

Report No.: HKEM211200127501 Page: 1 of 30

TEST REPORT

Application No.:	HKEM2112001275AT					
Applicant:	VTech Telecommunications Ltd.					
Address of Applicant:	23/F., Tai Ping Industrial Centre, Block 1, 57 Ting Kok Road, Tai Po, Hong Kong					
Equipment Under Test (EUT):					
EUT Name:	Video baby monitor					
Model No.: RM7754HD PU, RM7754-2HD PU, RM7754-aHD PU, RM7854 RM7854-2HD PU, RM7854-aHD PU, RM7854-aHD PU, VM816-1b VM816-abHD PU, RM7764HD PU, RM7764-2HD PU, RM7764-2HD RM7864HD PU, RM7864-2HD PU, RM7864-aHD PU, RM7864-aHD VM907-1bHD PU, VM907-abHD PU						
Additional Model:	Please refer to section 2 of this report which indicates which item was actually tested and which were electrically identical.					
FCC ID:	EW780-1925-01A					
IC:	1135B-80192501A					
HVIN:	35-201615PUBC					
Standard(s) :	CFR 47 FCC Part 15, Subpart C, 2019					
	RSS-247 Issue 2: May 2017					
	RSS-Gen: Issue 5 Amdt 2019					
Date of Receipt:	2021-12-20					
Date of Test:	2021-12-21 to 2021-12-30					
Date of Issue:	2021-08-31 (for original report HKEM210700078302)					
	2021-12-31 (for new report HKEM211200127501)					
Test Result:	Pass*					

* In the configuration tested, the EUT complied with the standards specified above.

Law Man Kit EMC Manager

This document is issued by the Company subject to its General Conditions of Service printed overleat, available on request and accessible at http://www.sqs.com/en/Terms-and-conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-conditions.aspx Attention is drawn to the limitation of liability, indemnification is subject to Terms and Conditions of Liebtonic format documents, subject to Terms and Conditions of Liebtonic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. The document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

SGS Hong Kong Limited Laboratory: Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong www.sasgroup.com.hk Office: Units 303 & 305, 3/F, Building 22E, Phase 3, HK Science Park, New Territories, Hong Kong t (852) 2334 4481 f (852) 2764 3126 e mktg.hk@sgs.com

	Revision Record						
Version	Version Chapter Date Modifier						
01		2021-08-31		Original			
01		2021-12-31		C2PC change			

Authorized for issue by:			
	Panno		
	Panny Leung /Project Engineer	Date: 2021-12-31	
	Laus		
	Law Man Kit		
	/Reviewer	Date: 2021-12-31	

2 Test Summary

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
Conducted Disturbance at AC Power Line(150kHz- 30MHz)	47 CFR Part 15, Subpart C 15.207	ANSI C63.10: 2013 Section 6.2	47 CFR FCC Part 15, Subpart C 15.207	Pass		
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.2.3	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass		
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass		
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass		
Conducted Emissions at AC Power Line (150kHz-30MHz)	RSS-Gen Issue 5: Amdt 2019	ANSI C63.10 (2013) Section 6.2	RSS-Gen Section 8.8	Pass		
Conducted Peak Output Power	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 11.9.1	RSS-247 Section 5.4(d)	Pass		
Spurious Emissions	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 11.11	RSS-247 Section 5.5	Pass		
Radiated Emissions which fall in the restricted bands	RSS-Gen Issue 5: Amdt 2019	ANSI C63.10 (2013) Section 6.4&6.5&6.6	RSS-247 Section Section 3.3 & RSS-Gen Section 8.10	Pass		

Declaration of EUT Family Grouping:

Item no.: RM7754HD PU, RM7754-2HD PU, RM7754-aHD PU, RM7854HD PU, RM7854-2HD PU, RM7854-aHD PU, VM816HD PU, VM816-1bHD PU, VM816-abHD PU, RM7764HD PU, RM7764-2HD PU, RM7764-aHD PU, RM7864HD PU, RM7864-2HD PU, RM7864-aHD PU, VM907HD PU, VM907-1bHD PU, VM907-abHD PU

a=any alphanumeric character or blank is presenting number of baby unit. b= any alphanumeric character or blank is presenting color option

According to the confirmation from the applicant, the above models are identical in all electrical aspects in relating to the circuit design, PCB layout, electrical components used, internal wiring and functions. The differences are only the model/item No, color and decorations.

Therefore, only the model RM7754HD PU was tested in this report.

Report No.: HKEM211200127501 Page: 4 of 30

- Note: According to the cover letter for C2PC (Class II permissive changes) from the applicant, the change are as bleow based on previous test reports HKEM210700078302 issued on 2021-08-31.
 - 1.Change the battery from 2700mA to 5000mA
 - 2. Adaptor change from 1A DC jack/type C to 2A DC jack adaptor
 - 3. PCB layout change from USB socket to DC jack

According to the changes above, Conducted Peak Output Power; Conducted Emissions at AC Power Line and Radiated Emission were re-tested in this report, all other test result were referred to previos report HKEM210700078302 issued on 2021-08-31.

Report No.: HKEM211200127501 Page: 5 of 30

3 Contents

		Page
1	COVER PAGE	1
^	TEST SUMMARY	2
2		
3	CONTENTS	5
4	GENERAL INFORMATION	6
•		-
	4.1 DETAILS OF E.U.T.	
	 4.2 DESCRIPTION OF SUPPORT UNITS 4.3 MEASUREMENT UNCERTAINTY	
	4.3 MEASUREMENT UNCERTAINTY 4.4 TEST LOCATION	
	4.4 TEST LOCATION	
	4.5 TEST FACILITY	
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQUIPMENT LIST	9
~	RADIO SPECTRUM TECHNICAL REQUIREMENT	
6		
	6.1 ANTENNA REQUIREMENT	
	6.1.1 Test Requirement:	
	6.1.2 Conclusion	11
7	RADIO SPECTRUM MATTER TEST RESULTS	12
	7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	
	7.1.1 E.U.T. Operation	
	7.1.2 Test Setup Diagram	
	7.1.3 Measurement Procedure and Data	
	7.2 CONDUCTED PEAK OUTPUT POWER	
	7.2.1 E.U.T. Operation	16
	7.2.2 Test Setup Diagram	16
	7.2.3 Measurement Procedure and Data	
	7.3 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.3.1 E.U.T. Operation	
	7.3.2 Test Setup Diagram	
	7.3.3 Measurement Procedure and Data	
	7.4 RADIATED SPURIOUS EMISSIONS	
	7.4.1 E.U.T. Operation	
	7.4.2 Test Setup Diagram	
	7.4.3 Measurement Procedure and Data	
8	PHOTOGRAPHS	28
A	PPENDIX	29
	8.1 RF OUTPUT POWER	20

4 General Information

4.1 Details of E.U.T.

Power supply:	Model: VT07EUS05200				
	Input: AC 100-240V, 50/60Hz, 0.5A				
	Output: DC 5.0V, 2.0A				
	OR				
	Battery				
	Model: GSP806090-5Ah-3.7V-1S1P				
	Rated capacity: 5000mAh, 18.5Wh				
	Voltage: 3.7VDC				
Test voltage:	AC 120 V				
Cable:	Power Cable: 185cm unshielded 2 wires DC cable				
Antenna Gain:	2 dBi				
Antenna Type:	Integral Antenna				
Channel Spacing:	5MHz				
Modulation Type:	802.11b: DSSS (CCK, DQPSK, DBPSK)				
	802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK)				
Data rate:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11 Mbps				
	802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54				
	802.11n: 6.5Mbps, 13Mbps, 19.5Mbps, 26Mbps, 39Mbps, 52Mbps, 58.5Mbps, 65Mbps				
Number of Channels:	802.11b/g/n(HT20):11				
Operation Frequency:	802.11b/g/n(HT20): 2412MHz to 2462MHz				
Tested Channels:	2412MHz, 2442MHz, 2462MHz				
Version code:	T31N				
Series number:	A1				
Hardware Version:	V002				
Software Version:	V0.2.0.1				
	Remark: Power level setting was not adjustable and fixed default through SW Version.				

Frequency List

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Remark: 1. Testing Channels are highlighted in **bold**.

4.2 Description of Support Units

The EUT has been tested with corresponding accessories as below:

Supplied by client

Description	Manufacturer Model No.		SN/Certificate NO	
Test Software	MicroRidge System	Version 3.0.0.108	N/A	

Supplied by SGS:

Description	Manufacturer	Model No.	SN/Certificate NO
NoteBook (EMC4)	Dell	P75F	N/A

4.3 Measurement Uncertainty

RF

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power (30MHz-40GHz)	1.5dB
5	RF power density	1.5dB
6	Conducted Spurious emissions	1.5dB
		4.9dB (30MHz-1GHz)
7	RF Radiated power &	4.6dB (1GHz-6GHz)
/	Radiated Spurious emission test	4.7dB (6GHz-18GHz)
		5.6dB (18GHz-40GHz)
8	Temperature test	± 1 °C
9	Humidity test	± 3%
10	Supply voltages	± 1.5%
11	Time	± 3%

Remark:

The U_{lab} (lab Uncertainty) is less than U_{cispr} (CISPR Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;

- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

According to decision rule based on Clause 4.2 of CISPR 16-4-2, the EUT complied with the standards specified above.

4.4 Test Location

All tests were performed at: SGS Hong Kong Limited Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

HOKLAS (Lab Code: 009)

SGS HONG KONGLimited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2017 an it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

IAS Accreditation (Lab Code: TL-187)

SGS HONG KONGLimited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government.

• FCC Recognized Accredited Test Firm(CAB Registration No.: 514599)

SGS HONG KONG Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599.

• Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015)

SGS HONG KONG Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

5 Equipment List

Conducted Peak Output Power						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2021/08/16	2022/08/15	
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2021/08/16	2022/08/15	
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2021/08/16	2022/08/15	
OSP	Rohde & Schwarz	OSP-B157W8	E242	2021/08/16	2022/08/15	
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2021/07/15	2022/07/14	
WMS32 Test Software	R&S	Version 10	N/A			

Conducted Emissions at Mains Terminals (150kHz-30MHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2021/08/17	2022/08/16	
Artificial Mains Network (LISN)	Schwarzbeck	NSLK 8127 / 8127312	TE10	2021/04/13	2022/04/12	
Impulse Limiter	Rohde & Schwarz	ESH-3-Z2/ 357881052	E028	2021/07/15	2022/07/14	
EMC32 Test Software	R&S	Version 10	N/A			

Radiated Spurious Emissions (30MHz-1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2021/08/09	2022/08/08		
Coaxial Cable	SGS	N/A	E167	2021/07/15	2022/07/14		
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESR7 / 102298	E314	2021/05/18	2022/05/17		
TRILOG Super Broadb. Test Antenna, (25) 30-1000MHz	Schwarzbeck	9168-1110	E311	2020/02/13	2022/02/12		
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237				
Turntable with Controller	ChamPro	EM1000	E238				
EMC32 Test Software	R&S	Version 10	N/A				

Radiated Spurious Emissions (above 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2021/08/09	2022/08/08		

Report No.: HKEM211200127501 Page: 10 of 30

Coaxial Cable	SGS	N/A	E167	2021/07/15	2022/07/14
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESR7 / 102298	E314	2021/05/18	2022/05/17
TRILOG Super Broadb. Test Antenna, (25) 30-1000 MHz	Schwarzbeck	9168-1110	E311	2020/02/13	2022/02/12
Signal and Spectrum Analyzer 2Hz - 26.5GHz	Rohde & Schwarz	FSW26	E296	2021/08/16	2022/08/15
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2020/03/11	2022/03/10
Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2020/01/29	2022/01/28
Horn Antenna 15 - 40GHz	Schwarzbeck	BBHA9170	E212	2020/01/29	2022/01/28
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2019/04/24	2022/04/23
Preamplifier 33dB, 18 - 26.5GHz	Schwarzbeck	BBV9719	E215	2020/09/21	2022/09/20
Broadband Coaxial Preamplifier typ. 30 dB, 18-40 GHz	Schwarzbeck	BBV 9721	E266	2020/08/31	2022/08/30
Highpass Filter 3.5-26.5GHz	Wainwright	WHNX3.5/26.5 G-6SS	E205	2019/04/24	2022/04/23
Band Reject Filter 2.4-2.5GHz	Wainwright	WRCJV 2400/2500- 2100	E206	2019/04/24	2022/04/23
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207	2021/09/17	2022/09/16
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	N/A	N/A
Turntable with Controller	ChamPro	EM1000	E238	N/A	N/A

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2021/08/16	2022/08/15
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2021/08/16	2022/08/15
Barometer with digital thermometer	SATO	7612-00	E218	2021/03/29	2022/03/28
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2021/08/17	2022/08/16

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

FCC Part 15 Subpart C Section 15.247 & 15.203 RSS-Gen Section 8.3

6.1.2 Conclusion

Standard Requirement:

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2 dBi. $\$

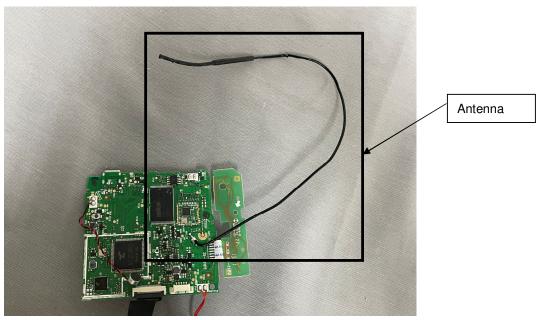


Photo of antenna refer to Appendix – Internal photo.

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

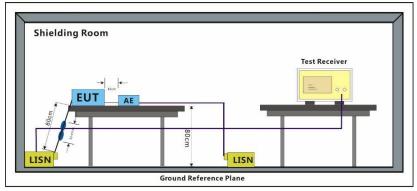
Test Requirement Test Method: Limit:

47 CFR Part 15, Subpart C 15.207, RSS-Gen Section 8.8 ANSI C63.10 (2013) Section 6.2

Erequency of amission (MHz)	Conducted limit(dBµV)			
Frequency of emission(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
*Decreases with the logarithm of th	ne frequency.	·		

7.1.1 E.U.T. Operation

Operating Environment:


Temperature: 22.5 °C Humidity: 51.2 % RH

Test mode a :TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)..11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20).

:

Only the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

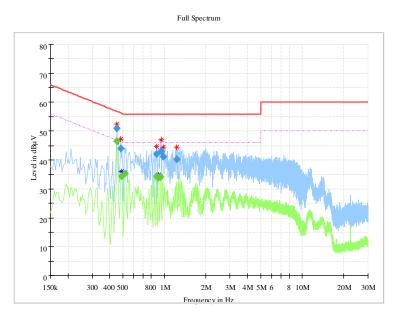
7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

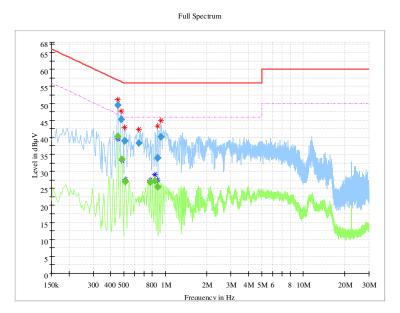
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: HKEM211200127501 Page: 14 of 30



Frequency	QuasiPeak	Average	Limit	Margin	Corr.	Desult
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	Result
0.454000		46.65	46.80	0.15	10.8	Pass
0.454000	50.98		56.80	5.82	10.8	Pass
0.482000	44.08		56.31	12.23	10.8	Pass
0.490000		34.39	46.17	11.78	10.8	Pass
0.518000		35.23	46.00	10.77	10.7	Pass
0.874000	42.18		56.00	13.82	10.4	Pass
0.874000		34.27	46.00	11.73	10.4	Pass
0.910000		33.81	46.00	12.19	10.4	Pass
0.938000		34.21	46.00	11.79	10.4	Pass
0.946000	43.02		56.00	12.98	10.4	Pass
0.978000	41.11		56.00	14.89	10.4	Pass
1.226000	40.30		56.00	15.70	10.3	Pass

Report No.: HKEM211200127501 Page: 15 of 30

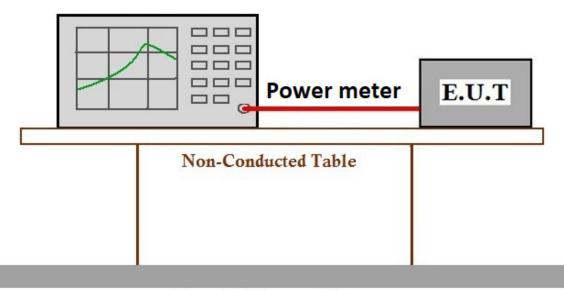
Mode: a; Line: Neutral Line

Frequency	QuasiPeak	Average	Limit	Margin	Corr.	
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	Result
0.450000		40.32	46.88	6.56	10.8	Pass
0.454000	49.44		56.80	7.36	10.8	Pass
0.478000	45.30		56.37	11.07	10.8	Pass
0.482000		33.61	46.31	12.70	10.8	Pass
0.506000	38.96		56.00	17.04	10.7	Pass
0.514000		27.11	46.00	18.89	10.7	Pass
0.642000	38.37		56.00	17.63	10.6	Pass
0.778000		26.88	46.00	19.13	10.5	Pass
0.842000		27.15	46.00	18.85	10.5	Pass
0.874000		25.53	46.00	20.47	10.4	Pass
0.878000	34.10		56.00	21.90	10.4	Pass
0.930000	40.09		56.00	15.91	10.4	Pass

7.2 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247:2019(b)(1) & 15.247(b)(3), RSS-247
	Section 5.4(b)

Test Method: ANSI C63.10 (2013) Section 7.8.5


7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 22.5 °C Humidity: 51.2 % RH :

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20).

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see section 9: Appendix

7.3 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.247(d), Section 3.3 & RSS-Gen Section 8.9
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Limit:	

Table 5 - General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (μV/m at 3 m)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

Table 6 - General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H- Field) (µ A/m)	Measurement distance (m)
9 - 490 kHz 1	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

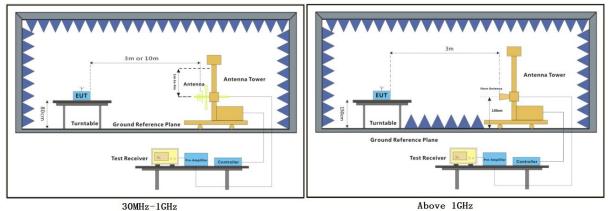
Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: Humidity: 51.4 % RH 23.1 °C

Test mode


a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20).

:

Only the data of worst case is recorded in the report.

7.3.2 Test Setup Diagram

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Worse test reulst as shown below:

Mode: 802.11b

Frequency	Antenna	Antenna Emission Level (dBµV/m)		Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
2390.000	V	58.3	47.0	74.0	54.0	Pass
2483.500	V	52.2	43.3	74.0	54.0	Pass

Mode: 802.11g

Frequency	Antenna	Emission Le	vel (dBµV/m)	Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
2390.000	V	62.7	50.5	74.0	54.0	Pass
2483.500	V	55.9	49.2	74.0	54.0	Pass

Mode: 802.11n20

Frequency	Antenna	Emission Le	vel (dBµV/m)	Limit (dBµV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
2390.000	V	61.5	50.1	74.0	54.0	Pass
2483.500	V	56.9	46.3	74.0	54.0	Pass

Report No.: HKEM211200127501 Page: 20 of 30

7.4 Radiated Spurious Emissions

Test Requirement	Section 3.3 & RSS-Gen Section 8.9
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Limit:	

Table 5 - General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (μV/m at 3 m)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

Table 6 -	General field strength limits at frequencies below 30 MHz
-----------	---

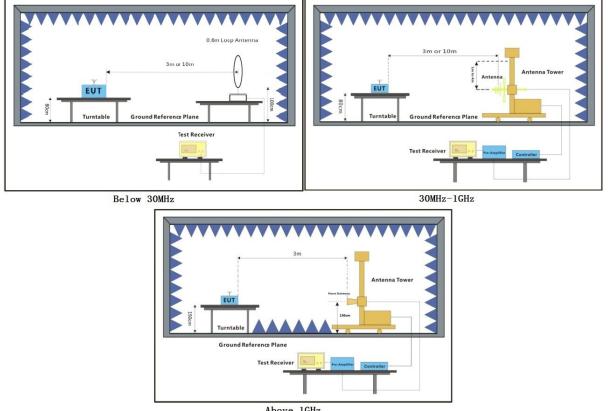
Frequency	Magnetic field strength (H- Field) (μ A/m)	Measurement distance (m)
9 - 490 kHz 1	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

7.4.1 E.U.T. Operation

Test mode

Operating Environment:


22.3 °C Temperature: Humidity: 52.3 % RH

> a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20).

:

Only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Above 1GHz

7.4.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

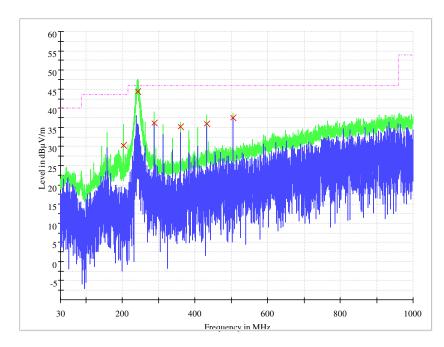
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

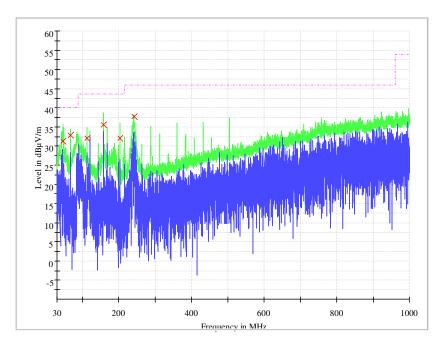
3) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: HKEM211200127501 Page: 23 of 30

Radiated emission below 1GHz

Horizontal (worse plots was shown as below)



Frequency (MHz)	QuasiPeak (dBµV/m)	Pol.	Corr. (dB/m)	Margin (dB)	Limit (dBµV/m)	Result
202.450000	30.2	Н	10.7	13.3	43.5	Pass
242.355357	44.4	Н	12.6	1.6	46.0	Pass
287.971429	36.1	н	14.6	9.9	46.0	Pass
359.982143	35.1	н	16.4	10.9	46.0	Pass
431.992857	36.0	н	18.3	10.0	46.0	Pass
504.003571	37.6	Н	19.6	8.4	46.0	Pass

Report No.: HKEM211200127501 Page: 24 of 30

Vertical (worse plots was shown as below)

Frequency	QuasiPeak		Corr.	Margin	Limit	- ··
(MHz)	(dBµV/m)	Pol.	(dB/m)	(dB)	(dBµV/m)	Result
46.101786	31.2	v	14.1	8.8	40.0	Pass
67.482143	32.8	v	12.8	7.2	40.0	Pass
112.471429	32.0	v	11.3	11.5	43.5	Pass
157.460714	35.5	v	14.4	8.0	43.5	Pass
202.450000	32.1	v	10.7	11.4	43.5	Pass
241.658929	37.7	v	12.6	8.3	46.0	Pass

Report No.: HKEM211200127501 Page: 25 of 30

Above 1GHz

Channel:Low

Frequency	Antenna	a Emission Level (dBμV/m)		Limit (dBµV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	neillaik
1661.500	V	47.7	/	74.0	54.0	Pass
1990.000	V	45.0	/	74.0	54.0	Pass
4901.500	Н	47.4	/	74.0	54.0	Pass
5976.000	V	59.2	36.6	74.0	54.0	Pass
7471.000	Н	56.6	44.1	74.0	54.0	Pass
11053.000	Н	61.2	48.7	74.0	54.0	Pass

Channel:Middle

Frequency	Antenna	Emission Level (dBµV/m)		Limit (dBµV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	neillaik
1662.624	Н	44.9	/	74.0	54.0	Pass
3985.748	V	45.5	/	74.0	54.0	Pass
4377.500	Н	46.2	/	74.0	54.0	Pass
7508.000	V	56.3	44.3	74.0	54.0	Pass
7416.500	Н	56.3	43.9	74.0	54.0	Pass
11026.000	V	61.5	48.9	74.0	54.0	Pass

Channel: High

Frequency	Antenna	nna Emission Level (dBµV/m)		Limit (dBµV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
1333.000	V	48.2	/	74.0	54.0	Pass
1996.375	Н	43.3	/	74.0	54.0	Pass
5127.000	V	49.0	/	74.0	54.0	Pass
8084.000	Н	57.9	45.6	74.0	54.0	Pass
8147.500	V	57.3	44.9	74.0	54.0	Pass
11031.000	Н	61.1	48.9	74.0	54.0	Pass

Report No.: HKEM211200127501 Page: 26 of 30

802.11g

Above 1GHz

Channel:Low

Frequency	Antenna	Antenna Emission Level (dBµV/m)		Limit (dBµV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
1761.248	Н	43.7	/	74.0	54.0	Pass
1793.500	V	46.2	/	74.0	54.0	Pass
4732.500	Н	47.6	/	74.0	54.0	Pass
5974.500	V	50.6	/	74.0	54.0	Pass
8093.500	V	58.1	45.7	74.0	54.0	Pass
8103.0000	Н	57.8	45.7	74.0	54.0	Pass

Channel:Middle

Frequency	Frequency Antenna		Emission Level (dBµV/m)		dBμV/m)	Remark
(MHz)	Polarization	Peak	Average	Peak	Average	neillaik
1999.375	Н	44.8	/	74.0	54.0	Pass
3947.500	Н	45.6	/	74.0	54.0	Pass
4878.000	V	47.5	/	74.0	54.0	Pass
5086.000	Н	48.4	/	74.0	54.0	Pass
8097.500	Н	57.5	45.7	74.0	54.0	Pass
8120.000	V	58.2	45.7	74.0	54.0	Pass

Channel: High

Frequency	Antenna	Emission Level (dBµV/m)		Limit (dBµV/m)		
(MHz)	(MHz) Polarization	Peak	Average	Peak	Averag e	Remark
1997.875	V	47.1	/	74.0	54.0	Pass
3996.250	Н	49.6	/	74.0	54.0	Pass
5143.000	Н	49.2	/	74.0	54.0	Pass
7535.500	Н	56.6	44.0	74.0	54.0	Pass
7973.000	V	57.2	44.7	74.0	54.0	Pass
11609.000	V	61.0	48.5	74.0	54.0	Pass

Report No.: HKEM211200127501 Page: 27 of 30

802.11n20

Above 1GHz

Channel:Low

Frequency	Antenna	Emission Level (dBµV/m)		Limit (dBµV/m)		
(MHz)	Polarization	Peak	Average	Peak	Averag e	Remark
1994.124	Н	47.7	/	74.0	54.0	Pass
3146.124	Н	49.8	/	74.0	54.0	Pass
5257.000	V	47.9	/	74.0	54.0	Pass
7985.500	V	56.9	44.6	74.0	54.0	Pass
8083.000	Н	57.9	45.6	74.0	54.0	Pass
11030.000	Н	60.9	48.9	74.0	54.0	Pass

Channel:Middle

Frequency	Antenna	Emission Level (dBµV/m)		Limit (dBµV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	neillaik
1667.500	Н	46.5	28.4	74.0	54.0	Pass
1763.500	Н	42.7	26.2	74.0	54.0	Pass
5135.000	V	49.0	36.7	74.0	54.0	Pass
8112.500	Н	58.1	45.7	74.0	54.0	Pass
8112.500	V	58.2	45.8	74.0	54.0	Pass
11489.000	Н	61.3	48.9	74.0	54.0	Pass

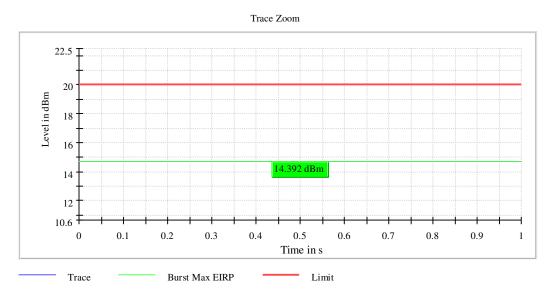
Channel: High

Frequency	Frequency Antenna		Emission Level (dBµV/m)		lBμV/m)	Remark
(MHz)	Polarization	Peak	Average	Peak	Average	neillaik
1805.500	Н	43.1	/	74.0	54.0	Pass
1998.248	Н	45.3	/	74.0	54.0	Pass
5110.500	V	48.8	/	74.0	54.0	Pass
5141.500	Н	49.5	/	74.0	54.0	Pass
7862.500	V	57.9	45.0	74.0	54.0	Pass
7990.500	Н	56.9	44.7	74.0	54.0	Pass

Report No.: HKEM211200127501 Page: 28 of 30

8 Photographs

Remark: Photos refer to Appendix: External Photo, Internal Phot, and Setup Photo


Appendix

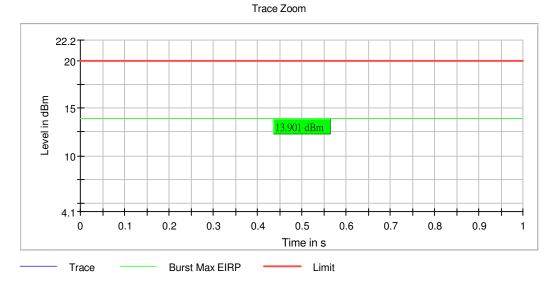
8.1 RF output power

Operation Mode	DUT Frequency (MHz)	Limit Max (dBm)	Gated Level (dBm)	Result
802.11b	2412.000000	30.0	14.1	PASS
802.11b	2442.000000	30.0	14.2	PASS
802.11b	2462.000000	30.0	14.4	PASS
802.11g	2412.000000	30.0	14.2	PASS
802.11g	2442.000000	30.0	14.5	PASS
802.11g	2462.000000	30.0	14.3	PASS
802.11n20	2412.000000	30.0	13.9	PASS
802.11n20	2442.000000	30.0	12.7	PASS
802.11n20	2462.000000	30.0	12.7	PASS

Remark: Antenna gain: 2 dBi

Remark: Cable loss 0.8dB was considered and set in system configuration. (only worst case shown)

802.11b:



Report No.:	HKEM211200127501
Page:	30 of 30

Trace Zoom 23.5 T 20 Level in dBm 15 14.478 dBm 10 4.3 + 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 Time in s Trace Burst Max EIRP Limit

802.11g:

- End of the Report -