

TEST REPORT

FCC: VTech Telecommunications Ltd

IC: VTECH TELECOMMUNICATIONS LIMITED

FCC: 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po

IC: BL.1 23/F Tai Ping Industr Ctr. 57 Ting Kok Road Tai Po,

Applicant Name:

Address:

Report Number: FCC ID: IC:

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; **RSS-247 ISSUE 3, AUGUST 2023**

NT, Hong Kong

NT Hongkong

EW780-3409-00

1135B-80340900

SZ1240205-08015E-RFB

Sample Description

Product Type:	DECT 6.0 cordless phone
Model No.:	LS6331-2
Multiple Model(s) No.:	FCC: LS6331,LS6331-3,LS6331-4,LS6331-5,LS633Z-XY
	IC: LS6331,LS6331-3,LS6331-4,LS6331-5
Trade Mark:	VTech
Date Received:	2024/02/05
Issue Date:	2024/05/21

Test Result:

Pass[▲]

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

010
1

Mike Xiao

RF Engineer

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼"

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF009

Page 1 of 105

Version 1.0 (2023/10/07)

RF Supervisor

Approved By: Nanaj Wang

Nancy Wang

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software Special Accessories	
EOUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	8
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	11
TEST EQUIPMENT LIST	12
FCC §15.247 (I) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
Result	
RSS-102 § 2.5.2 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-RI	
APPLICABLE STANDARD	
Result	
FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS.	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	
FACTOR & OVER LIMIT CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSION	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
EMI IEST RECEIVER & SPECTRUM ANALYZER SETUP Test Procedure	
FACTOR & OVER LIMIT/MARGIN CALCULATION	
TEST DATA	

TR-EM-RF009

FCC §15.247(A) (1) & RSS-247 § 5.1 (B) -CHANNEL SEPARATION TEST	52
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	53
FCC §15.247(A) (1) & RSS-247 § 5.1 (A), RSS-GEN § 6.7 – 20 DB EMISSION BANDWIDTH & 99%	
OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	-
Test Procedure	
TEST DATA	55
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - QUANTITY OF HOPPING CHANNEL TEST	56
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	57
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - TIME OF OCCUPANCY (DWELL TIME)	58
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	59
FCC §15.247(B) (1) & RSS-247§ 5.1(B) &§ 5.4(B) - PEAK OUTPUT POWER MEASUREMENT	60
APPLICABLE STANDARD	60
Test Procedure	
TEST DATA	61
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	
APPLICABLE STANDARD	62
Test Procedure	
ТЕЅТ ДАТА	63
EUT PHOTOGRAPHS	64
TEST SETUP PHOTOGRAPHS	65
APPENDIX	66
APPENDIX A: 20DB EMISSION BANDWIDTH	66
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	SZ1240205-08015E-RFB	Original Report	2024/05/21	

TR-EM-RF009

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	35-202328BS		
FVIN	N/A		
Product	DECT 6.0 cordless phone		
Tested Model	LS6331-2		
Multiple Model(s)	ECC: L \$6331_1 \$6331_3 L \$6331_4 L \$6331_5 L \$6337_XV		
Frequency Range	Bluetooth: 2402-2480MHz		
Transmit Power	4.08dBm		
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK		
Antenna Specification [#]	0dBi (provided by the applicant)		
Voltage Range	DC6V from adapter		
Sample serial number	2HNJ-9 for Conducted and Radiated Emissions Test 2HNJ-1 for RF Conducted Test (Assigned by BACL, Shenzhen)		
Sample/EUT Status	Good condition		
Adapter Information	Adapter 1 Model: VT05UUS06040 Input: AC 100-120V, 60Hz, 0.15A Output: DC 6.0V, 0.4A Adapter 2 Model: A318-060040W-US1 Input: AC 100-120V, 50/60Hz, 0.15A Output: DC 6.0V, 0.4A Adapter 3 Model: DSA-3PFM-05 BUS 060040 Input: AC 100-120V, 50/60Hz, 0.15A Output: DC 6.0V, 0.4A, 2.4W Adapter 4 Model: E004-1A060040VU Input: AC 100-120V, 50/60Hz, 0.1A Output: DC 6.0V, 0.4A Adapter 5 Model: GQ06-060040-ZU Input: AC 100-120V, 50/60Hz, 0.15A Output: DC 6.0V, 0.4A		
	lels are electrically identical with the test model except for Color, Model number, mber of Handset and Charger. Please refer to the declaration letter ^{\ddagger} for more detail,		
which was provided by m			

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty
Occupied Channel Bandwidth		Bandwidth	±5%
RF output power, conducted		onducted	0.72 dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz-150kHz	3.94dB(k=2, 95% level of confidence)
Emissions		150kHz-30MHz	3.84dB(k=2, 95% level of confidence)
	9kHz - 30MHz		3.30dB(k=2, 95% level of confidence)
	30MHz~200MHz (Horizontal)		4.48dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)		4.55dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Horizontal)		4.85dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)
	1GHz - 6GHz		5.35dB(k=2, 95% level of confidence)
	6GHz - 18GHz		5.44dB(k=2, 95% level of confidence)
		18GHz - 40GHz	5.16dB(k=2, 95% level of confidence)
Temperature		re	±1°C
Humidity			±1%
Supply voltages		ges	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
36	2438	75	2477
37	2439	76	2478
38	2440	77	2479
39	2441	78	2480

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

"UniTool 4v91 RTLBTAPP[#]", exercise software was used and the power level is Default[#]. The software and power level was provided by the manufacturer.

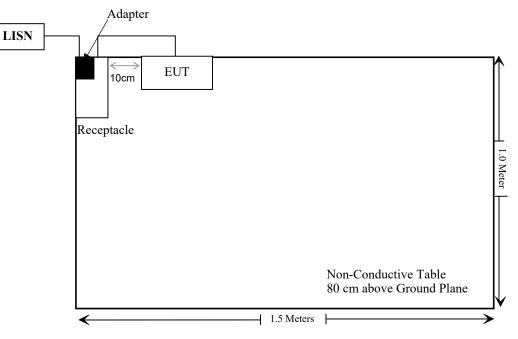
Special Accessories

No special accessory.

Equipment Modifications

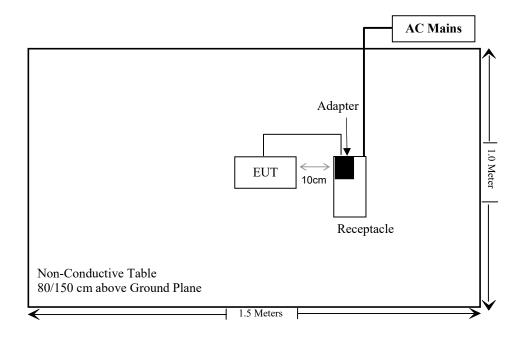
No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer Description		Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Cable	1.0	EUT	Adapter


Block Diagram of Test Setup

For Conducted Emissions:

Report No.: SZ1240205-08015E-RFB

For Radiated Emissions below 1GHz:

TR-EM-RF009

SUMMARY OF TEST RESULTS

Rules Description of Test		Result
§ 15.247 (i), §2.1091	Maximum Permissible Exposure(MPE)	Compliant
RSS-102 § 2.5.2	Exemption Limits for Routine Evaluation – RF Exposure Evaluation	Compliant
FCC §15.203 RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207(a) RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d) RSS-247 § 5.5, RSS-GEN § 8.10	Radiated Emissions	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1(a), RSS-GEN § 6.7	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1) RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant
FCC §15.247(d) RSS-247 § 5.5	Band edges	Compliant

Report No.: SZ1240205-08015E-RFB

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Conducted Emission Test							
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15		
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15		
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2023/08/03	2024/08/02		
Audix	EMI Test software	E3	191218	NCR	NCR		
		Radiated Emiss	ion Test				
R&S	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15		
Sonoma instrument	Pre-amplifier	310 N	186238	2023/06/08	2024/06/07		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2024/07/19		
ETS	Passive Loop Antenna	6512	29604	2023/07/07	2024/07/06		
Unknown	Cable	Chamber Cable 1	F-03-EM236	2023/08/03	2024/08/02		
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR		
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2023/04/18	2024/04/17		
COM-POWER	Pre-amplifier	PA-122	181919	2023/06/29	2024/06/28		
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2024/07/25		
Unknown	RF Cable	KMSE	0735	2023/10/08	2024/10/07		
Unknown	RF Cable	UFA147	219661	2023/10/08	2024/10/07		
SNSD	2.4G Band Reject filter	BSF2402- 2480MN- 0898-001	2.4G filter	2023/08/03	2024/08/02		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		
A.H.System	Pre-amplifier	PAM-1840VH	190	2023/08/03	2024/08/02		
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17		
		RF Conducte	d Test				
Tonscend	RF control Unit	JS0806-2	19D8060154	2023/09/06	2024/09/05		
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15		
MARCONI	10dB Attenuator	6534/3	2942	2023/07/04	2024/07/03		
Micro-Tronics	RF Cable	8082135	W1113	2023/07/04	2024/07/03		
Micro-Tronics	RF Cable	8082176	W6102	2023/07/04	2024/07/03		
Micro-Tronics	RF Cable	8082176	W6111	2023/07/04	2024/07/03		

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

TR-EM-RF009

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)				
0.3-1.34	614	1.63	*(100)	30				
1.34-30	824/f	2.19/f	*(180/f ²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$\mathbf{S} = \frac{PG}{4\pi R^2}$$

- S = power density (in appropriate units, e.g. mW/cm²) P = power input to the antenna (in appropriate units, e.g., mW). G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain [#]		-	conducted wer [#]	Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	$(\mathrm{mW/cm}^2)$
2402-2480	0	1.0	4.5	2.82	20	0.0006	1

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

The BT and DECT cannot transmit at same time.

Result: Compliant

RSS-102 § 2.5.2 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION

Applicable Standard

According to RSS-102 § (2.5.2):

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows: • below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);

• at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where *f* is in MHz; • at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);

device is equal to or less than 0.6 W (adjusted for tune-up tolerance); • at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz; • at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance). In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Result

The max tune-up conducted output power is 4.5dBm, antenna gain is 0dBi. Time-averaged maximum e.i.r.p. of the device is 4.5dBm + 0dBi = 4.5dBm = 0.003 W

The worst case is f = 2402 MHz: The limit is $1.31 \times 10^{-2} f^{0.6834}$ W=2.68W

0.003W<2.68W

Note: The BT and DECT cannot transmit at same time.

So the RF Exposure evaluation can be exempted.

FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

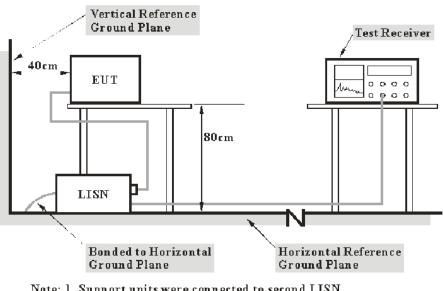
This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached for Bluetooth and the maximum antenna gain[#] is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain [#]	Impedance	Frequency Range
РСВ	0dBi	50Ω	2.4~2.5GHz

Result: Compliant


TR-EM-RF009

FCC §15.207 (a) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), RSS-GEN § 8.8

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 & RSS-Gen.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

TR-EM-RF009

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

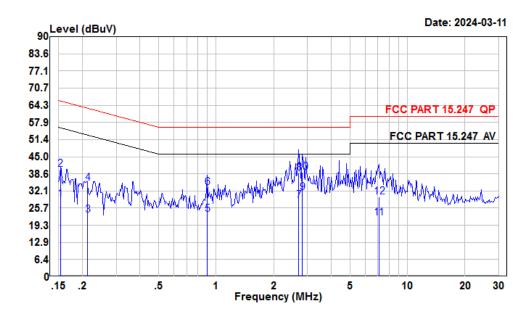
The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

Test Data

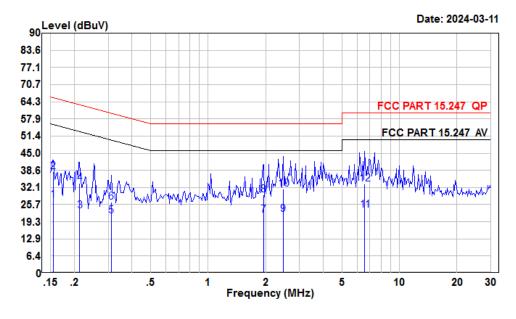
Environmental Conditions


Temperature:	22 °C
Relative Humidity:	67 %
ATM Pressure:	101 kPa

The testing was performed by Macy Shi on 2024-03-09 and 2024-03-11.

EUT operation mode: Transmitting (Maximum output power mode 8DPSK high channel)

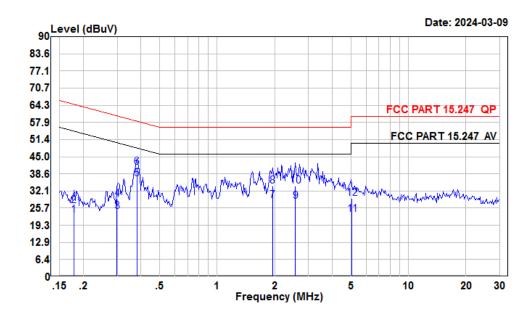
For Adapter VT05UUS06040


AC 120V/60 Hz, Line

Condition	:	Line
Project	:	SZ1240205-08015E-RF
Tester	:	Macy shi
Note	:	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	8.25	29.00	10.60	10.15	55.82	-26.82	Average
2	0.15	19.63	40.38	10.60	10.15	65.82	-25.44	QP
3	0.21	2.40	23.13	10.61	10.12	53.10	-29.97	Average
4	0.21	14.30	35.03	10.61	10.12	63.10	-28.07	QP
5	0.90	2.63	23.50	10.70	10.17	46.00	-22.50	Average
6	0.90	12.55	33.42	10.70	10.17	56.00	-22.58	QP
7	2.71	7.70	28.64	10.71	10.23	46.00	-17.36	Average
8	2.71	17.84	38.78	10.71	10.23	56.00	-17.22	QP
9	2.82	10.60	31.55	10.70	10.25	46.00	-14.45	Average
10	2.82	18.20	39.15	10.70	10.25	56.00	-16.85	QP
11	7.10	1.01	22.02	10.79	10.22	50.00	-27.98	Average
12	7.10	8.95	29.96	10.79	10.22	60.00	-30.04	QP

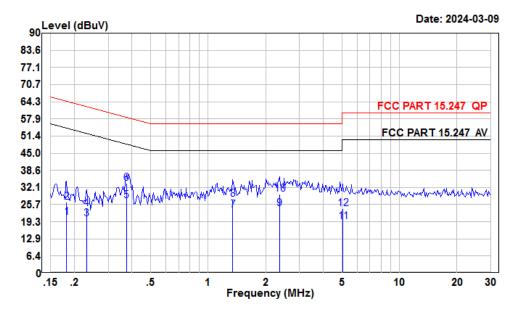
AC 120V/60 Hz, Neutral



Condition	:	Neutral
Project	:	SZ1240205-08015E-RF
Tester	:	Macy shi
Note	:	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	6.86	27.59	10.58	10.15	55.74	-28.15	Average
2	0.15	17.40	38.13	10.58	10.15	65.74	-27.61	QP
3	0.21	2.93	23.47	10.42	10.12	53.10	-29.63	Average
4	0.21	13.28	33.82	10.42	10.12	63.10	-29.28	QP
5	0.31	0.79	21.47	10.55	10.13	49.93	-28.46	Average
6	0.31	5.87	26.55	10.55	10.13	59.93	-33.38	QP
7	1.95	1.19	21.79	10.42	10.18	46.00	-24.21	Average
8	1.95	8.78	29.38	10.42	10.18	56.00	-26.62	QP
9	2.46	1.48	22.09	10.40	10.21	46.00	-23.91	Average
10	2.46	10.90	31.51	10.40	10.21	56.00	-24.49	QP
11	6.59	2.79	23.68	10.67	10.22	50.00	-26.32	Average
12	6.59	12.50	33.39	10.67	10.22	60.00	-26.61	QP

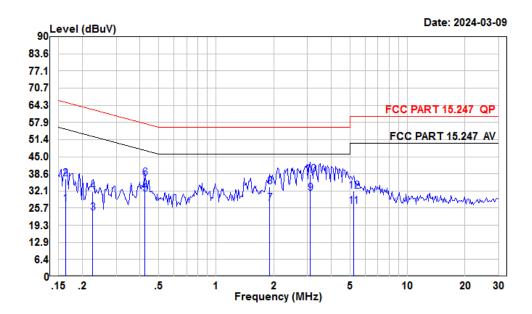
For Adapter A318-060040W-US1


AC 120V/60 Hz, Line

Condition	:	Line
Project	:	SZ1240205-08015E-RF
Tester	:	Macy shi
Note	:	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.18	2.12	23.09	10.84	10.13	54.59	-31.50	Average
2	0.18	5.66	26.63	10.84	10.13	64.59	-37.96	QP
3	0.30	3.80	24.59	10.67	10.12	50.28	-25.69	Average
4	0.30	8.37	29.16	10.67	10.12	60.28	-31.12	QP
5	0.38	15.98	36.77	10.59	10.20	48.25	-11.48	Average
6	0.38	20.19	40.98	10.59	10.20	58.25	-17.27	QP
7	1.95	7.90	28.67	10.59	10.18	46.00	-17.33	Average
8	1.95	13.31	34.08	10.59	10.18	56.00	-21.92	QP
9	2.57	7.65	28.36	10.49	10.22	46.00	-17.64	Average
10	2.57	13.38	34.09	10.49	10.22	56.00	-21.91	QP
11	5.06	2.80	23.40	10.38	10.22	50.00	-26.60	Average
12	5.06	8.82	29.42	10.38	10.22	60.00	-30.58	QP

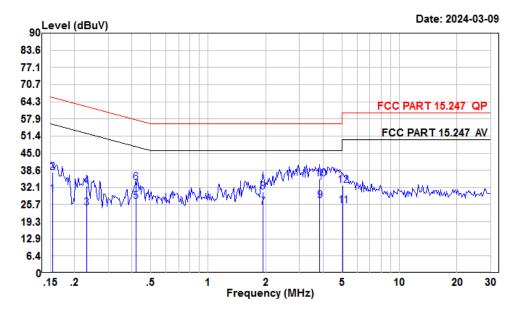
AC 120V/60 Hz, Neutral



Condition:	Neutral
Project :	SZ1240205-08015E-RF
Tester :	Macy shi
Note :	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.18	0.38	20.98	10.47	10.13	54.42	-33.44	Average
2	0.18	5.95	26.55	10.47	10.13	64.42	-37.87	QP
3	0.23	-0.28	20.34	10.45	10.17	52.39	-32.05	Average
4	0.23	3.57	24.19	10.45	10.17	62.39	-38.20	QP
5	0.37	6.40	27.19	10.60	10.19	48.43	-21.24	Average
6	0.37	13.04	33.83	10.60	10.19	58.43	-24.60	QP
7	1.35	3.01	23.75	10.69	10.05	46.00	-22.25	Average
8	1.35	6.90	27.64	10.69	10.05	56.00	-28.36	QP
9	2.36	3.73	24.33	10.40	10.20	46.00	-21.67	Average
10	2.36	9.07	29.67	10.40	10.20	56.00	-26.33	QP
11	5.06	-1.54	19.21	10.53	10.22	50.00	-30.79	Average
12	5.06	3.33	24.08	10.53	10.22	60.00	-35.92	QP

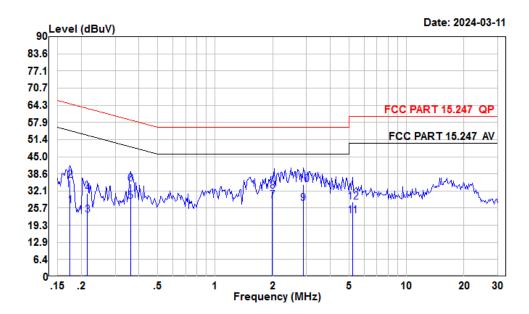
For Adapter DSA-3PFM-05 BUS 060040


AC 120V/60 Hz, Line

Condition:		Line
Project :	:	SZ1240205-08015E-RF
Tester :	:	Macy shi
Note :		ВТ

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.16	6.09	27.11	10.87	10.15	55.30	-28.19	Average
2	0.16	15.77	36.79	10.87	10.15	65.30	-28.51	QP
3	0.23	2.96	23.87	10.76	10.15	52.57	-28.70	Average
4	0.23	11.02	31.93	10.76	10.15	62.57	-30.64	QP
5	0.42	10.23	30.98	10.55	10.20	47.37	-16.39	Average
6	0.42	16.11	36.86	10.55	10.20	57.37	-20.51	QP
7	1.91	6.70	27.46	10.59	10.17	46.00	-18.54	Average
8	1.91	12.98	33.74	10.59	10.17	56.00	-22.26	QP
9	3.11	10.64	31.32	10.41	10.27	46.00	-14.68	Average
10	3.11	17.78	38.46	10.41	10.27	56.00	-17.54	QP
11	5.22	5.65	26.27	10.40	10.22	50.00	-23.73	Average
12	5.22	11.48	32.10	10.40	10.22	60.00	-27.90	QP

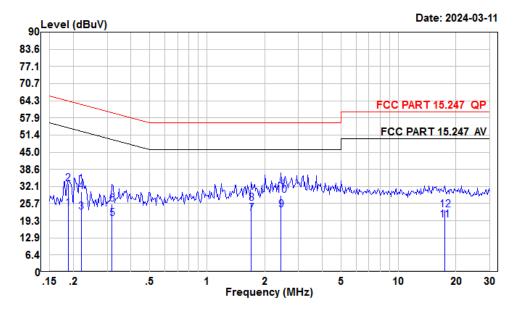
AC 120V/60 Hz, Neutral



Condition	:	Neutral
Project	:	SZ1240205-08015E-RF
Tester	:	Macy shi
Note	:	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.15	8.85	29.59	10.59	10.15	55.82	-26.23	Average
2	0.15	16.93	37.67	10.59	10.15	65.82	-28.15	QP
3	0.23	3.75	24.37	10.45	10.17	52.39	-28.02	Average
4	0.23	12.12	32.74	10.45	10.17	62.39	-29.65	QP
5	0.42	6.16	27.01	10.64	10.21	47.46	-20.45	Average
6	0.42	13.14	33.99	10.64	10.21	57.46	-23.47	QP
7	1.93	4.20	24.80	10.43	10.17	46.00	-21.20	Average
8	1.93	9.86	30.46	10.43	10.17	56.00	-25.54	QP
9	3.84	6.59	27.25	10.40	10.26	46.00	-18.75	Average
10	3.84	14.76	35.42	10.40	10.26	56.00	-20.58	QP
11	5.06	4.68	25.43	10.53	10.22	50.00	-24.57	Average
12	5.06	12.26	33.01	10.53	10.22	60.00	-26.99	QP

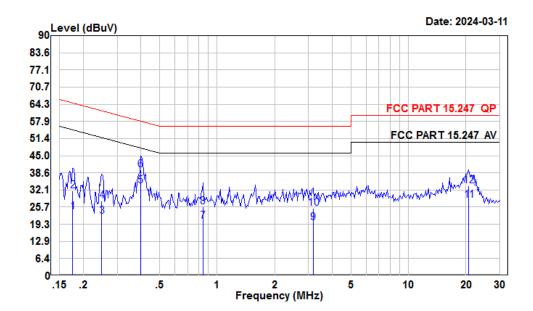
For Adapter E004-1A060040VU


AC 120V/60 Hz, Line

Condition:	Line
Project :	SZ1240205-08015E-RF
Tester :	Macy shi
Note :	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.17	5.77	26.76	10.85	10.14	54.77	-28.01	Average
2	0.17	15.16	36.15	10.85	10.14	64.77	-28.62	QP
3	0.22	2.21	23.12	10.78	10.13	53.01	-29.89	Average
4	0.22	10.27	31.18	10.78	10.13	63.01	-31.83	QP
5	0.36	7.48	28.26	10.61	10.17	48.69	-20.43	Average
6	0.36	14.00	34.78	10.61	10.17	58.69	-23.91	QP
7	1.99	7.75	28.54	10.60	10.19	46.00	-17.46	Average
8	1.99	11.26	32.05	10.60	10.19	56.00	-23.95	QP
9	2.88	6.71	27.41	10.44	10.26	46.00	-18.59	Average
10	2.88	13.78	34.48	10.44	10.26	56.00	-21.52	QP
11	5.22	2.14	22.76	10.40	10.22	50.00	-27.24	Average
12	5.22	7.36	27.98	10.40	10.22	60.00	-32.02	QP

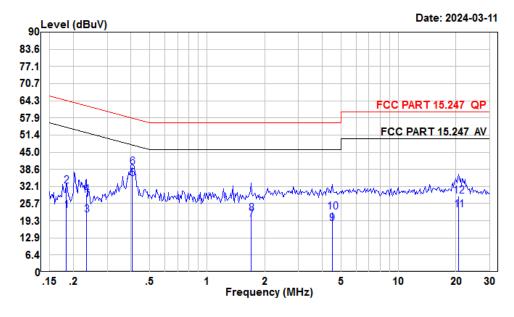
AC 120V/60 Hz, Neutral



Condition	:	Neutral
Project	:	SZ1240205-08015E-RF
Tester	:	Macy shi
Note	:	ВТ

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.19	3.36	23.93	10.45	10.12	54.15	-30.22	Average
2	0.19	12.61	33.18	10.45	10.12	64.15	-30.97	QP
3	0.22	2.09	22.66	10.43	10.14	52.83	-30.17	Average
4	0.22	9.69	30.26	10.43	10.14	62.83	-32.57	QP
5	0.32	-0.67	20.01	10.55	10.13	49.75	-29.74	Average
6	0.32	4.81	25.49	10.55	10.13	59.75	-34.26	QP
7	1.70	1.43	22.06	10.52	10.11	46.00	-23.94	Average
8	1.70	5.14	25.77	10.52	10.11	56.00	-30.23	QP
9	2.44	2.77	23.38	10.40	10.21	46.00	-22.62	Average
10	2.44	8.15	28.76	10.40	10.21	56.00	-27.24	QP
11	17.48	-1.21	19.64	10.75	10.10	50.00	-30.36	Average
12	17.48	2.67	23.52	10.75	10.10	60.00	-36.48	QP

For Adapter GQ06-060040-ZU


AC 120V/60 Hz, Line

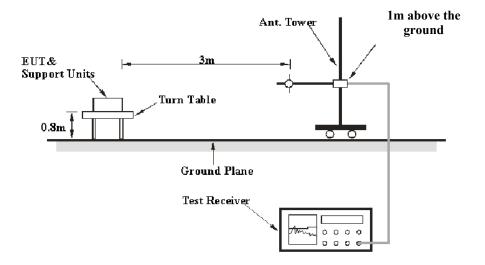
Condition	:	Line
Project	:	SZ1240205-08015E-RF
Tester	:	Macy shi
Note	:	BT

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.18	2.87	23.85	10.84	10.14	54.68	-30.83	Average
2	0.18	10.76	31.74	10.84	10.14	64.68	-32.94	QP
3	0.25	1.32	22.26	10.73	10.21	51.78	-29.52	Average
4	0.25	7.06	28.00	10.73	10.21	61.78	-33.78	QP
5	0.40	12.83	33.63	10.58	10.22	47.90	-14.27	Average
6	0.40	19.00	39.80	10.58	10.22	57.90	-18.10	QP
7	0.84	-0.30	20.32	10.45	10.17	46.00	-25.68	Average
8	0.84	5.14	25.76	10.45	10.17	56.00	-30.24	QP
9	3.17	-0.70	19.97	10.40	10.27	46.00	-26.03	Average
10	3.17	4.64	25.31	10.40	10.27	56.00	-30.69	QP
11	20.70	7.39	28.39	10.87	10.13	50.00	-21.61	Average
12	20.70	12.61	33.61	10.87	10.13	60.00	-26.39	QP

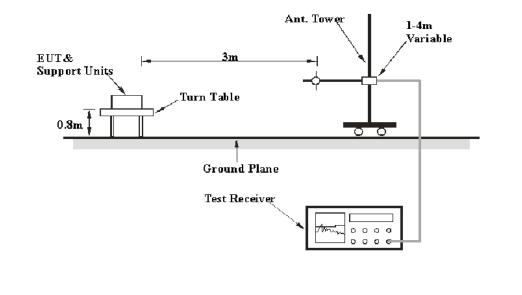
AC 120V/60 Hz, Neutral


```
Condition: Neutral
Project : SZ1240205-08015E-RF
Tester : Macy shi
Note : BT
```

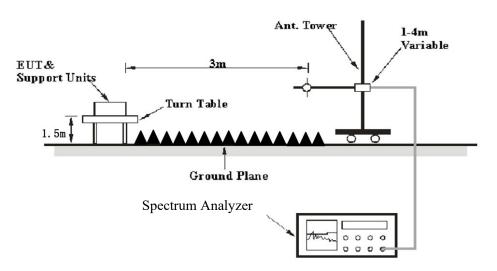
	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.18	2.51	23.09	10.46	10.12	54.33	-31.24	Average
2	0.18	11.73	32.31	10.46	10.12	64.33	-32.02	QP
3	0.23	0.74	21.36	10.45	10.17	52.30	-30.94	Average
4	0.23	8.43	29.05	10.45	10.17	62.30	-33.25	QP
5	0.41	14.34	35.19	10.63	10.22	47.73	-12.54	Average
6	0.41	18.71	39.56	10.63	10.22	57.73	-18.17	QP
7	1.70	-0.73	19.90	10.52	10.11	46.00	-26.10	Average
8	1.70	1.43	22.06	10.52	10.11	56.00	-33.94	QP
9	4.50	-2.54	18.16	10.46	10.24	46.00	-27.84	Average
10	4.50	1.98	22.68	10.46	10.24	56.00	-33.32	QP
11	20.70	2.47	23.28	10.68	10.13	50.00	-26.72	Average
12	20.70	7.83	28.64	10.68	10.13	60.00	-31.36	QP


FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247, RSS-247, RSS-Gen limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement				
9 kHz – 150 kHz	/	/	200 Hz	QP				
9 KHZ – 130 KHZ	300 Hz	1 kHz	/	РК				
150 kHz 20 MHz	/	/	9 kHz	QP				
150 kHz – 30 MHz	10 kHz	30 kHz	/	РК				
30 MHz – 1000 MHz	/	/	120 kHz	QP				
	100 kHz	300 kHz	/	PK				
	Harmonics & Band Edge							
	1MHz	3 MHz	/	РК				
Above 1 GHz	Average Emission Level=Peak Emission Level+20*log(Duty cycle)							
		Other Em	issions					
	1MHz	3 MHz	/	РК				
	1MHz	10 Hz	/	Average				

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

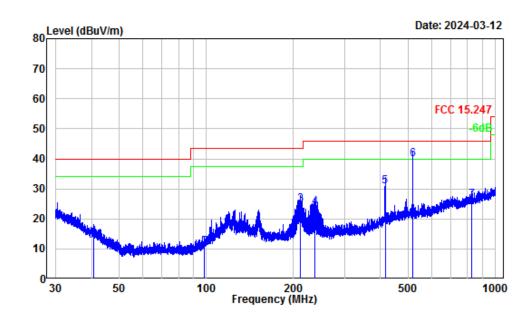
Test Data

Environmental Conditions

Temperature:	22~25.3 °C
Relative Humidity:	50~54 %
ATM Pressure:	101 kPa

The testing was performed by Anson Su on 2024-03-12 for below 1GHz and Tyler Wu on 2024-04-01 and Dylan Yang on 2024-05-21 for above 1GHz.

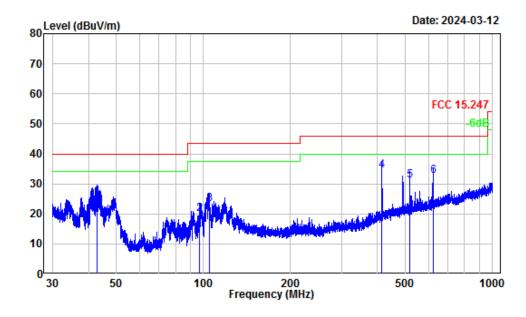
EUT operation mode: Transmitting


Note 1: Pre-scan in the X, Y and Z axes of orientation, the worst case of orientation was recorded.

Note 2: For the spurious radiated emission below 30MHz, the emissions are 20dB below the limit which are not recorded for the 8DPSK high channel mode.

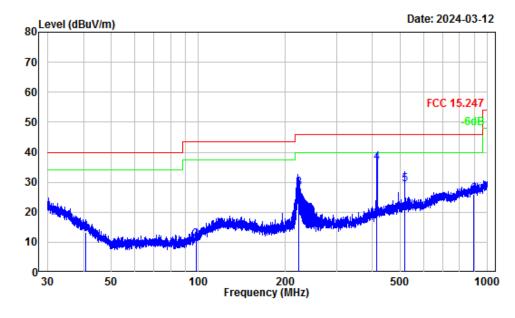
30MHz-1GHz: (*Maximum output power mode 8DPSK high channel*)

For Adapter VT05UUS06040


Horizontal

Site :	Chamber A
Condition :	3m Horizontal
Project Number:	SZ1240205-08015E-RF
Note :	BT
Tester :	Anson Su

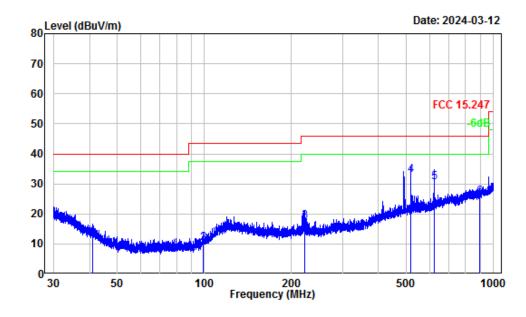
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.77	-10.89	24.92	14.03	40.00	-25.97	QP
2	98.49	-14.16	24.70	10.54	43.50	-32.96	QP
3	210.97	-11.21	35.83	24.62	43.50	-18.88	QP
4	237.48	-11.65	35.57	23.92	46.00	-22.08	QP
5	415.09	-6.84	37.60	30.76	46.00	-15.24	QP
6	518.61	-4.87	44.61	39.74	46.00	-6.26	QP
7	829.67	-0.11	26.44	26.33	46.00	-19.67	QP



Site	:	Chamber A			
Conditio	n :	3m Vertical			
Project	Number:	SZ1240205-08015E-RF			
Note	:	BT			
Tester	:	Anson Su			

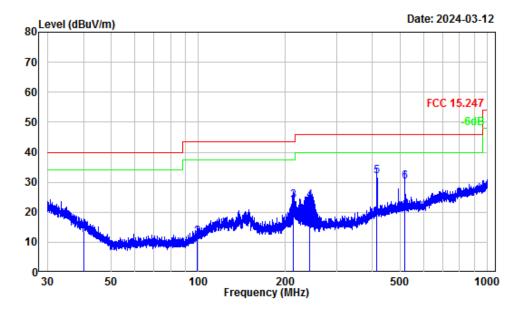
	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.86	-13.51	39.21	25.70	40.00	-14.30	QP
2	97.16	-15.84	35.75	19.91	43.50	-23.59	QP
3	104.54	-13.92	37.30	23.38	43.50	-20.12	QP
4	414.90	-7.13	41.59	34.46	46.00	-11.54	QP
5	518.16	-5.11	36.10	30.99	46.00	-15.01	QP
6	622.34	-3.74	36.33	32.59	46.00	-13.41	QP

For Adapter A318-060040W-US1



Site :	Chamber A
Condition :	3m Horizontal
Project Number:	SZ1240205-08015E-RF
Note :	BT
Tester :	Anson Su

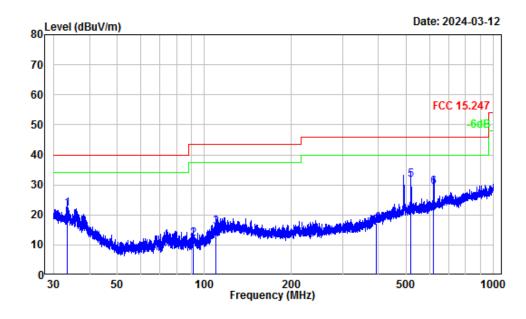
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.70	-10.84	24.26	13.42	40.00	-26.58	QP
2	97.93	-14.32	25.15	10.83	43.50	-32.67	QP
3	222.07	-11.39	39.60	28.21	46.00	-17.79	QP
4	414.54	-6.85	43.47	36.62	46.00	-9.38	QP
5	518.38	-4.88	34.31	29.43	46.00	-16.57	QP
6	893.47	0.90	25.08	25.98	46.00	-20.02	QP



Site :	:	Chamber A			
Condition :	:	3m Vertical			
Project Number:	:	SZ1240205-08015E-RF			
Note :	:	BT			
Tester :	:	Anson Su			

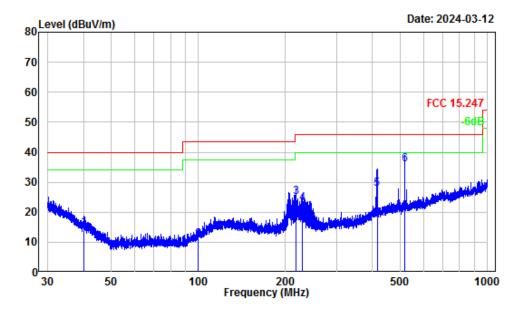
	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	41.04	-12.48	24.98	12.50	40.00	-27.50	QP
2	99.27	-15.39	25.63	10.24	43.50	-33.26	QP
3	222.07	-12.24	29.86	17.62	46.00	-28.38	QP
4	517.02	-5.12	38.02	32.90	46.00	-13.10	QP
5	622.34	-3.74	34.10	30.36	46.00	-15.64	QP
6	894.25	0.52	25.14	25.66	46.00	-20.34	QP

For Adapter DSA-3PFM-05 BUS 060040



Site :	:	Chamber A		
Condition :	:	3m Horizontal		
Project Number:	:	SZ1240205-08015E-RF		
Note :		BT		
Tester :	:	Anson Su		

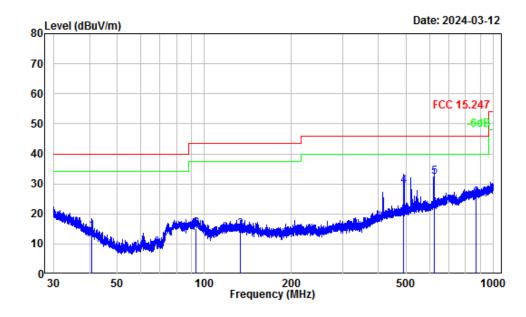
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.06	-10.43	24.08	13.65	40.00	-26.35	QP
2	98.70	-14.10	25.73	11.63	43.50	-31.87	QP
3	213.02	-11.24	34.97	23.73	43.50	-19.77	QP
4	241.57	-11.71	35.57	23.86	46.00	-22.14	QP
5	414.54	-6.85	38.82	31.97	46.00	-14.03	QP
6	518.61	-4.87	35.10	30.23	46.00	-15.77	QP



Site	:	Chamber A		
Condition :		3m Vertical		
Project Number	:	SZ1240205-08015E-RF		
Note	:	BT		
Tester	:	Anson Su		

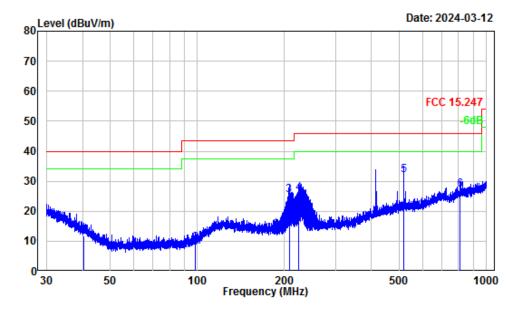
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	33.53	-7.83	30.00	22.17	40.00	-17.83	QP
2	91.62	-17.02	28.95	11.93	43.50	-31.57	QP
3	109.80	-12.40	28.51	16.11	43.50	-27.39	QP
4	392.61	-7.95	25.06	17.11	46.00	-28.89	QP
5	518.38	-5.11	36.76	31.65	46.00	-14.35	QP
6	621.80	-3.76	33.00	29.24	46.00	-16.76	QP

For Adapter E004-1A060040VU



Site :	Chamber A
Condition :	3m Horizontal
Project Number:	SZ1240205-08015E-RF
Note :	BT
Tester :	Anson Su

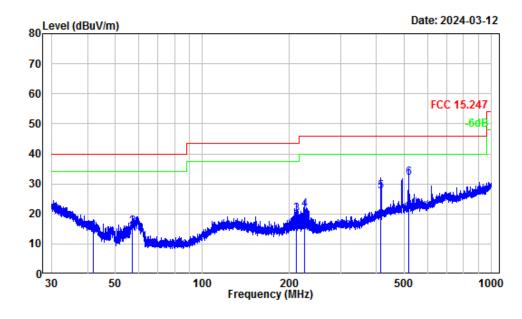
	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.13	-10.47	25.13	14.66	40.00	-25.34	QP
2	99.53	-13.87	24.80	10.93	43.50	-32.57	QP
3	216.97	-11.31	36.23	24.92	46.00	-21.08	QP
4	229.29	-11.51	34.45	22.94	46.00	-23.06	QP
5	415.09	-6.84	34.60	27.76	46.00	-18.24	QP
6	518.38	-4.88	40.95	36.07	46.00	-9.93	QP



Site	:	Chamber A
Condition	:	3m Vertical
Project Number	:	SZ1240205-08015E-RF
Note	:	BT
Tester	:	Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.83	-12.36	26.68	14.32	40.00	-25.68	QP
2	93.48	-16.61	31.85	15.24	43.50	-28.26	QP
3	132.69	-10.93	25.75	14.82	43.50	-28.68	QP
4	489.67	-5.43	34.60	29.17	46.00	-16.83	QP
5	622.07	-3.74	36.00	32.26	46.00	-13.74	QP
6	870.27	0.18	25.31	25.49	46.00	-20.51	QP

For Adapter GQ06-060040-ZU



Site :	Chamber A
Condition :	3m Horizontal
Project Number:	SZ1240205-08015E-RF
Note :	BT
Tester :	Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.33	-10.60	22.43	11.83	40.00	-28.17	QP
2	98.27	-14.22	23.61	9.39	43.50	-34.11	QP
3	207.49	-11.15	36.61	25.46	43.50	-18.04	QP
4	224.13	-11.42	37.36	25.94	46.00	-20.06	QP
5	518.16	-4.88	37.02	32.14	46.00	-13.86	QP
6	811.69	-0.38	27.55	27.17	46.00	-18.83	QP

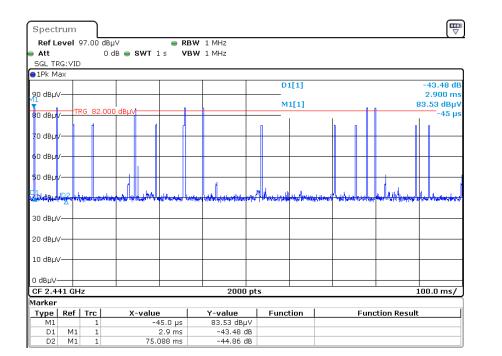
Site	:	Chamber A
Condition	:	3m Vertical
Project Number	:	SZ1240205-08015E-RF
Note	:	BT
Tester	:	Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	41.93	-12.99	27.09	14.10	40.00	-25.90	QP
2	57.04	-17.55	33.30	15.75	40.00	-24.25	QP
3	210.97	-12.23	32.23	20.00	43.50	-23.50	QP
4		-12.24	33.55	21.31	46.00	-24.69	QP
5	414.54	-7.14	34.59	27.45	46.00	-18.55	QP
6		-5.11	37.22	32.11	46.00	-13.89	QP

Report No.: SZ1240205-08015E-RFB

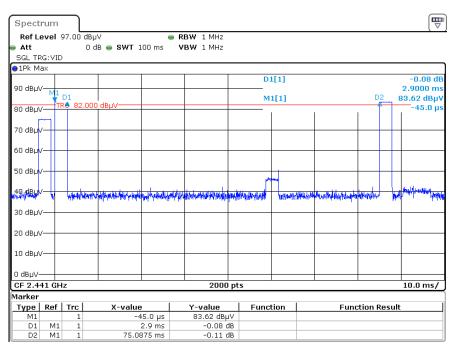
Above 1GHz:

	Receiv	/er			Corrected		
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Worst case GFSK				
			Low Channel 2402MHz				
2311.79	54.34	PK	Н	-3.03	51.31	74	-22.69
2311.79	55.06	PK	V	-3.03	52.03	74	-21.97
4804.00	46.34	PK	Н	2.42	48.76	74	-25.24
4804.00	46.36	PK	V	2.42	48.78	74	-25.22
			Middle Channel 2441MHz				
4882.00	47.15	PK	Н	2.58	49.73	74	-24.27
4882.00	46.47	PK	V	2.58	49.05	74	-24.95
			High Channel 2480MHz				
2483.68	56.65	PK	Н	-3.17	53.48	74	-20.52
2493.70	54.01	PK	V	-3.19	50.82	74	-23.18
4960.00	47.71	PK	Н	2.68	50.39	74	-23.61
4960.00	46.39	РК	V	2.68	49.07	74	-24.93


Report No.: SZ1240205-08015E-RFB

	Field Strength of Average							
Frequency (MHz)	Peak Measurement @3m (dBµV/m)	Polar (H/V)	Duty Cycle Correction Factor (dB)	Corrected Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment	
Low Channel 2402MHz								
2311.79	51.31	Н	-24.73	26.58	54	-27.42	Bandedge	
2311.79	52.03	V	-24.73	27.3	54	-26.7	Bandedge	
4804.00	48.76	Н	-24.73	24.03	54	-29.97	Harmonic	
4804.00	48.78	V	-24.73	24.05	54	-29.95	Harmonic	
			Middle Chann	el 2441MHz		•		
4882.00	49.73	Н	-24.73	25	54	-29.00	Harmonic	
4882.00	49.05	V	-24.73	24.32	54	-29.68	Harmonic	
			High Channe	1 2480MHz		•		
2483.68	53.48	Н	-24.73	28.75	54	-25.25	Bandedge	
2493.70	50.82	V	-24.73	26.09	54	-27.91	Bandedge	
4960.00	50.39	Н	-24.73	25.66	54	-28.34	Harmonic	
4960.00	49.07	V	-24.73	24.34	54	-29.66	Harmonic	

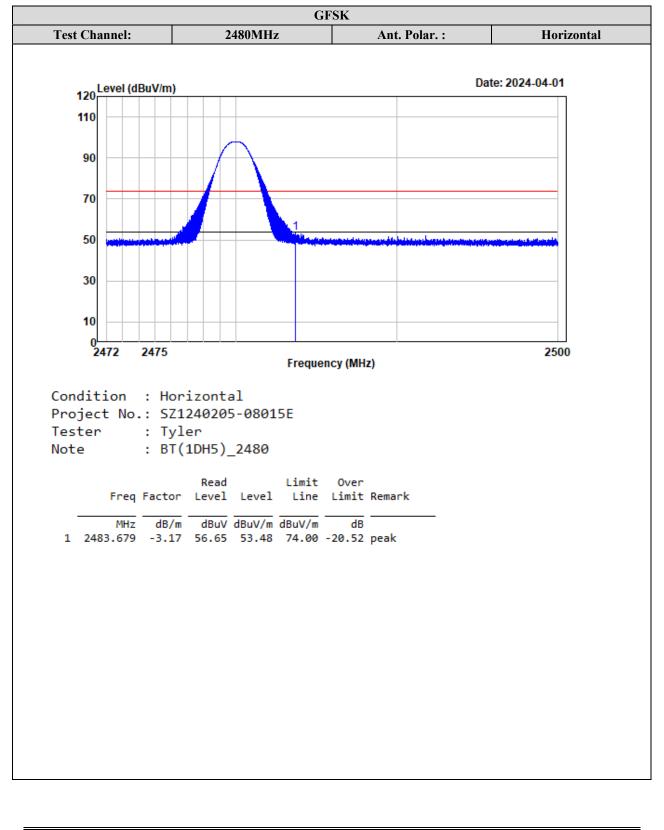
Note:

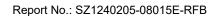

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected. Amplitude = Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor

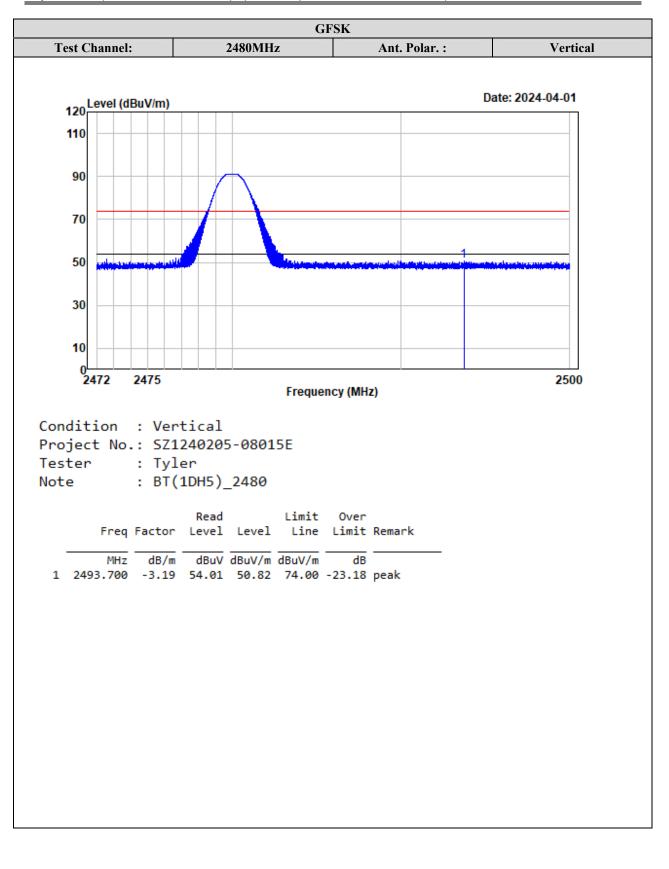
Duty cycle = Ton/100ms = 2.90*2/100=0.058 Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.058 = -24.73

Duty cycle

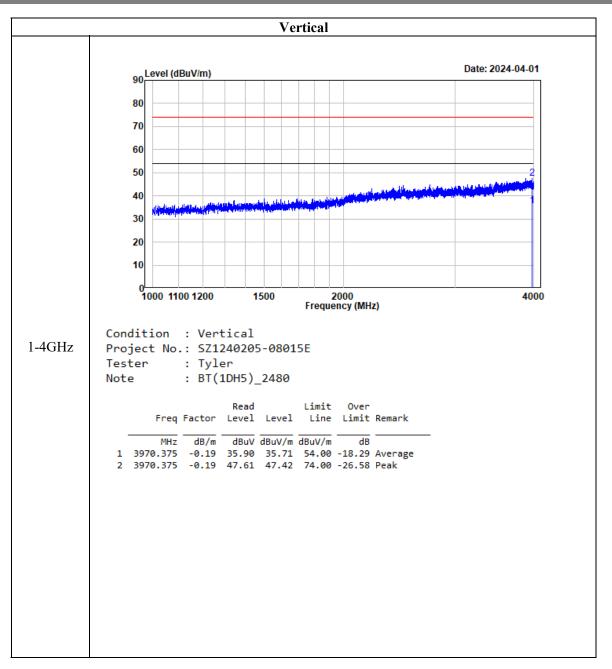
ProjectNo.:SZ1240205-08015E-RF Tester:Dylan.Yang
Date: 21.MAY.2024 11:50:59



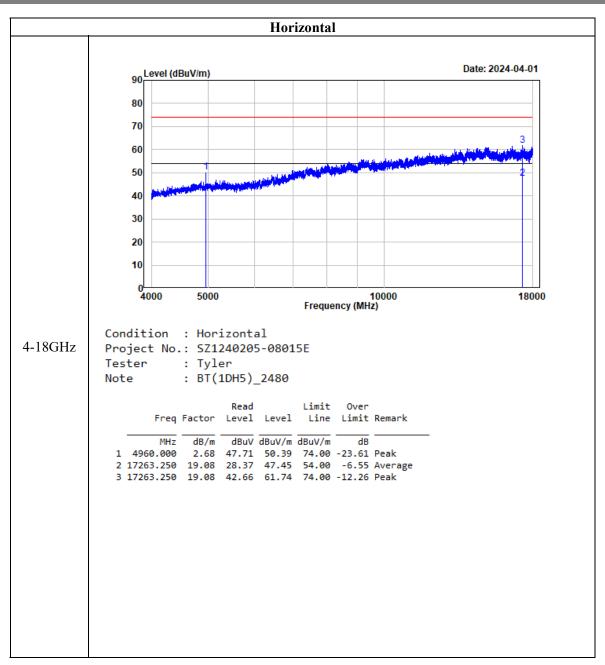

ProjectNo.:SZ1240205-08015E-RF Tester:Dylan.Yang
Date: 21.MAY.2024 11:50:30


TR-EM-RF009

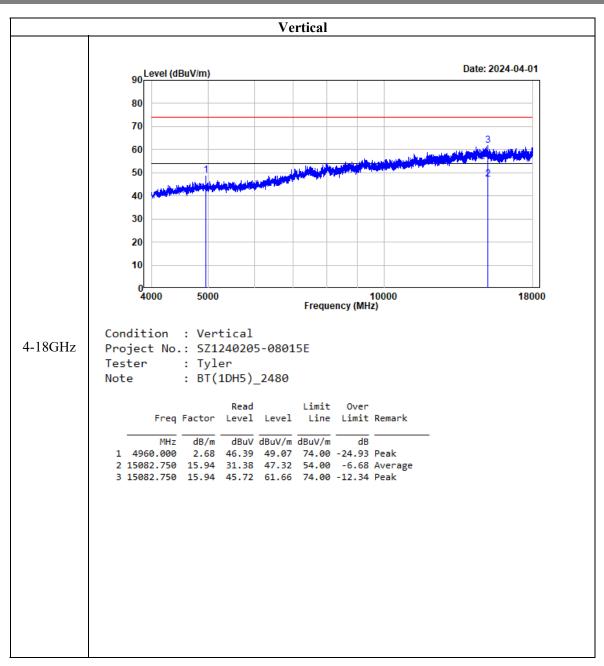
Report No.: SZ1240205-08015E-RFB



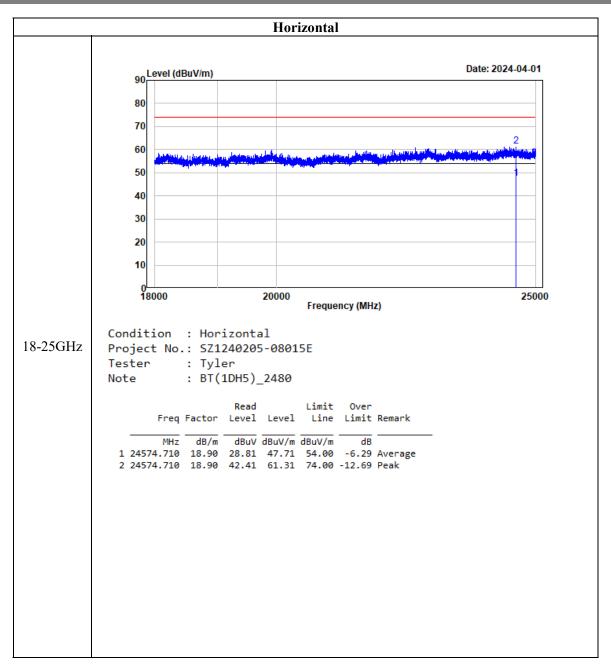
Horizontal 90 Level (dBuV/m) Date: 2024-04-01 80 70 60 50 40 30 20 10 0 1000 1100 1200 2000 Frequency (MHz) 1500 4000 Condition : Horizontal 1-4GHz Project No.: SZ1240205-08015E Tester : Tyler Note : BT(1DH5)_2480 Read Limit Over Freq Factor Level Level Line Limit Remark MHz dB/m dBuV dBuV/m dBuV/m dB 1 3950.125 -0.16 35.89 35.73 54.00 -18.27 Average 2 3950.125 -0.16 48.05 47.89 74.00 -26.11 Peak


Test plots for Harmonic Measurements: (GFSK High channel)

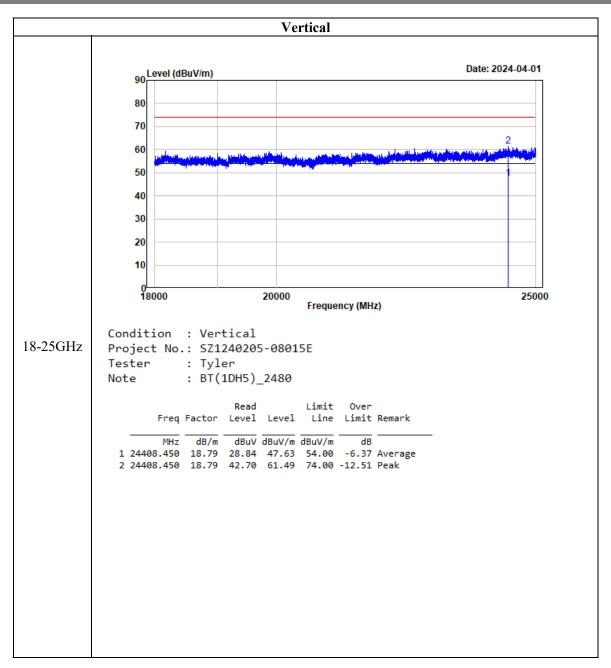
Report No.: SZ1240205-08015E-RFB


TR-EM-RF009

Page 47 of 105


TR-EM-RF009

Page 48 of 105


TR-EM-RF009

Page 49 of 105

TR-EM-RF009

Page 50 of 105

TR-EM-RF009

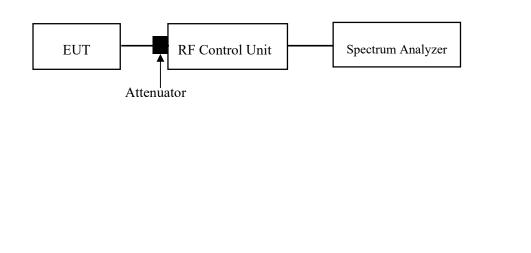
Page 51 of 105

FCC §15.247(a) (1) & RSS-247 § 5.1 (b) -CHANNEL SEPARATION TEST

Applicable Standard

According to FCC §15.247(a) (1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


According to RSS-247 § 5.1 (b):

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, max hold the channel.
- 2. Set the adjacent channel of the EUT and max hold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-04-01.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) & RSS-247 § 5.1 (a), RSS-GEN § 6.7 – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

According to FCC §15.247(a) (1):

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to RSS-247 § 5.1 (a), RSS-GEN § 6.7:

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Attenuator

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-04-01.

EUT operation mode: Transmitting

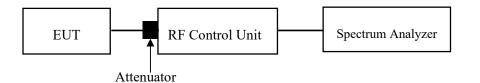
Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-04-01.

EUT operation mode: Transmitting

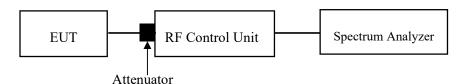
Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

Note 2: Totalhops=Hopping Number in 3.16s*10

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-04-01.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT

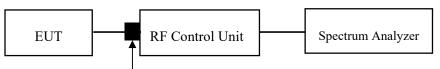
Applicable Standard

According to FCC §15.247(b) (1):

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

According to RSS-247§ 5.1(b) &§ 5.4(b):

For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions).


Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

1. Place the EUT on a bench and set in transmitting mode.

- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Attenuator

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-04-01.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to RSS-247 § 5.5.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Attenuator

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-04-01.

EUT operation mode: Transmitting

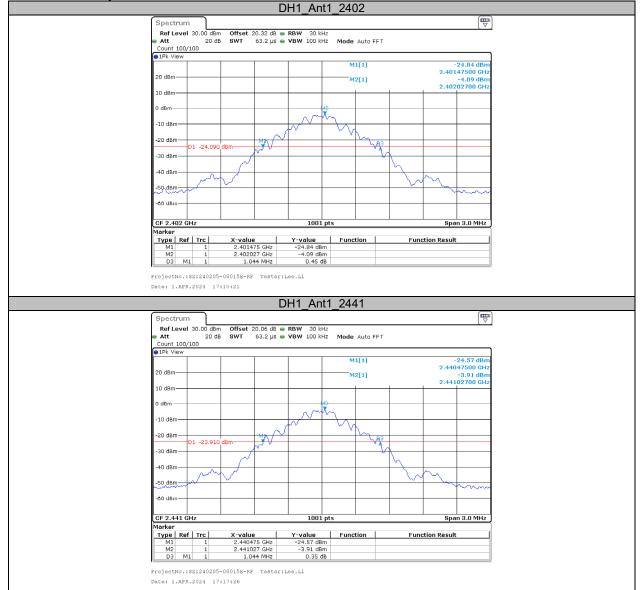
Test Result: Compliant. Please refer to the Appendix.

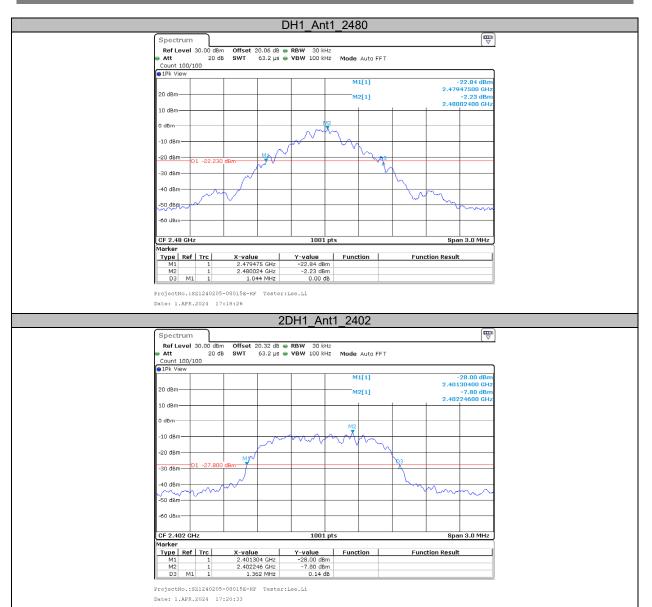
EUT PHOTOGRAPHS

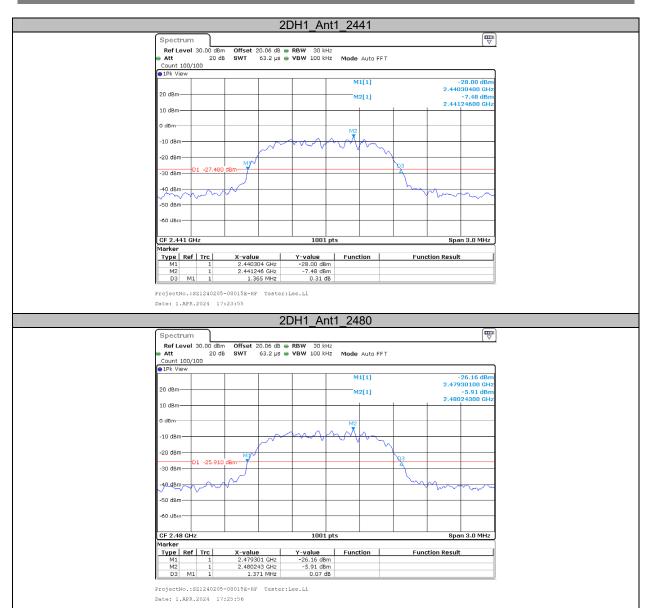
Please refer to the attachment SZ1240205-08015E-RF External photo and SZ1240205-08015E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

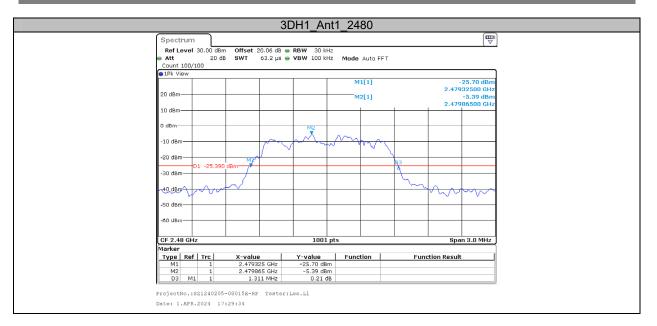
Please refer to the attachment SZ1240205-08015E-RFB Test Setup photo.

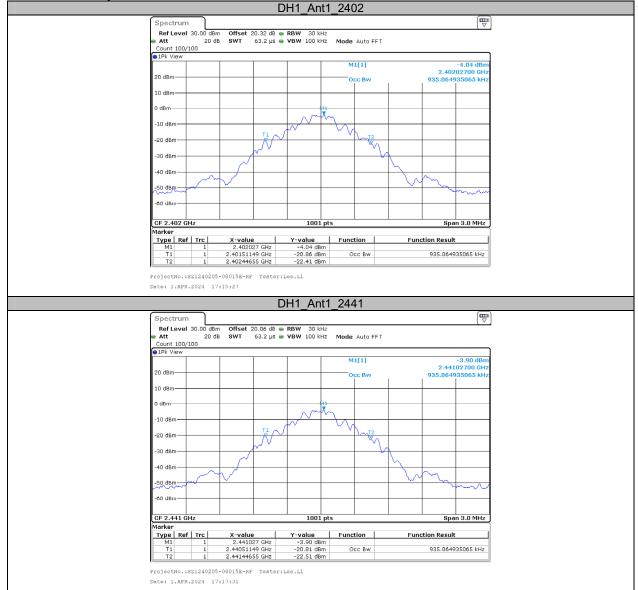

APPENDIX

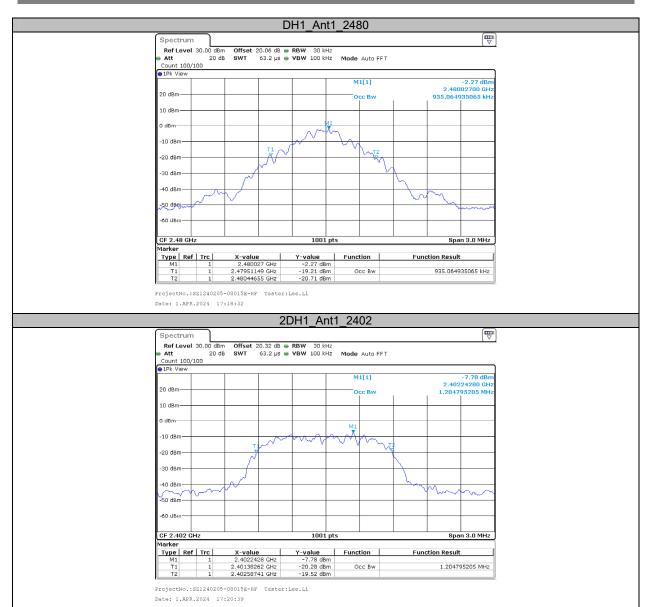

Appendix A: 20dB Emission Bandwidth

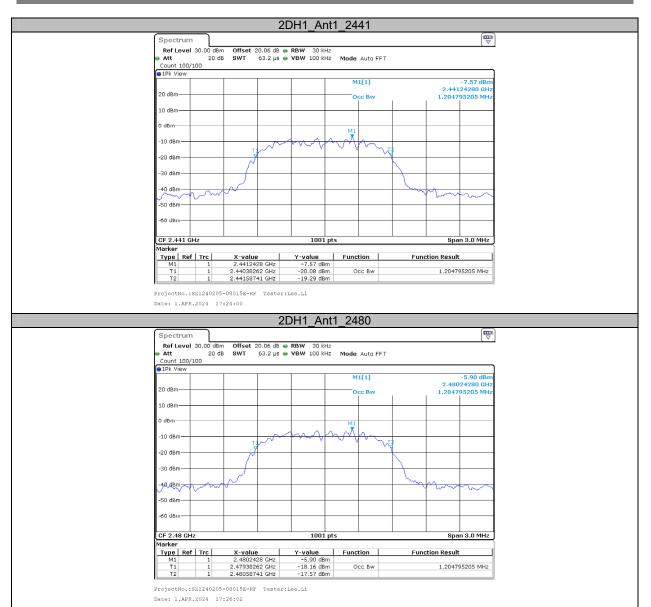

Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]
DH1	Ant1	2402	1.04
		2441	1.04
		2480	1.04
2DH1	Ant1	2402	1.36
		2441	1.36
		2480	1.37
3DH1	Ant1	2402	1.31
		2441	1.31
		2480	1.31

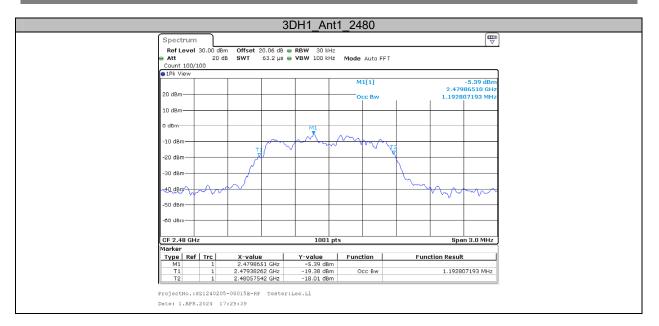

Test Graphs



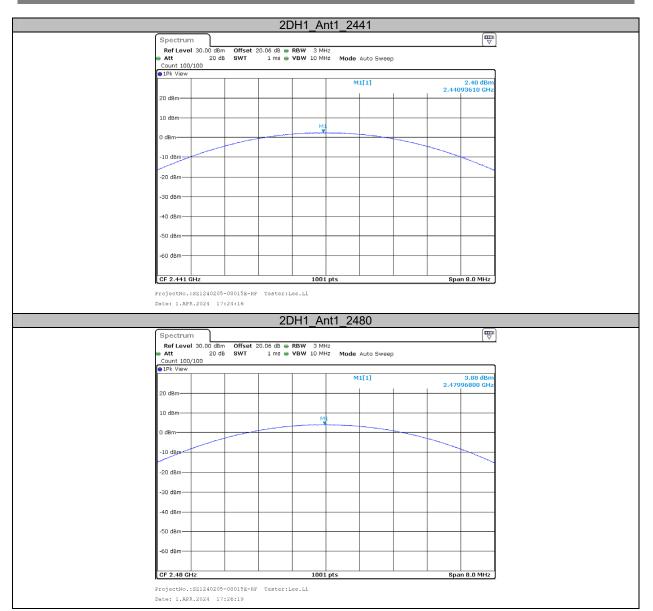

Appendix B: Occupied Channel Bandwidth


Test Result

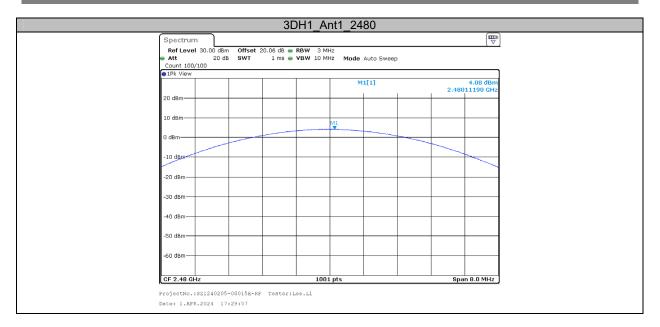

Test Mode	Antenna	Channel	OCB [MHz]
DH1 Ant		2402	0.935
	Ant1	2441	0.935
		2480	0.935
2DH1 Ant1	Ant1	2402	1.205
		2441	1.205
		2480	1.205
3DH1		2402	1.190
	Ant1	2441	1.190
		2480	1.193


Test Graphs

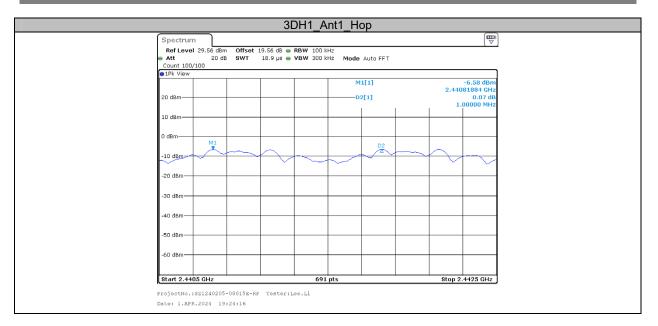
Appendix C: Maximum conducted Peak output power


Test Result


Test Mode	Antenna	Channel	Conducted Power[dBm]	Limit[dBm]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
		2402	0.93	≤20.97	0.93	≤36	PASS
DH1	Ant1	2441	1.06	≤20.97	1.06	≤36	PASS
		2480	2.65	≤20.97	2.65	≤36	PASS
		2402	2.18	≤20.97	2.18	≤36	PASS
2DH1	Ant1	2441	2.40	≤20.97	2.40	≤36	PASS
		2480	3.88	≤20.97	3.88	≤36	PASS
		2402	2.41	≤20.97	2.41	≤36	PASS
3DH1	Ant1	2441	2.56	≤20.97	2.56	≤36	PASS
		2480	4.08	≤20.97	4.08	≤36	PASS


Test Graphs

			H1 An	nt1 2402	2		
)		<u></u>	<u>11_240</u> 2	-		Ē
Spectrum Ref Level 30.0	dBm Offcet	20 32 dB -	RBW 3 MH	12			
👄 Att	20 dB SWT			Hz Mode Au	uto Sweep		
Count 100/100							
				M1[1]	 	0.93 dBm
20 dBm-						2.401	196800 GHz
10 dBm							
			M				
0 dBm							
-10 dBm							
-20 dBm							
20.40-0							
-30 dBm							
-40 dBm		-					
-50 dBm							
-60 dBm							
CF 2.402 GHz			1001	pts		Spa	n 8.0 MHz
ProjectNo.:SZ124	0205-080158-8	E Testeri					
Date: 1.APR.2024			100.11L				
			111 0.0	+1 0114	1		
)	D	H1_An	nt1_2441	1		
Spectrum					1		
Ref Level 30.0 Att	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH				
Ref Level 30.0 Att Count 100/100	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH	Hz			₹
 Ref Level 30.0 Att	D dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH	Hz	uto Sweep		1.06 dBm
Ref Level 30.0 Att Count 100/100 1Pk View	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH	Hz Hz Mode Au	uto Sweep	2.440	
Ref Level 30.0 Att Count 100/100	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH	Hz Hz Mode Au	uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 1Pk View	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 IV View 20 dBm 10 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 IPk View 20 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 IV View 20 dBm 10 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 ● 1Pk View 20 dBm 10 dBm 0 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 ● 1Pk View 20 dBm 10 dBm 0 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 IPk View 20 dBm 10 dBm -10 dBm -20 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm	O dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 IPk View 20 dBm 10 dBm -10 dBm -20 dBm	O dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 9 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	O dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 9 IPk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	O dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 9 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	O dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 9 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep	2.440	1.06 dBm
Ref Level 30.0 Att Count 100/100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 dBm Offset 20 dB SWT	20.06 dB 👄	RBW 3 Mi VBW 10 M-	H2 H2 Mode Au M1[uto Sweep		1.06 dBm 193610 GHz
Ref Level 30.0 Att Count 100/100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -67 dBm	20 dB SWT	20.06 dB	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep		1.06 dBm
Ref Level 30.0 Att Count 100/100 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20 dB SWT	20.06 dB	RBW 3 MH VBW 10 MH	H2 H2 Mode Au M1[uto Sweep		1.06 dBm 193610 GHz


Appendix D: Carrier frequency separation

Test Result

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.693	PASS
2DH1	Ant1	Нор	1.003	≥0.913	PASS
3DH1	Ant1	Нор	1	≥0.873	PASS

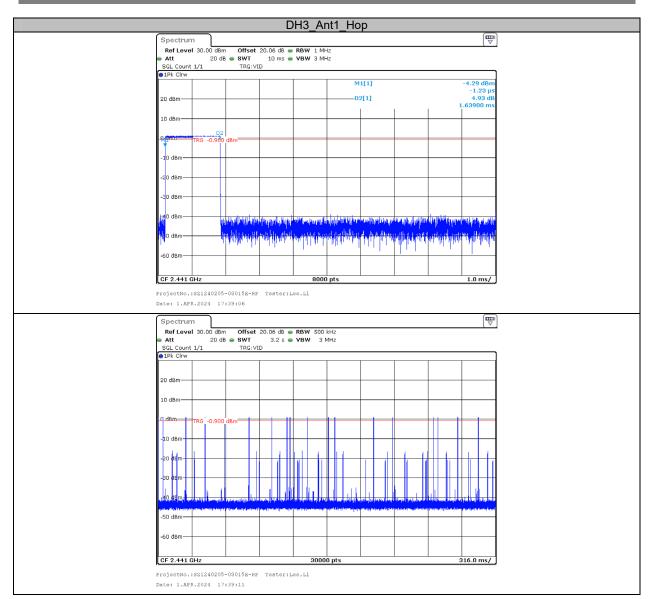
Test Graphs

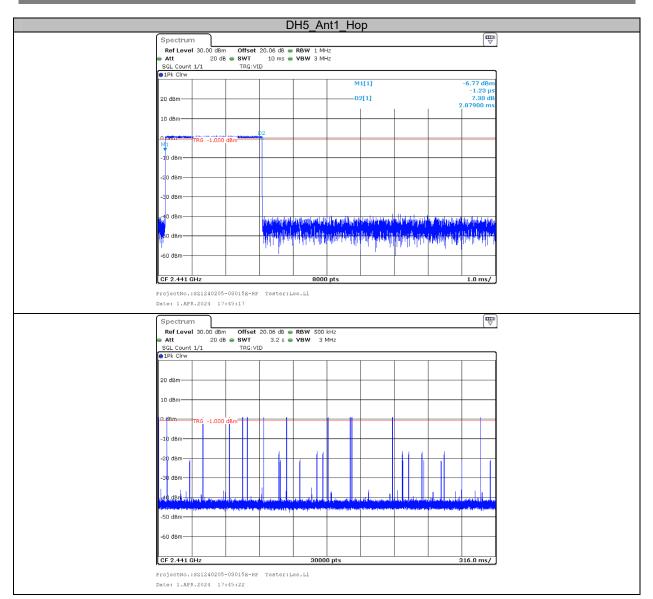
		[<u>)H1_</u> Ai	nt1_Ho	р	 	
Spectrum							
Ref Level 30.00	dBm Offset	20.06 dB 👄	RBW 100 k	Hz			(•
🕳 Att 2	0 dB SWT			Hz Mode	Auto FFT		
Count 100/100							
The Alem			1	MI	[1]	 	0.79 dBm
						2.441	15507 GHz
20 dBm				D2	[1]		0.14 dB 00290 MHz
						1	J0290 MH2
10 dBm							
		M1				D2	
0 dBm							
-10 dBm							
-10 UBM				_			5
-20 dBm							~
-20 0011							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
Start 2.4405 GHz			691	pts		Stop 2.	4425 GHz
ProjectNo.:SZ1240	205-020158-1	PE Testeri	loo Ti				
Date: 1.APR.2024		RF Tester:	ree.rr				
Date. 1.MIN.2024	17.00.00						
		2	DH1_A	nt1 Hr	n		
		~			γ		
Spectrum					γ		Ē
Spectrum Ref Level 29.56	dBm Offset				γ		
RefLevel 29.56 Att 2	dBm Offset 0 dB SWT	: 19.56 dB 👄 18.9 µs 👄	RBW 100 k	Hz			
Ref Level 29.56 Att 2 Count 100/100	dBm Offset 0 dB SWT	: 19.56 dB 👄	RBW 100 k	Hz			V
RefLevel 29.56 Att 2	dBm Offset 0 dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Hz Mode	Auto FFT		
Ref Level 29.56 Att 2 Count 100/100 9 1Pk View	dBm Offset 0 dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT	 2.440	-6.52 dBm 81594 GHz
Ref Level 29.56 Att 2 Count 100/100	dBm Offset 0 dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 1Pk View 20 dBm	dBm Offset 0 dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz
Ref Level 29.56 Att 2 Count 100/100 9 1Pk View	dBm Offset 0 dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm	dBm Offset	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 1Pk View 20 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Court 100/100 IPk View 20 dBm 10 dBm 0 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 2 Count 100/100 1Pk View 20 dBm 0 10 dBm 0 -10 dBm -20 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 2 Count 100/100 1Pk View 20 dBm 0 10 dBm 0 -10 dBm -20 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att Count 100/100 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 2 Att 2 2 Count 100/100 IPk View 20 dBm 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 2 Att 2 2 Count 100/100 IPk View 20 dBm 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm	O dB SWT	: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 Att 2 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm		: 19.56 dB 👄	RBW 100 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB 00290 MHz
Ref Level 29.56 2 Att 2 2 Count 100/100 1Pk View 20 dBm 2 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -50 dBm -		19.56 dB = 18.9 µs =	RBW 100 k VBW 300 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB
Ref Level 29.56 2 Count 100/100 1Pk View 20 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm	205-08015E-1	19.56 dB = 18.9 µs =	RBW 100 k VBW 300 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB 00290 MHz
Ref Level 29.56 2 Att 2 2 Count 100/100 1Pk View 20 dBm 2 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -50 dBm -	205-08015E-1	19.56 dB = 18.9 µs =	RBW 100 k VBW 300 k	Hz Mode	Auto FFT		-6.52 dBm 81594 GHz 0.09 dB 00290 MHz

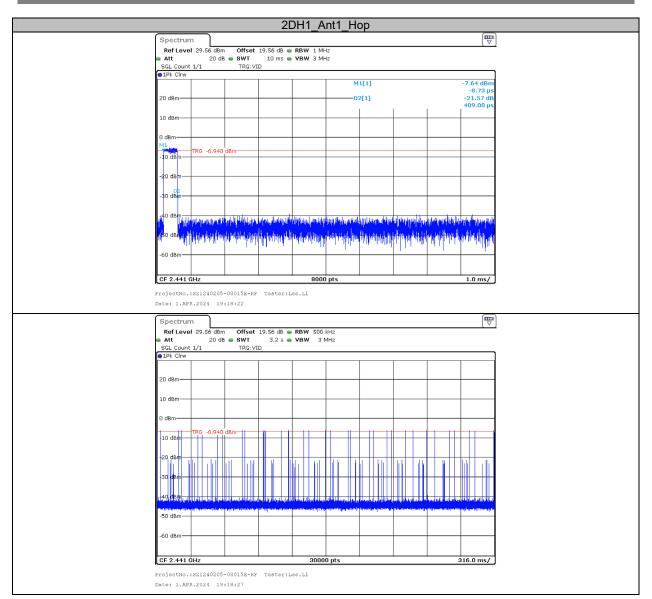
Appendix E: Time of occupancy

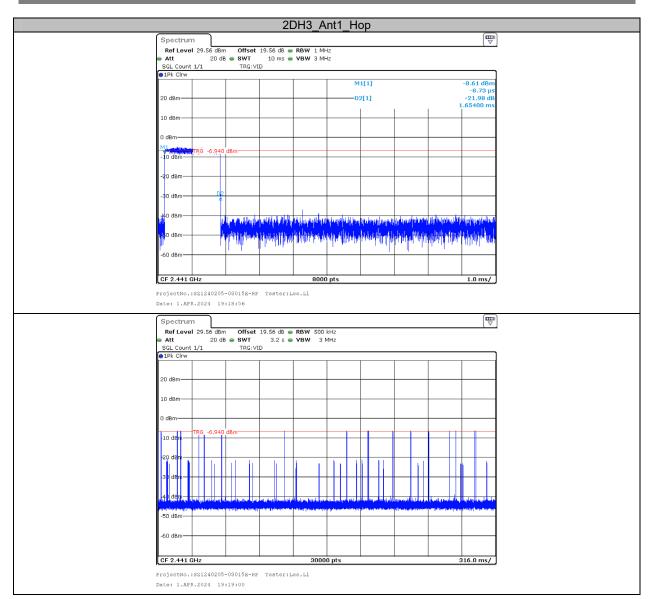
Test Result

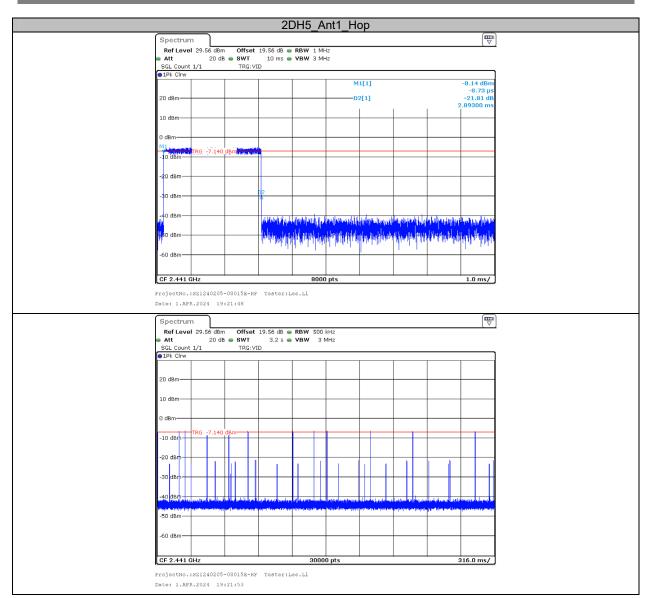
Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.390	320	0.125	≤0.4	PASS
DH3	Ant1	Нор	1.639	180	0.295	≤0.4	PASS
DH5	Ant1	Нор	2.879	130	0.374	≤0.4	PASS
2DH1	Ant1	Нор	0.409	330	0.135	≤0.4	PASS
2DH3	Ant1	Нор	1.654	180	0.298	≤0.4	PASS
2DH5	Ant1	Нор	2.893	120	0.347	≤0.4	PASS
3DH1	Ant1	Нор	0.401	320	0.128	≤0.4	PASS
3DH3	Ant1	Нор	1.653	170	0.281	≤0.4	PASS
3DH5	Ant1	Нор	2.895	110	0.318	≤0.4	PASS

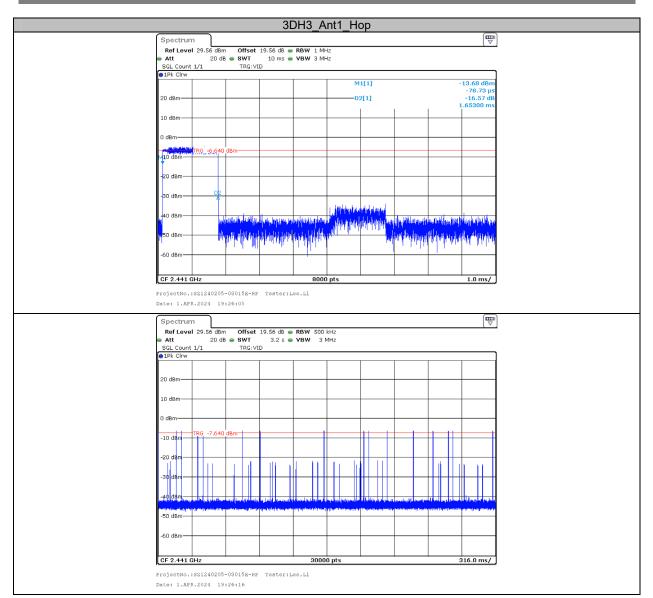

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

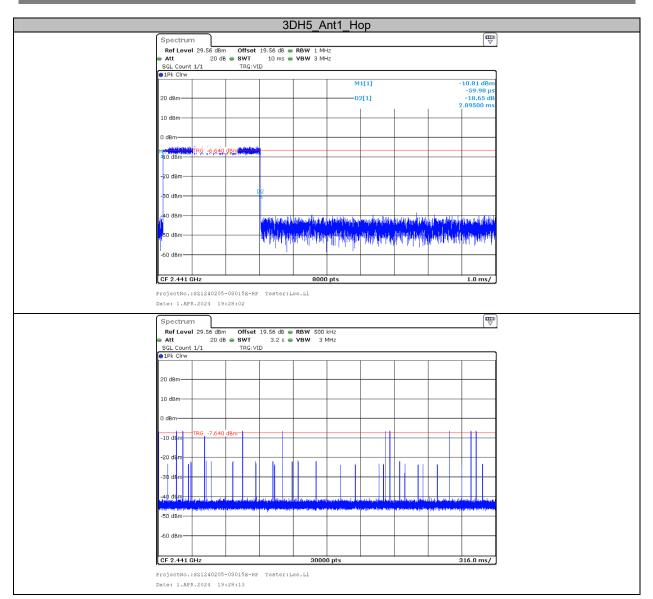

Note 2: Totalhops=Hopping Number in 3.16s*10


Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)


Test Graphs


DH1_Ant1_Hop	
Spectrum 🕎	
RefLevel 30.00 dBm Offset 20.06 dB ● RBW 1 MHz ● Att 20 dB ● SWT 10 ms ● VBW 3 MHz	
SGL Count 1/1 TRG: VID	
19k Cirw 10,76 dBm	
25 ns	
20 dBm	
10 dBm	
-10 dBm	
-20 dBm-	
-30 dBm	
-60 dBm	
CF 2.441 GHz 8000 pts 1.0 ms/	
ProjectNo.:SZ1240205-08015E-RF Tester:Lee.Li	
Date: 1.APR.2024 17:33:43	
Spectrum 🕎	
RefLevel 30.00 d8m Offset 20.06 d8 ● RBW 500 kHz ● Att 20 d8 ● SWT 3.2 s ● VBW 3 MHz	
SGL Count 1/1 TRG: VID	
IPk Cirw	
20 dBm	
10 dBm	
-0 #8m + TRG -0.700 dem +	
-10 d8m	
up d8m up d8m<	
-10 d8m	
up d8m up d8m<	
-10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50	
-10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50	
-10 d8m	





Appendix F: Number of hopping channels

Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

DH1_Ant1_Hop
Spectrum 🕎
RefLevel 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep
Count 1000/1000
1Pk View
20 dBm
10 dBm
<u>- 14 64% ha 470/1670/1718/A/141/A/1470/1670/1670/1470/1470/1470/1470/1470/1470/1470/14</u>
-20 dBm
-BO dBm-
40 dBm
-50 d8m
-60 dBm
Start 2.4 GHz 691 pts Stop 2.4835 GHz
ProjectNo.:S21240205-08015E-RF Tester:Lee.Li
Date: 1.AFR.2024 17:33:30
2DH1_Ant1_Hop
Spectrum 🕎
RefLevel 29.75 dBm Offset 19.75 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep
Count 1000/1000
Lbk Alaw
20 dBm
10 dBm
0 dBm
-www.www.anana.anana.anananananananananan
-20 dBm-
-80 dBm
40 dBm
40 dBm
40 dBm
-50 dBm
-50 dBm
-50 dBm

		30	0H1_A	nt1_Ho	эр				
Spectrum									펳
Ref Level 29.7		9.75 dB 👄 I							
 Att Count 1000/1000 	20 dB SWT D	1 ms 🖶 י	VBW 300 K	Hz Mode	Auto Swee	p			
1Pk View									
20 dBm									_
10 dBm									_
0 dBm									
-191999940404040	WWW.WWW	WANYAA	NUMANN	ANNAN	MANNAN	MANNAR	MAYMA	NWN	-
-20 dBm									
-30 dBm									
-40 dBm									H
-50 dBm									hu
-50 0011									
-60 dBm-									_
Start 2.4 GHz			691	pts			Stop 2.	4835 GI	Hz
L			071				_ /0 0 11		

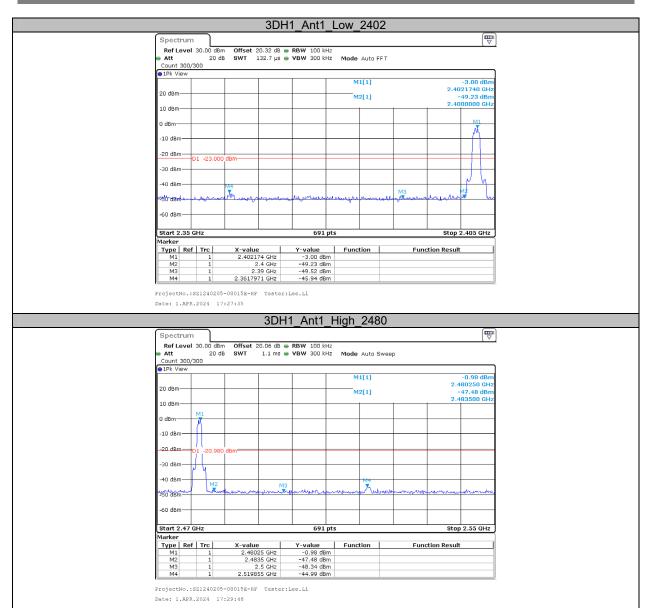
Report No.: SZ1240205-08015E-RFB

Appendix G: Band edge measurements

Test Result

Test Mode	Antenna	ChName	Channel	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	-0.43	-43.81	≤-20.43	PASS
DH1	Ant1	High	2480	1.55	-42.64	≤-18.45	PASS
DHI	Anti	Low	Hop_2402	0.87	-44.46	≤-19.13	PASS
		High	Hop_2480	2.28	-41.94	≤-17.72	PASS
		Low	2402	-2.65	-45.98	≤-22.65	PASS
2DH1	A mt1	High	2480	-0.69	-44.89	≤-20.69	PASS
ZUHI	Ant1	Low	Hop_2402	-6.17	-46.73	≤-26.17	PASS
		High	Hop_2480	-5.08	-46.53	≤-25.08	PASS
		Low	2402	-3.00	-45.94	≤-23	PASS
3DH1	Apt1	High	2480	-0.98	-44.99	≤-20.98	PASS
SDUI	Ant1	Low	Hop_2402	-7.04	-46.59	≤-27.04	PASS
		High	Hop_2480	-5.00	-46.27	≤-25	PASS

TR-EM-RF009


Test Graphs

				I Apti					
	_		DH	I_Ant1_	LOW_	240Z			
Spectrur									
	al 30.00 dBr			RBW 100 kH					
Att Count 300	20 d	B SWT	132.7 µs 👄	VBW 300 kH	iz Mode	Auto FFT			
1Pk View									
					M	1[1]			-0.43 dBn
20 dBm					M	2[1]			19360 GH: 19.49 dBn
10 40 -						2[1]			00000 GH
10 dBm									M1
0 dBm									
-10 dBm-									11
-10 0811									Π
-20 dBm	D1 -20.430) dBm							
-30 dBm									
-50 0811									
-40 dBm		M4					MD		1
~-50-(d8m.uu	ALA MUN	Asses	a su America	a portan	marks mo	mondedad	МЗ	a read alm	
-30 08414									
-60 dBm		+	+	+		+			
Start 2.35	i GHz			691 p	ots			Stop 2	.405 GHz
Marker Type Re	ef Tre	X-valu	e	Y-value	Func	tion 1	Fuer	tion Result	
M1	1	2.4019	936 GHz	-0.43 dBm	n		Func		
M2 M3	1		2.4 GHz .39 GHz	-49.49 dBm -47.94 dBm					
M3 M4	1		.39 GHZ 565 GHZ	-47.94 dBm -43.81 dBm					
				A 4 A	I Bl.	0400			
			DH1	_Ant1_I	High_	2480			(=
Spectrur						2480			(H
Ref Leve	al 30.00 dBr		20.06 dB 👄	RBW 100 kH	łz				
Ref Leve Att	al 30.00 dBr 20 d		20.06 dB 👄		łz	2480 Auto Swee	p		(Etc.)
Ref Leve	al 30.00 dBr 20 d		20.06 dB 👄	RBW 100 kH	iz iz Mode	Auto Swee	p		
Ref Leve Att Count 300	al 30.00 dBr 20 d		20.06 dB 👄	RBW 100 kH	iz iz Mode		p		1.55 dBn
Ref Leve Att Count 300	al 30.00 dBr 20 d		20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH:
Ref Leve Att Count 300 1Pk View 20 dBm-	al 30.00 dBr 20 d		20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn
Ref Leve Att Count 300 1Pk View	al 30.00 dBr 20 d		20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 1Pk View 20 dBm-	al 30.00 dBr 20 d 0/300		20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 PPk View 20 dBm 10 dBm 0 dBm	al 30.00 dBr 20 d 0/300		20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm	al 30.00 dBr 20 d 1/300	B SWT	20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 PPk View 20 dBm 10 dBm 0 dBm	al 30.00 dBr 20 d 0/300	B SWT	20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 IPk View 20 dBm 10 dBm 0 dBm -10 dBm	al 30.00 dBr 20 d 1/300	B SWT	20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	al 30.00 dBr 20 d 1/300	B SWT	20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 IPk View 20 dBm 10 dBm 0 dBm -10 dBm	M1 30.00 dBr 20 d 3000	B SWT	20.06 dB	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH: 48.22 dBn
Ref Leve Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	al 30.00 dBr 20 d 1/300	B SWT	20.06 dB 👄	RBW 100 kH	iz Iz Mode M	Auto Swee	P		1.55 dBn 30010 GH: 48.22 dBn
Ref Leva Att Count 300 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	M1 30.00 dBr 20 d //300	B SWT	20.06 dB	RBW 100 kH	iz Iz Mode M	Auto Swee	p		1.55 dBn 30010 GH 48.22 dBn 33500 GH
Ref Leve Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	M1 30.00 dBr 20 d //300	B SWT	20.06 dB	RBW 100 kH	iz Iz Mode M	Auto Swee	P		1.55 dBn 30010 GH 48.22 dBn 33500 GH
Ref Leve Att Count 300 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	M1 1 -18.450 M20 dBr	B SWT	20.06 dB	RBW 100 kH	42 12 Mode M M	Auto Swee	P		1.55 dBn 30010 GH 18.22 dBn 33500 GH
Ref Leva Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -50 dBm	M1 1 -18.450 M20 dBr	B SWT	20.06 dB	RBW 100 kH	42 12 Mode M M	Auto Swee	P		1.55 dBn 30010 GH 48.22 dBn 33500 GH
Ref Leva Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.47 Marker	M1 30.00 dBr 20 d //300	B SWT	20.06 dB	RBW 100 kH VBW 300 kH	12 Mode M M	Auto Swee		2.41	1.55 dBn 30010 GH 18.22 dBn 33500 GH
Ref Leva Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.47 Marker Type 1 Rf M1	20 db 20 db //300 M1 T T C Hz GHz f Trc 1	B SWT	20.06 dB 1.1 ms	RBW 100 kH VBW 300 kH Image: State of the state of th	12 Mode M M M M M M M M M M M M M	Auto Swee			1.55 dBn 30010 GH 18.22 dBn 33500 GH
Ref Leve Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.47 Marker Type R M1 M2	20 d 20 d	B SWT	20.06 dB 1.1 ms	RBW 100 kH VBW 300 kH Image: State of the state of th	12 12 Mode M M M M M M M M M M M M M M M M M M M	Auto Swee		2.41	1.55 dBn 30010 GH 18.22 dBn 33500 GH
Ref Leva Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.47 Marker Type 1 Rf M1	20 db 20 db //300 M1 T T C Hz GHz f Trc 1	B SWT	20.06 dB 1.1 ms	RBW 100 kH VBW 300 kH Image: State of the state of th	12 Mode M M M M M M M M M M M M M	Auto Swee		2.41	1.55 dBn 30010 GH 18.22 dBn 33500 GH
Ref Leva Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm Start 2.47 Marker Type Re M3 M4	20 d 20 d	B SWT B SWT	20.06 dB 1.1 ms 1.1	RBW 100 kH VBW 300 kH WBW 300 kH Image: State of the sta	12 Mode M M M M M M M M M M M M M	Auto Swee		2.41	1.55 dBn 30010 GH 18.22 dBn 33500 GH
Ref Leva Att Count 300 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.47 Marker Type R M2 M3	BI 30.00 dBr 20 d //300 M1 BI -18.45(CHz CHz CHz SZ1240205	B SWT B SWT	20.06 dB 1.1 ms 1.1	RBW 100 kH VBW 300 kH WBW 300 kH Image: State of the sta	12 Mode M M M M M M M M M M M M M	Auto Swee		2.41	1.55 dBn 30010 GH 18.22 dBn 33500 GH

Report No.: SZ1240205-08015E-RFB

***** END OF REPORT *****

TR-EM-RF009

Page 105 of 105

Version 1.0 (2023/10/07)