

A Test Lab Techno Corp.

Changan Lab : No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.

Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No.	:	1111FS16
Applicant	:	VTech Telecommunications Ltd.
EUT Type	:	1.9GHz DECT 6.0 Cordless Phone
FCC ID	:	EW780-8540-00
Trade Name	:	VTech
Model Number	:	DS6511-2
Dates of Receive	:	Nov. 17, 2011
Dates of Test	:	Nov. 21, 2011
Date of Issued	:	Nov. 25, 2011
Test Environment	:	Ambient Temperature : 22 ± 2 ° C
		Relative Humidity : 40 - 70 %
Test Specification	:	Standard C95.1-1992
		IEEE Std. 1528-2003
		2.1093;FCC/OET Bulletin 65 Supplement C [July 2001]
Max. SAR	:	0.022 W/kg UPCS Head SAR
Test Lab Location	:	Chang-an Lab

1. The test operations have to be performed with cautious behavior, the test results are as attached.

- 2. The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full. This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. The test results in the report only apply to the tested sample.

Approved By

(Sam Chuang)

Tested By

'es Mu

(Alex Wu)

Contents

1.	Descripti	on of Equipment under Test (EUT)	3
2.	Introduct	ion	4
3.	SAR Def	inition	4
4.	SAR Me	asurement Setup	5
5.	System (Components	6
	5.1 DA	SY5 E-Field Probe System	6
	5.2 Da	ta Acquisition Electronic (DAE) System	9
	5.3 Ro	bot	9
	5.4 Me	asurement Server	9
	5.5 De	vice Holder for Transmitters	10
	5.6 Ph	antom - SAM v4.0	10
		ta Storage and Evaluation	
6. -		ipment List	
7.	lissue S	imulating Liquids	15
	7.1 Ing	redients	16
	7.2 Re	cipes	16
•		uid Confirmation	
8.	Measure	ment Process	18
	8.1 De	vice and Test Conditions	18
	8.2 Sy	stem Performance Check	19
	8.3 Do	simetric Assessment Setup	22
	•	atial Peak SAR Evaluation	
9.		ment Uncertainty	
10.	SAR Tes	t Results Summary	28
	10.1 He	ad SAR	28
		. C95.1-1992 RF Exposure Limit	
11.		on	
12.		es	
	endix A -	System Performance Check	
	endix B -	SAR Measurement Data	
App	endix C -	Calibration	36

1. Description of Equipment under Test (EUT)

Applicant	:	VTech Telecommunications Ltd.
Applicant Address		23/F., Tai Ping Industrial Centre, Block 1, 57 Ting Kok Road, Tai Po,
		Hong Kong
Manufacturer	:	VTech(Dongguan) Telecommunications Limited
Manufacturer Address	:	VTech Science Park, Xia Ling Bei Management Zone, Liaobu,
		Dongguan, Guangdong, China
EUT Type	:	1.9GHz DECT 6.0 Cordless Phone
FCC ID	:	EW780-8540-00
Trade Name	:	VTech
Model Number	:	DS6511-2
Battery Type	:	Ni-MH battery (2.4V, 300mAh)
Test Device	:	Production Unit
Tx Frequency	:	1921.536 -1928.448 MHz (UPCS)
Max. RF Conducted Power	:	0.083 W (19.17 dBm) UPCS
Max. SAR Measurement	:	0.022 W/kg UPCS Head SAR
Antenna Type	:	Fixed Type
Antenna Gain	:	0dBi
Device Category	:	Portable
RF Exposure Environment	:	General Population / Uncontrolled
Battery Option	:	Standard
Application Type	:	Certification

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

2. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **VTech Telecommunications Ltd. Trade Name : VTech Model(s) : DS6511-2.** The test procedures, as described in American National Standards, Institute C95.1 - 1992[1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

3. SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (P). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 2).

SAR =
$$\frac{d}{dt}\left(\frac{dw}{dm}\right) = \frac{d}{dt}\left(\frac{dw}{\rho dv}\right)$$

Figure 2. SAR Mathematical Equation

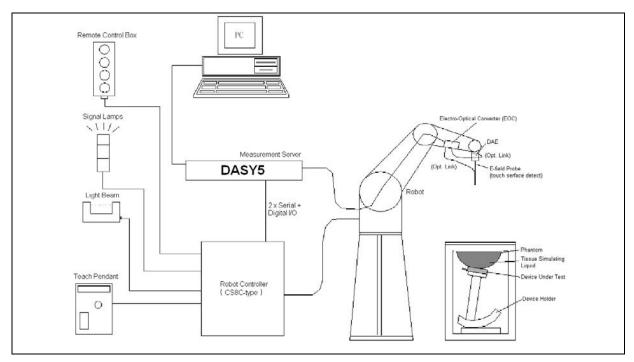
SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where :

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)


E = RMS electric field strength (V/m)

*Note:

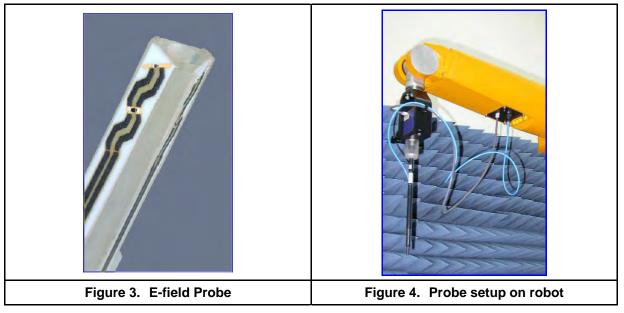
The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

4. SAR Measurement Setup

The DASY5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli TX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 5. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 6. A computer operating Windows 2000 or Windows XP.
- 7. DASY5 software.
- 8. Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. Validation dipole kits allowing validating the proper functioning of the system.

5. System Components


5.1 DASY5 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

5.1.1 E-Field Probe Specification

Construction	Symmetrical design with triangular core
	Built-in optical fiber for surface detection System
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, e.q., glycol)
Calibration	In air from 10 MHz to 6 GHz
	In brain and muscle simulating tissue at frequencies of 1950MHz (accuracy $\pm 8\%$)
	Calibration for other liquids and frequencies upon request
Frequency	\pm 0.2 dB (30 MHz to 6 GHz) for EX3DV4
	\pm 0.2 dB (30 MHz to 4 GHz) for ES3DV3
Directivity	\pm 0.3 dB in brain tissue (rotation around probe axis)
	\pm 0.5 dB in brain tissue (rotation normal probe axis)
Dynamic Range	10 μ W/g to > 100mW/g; Linearity: ±0.2dB
Dimensions	Overall length: 337mm
	Tip length: 20mm
	Body diameter: 12mm
	Tip diameter: 2.5mm for EX3DV4, 3.9mm for ES3DV3
	Distance from probe tip to dipole centers: 1.0mm for EX3DV4, 2.0mm for
	ES3DV3
Application	General dosimetry up to 6GHz
	Compliance tests of mobile phones
	Fast automatic scanning in arbitrary phantoms

5.1.2 E-Field Probe Calibration

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm^2 .

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where :

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

 ΔT = Temperature increase due to RF exposure.

$$\mathsf{SAR} = \frac{|\mathbf{E}|^2 \, \boldsymbol{\sigma}}{\boldsymbol{\rho}}$$

Where :

σ = Simulated tissue conductivity,

Or

 ρ = Tissue density (kg/m³).

5.2 Data Acquisition Electronic (DAE) System

Cell Controller

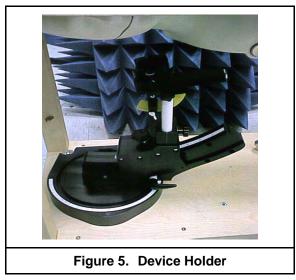
Processor :	Intel Core(TM)2 CPU
Clock Speed :	@ 1.86GHz
Operating System :	Windows XP Professional

Data Converter

Features :	Signal Amplifier, multiplexer, A/D converter, and control logic
Software :	DASY5 v5.0 (Build 125) & SEMCAD X Version 13.4 Build 125
Connecting Lines :	Optical downlink for data and status info
	Optical uplink for commands and clock

5.3 Robot

Positioner :	Stäubli Unimation Corp. Robot Model: TX90XL
Repeatability :	±0.02 mm
No. of Axis :	6


5.4 Measurement Server

Processor :	PC/104 with a 400MHz intel ULV Celeron
I/O-board :	Link to DAE4 (or DAE3)
	16-bit A/D converter for surface detection system
	Digital I/O interface
	Serial link to robot
	Direct emergency stop output for robot

5.5 Device Holder for Transmitters

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

5.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness	2 ±0.2 mm			
Filling Volume	Approx. 25 liters			
Dimensions	1000×500 mm (L×W)			
Table 1. Specification of SAM v4.0				

Figure 6. SAM Twin Phantom

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DA5 The post processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

5.7.2 Data Evaluation

The DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Normi,	ai0, ai1, ai2
	- Conversion factor		ConvFi
	- Diode compression	point	dcpi
Device parameters 3	- Frequency	f	
	- Crest factor		cf
Media parameters :	- Conductivity	σ	
	- Density		ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel *i* (*i* = x, y, z)

 U_i = input signal of channel *i* (*i* = x, y, z)

cf = crest factor of exciting field (DASY parameter)

*dcp*_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated :

E-field probes :

$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field probes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel *i* (*i* = x, y, z)

*Norm*_i = sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)² for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel *i* in V/m

Hi = magnetic field strength of channel *i* in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

- ρ = equivalent tissue density in g/cm³
- ***Note**: That the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.
- The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

6. Test Equipment List

Manufacturer Name of Equipment		Type/Model	Serial Number	Calibration		
Manufacturer		i ype/wodei	Senai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3578	Jun. 21, 2011	Jun. 21, 2012	
SPEAG	1950MHz System Validation Kit	D1950V3	1117	Feb. 24, 2011	Feb. 24, 2012	
SPEAG	Data Acquisition Electronics	DAE4	779	Jan. 31, 2011	Jan. 31, 2012	
SPEAG	Measurement Server	SE UMS 011 AA	1025	N	CR	
SPEAG	Device Holder	N/A	N/A	N	CR	
SPEAG	Phantom	SAM V4.0	TP-1150	N	CR	
SPEAG	Robot	Staubli TX90XL	F07/564ZA1/C/01	N	CR	
SPEAG	Software	DASY5 V5.0 Build 125	N/A	N	CR	
SPEAG	Software	SEMCAD V13.4 Build 125	N/A	N	CR	
Agilent	ENA Series Network Analyzer	E5071B	MY42402996	Jan. 04, 2011	Jan. 04, 2013	
Agilent	Dielectric Probe Kit	85070C	US99360094	N	CR	
R&S	Power Sensor	NRP-Z22	100179	May 27, 2011	May 27, 2012	
Agilent	MXG Vector Signal Generator	N5182A	MY47420962	May 16, 2011	May 16, 2012	
Agilent	Dual Directional Coupler	778D	50334	N	CR	
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	N	CR	
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	N	CR	

Table 2.Test Equipment List

7. Tissue Simulating Liquids

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue. The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body

tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

€	Head			
(MHz)	٤٢	σ (S/m)		
150	52.3	0.76		
300	45.3	0.87		
450	43.5	0.87		
835	41.5	0.90		
900	41.5	0.97		
915	41.5	0.98		
1450	40.5	1.20		
1610	40.3	1.29		
1800 - 2000	40.0	1.40		
2450	39.2	1.80		
3000	38.5	2.40		
5800	35.3	5.27		
(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)				

Table 3. Tissue dielectric parameters for head phantoms

7.1 Ingredients

The following ingredients are used:

- Water: deionized water (pure H_20), resistivity $\geq 16 \text{ M} \Omega$ -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops) to reduce relative permittivity
- Salt: pure NaCI -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

7.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Note: The goal dielectric parameters (at 22 $^\circ C$) must be achieved within a tolerance of ±5% for ϵ and ±5% for σ .

Liquid type	HSL 1950-B				
Ingredient	Weight (g)	Weight (%)			
Water	554.12	55.41			
DGBE	445.08 44.51				
Salt	0.80	0.08			
Total amount	1,000.00	100.00			
Goal dielectric parameters					
Frequency [MHz]	1800-2000				
Relative Permittivity	40.0				
Conductivity [S/m]	1.40				

7.3 Liquid Confirmation

7.3.1 Parameters

Liquid Verify										
Ambient Temperature: 22 ± 2 °C;Relative Humidity:40 -70%										
Liquid Type	uid Type Frequency (°C)		Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date		
1950MHz Head	1920MHz	1020MH-	102014	22.0	٤r	40.00	38.90	-2.75%	± 5 %	
		22.0	σ	1.40	1.38	-1.43%	± 5 %			
		1950MHz 22.0	٤r	40.00	38.90	-2.75%	±5%	Nov. 21, 2011		
	195010112		σ	1.40	1.42	1.43%	±5%	1100.21,2011		
	1978MHz	978MHz 22.0	٤r	40.00	38.90	-2.75%	±5%			
			σ	1.40	1.46	4.29%	±5%			

Table 4. Measured Tissue dielectric parameters for head phantoms

7.3.2 Liquid Depth

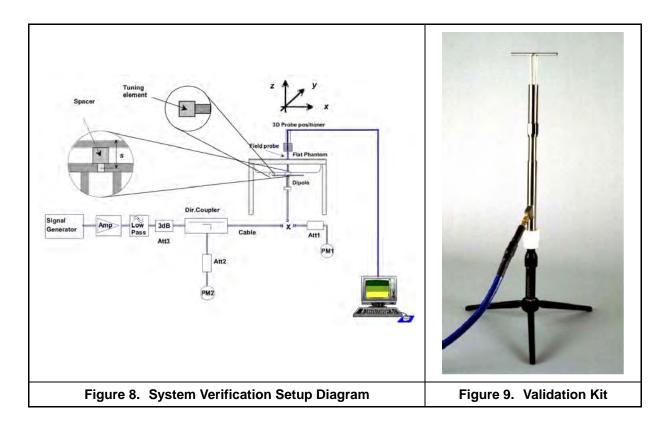
The liquid level was during measurement 15cm \pm 0.5cm.

g	0	
P	2	1
	0	
	0 0	the second s
	1 12 13	or diatanda
F irmer 7 . Has a	Tianua Oim	
Figure 7. Head	-lissue-Sim	ulating-Liquid

8. Measurement Process

8.1 Device and Test Conditions

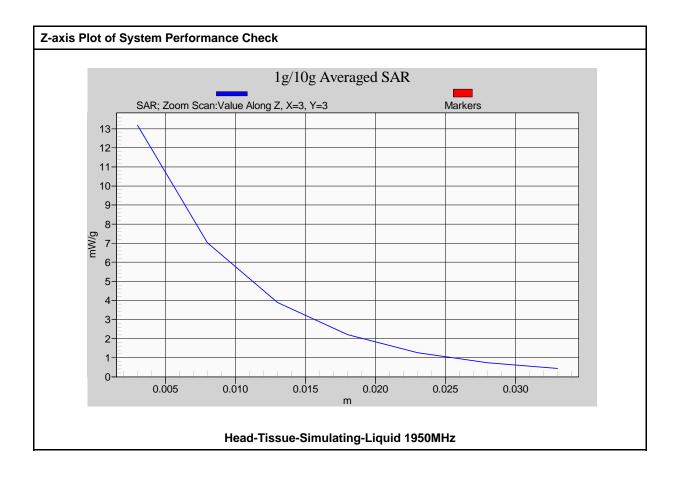
The Test Device was provided by **VTech Telecommunications Ltd.** for this evaluation. The spatial peak SAR values were assessed for the middle channels defined by UPCS (Ch2 = 1924.992MHz) systems. The antenna(s), battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.


Usage	Operates with normal mode by client					
Distance between antenna axis at the joint and the liquid surface:	For head, EUT left head, right head, to phantom 0mm separation.					
Simulating human Head/Body	Head	Head				
EUT Battery	Fully-charged with Ni-MH battery.					
Conducted power	Channel	Frequency (MHz)	Before SAR Test (dBm)	After SAR Test (dBm)		
	Middle Ch 2	1924.992	19.17	19.12		

8.2 System Performance Check

8.2.1 Symmetric Dipoles for System Validation

Construction	Symmetrical dipole with I/4 balun enables measurement of feed point impedance						
	with NWA matched for use near flat phantoms filled with head simulating solutions						
	Includes distance holder and tripod adaptor Calibration Calibrated SAR value for						
	specified position and input power at the flat phantom in head simulating solution						
Frequency	1950 MHz						
Return Loss	> 20 dB at specified validation position						
Power Capability	> 100 W (f < 1GHz); > 40 W (f > 1GHz)						
Options	Dipoles for other frequencies or solutions and other calibration conditions are						
	available upon request						
Dimensions	D1950V3:dipole length 67.5 mm; overall height 300 mm						


8.2.2 Validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The validation was performed at 1950 MHz.

Validation kit		Mixture Type	SAR _{1g} [mW/g]		SAR _{10g} [mW/g]		Date of Calibration	
D1950V3 -	– SN1117	Head	42	.00	21.60		Feb. 24, 2011	
Frequency (MHz)	Power	SAR _{1g} (mW/g)	SAR _{10g} (mW/g)	Drift (dB)	Difference percentage 1g 10g		Validation Date	
1950	250mW	10.3	5.22	0.0005	1.0.0/	2.2.0/	New 04, 0044	
(Head)	Normalize to 1 Watt	41.2	20.88	-0.0085	-1.9 %	-3.3 %	Nov. 21, 2011	

Detail results see Appendix A.

8.3 Dosimetric Assessment Setup

8.3.1 Body Test Position

Body - Worn Configuration

Body - Worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device.

Body - Worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 15 mm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances.

For this test :

- The EUT is placed into the holster/belt clip and the holster is positioned against the surface of the phantom in a normal operating position.
- ☐ Belt clip sold with the product is not available. Therefore for SAR measurement, 0mm separation between the product and phantom is done for worst-case compliance.

8.3.2 Measurement Procedures

The evaluation was performed with the following procedures :

- Surface Check : A surface checks job gathers data used with optical surface detection. It determines the distance from the phantom surface where the reflection from the optical detector has its peak. Any following measurement jobs using optical surface detection will then rely on this value. The surface check performs its search a specified number of times, so that the repeatability can be verified. The probe tip distance is 1.3mm to phantom inner surface during scans.
- **Reference :** The reference job measures the field at a specified reference position, at 4 mm from the selected section's grid reference point.
- Area Scan : The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines can find the maximum locations even in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. Any following zoom scan within the same procedure will then perform fine scans around these maxima. The area covered the entire dimension of the EUT and the horizontal grid spacing was 15 mm × 15 mm.
- Zoom Scan : Zoom scans are used to assess the highest averaged SAR for cubic averaging volumes with 1 g and 10 g of simulated tissue. The zoom scan measures 7 x 7 x 9 points in a 30 x 30 x 24 mm cube whose base faces are centered around the maxima returned from a preceding area scan within the same procedure.
- **Drift :** The drift job measures the field at the same location as the most recent reference job within the same procedure, with the same settings. The drift measurement gives the field difference in dB from the last reference measurement. Several drift measurements are possible for each reference measurement. This allows monitoring of the power drift of the device in the batch process. If the value changed by more than 5%, the evaluation was repeated.

8.4 Spatial Peak SAR Evaluation

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of (30 x 30 x 24 mm³) (7 x 7 x 9 points). The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into three stages:

Interpolation and Extrapolation

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and SAR extrapolation routines. The interpolation, Maxima Search and extrapolation routines are all based on the modified Quadratic Shepard's method [7].

9. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 20.10 \%$ [8].

According to Std. C95.3[9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

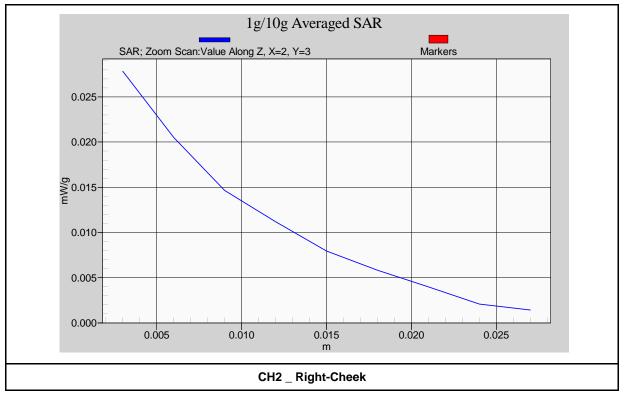
According to CENELEC [10], typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Uncertainty Component	Uncertainty Value	Probability Distribution	Divisor	<i>c_i</i> (1g)	<i>c_i</i> (10g)	Standard Uncertainty ±1% (1-g)	Standard Uncertainty ±1% (10-g)	_{Vi} or V _{eff}
Measurement System								
Probe Calibration (k=1)	±5.5%	Normal	1	1	1	±5.5%	±5.5%	8
Probe Isotropy	±7.6%	Rectangular	$\sqrt{3}$	0.7	0.7	±3.1%	±3.1%	8
Boundary Effect	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Linearity	±4.7%	Rectangular	$\sqrt{3}$	1	1	±2.7%	±2.7%	8
System Detection Limit	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.58%	±0.58%	8
Readout Electronics	±0.3%	Normal	1	1	1	±0.3%	±0.3%	8
Response Time	±0.8%	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%	8
Integration Time	±2.6%	Rectangular	$\sqrt{3}$	1	1	±1.5%	±1.5%	8
RF Ambient Conditions	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	8
RF Ambient Reflections	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	8
Probe Positioner Mechanical Tolerance	±0.4%	Rectangular	$\sqrt{3}$	1	1	±0.2%	±0.2%	8
Probe Positioning with respect to Phantom Shell	±2.9%	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
Extrapolation, interpolation and integration Algorithms for Max. SAR	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Test sample Related								
Test sample Positioning	±3.6%	Normal	1	1	1	±3.6%	±3.6%	89
Device Holder Uncertainty	±3.5%	Normal	1	1	1	±3.5%	±3.5%	5
Output Power Variation - SAR drift measurement	±5.0%	Rectangular	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness tolerances)	±4.0%	Rectangular	$\sqrt{3}$	1	1	±2.3%	±2.3%	8
Liquid Conductivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	8
Liquid Conductivity - measurement uncertainty	±1.93%	Normal	1	0.64	0.43	±1.24%	±0.83%	69
Liquid Permittivity - deviation from target values	±5.0	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	8
Liquid Permittivity - measurement uncertainty	±1.4%	Normal	1	0.6	0.49	±0.84%	±0.69%	69
Combined standard uncer	tainty	RSS				±10.05%	±9.85%	313
Expanded uncertainty (95% CONFIDENCE LEV		k=2				±20.10%	±19.70%	

 Table 5.
 System uncertainty: 300MHz -3000MHz

Uncertainty Component	Uncertainty Value	Probability Distribution	Divisor	<i>c_i</i> (1g)	<i>c_i</i> (10g)	Standard Uncertainty ±1% (1-g)	Standard Uncertainty ±1% (10-g)	v _i or V _{eff}
Measurement System								
Probe Calibration	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	8
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	8
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0	0	±0 %	±0 %	8
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6 %	8
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	8
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	8
Modulation Response	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	8
Readout Electronics	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	8
Response Time	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	8
Integration Time	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	8
RF Ambient Noise	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	8
RF Ambient Reflections	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	8
Probe Positioner	±0.8 %	Rectangular	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	8
Probe Positioning	±6.7 %	Rectangular	$\sqrt{3}$	1	1	±3.9 %	±3.9 %	8
Max. SAR Eval.	±2.0 %	Rectangular	$\sqrt{3}$	1	1	±1.2 %	±1.2 %	8
Dipole Related								
Deviation of exp. dipole	±5.5 %	Rectangular	$\sqrt{3}$	1	1	±3.2 %	±3.2 %	8
Dipole Axis to Liquid Dist.	±2.0 %	Rectangular	$\sqrt{3}$	1	1	±1.2 %	±1.2 %	8
Input power & SAR drift	±3.4 %	Rectangular	$\sqrt{3}$	1	1	±2.0 %	±2.0 %	8
Phantom and Setup								
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	8
SAR correction	±1.9 %	Rectangular	$\sqrt{3}$	1	0.84	±1.1 %	±0.9 %	8
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.78	0.71	±2.0 %	±1.8 %	8
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.26	0.26	±0.7 %	±0.7 %	8
Temp. uncConductivity	±1.7 %	Rectangular	$\sqrt{3}$	0.78	0.71	±0.8 %	±0.7 %	∞
Temp. uncPermittivity	±0.3 %	Rectangular	$\sqrt{3}$	0.23	0.26	±0.0 %	±0.0 %	8
Combined standard unce	rtainty	RSS				±10.1%	±10.1 %	
Expanded uncertaint	y	k=2				±20.2	±20.1 %	

 Table 6. Uncertainty Budget for System Validation for the 0.3 -6 GHz range


10. SAR Test Results Summary

10.1 Head SAR

Measurement Results									
Band	Free	quency	y Battery	Phantom	Phantom Accessory		Power Drift	Amb	Remark
Bund	СН	MHz	Buildry	Position	rooooly	[mW/g]	(dB)	Temp	Roman
	2	1924.992	Ni-MH	Right-Cheek	N/A	0.022	-0.06500	22.0	
UPCS	2	1924.992	Ni-MH	Right-Tilted	N/A	0.016	0.12100	22.0	
0PCS 2	1924.992	Ni-MH	Left-Cheek	N/A	0.021	-0.00873	22.0		
	2	1924.992	Ni-MH	Left-Tilted	N/A	0.017	-0.09600	22.0	
	Std. C95.1-1992 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						.6 W/kg (m raged over		

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

	Population	Occupational	
Human Exposure	Uncontrolled	Controlled	
	Exposure	Exposure	
	(W/kg) or (mW/g)	(W/kg) or (mW/g)	
Spatial Peak SAR*	1.60	8.00	
(head)	1.00	0.00	
Spatial Peak SAR**	0.08	0.40	
(Whole Body)	0.00	0.40	
Spatial Peak SAR***	1.60	8.00	
(Partial-Body)	1.00	0.00	
Spatial Peak SAR****	4.00	20.00	
(Hands / Feet / Ankle / Wrist)	4.00	20.00	

10.2 Std. C95.1-1992 RF Exposure Limit

Table 7.	Safety Limi	its for Partia	I Body Expos	ure
----------	-------------	----------------	--------------	-----

Notes :

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments : are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments : are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

11. Conclusion

The SAR test values found for the portable mobile phone **VTech Telecommunications Ltd. Trade Name : VTech Model(s) : DS6511-2** is below the maximum recommended level of 1.6 W/kg (mW/g).

12. References

- [1] Std. C95.1-1992, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "*Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields*", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Poković, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "*E-field probe with improved isotropy in brain simulating liquids*", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "*Multivariate Interpolation Of Large Sets Of Scattered Data*", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, *Dosimetric evaluation of mobile communications equipment with known precision*, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp.

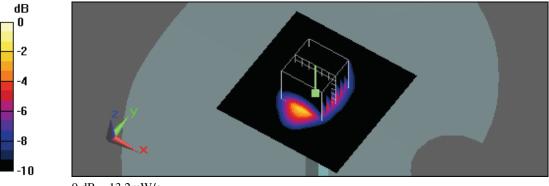
Date/Time: 11/21/2011 4:43:43 PM

System Performance Check at 1950MHz_20111121_Head

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN:1117

Communication System: CW; Frequency: 1950 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1950 MHz; σ = 1.42 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3578; ConvF(7.21, 7.21, 7.21); Calibrated: 6/21/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

System Performance Check at 1950MHz/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.2 mW/g

System Performance Check at 1950MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.9 V/m; Power Drift = -0.0085 dB Peak SAR (extrapolated) = 19.6 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.22 mW/g Maximum value of SAR (measured) = 13.2 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp.

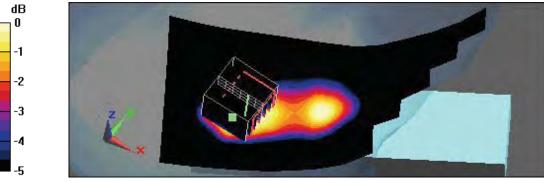
Date/Time: 11/21/2011 6:25:51 PM

RC_DECT CH2

DUT: DS6511-2; Type: 1.9GHz DECT 6.0 Cordless Phone; FCC ID: EW780-8540-00

Communication System: DECT; Frequency: 1924.992 MHz;Duty Cycle: 1:24 Medium parameters used: f = 1924.992 MHz; σ = 1.38 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3578; ConvF(7.21, 7.21, 7.21); Calibrated: 6/21/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

Right Cheek/Area Scan (61x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.037 mW/g

Right Cheek/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 4.42 V/m; Power Drift = -0.065 dB Peak SAR (extrapolated) = 0.036 W/kg SAR(1 g) = 0.022 mW/g; SAR(10 g) = 0.012 mW/g Maximum value of SAR (measured) = 0.028 mW/g

0 dB = 0.028 mW/g

Test Laboratory: A Test Lab Techno Corp.

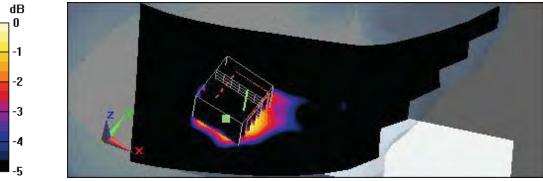
Date/Time: 11/21/2011 8:32:43 PM

RT_DECT CH2

DUT: DS6511-2; Type: 1.9GHz DECT 6.0 Cordless Phone; FCC ID: EW780-8540-00

Communication System: DECT; Frequency: 1924.992 MHz;Duty Cycle: 1:24 Medium parameters used: f = 1924.992 MHz; σ = 1.38 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3578; ConvF(7.21, 7.21, 7.21); Calibrated: 6/21/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

Right Tilted/Area Scan (61x151x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.023 mW/g

Right Tilted/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 3.61 V/m; Power Drift = 0.121 dB Peak SAR (extrapolated) = 0.026 W/kg **SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.00894 mW/g** Maximum value of SAR (measured) = 0.019 mW/g

0 dB = 0.019 mW/g

Test Laboratory: A Test Lab Techno Corp.

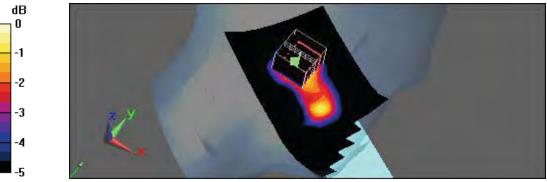
Date/Time: 11/21/2011 10:59:27 PM

LC_DECT CH2

DUT: DS6511-2; Type: 1.9GHz DECT 6.0 Cordless Phone; FCC ID: EW780-8540-00

Communication System: DECT; Frequency: 1924.992 MHz;Duty Cycle: 1:24 Medium parameters used: f = 1924.992 MHz; σ = 1.38 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3578; ConvF(7.21, 7.21, 7.21); Calibrated: 6/21/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

Left Cheek/Area Scan (61x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.026 mW/g

Left Cheek/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 3.86 V/m; Power Drift = -0.00873 dB Peak SAR (extrapolated) = 0.034 W/kg **SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.012 mW/g Maximum value of SAR (measured) = 0.025 mW/g**

 $0 \, dB = 0.025 \, mW/g$

Test Laboratory: A Test Lab Techno Corp.

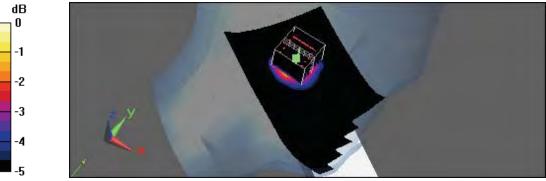
Date/Time: 11/21/2011 10:12:28 PM

LT_DECT CH2

DUT: DS6511-2; Type: 1.9GHz DECT 6.0 Cordless Phone; FCC ID: EW780-8540-00

Communication System: DECT; Frequency: 1924.992 MHz;Duty Cycle: 1:24 Medium parameters used: f = 1924.992 MHz; σ = 1.38 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within:2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3578; ConvF(7.21, 7.21, 7.21); Calibrated: 6/21/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

Left Tilted/Area Scan (61x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.030 mW/g

Left Tilted/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 3.71 V/m; Power Drift = -0.096 dB Peak SAR (extrapolated) = 0.031 W/kg SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.0094 mW/g Maximum value of SAR (measured) = 0.022 mW/g

 $0 \, dB = 0.022 mW/g$

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D1950V3 SN:1117 Calibration No.D1950V3-1117_Feb11
- Probe _ EX3DV4 SN:3578 Calibration No.EX3-3578_Jun11
- DAE _ DAE4 SN:779 Calibration No.DAE4-779_ Jan11

SWISS

U

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura s Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

	CERTIFICATE	-	A REPORT OF A REPORT OF A
Dbject	D1950V3 - SN: 1	1117	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits	
Calibration date:	February 24, 201	11	
he measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Calibration Equipment used (M&1	TE critical for calibration)		
- C - 212			
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards ower meter EPM-442A	ID # GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
rimary Standards ower meter EPM-442A ower sensor HP 8481A	ID # GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Oct-11 Oct-11
nimary Standards lower meter EPM-442A lower sensor HP 8481A leference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158)	Oct-11 Oct-11 Mar-11
nimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination	ID # GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Oct-11 Oct-11 Mar-11 Mar-11
nimary Standards lower meter EPM-442A lower sensor HP 8481A leference 20 dB Attenuator ype-N mismatch combination leference Probe ES3DV3	ID # G837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158)	Oct-11 Oct-11 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # G837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11
Primary Standards Power meter EPM-442A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Becondary Standards Power sensor HP 6481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A leference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A leference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Mar-11 Mar-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A Ref generator R&S SMT-06 Vetwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11 Signature
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Oct-11 Oct-11 Mar-11 Mar-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- . Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ٠ connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1950V3-1117_Feb11

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1950 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	1,35 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	42.0 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.36 mW / g
SAR measured SAR normalized	250 mW input power normalized to 1W	5.36 mW / g 21.4 mW / g

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C	-1111	22.2

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.76 mW / g
SAR normalized	normalized to 1W	39.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.5 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	condition 250 mW input power	5.16 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized		5.16 mW / g 20.6 mW / g

Certificate No: D1950V3-1117_Feb11

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 1.5 jΩ	
Return Loss	- 36.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 1.2 jΩ	
Return Loss	- 27.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 20, 2006

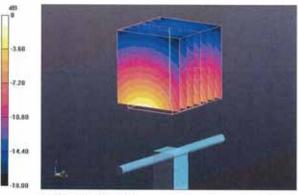
Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 21.02.2011 12:25:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN:1117

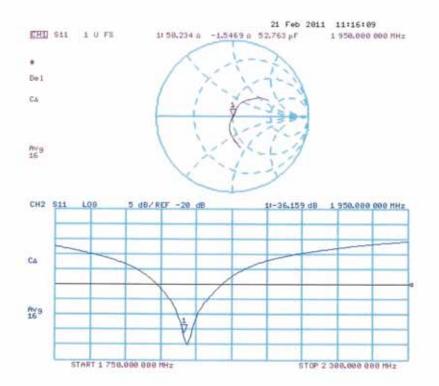

Communication System: CW; Frequency: 1950 MHz; Duty Cycle: 1:1 Medium: HSL BB1.9 Medium parameters used: f = 1950 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.96, 4.96, 4.96); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6 Build (401)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.080 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.691 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.36 mW/g Maximum value of SAR (measured) = 12.637 mW/g


0 dB = 12.640 mW/g

Certificate No: D1950V3-1117_Feb11

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D1950V3-1117_Feb11

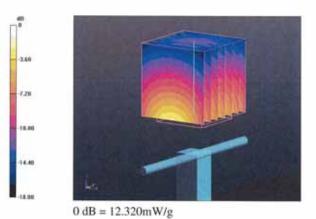
Page 7 of 9

DASY5 Validation Report for Body TSL

Date/Time: 24.02.2011 11:27:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN:1117

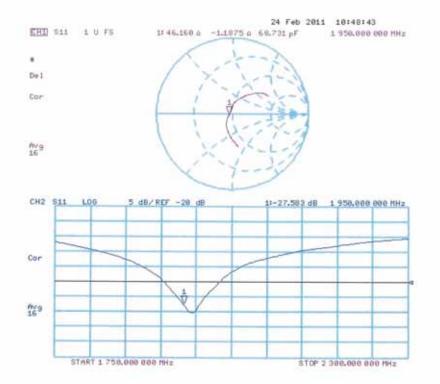

Communication System: CW; Frequency: 1950 MHz; Duty Cycle: 1:1 Medium: MSL BB1.9 Medium parameters used: f = 1950 MHz; σ = 1.5 mho/m; ε_r = 53.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.7, 4.7, 4.7); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6 Build (401)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.673 V/m; Power Drift = 0.0072 dB Peak SAR (extrapolated) = 16.521 W/kg SAR(1 g) = 9.76 mW/g; SAR(10 g) = 5.16 mW/g Maximum value of SAR (measured) = 12.318 mW/g



Certificate No: D1950V3-1117_Feb11

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D1950V3-1117_Feb11

Page 9 of 9

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

 S
 Schweizerischer Kallbrierdienst

 C
 Service suisse d'étalonnage

 S
 Servizio svizzero di taratura

 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Object	EX3DV4 - SN:35	78	
Calibration procedure(s)	QA CAL-01.v8, C Calibration proce	DA CAL-14.v3, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	June 21, 2011	1	
	ucted in the closed laborator	robability are given on the following pages and y facility: environment temperature $(22 \pm 3)^{\circ}$ C $_{2}$	
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
B	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A		29-Mar-11 (No. 217-01369)	Apr-12
	SN: S5054 (3c)		
Reference 3 dB Allenualor	SN: S5054 (3c) SN: S5086 (20b)		Apr-12
Reference 3 dB Attenuator Reference 20 dB Attenuator		29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367)	
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	SN: \$5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5086 (20b) SN: S5129 (30b)	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370)	Apr-12 Apr-12
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: S5086 (20b) SN: S5129 (30b) SN: 3013	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	Apr-12 Apr-12 Dec-11
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013, Dec10) 3-May-11 (No. DAE4-654_May11)	Apr-12 Apr-12 Dec-11 May-12
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013, Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	Apr-12 Apr-12 Dec-11 May-12 Scheduled Check
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013, Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: EX3-3578_Jun11

Page 1 of 11

s

C

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossan

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMX, y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Charl). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offsel: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3578_Jun11

Page 2 of 11

June 21, 2011

Probe EX3DV4

SN:3578

Manufactured: Calibrated:

November 4, 2005 June 21, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3578_Jun11

Page 3 of 11

June 21, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3578

Basic Calibration Parameters

the second se	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.53	0.50	0.56	± 10.1 %
DCP (mV) ⁸	101.0	99.8	100.5	

Modulation Calibration Parameters

סוט	Communication System Name	PAR	1	A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0,00	1.00	117.4	±1.7 %
			Y	0.00	0.00	1.00	116.2	
			Z	0.00	0.00	1,00	123.2	10-1-1

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^a Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3578_Jun11

Page 4 of 11

June 21, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3578

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	8.66	8.66	8.66	0.80	0.71	± 12.0 %
835	41.5	0.90	8.33	8.33	8.33	0.80	0.69	± 12.0 %
900	41.5	0.97	8.21	8.21	8.21	0.80	0.69	± 12.0 %
1750	40.1	1.37	7.62	7.62	7.62	0.80	0.70	± 12.0 %
1900	40.0	1.40	7.26	7.26	7.26	0.80	0.69	± 12.0 %
2000	40.0	1.40	7.21	7.21	7.21	0.80	0.68	± 12.0 %
2450	39.2	1.80	6.42	6.42	6.42	0.80	0.68	± 12.0 %
5200	36.0	4.66	4.26	4.26	4.26	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.06	4.06	4.06	0.40	1.80	± 13.1 %
5500	35,6	4.96	4.12	4.12	4.12	0.45	1.80	± 13.1 %
5600	35.5	5.07	3.94	3.94	3.94	0.40	1.80	± 13.1 %
5800	35.3	5.27	3.84	3.84	3.84	0.50	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3578_Jun11

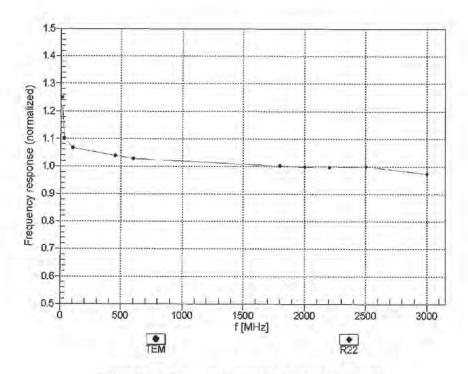
Page 5 of 11

DASY/EASY - Parameters of Probe: EX3DV4- SN:3578

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Aipha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.77	8.77	8.77	0.80	0.75	± 12.0 %
835	55.2	0.97	8.45	8.45	8.45	0.80	0.75	± 12.0 %
900	55.0	1.05	8.34	8.34	8.34	0.80	0.72	± 12.0 %
1750	53.4	1.49	7.19	7.19	7.19	0.80	0.75	± 12.0 %
1900	53.3	1.52	6.68	6.68	6.68	0.80	0.73	± 12.0 %
2000	53.3	1.52	6.68	6.68	6.68	0.80	0.73	± 12.0 %
2450	52.7	1.95	6.18	6.18	6.18	0.80	0.50	± 12.0 %
5200	49.0	5.30	3.74	3.74	3.74	0.55	1.90	± 13.1 %
5300	48.9	5.42	3.49	3.49	3.49	0.55	1.90	± 13.1 %
5500	48.6	5.65	3.40	3.40	3.40	0.60	1.90	± 13.1 %
5600	48.5	5.77	3.11	3.11	3.11	0.65	1.90	± 13.1 %
5800	48.2	6.00	3.23	3.23	3.23	0.65	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

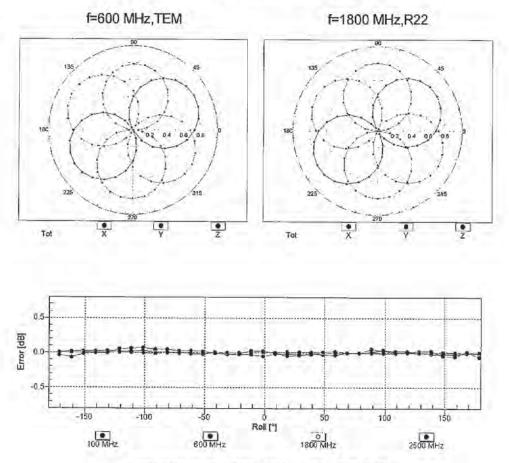
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ^c At frequencies below 3 GHz, the validity of tissue parameters (a and d) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Certificate No: EX3-3578_Jun11

Page 6 of 11

June 21, 2011

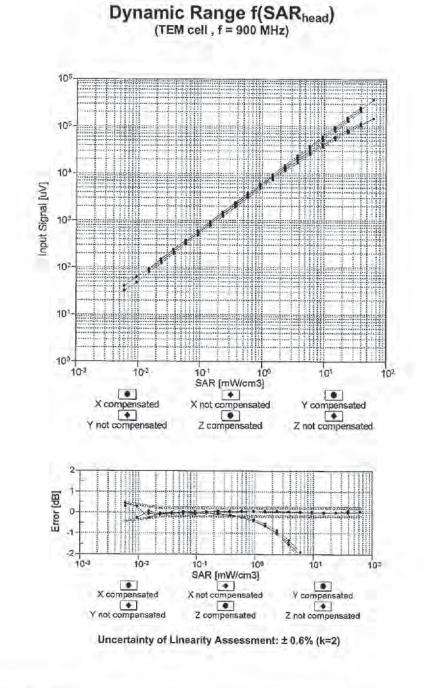
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Certificate No: EX3-3578_Jun11

Page 7 of 11

June 21, 2011

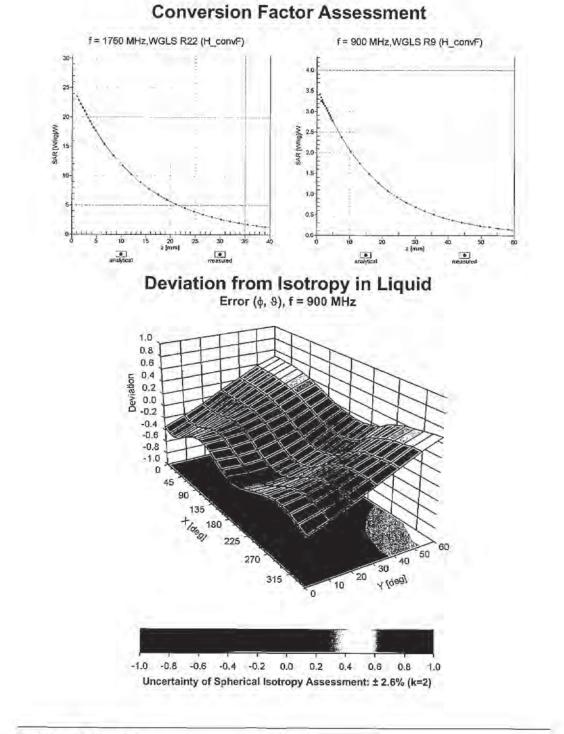

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3578_Jun11

Page 8 of 11

June 21, 2011



Certificate No: EX3-3578_Jun11

Page 9 of 11

June 21, 2011

Certificate No: EX3-3578_Jun11

Page 10 of 11

1411.42

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3578

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tlp to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3578_Jun11

Page 11 of 11

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

CALIBRATION	CERTIFICATE		and the second second
Object	DAE4 - SD 000 D	04 BJ - SN: 779	
Calibration procedure(s)	QA CAL-06.v22 Calibration proceed	dure for the data acquisition	electronics (DAE)
Calibration date:	January 31, 2011	1	
		obability are given on the following pay facility: environment temperature (22	
Calibration Equipment used (M&	1	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards	TE critical for calibration)	Cal Date (Certificate No.) 28-Sep-10 (No:10376)	Scheduled Calibration Sep-11
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ID #	28-Sep-10 (No:10376)	
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ID # SN: 0810278	28-Sep-10 (No:10376) Check Date (in house)	Sep-11
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278	28-Sep-10 (No:10376) Check Date (in house)	Sep-11 Scheduled Check In house check: Jun-11
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278 ID # SE UMS 006 AB 1004	28-Sep-10 (No:10376) Check Date (in house) 07-Jun-10 (in house check)	Sep-11 Scheduled Check
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ID # SN: 0810278 ID # SE UMS 006 AB 1004	28-Sep-10 (No:10376) Check Date (in house) 07-Jun-10 (in house check) Function	Sep-11 Scheduled Check In house check: Jun-11

Certificate No: DAE4-779_Jan11

Page 1 of 5

CP CP ZO

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-779_Jan11

Page 2 of 5

DC Voltage Measurement

A/D - Converter Res	olution nominal	

Calibration Factors	x	Y	z
High Range	404.517 ± 0.1% (k=2)	403.748 ± 0.1% (k=2)	$403.972 \pm 0.1\%$ (k=2)
Low Range	3.96927 ± 0.7% (k=2)	3.98585 ± 0.7% (k=2)	$3.99915 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	155.5 ° ± 1 °
---	---------------

Certificate No: DAE4-779_Jan11

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200001.8	6.19	0.00
Channel X + Input	20003.75	4.25	0.02
Channel X - Input	-19996.56	3.04	-0.02
Channel Y + Input	200005.0	0.90	0.00
Channel Y + Input	20000.78	1.38	0.01
Channel Y - Input	-19996.43	2.97	-0.01
Channel Z + Input	200002.2	-1.15	-0.00
Channel Z + Input	19999.59	0.19	0.00
Channel Z - Input	-19995.05	4.35	-0.02

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.4	0.25	0.01
Channel X + Input	200.27	0.37	0.18
Channel X - Input	-199.08	1.12	-0.56
Channel Y + Input	2000.1	0.19	0.01
Channel Y + Input	199.01	-0.89	-0.45
Channel Y - Input	-199.30	0.50	-0.25
Channel Z + Input	1999.6	-0.40	-0.02
Channel Z + Input	199.22	-0.88	-0.44
Channel Z - Input	-200.27	-0.37	0.19

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-3.66	-5.39
	- 200	5.82	4.90
Channel Y	200	13.39	13.58
	- 200	-14.98	-15.16
Channel Z	200	2.20	2.53
	- 200	-4.84	-4.61

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		1.33	-0.57
Channel Y	200	1.97	-	3.29
Channel Z	200	1.19	-0.28	

Certificate No: DAE4-779_Jan11

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15613	15134
Channel Y	15831	16218
Channel Z	16150	17743

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.26	-1.03	0.79	0.42
Channel Y	0.52	-1.04	2.07	0.58
Channel Z	-2.22	-3.25	-0.85	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-779_Jan11

Page 5 of 5