g	4.17	41.7	38.9	7.198	±10

*The SAR values above are normalized to 1 Watt forward power.

4.3 SAR SYSTEM VALIDATION DATA

System Performance 1900 MHz Head

DUT: D1900V2; Type: 1900 MHz; Serial: 5d251

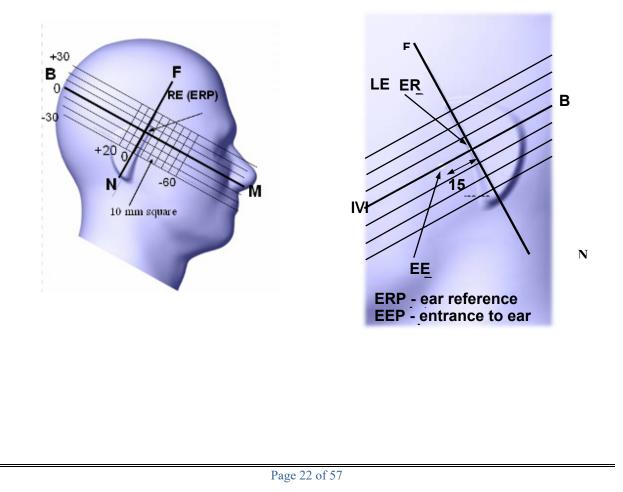

Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.338 S/m; ϵ_r = 40.891; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(5.18, 5.18, 5.18) @ 1900 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.67 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 51.06 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 7.23 W/kg SAR(1 g) = 4.17 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 4.81 W/kg

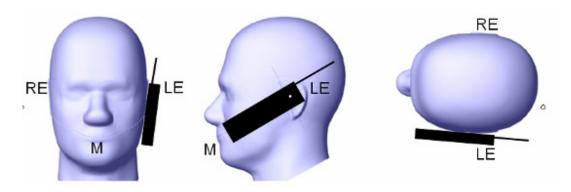

 $0 \ dB = 4.81 \ W/kg = 6.82 \ dBW/kg$

5. EUT TEST STRATEGY AND METHODOLOGY

5.1 Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

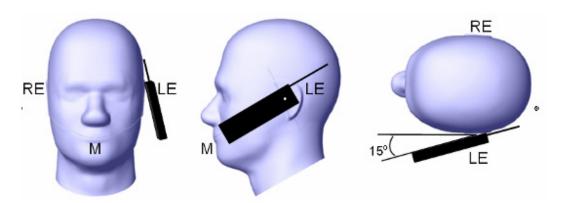
A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:


5.2Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

- When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.
- For existing head phantoms when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.


5.3 Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

5.4 SAR Evaluation Procedure

The evaluation was performed with the following procedure:

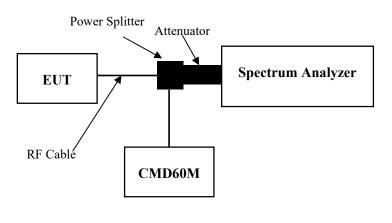
Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum Measured value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points ($10 \times 10 \times 10$) were Measured to calculate the averages.


All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

6. CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Test Procedure

The RF output of the transmitter was connected to the input of the Spectrum Analyzer Tester.

6.2 Maximum Target Output Power

Max Target Power(dBm)							
Mode/Band	Channel						
	Low	Middle	High				
DECT	20.1	20.1	20.1				

6.3 Test Results:

DECT:

Frequency Band	Channel	Frequency (MHz)	Peak Power (dBm)		
	Low	1921.536	19.91		
DECT	Middle	1924.992	20.03		
	High	1928.448	19.85		

Note:

1. Rohde & Schwarz Radio Communication Tester (CMD60M) was used for the measurement of DECT peak output power.

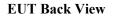
2. Duty Cycle=1:25.6 (0.039).

3. The EUT belongs to a low duty cycle device.

Report No.: CR230738438-SAA

Spect	rum														
Ref Lo e Att	evel	30.00 31		Offset SWT	10.00 dB 30 ms		RBW 31 VBW 201	∕IHz ∕IHz							
SGL															
⊖1Pk Cl	rw														
20 dBm·			M1					_	3	1[1]				_	19.99 dBm 6.0900 ms
20 0011			· ·	Ť				1	6 D	2[1]					-0.22 dB
10 dBm·															390.0 µs
0 dBm)1 -0.0	04 dB	 m											
-10 dBm															
-20 dBm								-							
-30 dBm															
-40 dBh	WINH	white the	ikit, mi	Lalignationarching	ynanstraddyd	NUM	y Whope MALLANN	ind rund	hybrida	llouturpooler	werdle	areadaunadalan yap	enallementer	In	hopelauther
-50 dBm			_			_		-							
-60 dBm	-					_		-							
CF 1.9	2499	2 GHz					100	1 pts							3.0 ms/
Marker		1 - 1													1
Type M1	Ref	Trc 1		X-value	.09 ms		<u>Y-value</u> 19.99 d	-	Fund	tion		Fund	ction Res	sult	
D2	M1				.09 ms 10.0 µs		-0.22								
D3	M1				.05 ms		-0.11								

ProjectNo.:CR230738438-PP Tester:Len Huang Date: 17.NOV.2023 09:48:43


Duty cycle

7. Standalone SAR test exclusion considerations

Antennas Location:

8. SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

8.1 SAR Test Data

Environmental Conditions

Temperature:	23.7~24.6°C
Relative Humidity:	56 %
ATM Pressure:	101.3 kPa
Test Date:	2023/11/18

Testing was performed by Ken Zong.

DECT Mode:

EUT	Enguara		Max. Meas.	Max. Rated	1g SA	R (W/Kg),]	Limited=1.	6W/kg
Position	Frequency (MHz)	Test Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1921.536	GFSK	19.91	20.1	1.045	0.016	0.02	1#
Head Left Cheek	1924.992	GFSK	20.03	20.1	1.016	0.015	0.02	2#
	1928.448	GFSK	19.85	20.1	1.059	0.016	0.02	3#
	1921.536	GFSK	/	/	/	/	/	/
Head Left Tilt	1924.992	GFSK	20.03	20.1	1.016	0.011	0.02	4#
	1928.448	GFSK	/	/	/	/	/	/
	1921.536	GFSK	/	/	/	/	/	/
Head Right Cheek	1924.992	GFSK	20.03	20.1	1.016	0.015	0.02	5#
	1928.448	GFSK	/	/	/	/	/	/
	1921.536	GFSK	/	/	/	/	/	/
Head Right Tilt	1924.992	GFSK	20.03	20.1	1.016	0.009	0.01	6#
	1928.448	GFSK	/	/	/	/	/	/

Note:

1. When the 1-g SAR is ≤ 0.8 W/Kg, testing for other channels are optional. 2. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance.

9. Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Head

SAR probe calibration point	Frequency	Freq.(MHz)	EUT Position	Meas. SA	Largest to Smallest SAR	
	Band	rieq.(Minz)	EUT FOSILION	Original	Repeated	Ratio
/	/	/	/	/	/	/

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.

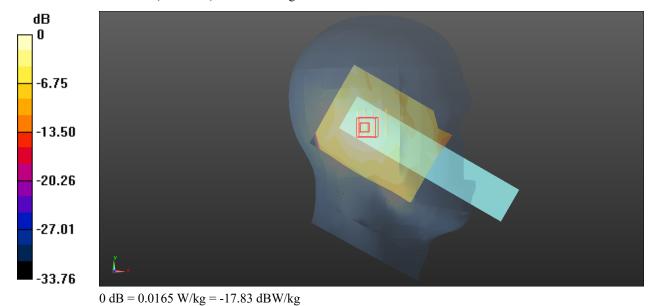
10. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

The device does not have simultaneous transmission capability.

11. SAR Plots

Plot 1#

DUT: SIP Phone; Type: D8M; Serial: 27SP-2


Communication System: UID 0, DECT (0); Frequency: 1921.54 MHz;Duty Cycle: 1:25.6 Medium parameters used: f = 1921.54 MHz; $\sigma = 1.368$ S/m; $\epsilon_r = 40.741$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

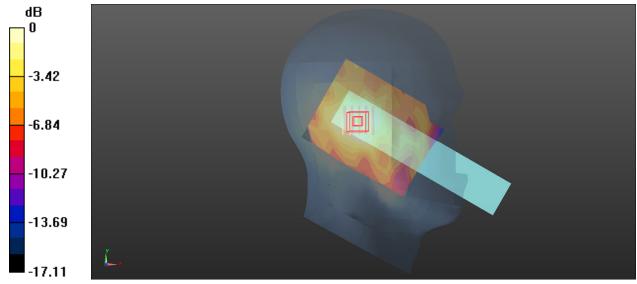
- Probe: ES3DV3 SN3157; ConvF(5.18, 5.18, 5.18) @ 1921.54 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Head Left Cheek/DECT Low/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0162 W/kg

Head Left Cheek/DECT Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.407 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.0290 W/kg SAR(1 g) = 0.016 W/kg; SAR(10 g) = 0.00932 W/kg Maximum value of SAR (measured) = 0.0165 W/kg

Plot 2#

DUT: SIP Phone; Type: D8M; Serial: 27SP-2


Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.6 Medium parameters used: f = 1924.99 MHz; $\sigma = 1.372$ S/m; $\epsilon_r = 40.717$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(5.18, 5.18, 5.18) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

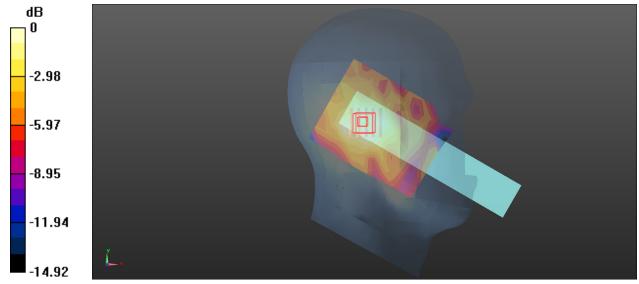
Head Left Cheek/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0188 W/kg

Head Left Cheek/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.514 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.0270 W/kg SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00955 W/kg Maximum value of SAR (measured) = 0.0157 W/kg

0 dB = 0.0157 W/kg = -18.04 dBW/kg

Plot 3#

DUT: SIP Phone; Type: D8M; Serial: 27SP-2


Communication System: UID 0, DECT (0); Frequency: 1928.45 MHz; Duty Cycle: 1:25.6 Medium parameters used: f = 1928.45 MHz; σ = 1.377 S/m; ϵ_r = 40.693; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(5.18, 5.18, 5.18) @ 1928.45 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

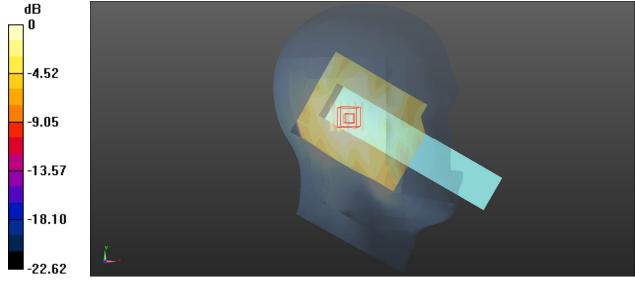
Head Left Cheek/DECT High/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0192 W/kg

Head Left Cheek/DECT High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.421 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.0270 W/kg SAR(1 g) = 0.016 W/kg; SAR(10 g) = 0.00952 W/kg Maximum value of SAR (measured) = 0.0163 W/kg

0 dB = 0.0163 W/kg = -17.88 dBW/kg

Plot 4#

DUT: SIP Phone; Type: D8M; Serial: 27SP-2


Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.6 Medium parameters used: f = 1924.99 MHz; σ = 1.372 S/m; ϵ_r = 40.717; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(5.18, 5.18, 5.18) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

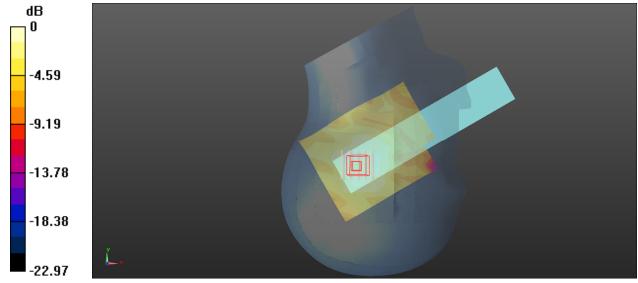
Head Left Tilt/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0139 W/kg

Head Left Tilt/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.309 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.0210 W/kg SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.00668 W/kg Maximum value of SAR (measured) = 0.0114 W/kg

0 dB = 0.0114 W/kg = -19.43 dBW/kg

Plot 5#

DUT: SIP Phone; Type: D8M; Serial: 27SP-2


Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.6 Medium parameters used: f = 1924.99 MHz; σ = 1.372 S/m; ϵ_r = 40.717; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(5.18, 5.18, 5.18) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

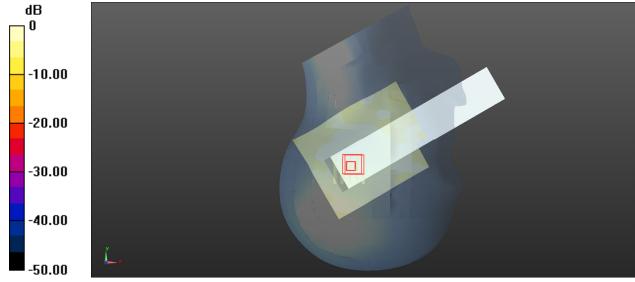
Head Right Cheek/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0191 W/kg

Head Right Cheek/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.372 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.0260 W/kg SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00861 W/kg Maximum value of SAR (measured) = 0.0157 W/kg

0 dB = 0.0157 W/kg = -18.04 dBW/kg

Plot 6#

DUT: SIP Phone; Type: D8M; Serial: 27SP-2


Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:25.6 Medium parameters used: f = 1924.99 MHz; σ = 1.372 S/m; ϵ_r = 40.717; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: ES3DV3 SN3157; ConvF(5.18, 5.18, 5.18) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2023/3/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Head Right Tilt/DECT Mid/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0145 W/kg

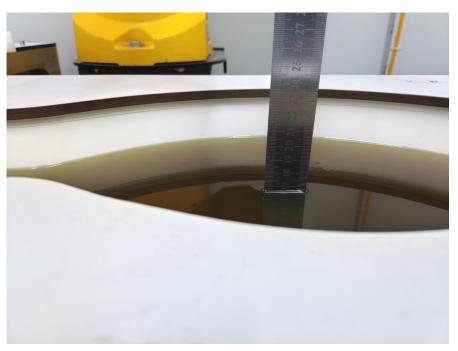
Head Right Tilt/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.713 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.0170 W/kg SAR(1 g) = 0.00881 W/kg; SAR(10 g) = 0.00508 W/kg Maximum value of SAR (measured) = 0.00912 W/kg

 $0 \ dB = 0.00912 \ W/kg = -20.40 \ dBW/kg$

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

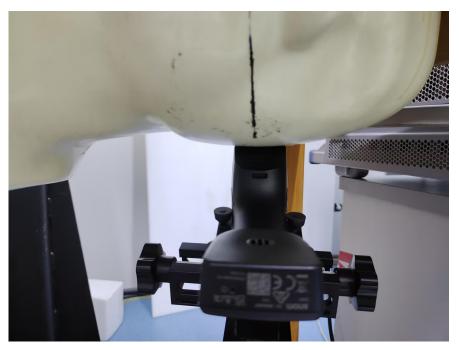

Source of uncertainty	Tolerance/ uncertainty ±%	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measuremer	nt system				
Probe calibration	6.55	N	1	1	1	6.3	6.3
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	√3	1	1	2.7	2.7
Detection limits	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions– reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sample	e related				
Test sample positioning	2.8	N	1	1	1	2.8	2.8
Device holder uncertainty	6.3	N	1	1	1	6.3	6.3
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom ar	nd set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.1	23.7

China Certification ICT Co., Ltd (Dong guan)

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measureme	nt system			L	I
Probe calibration	6.55	N	1	1	1	6.3	6.3
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	√3	1	1	2.7	2.7
Detection limits	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
RF ambient conditions– reflections	1.0	R	√3	1	1	0.6	0.6
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test samp	e related		•		
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom a	nd set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.0	23.6

Measurement uncertainty evaluation for IEC62209-1 SAR test

APPENDIX B EUT TEST POSITION PHOTOS


Liquid depth ≥ 15cm Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412

Page 40 of 57

Head Left Cheek Setup Photo

Head Left Tilt Setup Photo

Head Right Cheek Setup Photo

Head Right Tilt Setup Photo

APPENDIX C CALIBRATION CERTIFICATES

Add: No.52 HuaYuanBei Road, H	Haidian District, Beijin	g, 100191, China	CALIBRATION CNAS L0570
Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn h	http://www.caict.ac.cn		
Client CCICT		Certificate No: 2	223-60188
CALIBRATION CER	TIFICATE		
Object	ES3DV3 - S	N : 3157	
Calibration Procedure(s)	FF-Z11-004-	-02	
	Calibration F	Procedures for Dosimetric E-field Probes	
Calibration date:	April 10, 202	23	
pages and are part of the certifi		closed laboratory facility: environment te	mperature(22±3)°C and
All calibrations have been co humidity<70%.	onducted in the o	closed laboratory facility: environment te libration)	mperature(22±3)℃ and
All calibrations have been co humidity<70%. Calibration Equipment used (M	onducted in the o	libration)	
All calibrations have been co humidity<70%. Calibration Equipment used (M Primary Standards	onducted in the o		
All calibrations have been co humidity<70%. Calibration Equipment used (M	ATE critical for cal	libration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been co humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91	TE critical for cal	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181)	Scheduled Calibration Jun-23
All calibrations have been co humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2	TE critical for cal LD # 101919 101547	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181)	Scheduled Calibration Jun-23 Jun-23
All calibrations have been con numidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	TE critical for cal LD # 101919 101547 101548	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25
All calibrations have been co humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator	TE critical for cal LD # 101919 101547 101548 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.EX3-3846_May2)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23
All calibrations have been con- humidity<70%. Calibration Equipment used (M- Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator	TE critical for cal LD # 101919 101547 101548 18N50W-10dB 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.EX3-3846_May22) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23
All calibrations have been con- humidity<70%. Calibration Equipment used (M- Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4	anducted in the of &TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.EX3-3846_May22) 25-Aug-22(SPEAG, No.DAE4-1555_Aug2) 24-Jan-23(SPEAG, No.DAE4-549_Jan23)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23) Jan-24
All calibrations have been con- humidity<70%. Calibration Equipment used (M- Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4	Ammonducted in the of &TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 1555	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.EX3-3846_May22) 25-Aug-22(SPEAG, No.DAE4-1555_Aug2) 24-Jan-23(SPEAG, No.DAE4-549_Jan23) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23) Jan-24 Scheduled Calibration
All calibrations have been con- humidity<70%. Calibration Equipment used (M- Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 DAE4	anducted in the of &TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 1555 SN 549	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.DAE4-1555_Aug 24-Jan-23(SPEAG, No.DAE4-549_Jan23) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23) Jan-24 Scheduled Calibration Jun-23
All calibrations have been con- humidity<70%. Calibration Equipment used (M- Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 DAE4 Secondary Standards	anducted in the of &TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 1555 SN 549 ID #	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.EX3-3846_May22) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) 24-Jan-23(SPEAG, No.DAE4-549_Jan23) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 10-Jan-23(CTTL, No.J23X00104)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23 22) Aug-23) Jan-24 Scheduled Calibration Jun-23 Jan-24
All calibrations have been con- numidity<70%. Calibration Equipment used (M- Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	anducted in the of &TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 1555 SN 549 ID # 6201052605	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.DAE4-1555_Aug 24-Jan-23(SPEAG, No.DAE4-549_Jan23) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23) Jan-24 Scheduled Calibration Jun-23
All calibrations have been conhumidity<70%. Calibration Equipment used (Merican Standards) Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Na	anducted in the of &TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 1555 SN 549 ID # 6201052605 MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.EX3-3846_May22) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) 24-Jan-23(SPEAG, No.DAE4-549_Jan23) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 10-Jan-23(CTTL, No.J23X00104)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23 22) Aug-23) Jan-24 Scheduled Calibration Jun-23 Jan-24
All calibrations have been co humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Na Calibrated by: Yt	anducted in the d &TE critical for call ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 1555 SN 549 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 20-May-22(SPEAG, No.EX3-3846_May22) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) 24-Jan-23(SPEAG, No.DAE4-549_Jan23) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 10-Jan-23(CTTL, No.J23X00104) Function	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 2) May-23 22) Aug-23 22) Aug-23) Jan-24 Scheduled Calibration Jun-23 Jan-24

Certificate No: Z23-60188

Page 1 of 9

Page 43 of 57

	aboration with	C	ΑΙCΤ
CALIB	RATION LABORATORY		
Add: No.52 HuaYuar Tel: +86-10-6230463 E-mail: emf@caiet.ac		China	
NORMx,y,z sens ConvF sens DCP diod CF cres A,B,C,D mod Polarization Φ pro Polarization Φ pro Polarization θ prot $\theta=0$ Connector Angle infor Calibration is Perfo a) IEEE Std 1528-201 Specific Absorption Measurement Technii b) IEC 62209-1, "Meas hand-held and body July 2016 c) IEC 62209-2, "Proce devices used in clos 2010 d) KDB 865664, "SAR I Methods Applied an • <i>NORMx,y,z</i> are on E^2 -field uncertaint • <i>NORMx,y,z</i> are on E^2 -field uncertaint • <i>NORMx,y,z</i> are on E^2 -field uncertaint • <i>NORMx,y,z</i> : DCP are (no uncertainty req PAR: PAR is the Picharacteristics. • <i>Ax,y,z; Bx,y,z; Cx,y</i> data of power sweat media. VR is the m • <i>ConvF and Bounda</i> Transfer Standard power measureme applied for bounda These parameters The sensitivity in T that given for Conv allows extending tf • <i>Spherical isotropy</i> phantom exposed • <i>Sensor Offset:</i> The probe tin (on probe	is normal to probe axis mation used in DASY system to a med According to the Follov 3, "IEEE Recommended Practic Rate (SAR) in the Human He ques", June 2013 urrement procedure for the assest mounted devices used next to the dure to determine the Specific Ab- te proximity to the human body (Measurement Requirements for 1 d Interpretation of Paramete sed for E-field polarization $\theta=0$ (f≤ y intermediate values, i.e., the un y inside TSL (see below ConvF). <i>DRMx,y,z* frequency_response</i> (s emented in DASY4 software vers e is included in the stated uncerta numerical linearization paramete uired). DCP does not depend on to eak to Average Ratio that is not ca <i>z; VRx,y,z:</i> A,B,C are numerical line por fs800MHz) and inside wavegu nts for f >800MHz. The same setury compensation (alpha, depth) of are used in DASY4 software to in SL corresponds to NORMx,y,z* C F. A frequency dependent ConvF te validity from±50MHz to±100MH (3D deviation from isotropy): in a for by a patch antenna. sensor offset corresponds to the e axis). No tolerance required. The angle is assessed using the ir uired).	plane normal to probe axis (at measur lign probe sensor X to the robot coordi ving Standards: the for Determining the Peak Spatial- ead from Wireless Communications assment of Specific Absorption Rate (S e ear (frequency range of 300 MHz to sorption Rate (SAR) for wireless comm frequency range of 30 MHz to 6 GHz 00 MHz to 6 GHz" rs: 900MHz in TEM-cell; f>1800MHz: wa certainties of NORMx,y,z does not effe ee Frequency Response Chart). This ions later than 4.2. The uncertainty of inty of ConvF. rs assessed based on the data of pow frequency nor media. alibrated but determined based on the se mearization parameters assessed based The parameters do not depend on frequency in flat phantom using E-field (or Tempe ide using analytical field distributions b ups are used for assessment of the par f which typical uncertainty valued are g prove probe accuracy close to the boo onvF whereby the uncertainty correspon is used in DASY version 4.4 and higher la.	inate system Averaged Devices: GAR) from 6 6 GHz)", nunication c)", March aveguide). ct the the the ter sweep signal d on the uency nor rature pased on rameters jiven. undary. ords to er which lat

Page 44 of 57

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: ES3DV3 – SN:3157

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.97	1.14	0.96	±10.0%
DCP(mV) ^B	102.2	102.6	103.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0 CW	X	0.0	0.0	1.0	0.00	224.4	±2.0%	
		Y	0.0	0.0	1.0		247.0	7
		Z	0.0	0.0	1.0		223.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

 ^B Numerical linearization parameter: uncertainty not required.
^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z23-60188

Page 3 of 9

Page 45 of 57

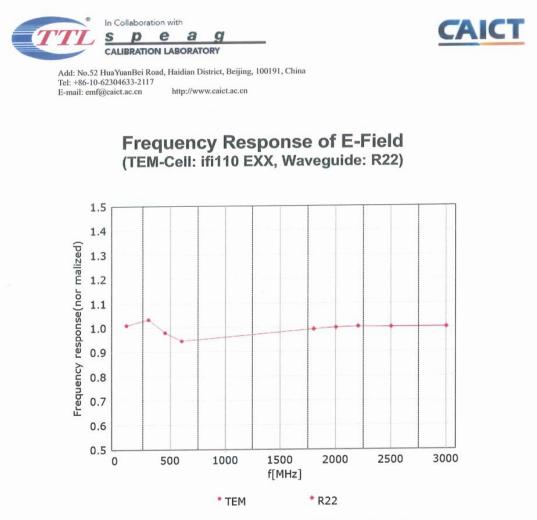
CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: ES3DV3 – SN:3157

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	6.48	6.48	6.48	0.35	1.53	±12.7%
900	41.5	0.97	6.25	6.25	6.25	0.37	1.53	±12.7%
1750	40.1	1.37	5.38	5.38	5.38	0.60	1.31	±12.7%
1900	40.0	1.40	5.18	5.18	5.18	0.65	1.26	±12.7%
2300	39.5	1.67	4.96	4.96	4.96	0.90	1.10	±12.7%
2450	39.2	1.80	4.74	4.74	4.74	0.90	1.10	±12.7%
2600	39.0	1.96	4.52	4.52	4.52	0.90	1.16	±12.7%

Calibration Parameter Determined in Head Tissue Simulating Media

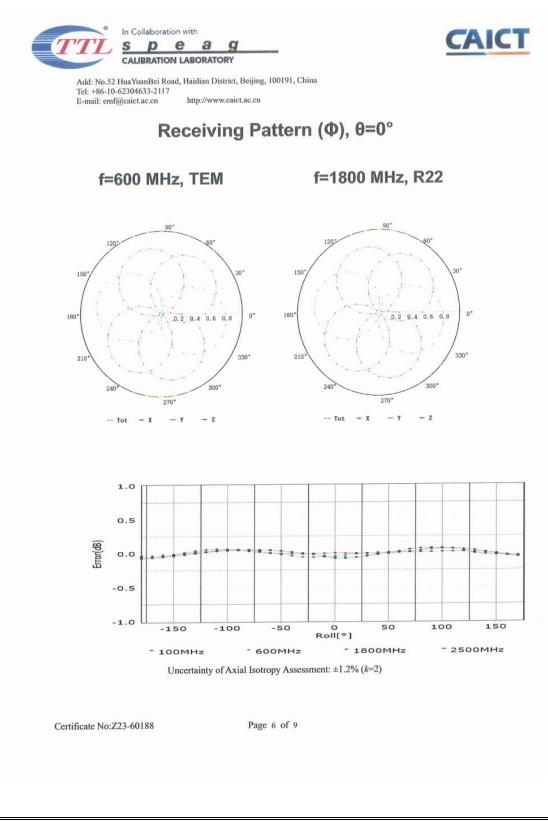

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

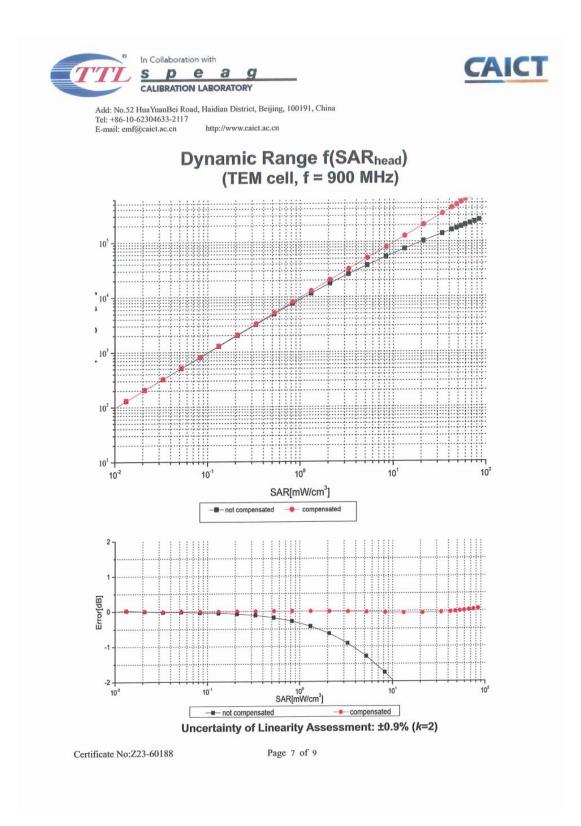
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z23-60188

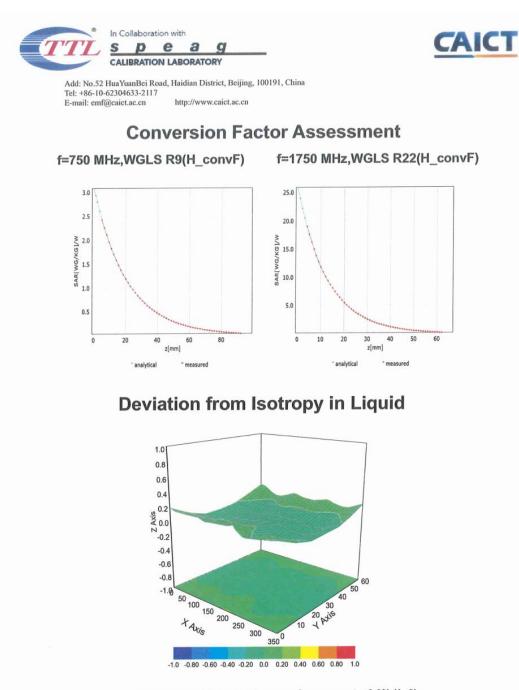
Page 4 of 9



Uncertainty of Frequency Response of E-field: ±7.4% (k=2)


Certificate No:Z23-60188

Page 5 of 9


Page 47 of 57

Page 48 of 57

Page 49 of 57

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z23-60188

Page 8 of 9

Page 50 of 57

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: ES3DV3 – SN:3157

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	56.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No:Z23-60188

Page 9 of 9

Page 51 of 57

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Accredited by the Swiss Accredita	n, Switzerland		Service suisse d'etatominage Servizio svizzero di taratura Swiss Calibration Service
The Swiss Accreditation Service Multilateral Agreement for the re	e is one of the signator		Accreditation No.: SCS 0108
Client BACL			D1900V2-5d251_Mar23
Sunnyvale, USA			D130042-30231_Wd120
CALIBRATION C	ERTIFICAT	E	
Object	D1900V2 - SN:5	id251	
Calibration procedure(s)	QA CAL-05.v12 Calibration Proc	edure for SAR Validation Source	s between 0.7-3 GHz
Calibration date:	March 27, 2023		
The measurements and the uncert	ainties with confidence p ed in the closed laborato	ional standards, which realize the physical ur robability are given on the following pages a ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
The measurements and the uncert	ainties with confidence p ed in the closed laborato	robability are given on the following pages a ry facility: environment temperature $(22\pm3)^\circ$	nd are part of the certificate. C and humidity < 70%.
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TI	ainties with confidence p ed in the closed laborato E critical for calibration)	robability are given on the following pages a	nd are part of the certificate.
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards	ainties with confidence p ed in the closed laborato E critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	robability are given on the following pages ar ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&Ti Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	robability are given on the following pages at ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	robability are given on the following pages at ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Jan-24
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TH Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH3394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	robability are given on the following pages ar ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&Tt Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	robability are given on the following pages ar ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 819394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	robability are given on the following pages at ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check In house check: Oct-24
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&Ti Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	robability are given on the following pages ar ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TH Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	iainties with confidence p ed in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	robability are given on the following pages at ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check In house check: Oct-24
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	iainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TH Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 310982 / 06327 SN: 349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: W341093315 SN: 100972	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TH Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	iainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 819394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03526) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In hou
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	iainties with confidence p ed in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 310982 / 06327 SN: 310982 / 06327 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03526) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24

Page 52 of 57

China Certification ICT Co., Ltd (Dong guan)

Report No.: CR230738438-SAA

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

AC-MRA

- S Schweizerischer Kalibrierdienst
 - Service suisse d'étalonnage
 - Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d251_Mar23

Page 2 of 6

Page 53 of 57

Measurement Conditions

DASY system configuration, as far as not g	iven on page 1.		
DASY Version	DASY52	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.9 W/kg ± 17.0 % (k=2)
	,	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d251_Mar23

Page 3 of 6

Page 54 of 57

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω + 6.5 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D1900V2-5d251_Mar23

Page 4 of 6

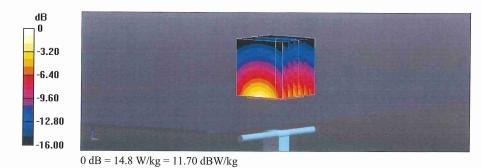
Page 55 of 57

DASY5 Validation Report for Head TSL

Date: 27.03.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d251

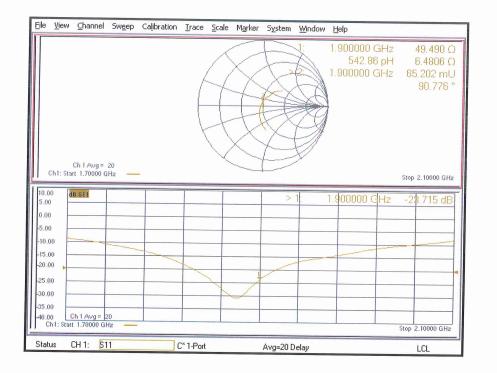

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.36 S/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1900 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.9 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.4 W/kg **SAR(1 g) = 9.61 W/kg; SAR(10 g) = 5.04 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55.4% Maximum value of SAR (measured) = 14.8 W/kg



Certificate No: D1900V2-5d251_Mar23

Page 5 of 6

Page 56 of 57

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d251_Mar23

Page 6 of 6

***** END OF REPORT *****

Page 57 of 57