

TEST REPORT

Applicant: VTech Telecommunications Ltd

Address: 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po NT, Hong Kong

FCC ID: EW780-3080-00

Product Name: Intercom System

Standard(s): FCC PART 15D ANSI C63.17-2013

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230951889-00A

Date Of Issue: 2023/11/22

Reviewed By: Calvin Chen

Calvin Chen Sun 2hong

Title: RF Engineer

Approved By: Sun Zhong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST CONFIGURATION	7
1.2.1 EUT Operation Condition:	
1.2.2 Support Equipment List and Details 1.2.3 Support Cable List and Details	
1.2.4 Block Diagram of Test Setup	
1.3 MEASUREMENT UNCERTAINTY	
2. SUMMARY OF TEST RESULTS	9
3. REQUIREMENTS AND TEST PROCEDURES	
3.1 CONDUCTED EMISSIONS	
3.1.1 Applicable Standard	
3.1.2 EUT Setup	
3.1.3 EMI Test Receiver Setup 3.1.4 Test Procedure	
3.1.5 Corrected Amplitude & Margin Calculation	
3.2 EMISSION BANDWIDTH:	
3.2.1 Applicable Standard	
3.2.2 EUT Setup	
3.2.3 Test Procedure	
3.3.1 Applicable Standard.3.3.2 EUT Setup.	
3.3.3 Test Procedure	
3.4 POWER SPECTRAL DENSITY:	
3.4.1 Applicable Standard	14
3.4.2 EUT Setup	
3.4.3 Test Procedure	
3.5 EMISSION INSIDE AND OUTSIDE THE SUB-BAND:	
3.5.1 Applicable Standard	
3.5.2 EUT Setup 3.5.3 Test Procedure	
3.6 FREQUENCY STABILITY:	
3.6.1 Applicable Standard 3.6.2 EUT Setup	
3.6.3 Test Procedure	
3.7 SPECIFIC REQUIREMENTS FOR UPCS DEVICE:	
3.7.1 Applicable Standard	
3.7.2 EUT Setup	21
3.7.3 Test Procedure	21

Page 3 of 54

Report No.: CR230951889-00A

4. TEST DATA AND RESULTS	23
4.1 CONDUCTED EMISSIONS	23
4.2 Emission Bandwidth:	28
4.3 PEAK TRANSMIT POWER:	31
4.4 POWER SPECTRAL DENSITY:	34
4.5 Emission Inside and Outside the Sub-band:	
4.6 FREQUENCY STABILITY:	46
4.7 SPECIFIC REQUIREMENTS FOR UPCS DEVICE:	47
5. RF EXPOSURE EVALUATION	
5.1 MPE-BASED EXEMPTION	52
5.1.1 Applicable Standard 5.1.2 Measurement Result	
6. EUT PHOTOGRAPHS	53
7. TEST SETUP PHOTOGRAPHS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR230951889-00A	Original Report	2023/11/22

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Intercom System	
EUT Model:	ICS3121	
Multiple Model(s)	ICS3111, ICS3131, ICS3141, ICS3151, ICS3161, ICS3171, ICS31ab-c	
Trade Name:	Vtech	
Operation Frequency:	1921.536~1928.448MHz	
Maximum Peak Output Power (Conducted):	20.31dBm	
Modulation Type:	GFSK	
Rated Input Voltage:	DC 5V from adapter or DC 3.6V from battery	
Serial Number:	CE: 2AWL-9 RF: 2AWL-1	
EUT Received Date:	2023/9/28	
EUT Received Status:	UT Received Status: Good	
Note 1: The Multiple models are electrically identical with the test model. Please refer to the declaration letter for		

Note 1: The Multiple models are electrically identical with the test model. Please refer to the declaration letter for more detail, which was provided by manufacturer.

Note 2: EUT has two battery power supply methods, single cell battery and battery pack, with different battery compartments

Antenna Information Detail▲:

Antenna	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
ANT0	Monopole	50	1920-1930MHz	0 dBi
ANT1	Monopole	50	1920-1930MHz	0 dBi

The Method of §15.203 Compliance:

Antenna was permanently attached to the unit.

Antenna use a unique type of connector to attach to the EUT.

Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Accessory Information:

Accessory Description	Manufacturer	Model	Parameters
Adapter	VTPL	VT05EUS05100	Input: AC 100-240V, 50/60Hz, 0.15A Output: DC5.0V, 1.0A, 5.0W
Adapter	Aohai	A318-050100W-US2	Input: AC 100-240V, 50/60Hz, 0.2A Output: DC5.0V, 1.0A

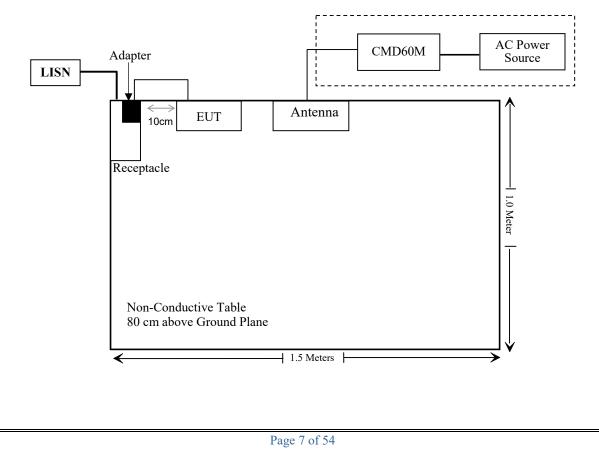
1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

iiiiii Ee i operation conditio				
EUT Operation Mode: The system was configured for testing in Engineering Mode, which provided by the manufacturer.				
Equipment Modifications:	No			
EUT Exercise Software: No				
The engineering mode was provided by manufacturer. The maximum power was configured default, that was				

provided by the manufacturer \blacktriangle :

1.2.2 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
R&S	Digital Radio communication Tester	CMD 60M	846956/010

1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
/	/	/	/	/	/

1.2.4 Block Diagram of Test Setup

For Conducted Emission

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

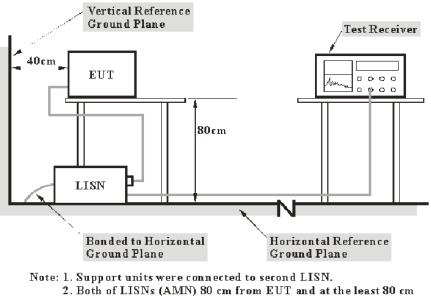
Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	± 1 °C
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
FCC § 15.315, § 15.207	Conducted Emission	Compliant
FCC § 15.323 (a)	Emission Bandwidth	Compliant
FCC § 15.319 (c)	Peak Transmit Power	Compliant
FCC § 15.319 (d)	Power Spectral Density	Compliant
FCC § 15.323 (d)	Emission Inside and Outside the sub-band	Compliant
FCC § 15.323 (f)	Frequency Stability	Compliant
FCC § 15.323 (c)(e) & § 15.319 (f)	Specific Requirements for UPCS	Compliant
FCC § 15.319 (g)	Radiated Emission	Not Applicable
FCC § 15.317, § 15.203	Antenna Requirement	Compliant
FCC § 15.319 (i) & 1.1307	RF Exposure Evaluation	Compliant

Not Applicable: EUT is compliance with §15.323 (d) Note: EUT have two antennas, pre-scan output power of the two antennas, the worst case ANT 1 was select to test.

3. REQUIREMENTS AND TEST PROCEDURES


3.1 Conducted Emissions

3.1.1 Applicable Standard

FCC§15.315

An unlicensed PCS device that is designed to be connected to the public utility (AC) power line must meet the limits specified in §15.207.

3.1.2 EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC 15.315, FCC 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported associated for each of the current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported over all the current-carrying conductors.

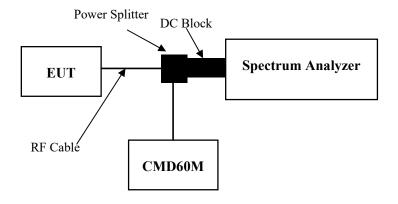
3.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result


3.2 Emission Bandwidth:

3.2.1 Applicable Standard

FCC §15.323 (a)

Operation shall be contained within the 1920–1930 MHz band. The emission bandwidth shall be less then 2.5 MHz and greater than 50 kHz.

3.2.2 EUT Setup

3.2.3 Test Procedure

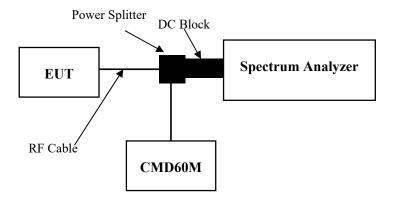
According to ANSI C63.17-2013 Section 6.1.3

Table 3—Spectrum analyzer settings for measurement of	of emissions bandwidth B
---	---------------------------------

RBW	Approximately 1% of the emission bandwidth (a rough estimate may		
	be obtained from peak power level measurement, or use		
	manufacturer's declared value)		
Video bandwidth	\geq 3 × the RBW		
Center frequency	Nominal center frequency of channel		
Span	$\geq 2 \times$ the expected emission bandwidth		
Sweep time	Coupled to frequency span and RBW		
Amplitude scale	Log		
Detection	Peak detection with maximum hold enabled		

Record the maximum level of the modulated carrier. Find the two furthest frequencies above and below the frequency of the maximum level of the modulated carrier where the signal level is 26 dB below the peak level of the carrier. The difference in frequency between these two frequencies is the emission bandwidth.

If after measuring the emission bandwidth, it is found that the RBW used was not approximately 1% of the emission bandwidth, then adjust the RBW and repeat the procedure until the correct RBW is used. If the spectrum analyzer has fixed values of RBW, the one that is the nearest to 1% of the emission bandwidth is acceptable, provided it is no less than 0.5% of the emission bandwidth and no greater than 2% of the emission bandwidth.


3.3 Peak Transmit Power:

3.3.1 Applicable Standard

FCC §15.319 (c)

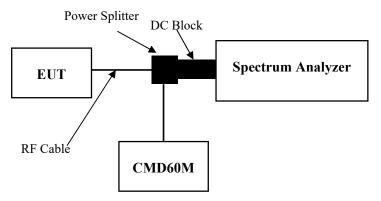
Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz. Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

3.3.2 EUT Setup

3.3.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.2

The resolution bandwidth (RBW) setting for this test must be adjusted by repeating this test and using increasing values of the RBW until there are negligible changes (within \pm 0.5 dB) in the measured values of the maximum power.


RBW	\geq Emission bandwidth
Video bandwidth	≥RBW
Span	Zero
Center frequency	Nominal center frequency of transmit carrier
Amplitude scale	Log (linear may be used if analyzer has sufficient linear dynamic range
	and accuracy)
Detection	Peak detection
Trigger	Video
Sweep rate	Sufficiently rapid to permit the transmit pulse to be resolved accurately

3.4 Power Spectral Density:

3.4.1 Applicable Standard

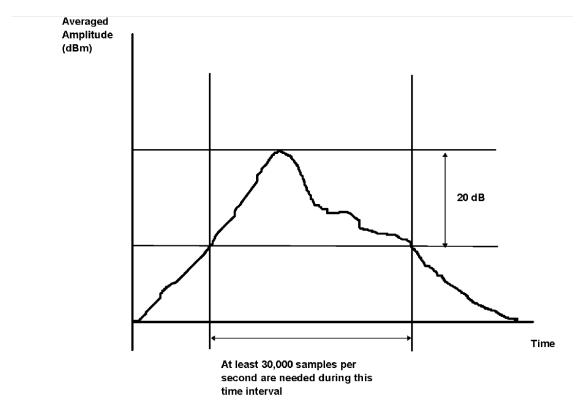
FCC §15.319 (d) Power spectral density shall not exceed 3 milliwatts in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

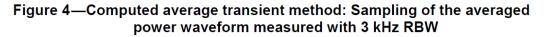
3.4.2 EUT Setup

3.4.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.5

The EUT transmit data sequence and mode of operation shall be representative of that encountered in normal operation, so that transient effects associated with transmission bursts or data content are captured by the PSD measurement.

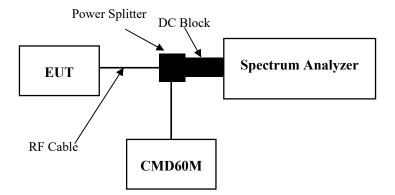

RBW	3 kHz
Video bandwidth	\geq 3 × RBW
Span	Zero span at frequency with the maximum level (frequency determined
	in 6.1.3 if the same type of signal (continuous versus burst) was used
	in 6.1.3)
Center frequency	Spectral peak as determined in 6.1.3
Sweep time	For burst signals, sufficient to include essentially all of the maximum
	length burst at the output of a 3 kHz filter (e.g., maximum input burst
	duration plus 600 µs). For continuous signals, 20 ms.
Amplitude scale	Log power
Detection	Sample detection and averaged for a minimum of 100 sweeps
Trigger	External or internal


Table 4—S	pectrum ana	vzer settinas	for finding	of the maximu	Im of PSDEUT
		yzer bettinge	, ior manig	or the maxim	

For burst-type signals, arrange to measure the wideband burst duration of each burst analyzed and compute the mean duration.

Determine the level that is 20 dB below the first peak. Record the power-averaged waveform between the 20 dB threshold levels around the first peak with at least 30 000 samples per second as shown in Figure 4. Multiple wideband bursts may produce the waveform between -20 dB peaks; these must be included in the determination of the average burst length. If there is no level that is 20 dB below the peak, then analyze the complete sweep and include all of the wideband waveform that occurs during the sweep time in the computation of average burst length.

Sum the values of the sample points (in linear units of power) and divide by the sample frequency to obtain the total pulse energy in the 3 kHz bandwidth, then divide by the average duration of the wideband input pulse to obtain the average pulse power.


3.5 Emission Inside and Outside the Sub-band:

3.5.1 Applicable Standard

FCC §15.323 (d)

Emissions outside the band shall be attenuated below a reference power of 112 milliwatts as follows: 30 dB between the band and 1.25 MHz above or below the band; 50 dB between 1.25 and 2.5 MHz above or below the band; and 60 dB at 2.5 MHz or greater above or below the band. Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator shall be at least 60 dB below the transmit power permitted for that radiator. B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

3.5.2 EUT Setup

3.5.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.6

In-band emission:

In the region between 1B and 2B from the center of the RF carrier, the measured emission level (measured with 1% of emission bandwidth) shall not exceed 30 dB below the permitted peak power for the EUT.

In the region between 2B and 3B from the center of the RF carrier, the measured emission level shall not exceed 50 dB below the permitted peak power for the EUT.

Table 5—Spectrum analyzer settings for measuring in-band emissions

RBW	Approximately 1% of the emission bandwidth (B)
Video bandwidth	$3 \times \text{RBW}$
Sweep time	The sweep time shall be sufficiently slow that the swept
	frequency rate shall not exceed one RBW per three
	transmit bursts.
Number of sweeps	Sufficient to stabilize the trace
Amplitude scale	Log
Detection	Peak detection and max hold enabled
Span	Approximately equal to 3.5 B

In the region between 3B and the UPCS band edge, as measured from the center of the RF carrier, the measured emission level shall not exceed 60 dB below the permitted peak power for the EUT.

Out-band emission:

Out-of-band tests shall be performed with the RF carrier set to the lowest and highest carriers defined by the EUT. The spectrum analyzer settings for in-band unwanted emissions in 6.1.6.1 also apply to out-of-band emissions. The EUT shall pass the tests of item a), item b), and either item c) or item d), as follows:

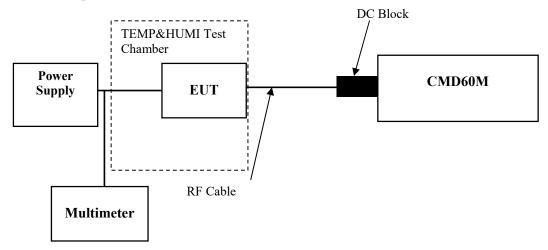
a) In the region between the band edges and 1.25 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -9.5 dBm.

b) In the region between 1.25 and 2.5 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -29.5 dBm.

c) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed -39.5 dBm.

d) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed the limits of 47CFR15.209. Measurement shall be made as a radiated test.

UPCS devices, in general, include digital circuitry not directly associated with the radio transmitter and are subject to the requirements for unintentional radiators as described in 47CFR15.109, for both in-band and out-of-band emissions. These emissions shall be measured with the EUT operating in receive and transmit modes. For the transmit mode, do not measure within 3.75 MHz or 3B, whichever is the largest, of the edges of the band. Emissions that are directly caused by digital circuits in the transmit path do not have to meet 47CFR15.109 limits, but shall meet those limits as mentioned in the preceding list.


3.6 Frequency Stability:

3.6.1 Applicable Standard

FCC §15.323(f)

The frequency stability of the carrier frequency of the intentional radiator shall be maintained within ± 10 ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to $+50^{\circ}$ C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

3.6.2 EUT Setup

3.6.3 Test Procedure

According to ANSI C63.17-2013 Section 6.2.1.2

This test does not apply to an EUT that is capable only of operating from a battery. For a mains-powered EUT, the mean value of the carrier frequency shall be measured at the power supply voltage extremes of row 1 of Table 7.

Table 7—Test parameters for carrier-frequency stability testing

Temperature	Supply voltage
$20 \degree C \pm 2 \degree C$	85% to 115% of
$20^{-1}C \pm 2^{-1}C$	declared nominal voltage
-20 °C ± 2 °C	All declared nominal(s)
$+50$ °C ± 2 °C	All declared nominal(s)

During test, the equipment shall be placed in the boxes and set the temperature to the specified requirement until the thermal balance has been reached.

3.7 Specific Requirements For UPCS Device:

3.7.1 Applicable Standard

FCC §15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. The provisions in this section are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

FCC §15.323(c)

Devices must incorporate a mechanism for monitoring the time and spectrum windows that its transmission is intended to occupy. The following criteria must be met:

(1) Immediately prior to initiating transmission, devices must monitor the combined time and spectrum windows in which they intend to transmit for a period of at least 10 milliseconds for systems designed to use a 10 milliseconds or shorter frame period or at least 20 milliseconds for systems designed to use a 20 milliseconds frame period.

(2) The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.

(3) If no signal above the threshold level is detected, transmission may commence and continue with the same emission bandwidth in the monitored time and spectrum windows without further monitoring. However, occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

(4) Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which time the access criteria must be repeated.

(5) If access to spectrum is not available as determined by the above, and a minimum of 20 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level may be accessed. A device utilizing the provisions of this paragraph must have monitored all access channels defined for its system within the last 10 seconds and must verify, within the 20 milliseconds (40 milliseconds for devices designed to use a 20 milliseconds frame period) immediately preceding actual channel access that the detected power of the selected time and spectrum windows is no higher than the previously detected value. The power measurement resolution for this comparison must be accurate to within 6 dB. No device or group of co-operating devices located within 1 meter of each other shall during any frame period occupy more than 6 MHz of aggregate bandwidth, or alternatively, more than one third of the time and spectrum windows defined by the system.

(6) If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

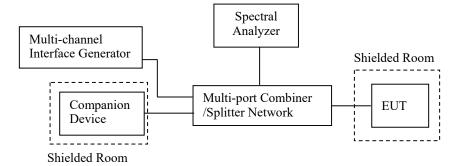
(7) The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission and have a maximum reaction time less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds. If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

(8) The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

(9) Devices that have a power output lower than the maximum permitted under this subpart may increase their monitoring detection threshold by one decibel for each one decibel that the transmitter power is below the maximum permitted.

(10) An initiating device may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows. If both the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

(11) An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within one meter) transmitter of the same system, may monitor the portions of the time and spectrum windows in which they intend to receive over a period of at least 10 milliseconds. The monitored time and spectrum window must total at least 50 percent of the 10 millisecond frame interval and the monitored spectrum must be within 1.25 MHz of the center frequency of channel(s) already occupied by that device or co-located co-operating devices. If the access criteria is met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.


(12) The provisions of (c)(10) or (c)(11) of this section shall not be used to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other devices. ANSI C63.17 2013 §6.2 Frequency and time stability and §7.Monitoring tests and §8.Time and spectrum window access procedure.

FCC §15.323(e)

The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in this band shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number. Each device that implements time division for the purposes of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm). Each device which further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 10 ppm. The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the two ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions. Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

Report No.: CR230951889-00A

3.7.2 EUT Setup

3.7.3 Test Procedure

1) Monitoring Time

According to ANSI C63.17-2013 Section 7.3.3

2) Lower Monitoring Threshold

According to ANSI C63.17-2013 Section 7.3.1

3) Maximum Transmit Period

According to ANSI C63.17-2013 Section 8.2.2

4) System Acknowledgement

According to ANSI C63.17-2013 Section 8.1, 8.2

5) Least Interfered Channel (LIC)

According to ANSI C63.17- 2013 Section 7.3.2, 7.3.3

6) Random waiting

According to ANSI C63.17- 2013 Section 8.1.2 or 8.1.3

7) Monitoring Bandwidth and Reaction Time

According to ANSI C63.17- 2013 Section 7.4, 7.5

8) Monitoring Antenna

According to ANSI C63.17- 2013 Section 4

9) Monitoring threshold relaxation

According to ANSI C63.17-2013 Section 4

10) Duplex Connections

According to ANSI C63.17-2013 Section 8.3

11) Alternative monitoring interval

According to ANSI C63.17- 2013 Section 8.4

12) Frame Repetition Stability Frame Period and Jitter

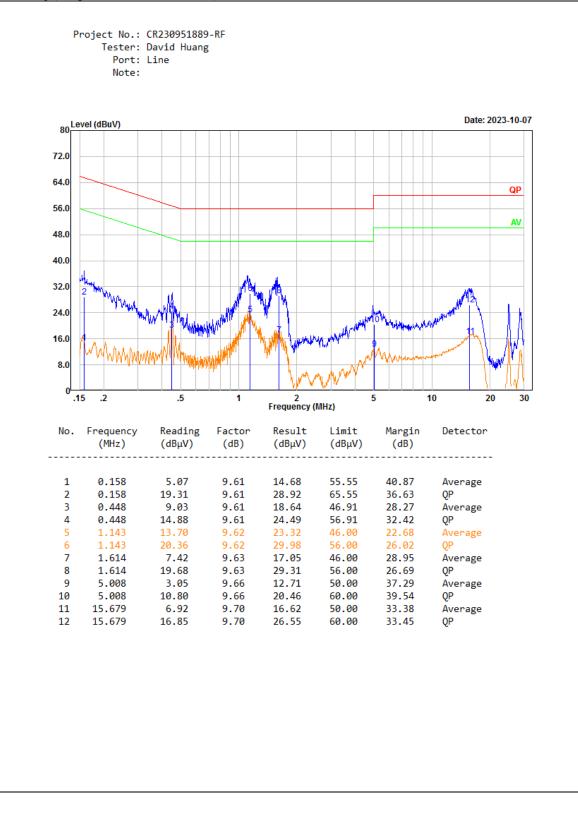
According to ANSI C63.17- 2013 Section 6.2.2, 6.2.3

4. TEST DATA AND RESULTS

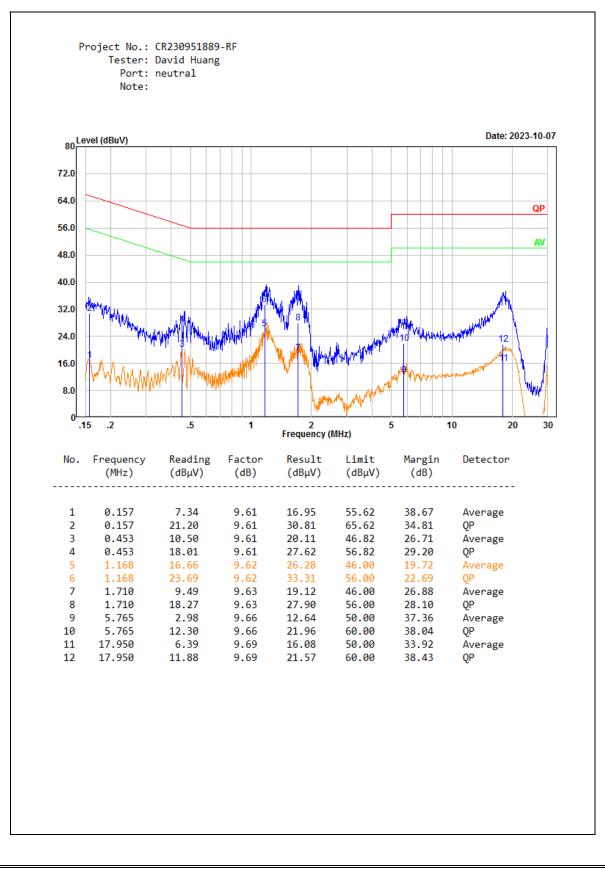
4.1 Conducted Emissions

Serial Number:	2AWL-9	Test Date:	2023/10/07
Test Site:	СЕ	Test Mode:	Transmitting Maximum Output Power mode(low channel)
Tester:	David Huang	Test Result:	

Environmental Conditions:

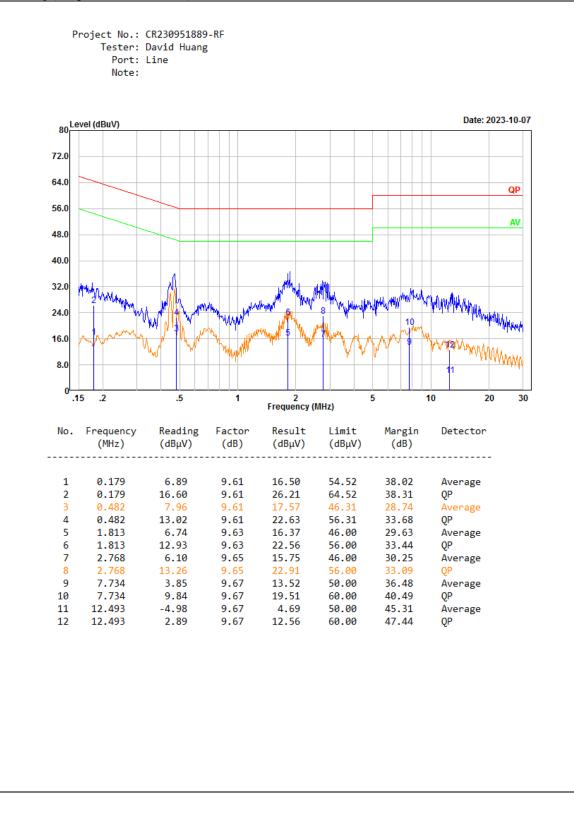

Linvironmental Conditions.					
Temperature: (°C)	25.4	Relative Humidity: (%)	55	ATM Pressure: (kPa)	100.5

Test Equipment List and Details:

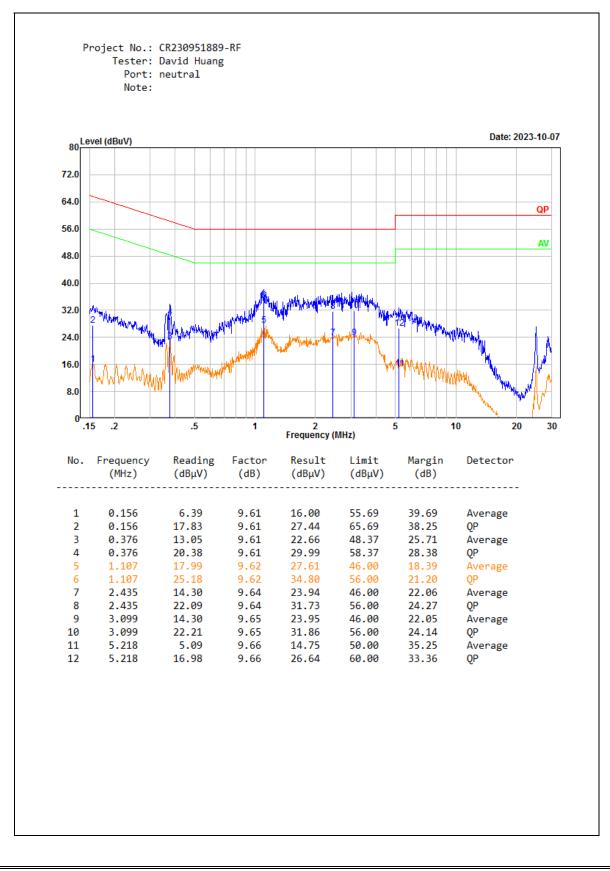

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101134	2023/03/31	2024/03/30
R&S	EMI Test Receiver	ESR3	102726	2023/03/31	2024/03/30
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2023/08/06	2024/08/05
Audix	Test Software	E3	190306 (V9)	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Transmitting (Adapter A318-050100W-US2)



Report No.: CR230951889-00A



Page 25 of 54

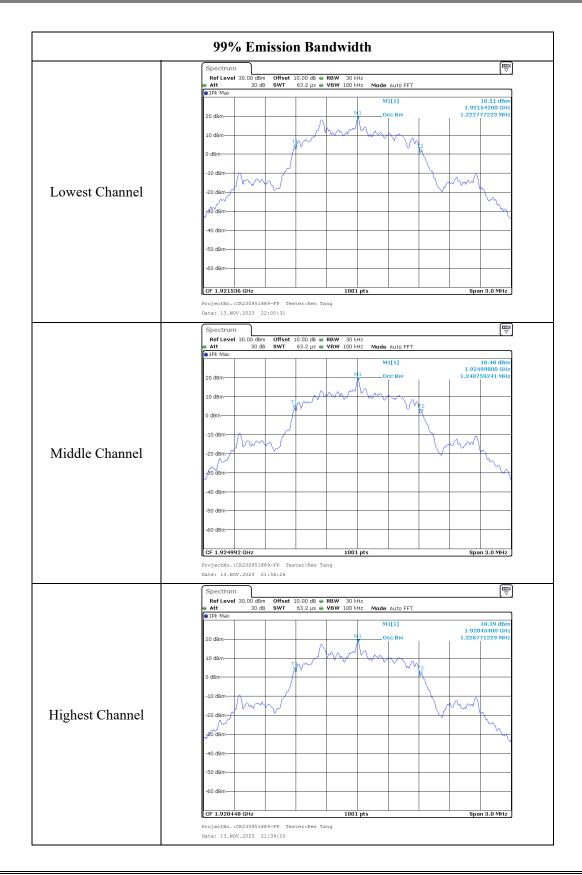
Transmitting (Adapter VT05EUS05100)

Report No.: CR230951889-00A

4.2 Emission Bandwidth:

Serial Number:	2AWL-1	Test Date:	2023/11/13
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

Environmental Conditions:						
Temperature: (℃)	24-28	Relative Humidity: (%)	45-58	ATM Pressure: (kPa)	101	


Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101943	2023/3/31	2024/3/30
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
Weinschel	Power Splitter	1515	RA914	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Channel	Test Frequency (MHz)	99% Emission Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)	Limit
Lowest	1921.536	1.223	1.387	$50 \text{ kHz} \sim 2.5 \text{ MHz}$
Middle	1924.992	1.241	1.409	$50 \text{ kHz} \sim 2.5 \text{ MHz}$
Highest	1928.448	1.229	1.400	$50 \text{ kHz} \sim 2.5 \text{ MHz}$

Page 29 of 54

	26 dB Emission Bandwidth
i	Spectrum 🕎
	Ref Level 30.00 dBm Offset 10.00 dB
	IPk Max
	M1[1] -7.53 dBm 1.92085774 GHz
	20 dBm 01 18.510 dBm 1.38696 MHz
	0 dBm-
	-10 dBm
Lowest Channel	-20 dBm
	-30 dBm
	-40 dBm-
	-50 dBm
	-60 dBm
	CF 1.921536 GHz 691 pts Span 3.0 MHz
	ProjectNo.:CR230951889-FF Tester:Ken Tang Date: 13.NOV.2023 22:00:51
	Spectrum Image: Constraint of the sector of t
	■ Att 30 dB SWT 63.2 µs ● VBW 100 kHz Mode Auto FFT
	20 dBm D1 18.400 dBm D1 18.400 dBm 1.40870 MHz
	10 dBm
	0 dBm
	-10 dBm /
Middle Channel	-20 dBm
	/30 dBm
	-40 dBm
	-50 dBm
	-60 dBm
	CF 1.924992 GHz 691 pts Span 3.0 MHz
	ProjectNo.:CR230951889-FP Tester:Ken Tang
	Date: 13.NOV.2023 21:58:57
	Spectrum ♥
	Ref Level 30.00 dBm Offset 10.00 dB RBW 30 kHz Att 30 dB SWT 63.2 µs ♥ VBW 100 kHz Mode Auto FFT
	● 1Pk Max M1[1] -7.73 dBm
	20 dBm 01 18 390 dBm 0 118 390
	Mar
	-10 dBm A 2 -7.610 dBm
Jighast Changel	
Highest Channel	-20 dBm#
	30 dBm
	-40 d8m
	-50 dBm
	-60 dBm
	CF 1.928448 GHz 691 pts Span 3.0 MHz
I	ProjectNo.:CR230951889-FP Tester:Ken Tang

Page 30 of 54

4.3 Peak Transmit Power:

Serial Number:	2AWL-1	Test Date:	2023/11/13
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

Environmental Conditions:						
Temperature: (℃)	24-28	Relative Humidity: (%)	45-58	ATM Pressure: (kPa)	101	

Test Equipment List and Details:

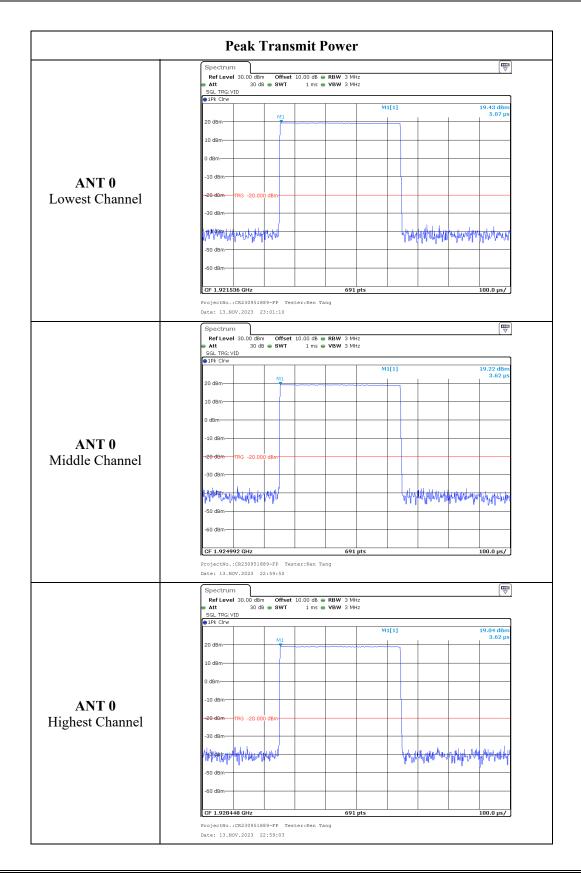
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101943	2023/3/31	2024/3/30
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
Weinschel	Power Splitter	1515	RA914	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

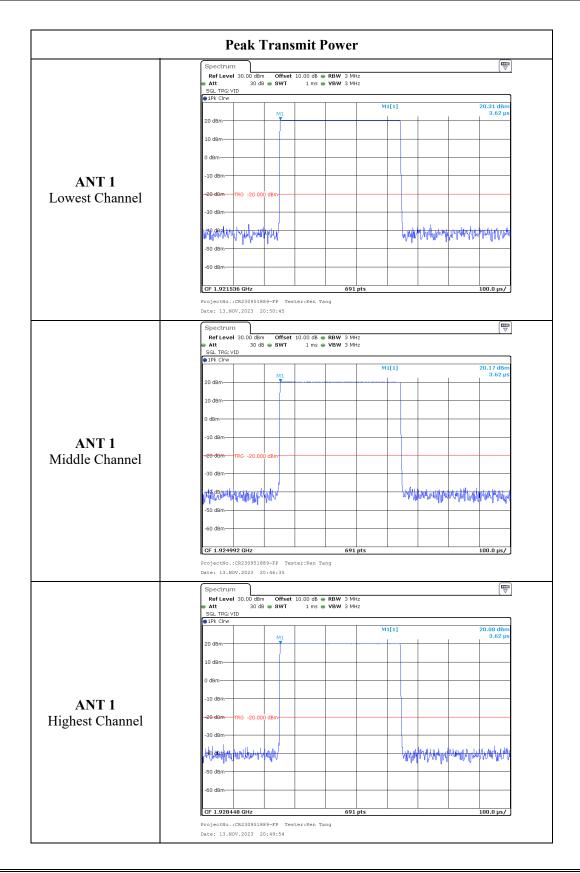
Test Data:

ANT 0:

Channel	Frequency (MHz)	Peak Transmit Power (dBm)	FCC Limit (dBm)
Lowest	1921.536	19.43	20.71
Middle	1924.992	19.22	20.74
Highest	1928.448	19.04	20.73


ANT 1:

Channel	Frequency (MHz)	Peak Transmit Power (dBm)	FCC Limit (dBm)
Lowest	1921.536	20.31	20.71
Middle	1924.992	20.17	20.74
Highest	1928.448	20.08	20.73


Note:

For FCC: Peak Transmit Power Limit = $100(EBW)^{1/2} \mu W$

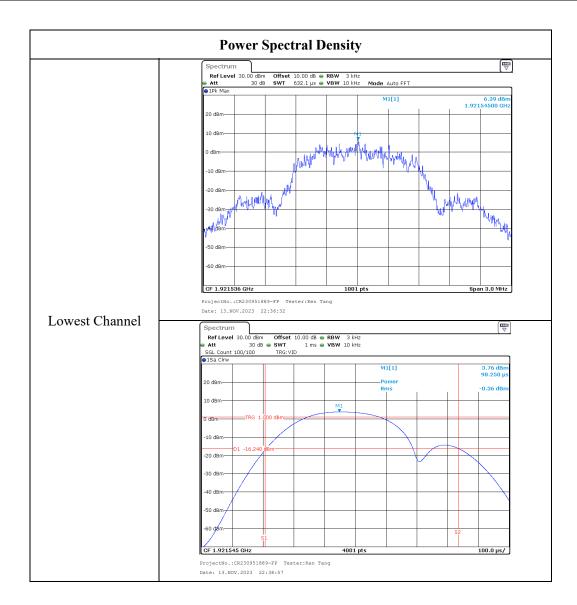
Report No.: CR230951889-00A

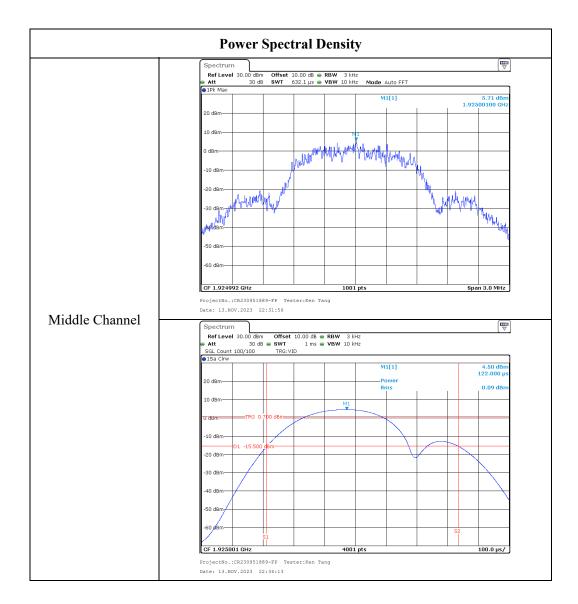
Report No.: CR230951889-00A

4.4 Power Spectral Density:

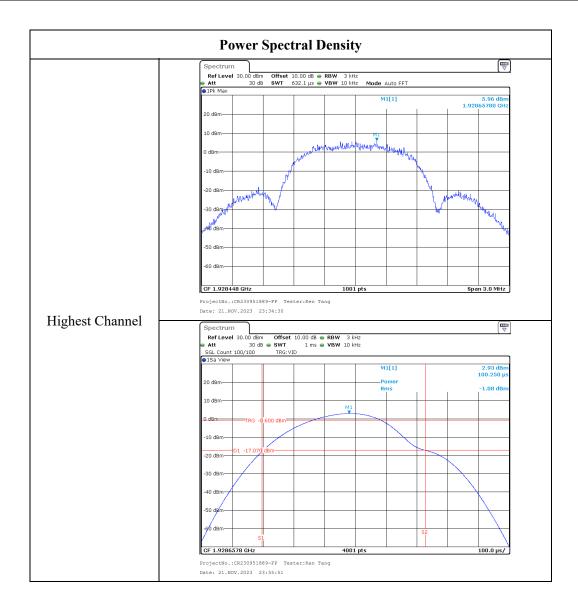
Serial Number:	2AWL-1	Test Date:	2023/11/13~2023/11/21
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

Environmental Conditions:						
Temperature: (℃)	24-28	Relative Humidity: (%)	45-58	ATM Pressure: (kPa)	101	


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101943	2023/3/31	2024/3/30
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
Weinschel	Power Splitter	1515	RA914	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

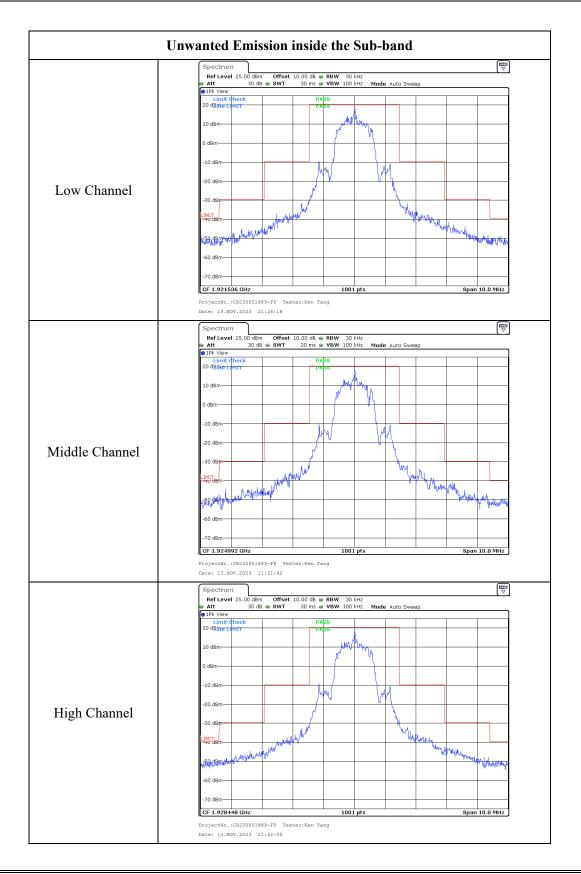
Channel	Frequency (MHz)	Power Spectral Density		Limit
		(dBm/3kHz)	(mW/3kHz)	(mW/3kHz)
Lowest	1921.536	-0.36	0.920	3
Middle	1924.992	0.09	1.021	3
Highest	1928.448	-1.08	0.780	3

Report No.: CR230951889-00A

4.5 Emission Inside and Outside the Sub-band:

1) For RF Conducted Emission:

Serial Number:	2AWL-1	Test Date:	2023/11/13
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass


Environmental Conditions:									
Temperature: (℃)	24-28	Relative Humidity: (%)	45-58	ATM Pressure: (kPa)	101				

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101943	2023/3/31	2024/3/30
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
Weinschel	Power Splitter	1515	RA914	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Page 39 of 54

Spectrum									[₩
	20.00 dBm	Offset	10.00 dB 👄	RBW 30 VBW 100		Auto Swei	ən		
😑 1Pk Max				ss		1[1]			-50.59 dBm
Limit C Line Li	MIT		PA	55 55	M	1 1 1	I		537220 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 UBIN									
-30 dBm									
LIMIT -40 dBm									
-50 dBm							м	1	
dduuluudad 260 dBm	in the difference	and the state of the	projet her heter	a dan Kladard	and an include	Junfordaulie	hilopolitan	u tenes la la substitu	
-60 dBm						al a gira daha daha			p (a.
-70 dBm									
Start 30.0		89-FP Too	ter Ken To	8001	. pts			Stop	1.915 GHz
Date: 13.NO			Id						
Spectrum									[₩
	20.00 dBm	Offset		RBW 30 VBW 100		Auto Swe	ən		
😑 1Pk Max			_				əb		00.05.10
Limit C Line Li	MIT		PA PA	55 55	M	1[1]	I	1.9198	-32.06 dBm 321580 GHz I
10 dBm-									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm						<u> </u>			M1
LIMIT -40 dBm								the state of the s	all with
العلم ومنافعا					والمتحدة اللت	and the states	Manyarkult		
يطريه ولرسا والمليلة	a ha al sa fha da	estina), ankal	annongrafia Annongrafia	and Brown	and the	الاستقدر والسو	hour durates to	مر وار مرد	an al tar and
-60 dBm	a la subilita di		a strange for the	n e tentra da les	n madaong panga	oo a ng pangangan	a contration of the second	- of all and an all a	a na in transferra
-70 dBm									
Start 1.915				8001	pts			Sto	o 1.92 GHz
ProjectNo.: Date: 13.NO			cer:Ken Ta	ng					
Spectrum									V
Ref Level	20.00 dBm			RBW 30		Auto 0			
Att IPk Max		, - awi		VBW 100			2P		10.00.10
Limit C Line Li	neck MIT		PA PA	88 88	м	1[1]	I	1.93	-47.50 dBm L35610 GHz
10 dBm									
0 dBm									
LIMIT ^{IBIII}									
-20 dBm									
-30 dBm									
-40 dBm									
		M1							
-60 dBm-	atalitanata	property of	hy with the hubble	ulthinghout	M Hone return	and	and the second	the house have a second	where where
-60 dBm					6 - Sec. 40	in the state of the	and the Low Manager		S AND A B ALARS
-70 dBm									
Start 1.93	GHz			1001	nts			Ston	1.935 GHz

Page 40 of 54

Report No.: CR230951889-00A

Ref Level 20.00 dBm Att 30 dB	Offset 10.00 dB	0 kHz Mode Auto Sweep	
1Pk Max Limit Check	PASS	M1[1]	-51.56 dBm
Line LIMIT	PASS	mitit	2.882270 GHz
10 dBm			
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
LIMIT			
-40 dBm			
			MI
-50 dBm			
mit of consideral the second of the later	يمراوك يرجل كميروك فكالانتها ويتعلق ويستع	niko ele anti en octore divisi ta ll'andi ella d	in a faith (any locate of), the and the flatest statest in a second statest in the second statest in the second statest in the
-60 dBm-	a second s		
-70 dBm			
Start 1.935 GHz ProjectNo.:CR230951889 Date: 13.NOV.2023 21:3 Spectrum ProjectNo.:CR230951889	-FP Tester:Ken Tang 29:08	01 pts	Stop 3.0 GHZ
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:2 Spectrum Ref Level 20.00 dBm Att 30 dB	-FP Tester:Ken Tang 29:08 Offset 10.00 dB • RBW 30		
ProjectNo.:CR230951889 Date: 13.NOV.2023 21:2 Spectrum Ref Level 20.00 dBm Att 30 dB 11 12 Max	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	(₩
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:2 Spectrum RefLevel 20.00 dBm Att 30 dB	-FP Tester:Ken Tang 29:08 Offset 10.00 dB • RBW 30	kHz	
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:3 Spectrum Ref Level 20.00 dBm Att 30 dB Ink Max Limit Check	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:: Spectrum RefLevel 20.00 dBm Att 30 dB 1Pk Max Limit dheck Limit dheck Limit dheck Limit dheck	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:: Spectrum Ref Level 20.00 dBm Att 30 dB IPk Max Limit theck Line LMIT	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21;: Spectrum RefLevel 20.00 dBm 4 Mt 30 dB • IPK Max Imit Check Line LMIT 10 dBm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNO.:CR230951889- Date: 13.NOV.2023 21:3 Spectrum Ref Level 20.00 dBm Att 30 dB @ IPK Max Limit theck Limit theck Limit theck Limit dBm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:: Spectrum Ref Level 20.00 dbm • 1Pk Max Line LMIT 10 dbm -10 dbm -10 dbm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:: Spectrum Ref Level 20.00 dBm Att 30 dB 0 IPk Max Limit Check Limit Check Limit Check 0 dBm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21;: Spectrum RefLevel 20.00 dBm att 30 0B @ DPK Max Limit Check Line LMIT 10 dBm -10 dBm -20 dBm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889/ Date: 13.NOV.2023 21:: Spectrum RefLevel 20.00 dBm Att 30 dB 1Pk Max Limit dhock Line LMIT 10 dBm -10 dBm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.: CR230951889- Date: 13.NOV.2023 21:: Spectrum Ref Level 20.00 d0 m • Att 30 d6 • • DPL Max Limit Check Limit Check Limit Check Limit Check - 10 d8m - 20 d8m - 30 d8m	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21;: Spectrum Ref Level 20.00 dBm At 30 dB @ IPIK Max Limit Gheck Line LMIT 10 dBm -10 dBm -20 dBm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	i kHz I kHz Mode Auto Sweep	-48.02 dBm
ProjectNo.:CR230951889/ Date: 13.NOV.2023 21:: Spectrum Reflevel 20.00 dbm Att 30.08 IPk Max Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	FFP Tester:Ken Tang 29:08 Offset 10.00 dB ● RBW 30 SWT 20 s ● VBW 100	KHZ KHZ Mode Auto Sweep M1[1]	-49.02 dBm 18.28430 GHz
ProjectNo.:CR230951889- Date: 13.NOV.2023 21;: Spectrum RefLevel 20.00 dBm • Att 30 dB • IPK Max Imit Check Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm	FP Tester:Ken Tang 29:08	kHz kHz Made Auto Sweep M1[1]	-48.02 dBm
ProjectNo.:CR230951889- Date: 13.NOV.2023 21:: Spectrum Ref Level 20.00 dbm Att 30 db UPK Max Limit Check Line LMIT 10 dbm -10 dbm -20 dbm -30 dbm -30 dbm -50 dbm -50 dbm	FP Tester:Ken Tang 9:08 Offset 10.00 /B @ RBW 32 SWT 20 \$ @ VBW 100 PA\$S PA\$S Interface Int	KHZ KHZ Mode Auto Sweep M1[1]	-49.02 dBm 18.28430 GHz
ProjectNo.:CR230951889/ Date: 13.NOV.2023 21:: Spectrum Reflevel 20.00 dbm Att 30.08 IPk Max Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	FP Tester:Ken Tang 9:08 Offset 10.00 /B @ RBW 32 SWT 20 \$ @ VBW 100 PA\$S PA\$S Interface Int	KHZ KHZ Mode Auto Sweep M1[1]	-49.02 dBm 18.28430 GHz
ProjectNo.:CR230951889/ Date: 13.NOV.2023 21:: Spectrum Ref Level 20.00 dbm Att 30.08 1Pk Max Limit dheck Lime LMIT 10 dbm -10 dbm -20 dbm -30 dbm -30 dbm -50 dbm -50 dbm -50 dbm	FP Tester:Ken Tang 9:08 Offset 10.00 /B @ RBW 32 SWT 20 \$ @ VBW 100 PA\$S PA\$S Interface Int	KHZ KHZ Mode Auto Sweep M1[1]	-49.02 dBm 18.28430 GHz
ProjectNo.: CR230951889/ Date: 13.NOV.2023 21:: Spectrum RefLevel 20.00 dbm Att 30 db DPK Max Line CMIT 10 dbm 0 dbm -10 dbm -30 dbm -30 dbm -50 dbm	FP Tester:Ken Tang 9:08 Offset 10.00 /B @ RBW 32 SWT 20 \$ @ VBW 100 PA\$S PA\$S Interface Int	KHZ KHZ Mode Auto Sweep M1[1]	-49.02 dBm 18.28430 GHz
Projectio.:CR230951889/ Date: 13.NOV.2023 21:: Spectrum Refuevel 20.00 dbm Att 30 dB 1Pk Max Line LbMT 10 dbm -10 dbm -20 dbm -30 dbm -30 dbm -50 dbm -50 dbm -60 dbm	FP Tester:Ken Tang 29:08	KHZ KHZ Mode Auto Sweep M1[1]	-49.02 dBm 18.28430 GHz

 Spectru			10.00.7	DD1::	la la					
Att	el 20.00 dBr 30 d	m Offset B 👄 SWT	10.00 dB 👄 5 s 👄	RBW 30 VBW 100		e Auto Swe	ер			
1Pk Max Limit	Check		PA	58	м	1[1]			-52.62 dBm	
Line I 10 dBm-	JMIT		PA	55				1.9	914880 GHz	
0 dBm										
U UBIII										
-10 dBm										
-20 dBm—										
-30 dBm-										
LIMIT -40 dBm										
-40 dBm										
-50 dBm			وملاور والمعراقين المعا	Le actimatica	a takatawa ari				M Mark II. San a M	
-60 dBm-		and the second se	e en regel e regel misse des regel des regel misse	partition and the second	Ange-interaction	listation	a din na marina Manang Panang Panang Panang Panang			
-70 dBm-										
y o ubiii										
Start 30.	0 MHz			8001	pts			Stop	1.915 GHz	
			ter:Ken Ta	ng						
	10V.2023 2	1:32:23								
Spectru Ref Lev	m el 20.00 dBi	m Offset	10.00 dB 👄	RBW 30	kHz					
Att 1Pk Max		B 👄 SWT	5 s 👄	VBW 100		e Auto Swe	ер			
	Check JMIT		PA PA		м	1[1]			-47.12 dBm 579120 GHz	
10 dBm										
0 dBm										
-10 dBm—										
-10 060										
-20 dBm—										
-30 dBm										
LIMIT -40 dBm-										
									M1	
-50 dBm— ريابية الأفياني	lana kahari	nd and tel 1 pilling	da ^{ba} santanta	(Industry)	¹ Appellitation	ulluidici Aitosee	led of the blin	i a tradación de la construcción d	A CANARA A	
-60 dBm-	anang panan	n harstang, og		(loga) (loga) en d	nin papapan	o palio monte	eoslittijotunia.e	enter de contrete (f	in the second	
-70 dBm-										
Start 1.9	15 GHz			8001	pts			Sto	p 1.92 GHz	
			ter:Ken Ta	ng						
	IOV.2023	21:33:05								
Spectru Ref Lev		m Offset	10.00 dB 👄	RBW 30	kHz				(₩)	
Att 1Pk Max		B 😑 SWT	1 s 👄	VBW 100	kHz Mod	e Auto Swe	ер			
Limit Line I	Check IMIT		PA PA	55 55	м	1[1]			-46.60 dBm 421830 GHz	
10 dBm										
0 dBm	-									
LIMIT ^{IBIII}										
-20 dBm—										
-30 dBm-										
-40 dBm								M1		
NAR HURRA	Water Harris	rational production of the second	ala yahariya	Unitraciality	dama (Juliana)	Martanal	Martelline		the south and	
-60 dBm-			1 IL	o dhi e naadhedd	dahaand call	and the second second			1.10	
		1	1			1			-	
-70 dBm—										

Page 42 of 54

Report No.: CR230951889-00A

	ectrum tef Level 20	0.00 dBm Offs	et 10.00 dB 👄					♥]
	itt Pk Max	30 dB 😑 SW1	r 5s 👄	VBW 100 kHz	Mode Auto Sw	eep			
-	Limit ¢he	ck	PAS	e	M1[1]			9.41 dBm	
	Line LIMI		PAS		out the			0030 GHz	
10	dBm-								
	18m								
	IBM-								
-1) dBm								
-2) dBm								
-3) dBm								
LIM	IT dBm								
-4	J dBm								
			M1						
-5) dBm						- 1		
a false	สถานเหลือเมือง	وحمادتها ولأقبر المتعرفان وال	المتحاف المتدينة المساب	a har and a here a	متأساليه فعيرها فيصاللهما	ll, och at der Hater of. Here en statistister på	للسلهميها	and of the later	
-6	dBm		a distanti di seri di s	and the second second	معيدهن أسأفا المحملين والحور الخور الأقلو بمدهلة	a contraction (or).	ing south for	effeste smithet heler	
1									
-7) dBm								
						-		3.0 GHz	
Pro Dat		Hz 230951889-FP 2023 21:34:22		8001 pt	5		Sto		1
Pro Dat	jectNo.:CR4 e: 13.NOV.2 Dectrum tef Level 20	230951889-FP 1 2023 21:34:22	et 10.00 dB 👄	g RBW 30 kHz			Sto]
Pro Dat	jectNo.:CR2 e: 13.NOV.2 pectrum tef Level 20	230951889-FP 2 2023 21:34:22	et 10.00 dB 👄	g		еер	Sto]
Pro Dat	jectNo.:CR3 e: 13.NOV.2 Dectrum Ref Level 20 Att Pk Max	230951889-FF 2 2023 21:34:22 0.00 dBm Offs 30 dB • SW1	et 10.00 dB ● Γ 20 s ●	g RBW 30 kHz VBW 100 kHz	Mode Auto Sw	еер		E]
Pro Dat	ectNo.:CR2 e: 13.NOV.2 ectrum tef Level 20 ttt Pk Max Limit ¢he	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S		еер		₩ ▼	
Pro Dat	iectNo.:CRJ : 13.NOV.J Dectrum Ref Level 20 MT Pk Max Limit Che Line LIMIT	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● Γ 20 s ●	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		E]
Pro Dat	ectNo.:CR2 e: 13.NOV.2 ectrum tef Level 20 ttt Pk Max Limit ¢he	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼]
Pro Dat	jectNo.:CRJ e: 13.NOV.J Dectrum Ref Level 20 stt Pk Max Limit Cher Line LIMIT dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼]
Pro Dat	iectNo.:CRJ : 13.NOV.J Dectrum Ref Level 20 MT Pk Max Limit Che Line LIMIT	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼]
Pro Dat	jectNo.:CRJ e: 13.NOV.J Dectrum Ref Level 20 stt Pk Max Limit Cher Line LIMIT dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼)
Pro Dat	jectNo.:CRJ e: 13.NOV.J Dectrum Ref Level 20 stt Pk Max Limit Cher Line LIMIT dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼]
Pro Dat	e: 13.NOV.2 e: 13.NOV.2 pectrum tef Level 20 tt Linet Cher Linet Cher dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼]
Pro Dat (5) (10) (10) (10) (11) (11)	JectNo.:CRJ Dectrum Lef Level 20 Ktt Linit Chen Line LMM dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼	1
Pro Dat 5 10 0 -1	e: 13.NOV.2 e: 13.NOV.2 pectrum tef Level 20 tt Linet Cher Linet Cher dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼]
Pro Dat (5) (10) (10) (11) (12) (12) (12) (12) (12) (12) (12	ectNo.:CR20 ectNo.:CR20 ectrum tet Level 20 ttt Limit Chee Limit C	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼]
Pro Dat 91 10 01 -11 -21	JectNo.:CRJ Dectrum Lef Level 20 Ktt Linit Chen Line LMM dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	еер 		₩ ▼]
Pro Dat	ectNo.:CR2 : 13.NOV.2 Dectrum dectru	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw			₩ ▼	
Pro Dat 9 10 10 -1 -2 -2 -3	ectNo.:CR2 e: 13.NOV.2 pectrum tef Level 20 ttt Line LMI1 dBm dBm dBm dBm	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw	eep		₩ ▼	
Pro Dat (S) (10 10 -1 -1 -2 -3 -3	ectNo.:CR2 : 13.NOV.2 Dectrum dectru	230951889-FP ? 2023 21:34:22 0.00 dBm Offs 30 dB SW1	et 10.00 dB ● F 20 s ● PA\$	g RBW 30 kHz VBW 100 kHz S	Mode Auto Sw			₩ ▼]
Pro Dat (S) (10 10 -1 -2 -3 -3 (1))	ectNo.:CR2 : 13.NOV.2 Dectrum dectru	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB • SW1 Ck r	et 10.00 dB • 7 20 s • PAS PAS	g RBW 30 kH2 YBW 100 kH2 S S	Mode Auto Sw			₩ ▼	
Pro Dat (S) (10 -1) -2 -3 -3 (1)	ectNo.:CR2 e: 13.NOV.2 ectrum tef Level 20 ttt be K Max Limit Chen Limit Chen Lime LMIT dBm 0 dBm 0 dBm	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S WT ck T	et 10.00 dB = 20 s = PA3 PA3	g RBW 30 kHz VBW 100 kHz S S	Mode Auto Sw M1[1]			₩ ▼]
Pro Dat (S) (10 10 -11 -2 -3 -3 -3 -4 -3 -4 -4 -5	ectNo.:CR2 e: 13.NOV.2 ectrum tef Level 20 tit Pk Max Limit Che- Limit Che- Che- Che- Che- Che- Che- Che- Che-	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S WT ck T	et 10.00 dB • 7 20 s • PAS PAS	g RBW 30 kHz VBW 100 kHz S S	Mode Auto Sw			₩ ▼	
Pro Dat 91 91 91 91 91 91 91 91 91 91 91 91 91	ectNo.:CR2 e: 13.NOV.2 ectrum tef Level 20 ttt be K Max Limit Chen Limit Chen Lime LMIT dBm 0 dBm 0 dBm	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S WT ck T	et 10.00 dB = 20 s = PA3 PA3	g RBW 30 kHz VBW 100 kHz S S	Mode Auto Sw M1[1]			₩ ▼	
Pro Dat 91 10 -11 -2 -3 -3 -5 -0	ectNo.:CR2 s: 13.NOV.2 ectrum tef Level 20 Limit dam Limit dam (Bm) dBm) dBm) dBm) dBm	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S WT ck T	et 10.00 dB = 20 s = PA3 PA3	g RBW 30 kHz VBW 100 kHz S S	Mode Auto Sw M1[1]			₩ ▼	
Pro Dat (5) (10) (10) (11) (11) (11) (12) (12) (12) (12) (12	ectNo.:CR2 e: 13.NOV.2 ectrum tef Level 20 tit Pk Max Limit Che- Limit Che- Che- Che- Che- Che- Che- Che- Che-	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S WT ck T	et 10.00 dB = 20 s = PA3 PA3	g RBW 30 kHz VBW 100 kHz S S	Mode Auto Sw M1[1]			₩ ▼	
Pro Dat (S) (10 10 -1) -2 -3 -3 -3 -4 -5 -4 -0	ectNo.:CR2 s: 13.NOV.2 ectrum tef Level 20 Limit dam Limit dam (Bm) dBm) dBm) dBm) dBm	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S WT ck T	et 10.00 dB = 20 s = PA3 PA3	g RBW 30 kHz VBW 100 kHz S S	Mode Auto Sw M1[1]			₩ ▼	
Pro Dat (S) (10 -11 -1 -2 -3 -3 -5 -5 -6 -7	ectNo.:CR2 e: 13.NOV.2 ectrum tef Level 20 the Limit Chee Limit Ch	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S SW1 Ck r 	et 10.00 dB = 20 s = PA3	g RBW 30 kHz VBW 100 kHz S S U U U U U U U U U U U U U U U U U	Mode Auto Sw M1[1]			(T. 94 dBm 17.94 dBm 66940 GHz	
Pro Dat 91 91 91 91 91 91 91 91 91 91 91 91 91	ectNo.:CR2 2: 13.NOV.2 Pectrum tef Level 20 Witt Devel 20 Devel 20 De	230951889-FP 2 2023 21:34:22 0.00 dBm Offs 30 dB S SW1 Ck r 	PAS	g RBW 30 kHz VBW 100 kHz S S S U U U U U U U U U U U U U U U U	Mode Auto Sw M1[1]			₩ ▼	

Report No.: CR230951889-00A

Spectrur	n								(IIII) ▽	1
	1 20.00 dBr	Offset	10.00 dB 👄 5 s 👄	RBW 30		auto Swee	ep			6
1Pk Max Limit	heck		PA	88	м	1[1]			52.05 dBm	
Line L 10 dBm	IMIT		РА	88				1.5	42640 GHz	
0 dBm										
-10 dBm										
-10 ubiii										
-20 dBm										
-30 dBm										
LIMIT -40 dBm										
-50 dBm							N	1		
1460'dBm	and an early and	and a state of the	addaa daadaaadd	in a constant data i proposition a provide		las subbalder	and and and and a	a thank a baint Marine and Antha	alland and an	
-70 dBm										
-70 asm										
Start 30.0		1	1	8001	pts			Stop	1.915 GHz	J
ProjectNo. Date: 13.N			ter:Ken Ta	ng						
Spectrur	_								[₩])
Ref Leve Att	1 20.00 dBr	n Offset 3 e SWT	10.00 dB 👄 5 s 👄	RBW 30		a Auto Swee	ep			•
1Pk Max Limit	heck		PA	88		1[1]			49.91 dBm	
Line L 10 dBm	IMIT		PA	88				1.9196	93480 GHz	
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
-40 dBm										
-50 dBm								يالد جي ال	M1	
-60 dBm-	اللو يعرومين ألبط مرومي مرومين			da la milione da l' maliane a litere	nakas atra (Kalaja) Alamat kapawat tai	ing to out the point of the second	all distantion is	angalan Miling dalam	appointereps Bastrikalis, su	
-70 dBm										
, o abiii										
Start 1.91			1	8001	pts			Stop	1.92 GHz	J
ProjectNo. Date: 13.N			ter:Ken Ta	ng						
Spectrur]
Att	l 20.00 dBr 30 d	Offset	10.00 dB 👄 1 s 👄	RBW 30	kHz kHz Mode	Auto Swee	ip			-
1Pk Max Limit	heck		PA	88		1[1]			32.72 dBm	
Line L 10 dBm	MIT		РА	58				1.930	13740 GHz	
0 dBm										
-20 dBm										
-90-dBm										
-40 dBm	Hallitter Andrews	Wellerich	Manabula							
-50 dBm		the And	. Walkonnerth	Marilled with	nten valaavetaa	ничниции	A MARINA	uphtriphotoctor	altellapollym	
-60 dBm						an di anta	anna 1., A			
-70 dBm										
Start 1.93	GHz			1001	pts			Stop	1.935 GHz	1

Page 44 of 54

Report No.: CR230951889-00A

	Offset 10.00 dB ● RBW ● SWT 5 s ● VBW 3		₽₽ ₽₽
●1Pk Max			
Limit Check	PASS	M1[1]	-50.08 dBm
Line LIMIT	PASS		1.935070 GHz
10 dBm			
0 dBm			
-10 dBm			
-20 dBm			
-20 UBIN			
-30 dBm			
LIMIT			
-40 dBm			
1 -50 dBm			
bulkers at a day all tranks	مديني ووطلس يتواليه والاستلاطة فالمتعادية	بمنقب السمينية	a construction of the second
contraction but of a solution of the		and a set of the set o	
-60 dBm-			
-70 dBm			
Start 1.935 GHz	8	001 pts	Stop 3.0 GHz
Spectrum			
Ref Level 20.00 dBm			
Ref Level 20.00 dBm Att 30 dB	Offset 10.00 dB ● RBW ● SWT 20 s ● VBW 3		
Ref Level 20.00 dBm Att 30 dB	● SWT 20 5 ● VBW :	.00 kHz Mode Auto Swee	99
Ref Level 20.00 dBm Att 30 dB 1Pk Max Limit ¢heck	● SWT 20 s ● VBW : PA\$S		ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB 1Pk Max Limit ¢heck Line LimIT	● SWT 20 5 ● VBW :	.00 kHz Mode Auto Swee	99
Ref Level 20.00 dBm Att 30 dB 1Pk Max Limit ¢heck	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB IPk Max Limit Check Line LMIT 10 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB 1Pk Max Limit ¢heck Line LimIT	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB IPk Max Limit Check Line LMIT 10 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB IPk Max Limit Check Line LMIT 10 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
RefLevel 20.00 dBm Att 30 dB PIPk Max Line LMIT 10 dBm 0 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
RefLevel 20.00 dBm Att 30 dB PIPk Max Line LMIT 10 dBm 0 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB IFR Max Linet dheck Line LMIT 10 dBm 0 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB Imit Check Linit Check Line LMIT 10 dBm 0 dBm -20 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB IFR Max Linet dheck Line LMIT 10 dBm 0 dBm	● SWT 20 s ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB ● 1Pk Max Limit Check Lime LMIT 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm -	● SWT 20 5 ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB Imit Check Linit Check Line LMIT 10 dBm 0 dBm -20 dBm	● SWT 20 5 ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB ● 1Pk Max Limit Check Lime LMIT 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm -	● SWT 20 5 ● VBW : PA\$S	.00 kHz Mode Auto Swee	ер -47.75 dBm
Ref Level 20.00 dBm Att 30 dB IPK Max Limit Check Lime LMIT 0 dBm 0 dBm	SWT 20 s • VBW : PA8s PA8s	M1[1] M1[1]	-47.75 dBm 16.8830 CHz
Ref Level 20.00 dBm Att 30 dB ● 1Pk Max Limit Check Lime LMIT 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm -	SWT 20 s • VBW : PA8s PA8s	M1[1]	-47.75 dBm 16.88830 GHz
Ref Level 20.00 dBm Att 30 dB IPR Max Limit Check Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	● SWT 20 5 ● VBW : PA\$S	M1[1]	-47.75 dBm 16.8830 CHz
Ref Level 20.00 dBm Att 30 dB IPR Max Unit Check Line LMIT 10 dBm 0 dBm - -10 dBm - -30 dBm -	SWT 20 s • VBW : PA8s PA8s	M1[1]	-47.75 dBm 16.8830 CHz
Ref Level 20.00 dBm • 17k Max 30 dB • 17k Max Limit Check Limit Check Limit Check 10 dBm - -10 dBm - -20 dBm - -30 dBm - -30 dBm - -50 dBm - -60 dBm -	SWT 20 s • VBW : PA8s PA8s	M1[1]	-47.75 dBm 16.8830 CHz
Ref Level 20.00 dBm Att 30 dB IPR Max Limit Check Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	SWT 20 s • VBW : PA8s PA8s	M1[1]	-47.75 dBm 16.8830 CHz
Ref Level 20.00 dBm • 17k Max 30 dB • 17k Max Limit Check Limit Check Limit Check 10 dBm - -10 dBm - -20 dBm - -30 dBm - -30 dBm - -50 dBm - -60 dBm -	SWT 20 s • VBW : PA8s PA8s	M1[1]	-47.75 dBm 16.8830 CHz
Ref Level 20.00 dBm • 17k Max 30 dB • 17k Max Limit Check Limit Check Limit Check 10 dBm - -10 dBm - -20 dBm - -30 dBm - -30 dBm - -50 dBm - -60 dBm -	SWT 20 s VBW: PABS PASS PASS	M1[1]	-47.75 dBm 16.8830 CHz

4.6 Frequency Stability:

Serial Number:	2AWL-1	Test Date:	2023/11/13
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

]	Environmental Conditions:									
	Temperature: (℃)	24-28	Relative Humidity: (%)	45-58	ATM Pressure: (kPa)	101				

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27
LANG GE	AC Voltage Regulation Power Supply	STG3-5000W	N/A	N/A	N/A
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

AC Power:

Temperature (°C)	Voltage (V _{AC})	Channel Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
-20	120	1924.992	3	1.56	±10
20	102	1924.992	10	5.19	±10
20	138	1924.992	-4	-2.08	±10
50	120	1924.992	12	6.23	±10

Battery:

Temperature (°C)	Voltage (V _{DC})	Channel Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
-20	3.6	1924.992	4	2.08	± 10
20	3.6	1924.992	2	1.04	±10
50	3.6	1924.992	8	4.16	±10

4.7 Specific Requirements for UPCS Device:

Serial Number:	2AWL-1	Test Date:	2023/11/13
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	N/A

Environmental Conditions:

Temperature: (℃)	24-28	Relative Humidity: (%)	45-58	ATM Pressure: (kPa)	101

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXG Vector Signal Generator	N5182B	MY51350144	2023/3/31	2024/3/30
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
Weinschel	Power Splitter	1515	RA914	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
R&S	Spectrum Analyzer	FSU26	200120	2023/4/18	2024/4/17
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Result: Pass

Please see the below data

1) Automatic Discontinuation of Transmission

Test result:

The following tests were performed after a connection had been established with PP unit.

Test condition	Reaction of EUT	Pass/Fail
Adapter removed from EUT	Connection break down	Pass
Battery remove from PP unit	Connection break down	Pass

2) Monitoring Time

Test result:

This requirement is covered by the results of Least Interfered Channel (LIC).

Interference (Refer to ANSI C63.17 clause 7.3.3)	Reaction of EUT	Results
a) Apply the interference on f_1 at level T_L+U_M+20dB and no interference on f_2 . Initiate transmission and verify the transmission only on f_2 . Then terminate it.	EUT transmits on f ₂	Pass
b) Apply the interference on f_2 at level T_L+U_M+20 dB and immediately remove all interference from f_1 . The EUT should immediately attempt transmission on f_1 (but at least 20 ms after the interference on f_2 is applied), verify the transmission only on f_1 .	EUT transmission f_1	Pass

3) Lower Monitoring Threshold

Test result:

Not applicable because the EUT has more 40 defined duplex system access channels and meet the provision of the Least Interfered Channel (LIC).

4) Maximum Transmit Period

Test result:

Repetition of Access Criteria	Measured Maximum Transmission Time (Second)	Limit (Second)	Results
First	18210	28,800	Pass
Second	18210	28,800	Pass

5) System Acknowledgement

Test result:

Test	Time taken (second)	Limit (second)	Result
Initial Connection acknowledgement	3.11	1	Pass
Change of access criteria for control information	N/A	30	N/A
Transmission cease time	3.56	30	Pass

Note: N/A=Not Applicable

6) Least Interfered Channel (LIC)

Calculation of monitoring threshold limits for isochroous devices:

Lower threshold: $T_L = -174+10Log_{10}B + M_L + P_{MAX}-P_{EUT} (dBm)$ Where: B=Emission bandwidth (Hz) $M_L = dB$ the threshold may exceed thermal noise (30 for T_L) $P_{MAX} = 5Log_{10}B-10(dBm)$ $P_{EUT} = Transmitted power (dBm)$

Calculated thresholds:

Monitor Threshold	B(MHz)	$M_L(dB)$	P _{MAX} (dBm)	P _{EUT} (dBm)	Threshold (dBm)
Lower threshold	1.409	30	20.74	20.31	-82.08

Note: 1. The upper threshold is applicable as the EUT utilizes more than 20 duplex system channels

Test result:

LIC procedure test:

Interference (Refer to ANSI C63.17 clause 7.3.3)	Reaction of EUT	Results
a) Apply the interference on f_1 at level T_L+U_M+7dB and the interference on f_2 at level T_L+U_M . Initiate transmission and verify the transmission only on f_2 . Repeat 5 times.	EUT transmits on f_2	Pass
b) Apply the interference on f_1 at level T_L+U_M and the interference on f_2 at level T_L+U_M+7dB . Initiate transmission and verify the transmission only on f_1 . Repeat 5 times.	EUT transmits on f_1	Pass
c) Apply the interference on f_1 at level T_L+U_M+1dB the interference on f_2 at level T_L+U_M-6dB . Initiate transmission and verify the transmission only on f_2 . Repeat 5 times.	EUT transmits on f_2	Pass
d) Apply the interference on f_1 at level T_L+U_M-6dB and the interference on f_2 at level T_L+U_M+1dB . Initiate transmission and verify the transmission only on f_1 . Repeat 5 times.	EUT transmits on f_1	Pass

Selected channel confirmation:

Interference (Refer to ANSI C63.17 clause 7.3.4)	Reaction of EUT	Results
a) Apply the interference on f_1 at level T_U+U_M and no interference on f_2 . Initiate transmission and verify the transmission only on f_2 . Then terminate it.	EUT transmits on f_2	Pass
b) Apply the interference on f_2 at level T_L+U_M and immediately remove all interference from f_1 . The EUT should immediately attempt transmission on f_1 (but at least 20 ms after the interference on f_2 is applied), verify the transmission only on f_1 .	EUT transmission f_1	Pass

7) Random waiting

Note: This is Not Applicable

8) Monitoring Bandwidth and Reaction Time

Test result:

Monitoring Bandwidth:

The antenna of the EUT used for monitoring is the same interior antenna that used for transmission, so the monitoring system bandwidth is equal to the emission bandwidth of the intended transmission

Reaction Time Test:

No.	Interference Pulse width (µs)	Reaction of EUT	Observing time (µs)	Result
1	50 μ s with level T _L +U _M	No transmission	27.77	Pass
2	$35\mu s$ with level T_L+U_M+6dB	No transmission	25.13	Pass

9) Monitoring Antenna

Test result:

The antenna of the EUT used for transmission is the same interior antenna that used for monitoring.

10) Monitoring threshold relaxation

Test result:

This requirement is covered by the results of Least Interfered Channel (LIC).

11) Duplex Connections

Test result:

Interference (Refer to ANSI C63.17 § 8.3& § 8.3.2)	Reaction of EUT	Results
a) Only a single carrier f1 for EUT TDMA systems and on $f1$ and $f2$ and corresponding duplex carriers for FDMA systems.	EUT can transmit	Pass
b) All Tx windows with level TL+UM except one & Rx windows with level TL+UM+7dB except one, which are not the duplex mate.	Connected on the target Rx window and its duplex mate.	Pass
c) All Tx windows with level TL+UM+7dB except one & Rx windows with level TL+UM except one, which are not duplex mate.	Connected on the target Tx window and its duplex mate.	Pass
d) All Tx & Rx windows with level TU+UM, except one for Tx window & one for Rx window, which are not duplex mate.	No connection possible	Pass

12) Alternative monitoring interval

Test result:

Interference (Refer to ANSI C63.17 § 8.4)	Reaction of EUT	Results
a) Only a single carrier f1 for EUT TDMA systems and on <i>f</i> 1 and <i>f</i> 2 and corresponding duplex carriers for FDMA systems.	EUT can transmit	Pass
b) Apply interference with same parameters as EUT transmissions on all Tx windows with level TL+UM on the enabled carrier(s) and no interference on the Rx windows on the enabled carriers.	No connection is established	Pass

13) Fair Access

Test result:

14) Frame Repetition Stability Frame Period and Jitter

Test result:

Frame Period and Jitter:

Max. pos. Jitter	Max. neg. Jitter	Frame period	Limit	
(µs)	(μs)	(ms)	Frame Period (ms)	Jitter (µs)
0.11	-0.09	11.12	20 or10/X	25

Note: X is a positive whole number.

5. RF EXPOSURE EVALUATION

5.1 MPE-Based Exemption

5.1.1 Applicable Standard

According to §1.1307(b)(3)(i)

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	$3,450 \text{ R}^2/\text{f}^2.$
30-300	3.83 R^2 .
300-1,500	$0.0128 \text{ R}^2 \text{f.}$
1,500-100,000	19.2R ² .

5.1.2 Measurement Result

			Exemption ERP		Maximum			
Frequency (MHz)	λ/2π (mm)	Distance (mm)	(mW)	(dBm)	Conducted Power including Tune-up Tolerance (dBm)	Antenna Gain (dBi)	ERP (dBm)	MPE- Based Exemption
1920-1930	24.87	200	768	28.85	20.4	0	18.25	Compliant

Note:

The Maximum Conducted Power including Tune-up Tolerance was declared by manufacturer.

Result: The device compliant the MPE-Based Exemption at 20cm distances.

6. EUT PHOTOGRAPHS

Please refer to the attachment CR230951889-EXP EUT EXTERNAL PHOTOGRAPHS and CR230951889-INP EUT INTERNAL PHOTOGRAPHS

7. TEST SETUP PHOTOGRAPHS

Please refer to the attachment CR230951889-00A-TSP TEST SETUP PHOTOGRAPHS.

===== END OF REPORT =====