

Report No.: HKEM200800087602 Page:

1 of 37

# **TEST REPORT**

| Application No.:                       | HKEM2008000876AT                                                                                                               |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Applicant:                             | VTECH TELECOMMUNICATIONS LTD                                                                                                   |  |  |  |  |
| Address of Applicant:                  | 23/F.,BLOCK 1, TAI PING INDUSTRIAL CENTRE,NO. 57 TING KOK<br>ROAD,TAI PO,N.T.,Hong Kong                                        |  |  |  |  |
| Equipment Under Test (EUT              | ):                                                                                                                             |  |  |  |  |
| EUT Name:                              | Video Baby monitor                                                                                                             |  |  |  |  |
| Model No.:                             | VM5254 BU, VM5254-2 BU, VM5X54-ab BU                                                                                           |  |  |  |  |
| Additional Model:                      | Please refer to section 2 of this report which indicates which item was actually tested and which were electrically identical. |  |  |  |  |
| Standard(s):                           | CFR 47 FCC Part 15, Subpart C, 2019<br>RSS-247 Issue 2: May 2017<br>RSS-Gen: Issue 5 Amdt 2019                                 |  |  |  |  |
| FCC ID:                                | EW780-1920-00                                                                                                                  |  |  |  |  |
| IC:                                    | 1135B-80192000                                                                                                                 |  |  |  |  |
| HVIN:                                  | 35-201286BU                                                                                                                    |  |  |  |  |
| Date of Receipt:                       | 2020-08-20                                                                                                                     |  |  |  |  |
| Date of Test: 2020-08-21 to 2020-08-25 |                                                                                                                                |  |  |  |  |
| Date of Issue:                         | 2019-12-08 (for original report HKEM191100104001)                                                                              |  |  |  |  |
|                                        | 2020-08-28 (for new report HKEM200800083602)                                                                                   |  |  |  |  |
| Test Result:                           | Pass*                                                                                                                          |  |  |  |  |

In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EU Declaration of Conformity and compliance with all relevant EU Directives.

#### Law Man Kit **EMC** Manager

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request and accessible at <a href="http://www.sgs.com/en/Terms-and-conditions.aspx">http://www.sgs.com/en/Terms-and-conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-conditions.aspx">http://www.sgs.com/en/Terms-and-conditions.aspx</a> Attention is drawn to the limitation of liability, indemnification is used selfned therein. Any holder of this document is advised that information contained hereon reflects the Company's indings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to list Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. The document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

SGS Hong Kong Limited

Laboratory: Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong <u>www.sgsgroup.com.hk</u> Office: Units 303 & 305, 3/F, Building 22E, Phase 3, HK Science Park, New Territories, Hong Kong t (852) 2334 4481 f (852) 2764 3126 e mktg.hk@sgs.com



|         | Revision Record               |            |  |             |  |  |  |
|---------|-------------------------------|------------|--|-------------|--|--|--|
| Version | Version Chapter Date Modifier |            |  |             |  |  |  |
| 01      |                               | 2019-12-08 |  | Original    |  |  |  |
| 02      |                               | 2020-08-28 |  | C2PC Change |  |  |  |
|         |                               |            |  |             |  |  |  |
|         |                               |            |  |             |  |  |  |
|         |                               |            |  |             |  |  |  |

| Authorized for issue by: |                          |                  |
|--------------------------|--------------------------|------------------|
|                          | Zen Xn.                  |                  |
|                          | Leo Xu /Project Engineer | Date: 2020-08-27 |
|                          | Lais                     |                  |
|                          | Law Man Kit<br>/Reviewer | Date: 2020-08-28 |



## 2 Test Summary

| Radio Spectrum Mat                                             | Radio Spectrum Matter Part                         |                                                       |                                                             |        |  |  |
|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|--------|--|--|
| Item                                                           | Standard                                           | Method                                                | Requirement                                                 | Result |  |  |
| Conducted<br>Disturbance at AC<br>Power Line(150kHz-<br>30MHz) | CFR 47 FCCPart 15,<br>Subpart C 15.207             | ANSI C63.10: 2013<br>Section 6.2                      | CFR 47 FCCPart<br>15, Subpart C<br>15.207                   | Pass   |  |  |
| Conducted Peak<br>Output Power                                 | CFR 47 FCCPart 15,<br>Subpart C 15.247             | ANSI C63.10: 2013<br>Section 11.9.1.2                 | CFR 47 FCCPart<br>15, Subpart C<br>15.247(b)(3)             | Pass   |  |  |
| Radiated Spurious<br>Emissions                                 | CFR 47 FCCPart 15,<br>Subpart C 15.247             | ANSI C63.10: 2013<br>Section 6.10.4, Section<br>11.11 | CFR 47 FCCPart<br>15, Subpart C<br>15.247(d)                | Pass   |  |  |
| Radiated Emissions<br>which fall in the<br>restricted bands    | CFR 47 FCCPart 15,<br>Subpart C 15.247 &<br>15.209 | ANSI C63.10: 2013<br>Section 6.10.5                   | CFR 47 FCCPart<br>15, Subpart C<br>15.209 &<br>15.247(d)    | Pass   |  |  |
| Conducted<br>Emissions at AC<br>Power Line (150kHz-<br>30MHz)  | RSS-Gen Issue 5:<br>Amdt 2019                      | ANSI C63.10 (2013)<br>Section 6.2                     | RSS-Gen Section<br>8.8                                      | Pass   |  |  |
| Conducted Peak<br>Output Power                                 | RSS-247 Issue 2,<br>February 2017                  | ANSI C63.10 (2013)<br>Section 11.9.1                  | RSS-247 Section<br>5.4(d)                                   | Pass   |  |  |
| Radiated Spurious<br>Emissions                                 | RSS-247 Issue 2,<br>February 2017                  | ANSI C63.10 (2013)<br>Section 11.11                   | RSS-247 Section<br>5.5                                      | Pass   |  |  |
| Radiated Emissions<br>which fall in the<br>restricted bands    | RSS-Gen Issue 5:<br>Amdt 2019                      | ANSI C63.10 (2013)<br>Section 6.4&6.5&6.6             | RSS-247 Section<br>Section 3.3 &<br>RSS-Gen Section<br>8.10 | Pass   |  |  |

## Declaration of EUT Family Grouping:

Item no.:

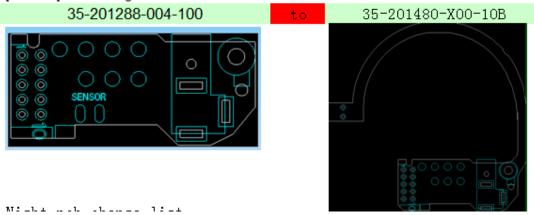
VM5254 BU, VM5254-2 BU, VM5X54-ab BU

a=any alphanumeric character or blank is presenting number of baby unit.

b= any alphanumeric character or blank is presenting color option

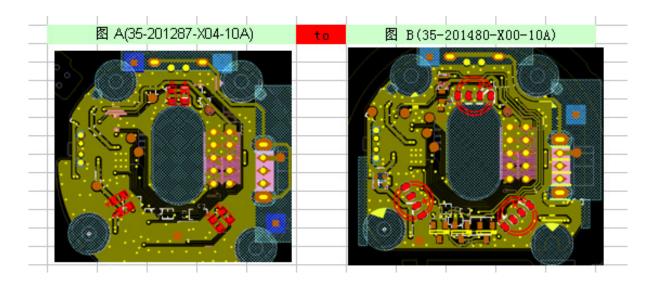
According to the confirmation from the applicant, the above models are identical in all electrical aspects in relating to the circuit design, PCB layout, electrical components used, internal wiring and functions. The differences are only the model/item No, color and decorations.

Therefore only the model VM5254 BU was tested in this report.



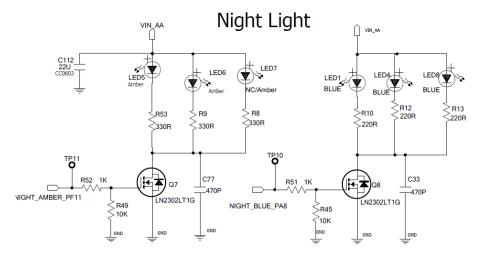

Report No.: HKEM200800087602 Page: 4 of 37

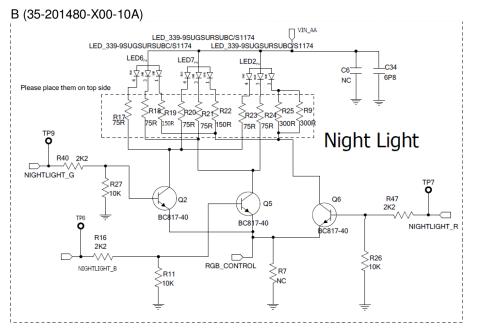
- **Note**: According to the cover letter for C2PC (Class II permissive changes) from the applicant, the change are as bleow based on previous test reports HKEM1910000114001 issued on 2019-12-08.
- 1. Based on original version to change the temperature sensor from outside to inside; See below photo;




2. To change the temperature sensor from outside to inside, The PCB layout of power was updated from 35-201288-004-100 to 35-201480-X00-10B as below




3. The PCB layout of Night Light was changed from surface Mounted technology component to through hole technology component, And the circuit was changed as from A (35-201287-X04-10A to B (35-201480-X00-10A). And the LED component from "19-217/S2C-AM2N2VY/3T(V) \_LED5,LED6,LED7 " and 19-217/G7C-AP1Q2B/3T\_LED1,LED4,LED8" to "YL5ARGB9UCK22/P17-H,\_LED2,LED6,LED7".



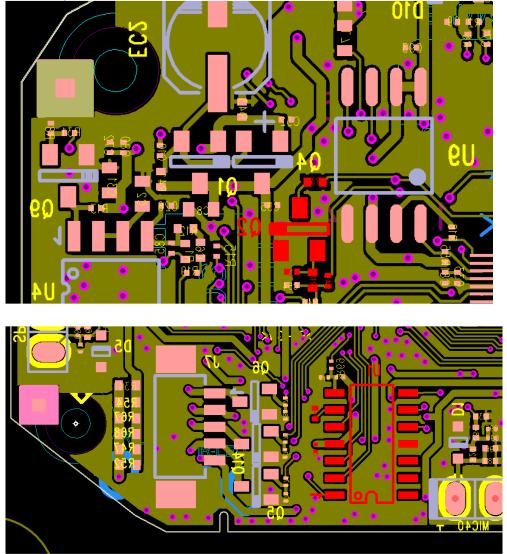




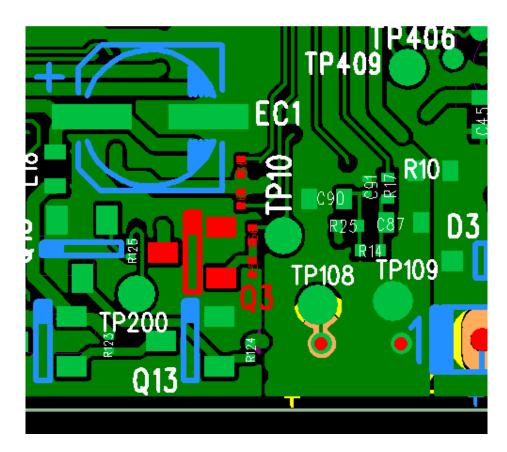

#### A (35-201287-X04-10A)






4. To control the Night sensor and Night light LED, the main PCB layout and circuit were updated and newly added parts as below in SCH&PCB (35-201487-001-100):




New PCB parts: 35-201487-001-100 Schematic: 576 ≤ R30 GND GND 8K2 GND \_ 1% GND GND D R40 OR R18 1K WКО [1] G w Q2 R46 S LN2302LT1G NA6 [ [1] C54 ≤r27 >10K NC NC GND Adaptive night light TP 10 O RG8\_CONTROL [5] R56 1 C53 PWM\_RGB [ Q3 4 LN2302LT1G R57 10k ≥ ÷ - VCC\_33 [1,3,5,6] U1 IC14\_TR4P153CT/CF/SO R61 -R66 ≤4K7 4K7 151 NIGHTLICHT\_R PD1/CA2 PD0/CA1 PB2/CA3 VDD PB1/XIN PBD/XOU PA3/RST PD2/CB1 PD3/CB2 PB3 VSS [5] NIGHTLIGHT\_B [1,3,5,6] VCC\_33 [5] POWER\_LED 2C\_SCL [1] 12C\_SDA [1] PWM\_RGB [5] PAC OSCADJ PA1/IR38K VPP PA2/PWN/8Z/CKI R48 CCC\_33 [1,3,5,6] -//// R5 NC C47 C48 TR4P153CF\_RST [1] 100N 100p -



New PCB parts: 35-201487-001-100 PCB:







According to the changes above, no impact on RF circuit and design. Hence, Conducted Disturbance at AC Power Line; Conducted Peak Output Power and Radiated Emission were re-tested in this report, all other test result were referred to previos report HKEM1910000114001 issued on 2019-12-08.



## 3 Contents

| 1       COVER PAGE       1         2       TEST SUMMARY       3         3       CONTENTS       10         4       GENERAL INFORMATION       11         4.1       DETAILS OF E.U.T.       11         4.2       DESCRIPTION OF SUPPORT UNITS.       12         4.3       MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVEL, K=2)       13         5       EQUIPMENT LIST.       15         6       RADIO SPECTRUM TECHNICAL REQUIREMENT       18         6.1.1       ANTENNA REQUIREMENT       18         6.1.2       Conclusion       18         6.1.3       Conclusion       18         6.2.4       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion       19         6.2.3       Conclusion       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1.1       EUT. Operation       21         7.1.2       CONDUCTED DEAK OUTPUT POWER       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.1.4       EUT. Operation       24                                                                                                                         |   |                                      | Page |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|------|
| 3       CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | COVER PAGE                           | 1    |
| 3       CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | TEST SUMMARY                         |      |
| 4       GENERAL INFORMATION       11         4.1       DETAILS OF E.U.T.       11         4.2       DESCRIPTION OF SUPPORT UNITS.       12         4.3       MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVEL, K=2)       13         5       EQUIPMENT LIST.       15         6       RADIO SPECTRUM TECHNICAL REQUIREMENT       18         6.1       ANTENNA REQUIREMENT       18         6.1.1       Test Requirement:       18         6.1.2       Conclusion       18         6.1.2       Conclusion       19         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion.       19         6.2.4       Test Setup Diagram.       19         6.2.5       Conclusion.       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)       20         7.1.1       EUT. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.2.4       Test Setup Diagram.       24         7.2.3 <td< th=""><th></th><th></th><th></th></td<>                                             |   |                                      |      |
| 4.1       DETAILS OF E. U.T.       11         4.2       DESCRIPTION OF SUPPORT UNITS.       12         4.3       MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVEL, K=2)       13         5       EQUIPMENT LIST.       15         6       RADIO SPECTRUM TECHNICAL REQUIREMENT.       18         6.1       ANTENNA REQUIREMENT.       18         6.1.1       Test Requirement.       18         6.1.2       Conclusion       18         6.2       PSEUDORANDOM FREQUENCY HOPPING SEQUENCE.       19         6.2.1       Test Requirement.       19         6.2.2       Test Requirement.       19         6.2.3       Conclusion       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.2.3       Measurement Procedure and Data       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       26         7.3.1       E.U.T. Operation<                                        | 3 | CONTENTS                             |      |
| 4.2       DESCRIPTION OF SUPPORT UNITS.       12         4.3       MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVEL, K=2)       13         5       EQUIPMENT LIST.       15         6       RADIO SPECTRUM TECHNICAL REQUIREMENT.       18         6.1       ANTENNA REQUIREMENT.       18         6.1       ANTENNA REQUIREMENT.       18         6.1.1       Test Requirement:       18         6.1.2       Conclusion.       18         6.2.9       DESUDOR ANDOM FREQUENCY HOPPING SEQUENCE.       19         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion.       19         6.2.3       Conclusion.       19         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       26         7.3.4       Measurement Procedure and Data       24         7.3.5       Test Setup Diagram.       26                                                                | 4 | GENERAL INFORMATION                  | 11   |
| 4.3       MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVEL, K=2)       13         5       EQUIPMENT LIST       15         6       RADIO SPECTRUM TECHNICAL REQUIREMENT       18         6.1       ANTENNA REQUIREMENT       18         6.1       ANTENNA REQUIREMENT       18         6.1.1       Test Requirement:       18         6.2       PSEUDORANDOM FREQUENCY HOPPING SEQUENCE       19         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)       20         7.1.1       CONDUCTED FACK OUTPUT POWER       21         7.1.2       Test Setup Diagram.       21         7.1.2       Test Setup Diagram.       21         7.1.4       CUNCTED FEAK OUTPUT POWER.       24         7.2.2       Test Setup Diagram.       24         7.3       Measurement Procedure and Data       24         7.3       Measurement Procedure and Data       25         7.3.1       E.U.T. Operation       26         7.3.2       Test Setup Diagram.                                               |   | 4.1 DETAILS OF E.U.T.                |      |
| 5       EQUIPMENT LIST.       15         6       RADIO SPECTRUM TECHNICAL REQUIREMENT.       18         6.1       ANTENNA REQUIREMENT.       18         6.1.1       Test Requirement:       18         6.1.2       Conclusion.       18         6.1.2       Conclusion.       18         6.2.1       Test Requirement:       19         6.2.2       Test Requirement:       19         6.2.3       Conclusion.       19         6.2.3       Conclusion.       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.1.4       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       24         7.3.5       Setup Diagram.       26         7.3.4       Measurement Procedure and Data       27         7.3.4 <td< th=""><th></th><th></th><th></th></td<>                                             |   |                                      |      |
| 6       RADIO SPECTRUM TECHNICAL REQUIREMENT       18         6.1       ANTENNA REQUIREMENT.       18         6.1.1       Test Requirement:       18         6.1.2       Conclusion       18         6.2       PSEUDORANDOM FREQUENCY HOPPING SEQUENCE       19         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram       19         6.2.3       Conclusion       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)       20         7.1.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)       20         7.1.2       Test Setup Diagram       21         7.1.3       Measurement Procedure and Data       21         7.1.4       E.U.T. Operation       24         7.2.2       Test Setup Diagram       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       26         7.3.5       Measurement Procedure and Data       26         7.3.4       Measurement Procedure and Data       28         7.4       Redurement Procedure and Data       28         7.4.3                                          |   |                                      |      |
| 6.1       ANTENNA REQUIREMENT       18         6.1.1       Test Requirement:       18         6.1.2       Conclusion       18         6.1.2       Conclusion       18         6.2       PSEUDORANDOM FREQUENCY HOPPING SEQUENCE       19         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram       19         6.2.3       Conclusion       19         6.2.4       Conclusion       19         6.2.5       Conclusion       19         6.2.6       Conclusion       19         6.2.7       RADIO SPECTRUM MATTER TEST RESULTS       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram       21         7.1.3       Measurement Procedure and Data       21         7.2       Constructure and Data       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       27         7.3.4       Measurement Procedure and Data       27         7.4.3       Measurement Procedure and Data       27         7.4.3 <th>5</th> <th>EQUIPMENT LIST</th> <th>15</th>                                | 5 | EQUIPMENT LIST                       | 15   |
| 6.1.1       Test Requirement:       18         6.1.2       Conclusion.       18         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion.       19         6.2.4       Test Setup Diagram.       19         6.2.5       Conclusion.       19         6.2.6       Conclusion.       19         6.2.7       Test Setup Diagram.       19         6.2.8       Conclusion.       19         6.2.9       Conclusion.       19         6.2.1       Test Setup Diagram.       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.2       CONDUCTED PEAK OUTPUT POWER       24         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       26         7.3.4       Measurement Procedure and Data                                                                                    | 6 | RADIO SPECTRUM TECHNICAL REQUIREMENT |      |
| 6.1.1       Test Requirement:       18         6.1.2       Conclusion.       18         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion.       19         6.2.4       Test Setup Diagram.       19         6.2.5       Conclusion.       19         6.2.6       Conclusion.       19         6.2.7       Test Setup Diagram.       19         6.2.8       Conclusion.       19         6.2.9       Conclusion.       19         6.2.1       Test Setup Diagram.       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.2       CONDUCTED PEAK OUTPUT POWER       24         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       26         7.3.4       Measurement Procedure and Data                                                                                    |   | 6.1 ANTENNA REQUIREMENT              |      |
| 6.2       PSEUDORANDOM FREQUENCY HOPPING SEQUENCE       19         6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion.       19         6.2.4       Conclusion.       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1.1       E.U.T. Operation       21         7.1.2       E.U.T. Operation       21         7.1.3       Measurement Procedure and Data       21         7.2       ConsDucted PEak OUTPUT POWER       24         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       26         7.3.3       Measurement Procedure and Data       26                                                                                                   |   |                                      |      |
| 6.2.1       Test Requirement:       19         6.2.2       Test Setup Diagram.       19         6.2.3       Conclusion.       19         7       RADIO SPECTRUM MATTER TEST RESULTS.       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.2       CONDUCTED PAK OUTPUT POWER       24         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       24         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       24         7.2.3       Measurement Procedure and Data       24         7.3       RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.       25         7.3.1       E.U.T. Operation       26         7.3.2       Test Setup Diagram.       26         7.3.3       Measurement Procedure and Data       27         7.3.4       Measurement Procedure and Data       27         7.4       RADIATED SPURIOUS EMISSIONS       28         7.4       RADIATED SPURIOUS EMISSIONS<                                        |   |                                      |      |
| 6.2.2       Test Setup Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                      |      |
| 6.2.3       Conclusion       19         7       RADIO SPECTRUM MATTER TEST RESULTS       20         7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram       21         7.1.3       Measurement Procedure and Data       21         7.2       CONDUCTED PEAK OUTPUT POWER       24         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram       24         7.2.3       Measurement Procedure and Data       24         7.2.3       Measurement Procedure and Data       24         7.3.4       Measurement Procedure and Data       26         7.3.3       Measurement Procedure and Data       26         7.3.4       Measurement Procedure and Data       27         7.3.4       Measurement Procedure and Data       28         7.4       RADIATED SPURIOUS EMISSIONS       29         7.4.1       E.U.T. Operation       30         7.4.2       Test Setup Diagram       30         7.4.3       Measurement Procedure and Data       30         7.4.4       E.U.T. Operation       30         7.4.3       Measurement Proce                                        |   |                                      |      |
| 7RADIO SPECTRUM MATTER TEST RESULTS207.1CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)207.1.1E.U.T. Operation217.1.2Test Setup Diagram.217.1.3Measurement Procedure and Data217.2CONDUCTED PEAK OUTPUT POWER.247.2.1E.U.T. Operation247.2.2Test Setup Diagram.247.2.3Measurement Procedure and Data247.3Measurement Procedure and Data247.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS257.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and Data277.3.4Measurement Procedure and Data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                      |      |
| 7.1       CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)       20         7.1.1       E.U.T. Operation       21         7.1.2       Test Setup Diagram.       21         7.1.3       Measurement Procedure and Data       21         7.2       CONDUCTED PEAK OUTPUT POWER       24         7.2.1       E.U.T. Operation       24         7.2.2       Test Setup Diagram.       24         7.2.3       Measurement Procedure and Data       24         7.2.4       Test Setup Diagram.       24         7.2.5       Measurement Procedure and Data       24         7.2.3       Measurement Procedure and Data       24         7.3       Rabiated Emissions which Fall in the RESTRICTED BANDS       25         7.3.1       E.U.T. Operation       26         7.3.2       Test Setup Diagram.       26         7.3.3       Measurement Procedure and Data       27         7.3.4       Measurement Procedure and data       28         7.4       Radiated Spunious Emissions       29         7.4.1       E.U.T. Operation       30         7.4.2       Test Setup Diagram.       30         7.4.3       Measurement Procedure and Data       31         8 <td< th=""><th></th><th></th><th></th></td<> |   |                                      |      |
| 7.1.1E.U.T. Operation217.1.2Test Setup Diagram.217.1.3Measurement Procedure and Data217.1.3Measurement Procedure and Data217.2CONDUCTED PEAK OUTPUT POWER.247.2.1E.U.T. Operation247.2.2Test Setup Diagram.247.2.3Measurement Procedure and Data247.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS257.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 |                                      |      |
| 7.1.2Test Setup Diagram.217.1.3Measurement Procedure and Data217.2CONDUCTED PEAK OUTPUT POWER.247.2.1E.U.T. Operation247.2.2Test Setup Diagram.247.2.3Measurement Procedure and Data247.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.257.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and Data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS.359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                      |      |
| 7.1.3Measurement Procedure and Data217.2CONDUCTED PEAK OUTPUT POWER247.2.1E.U.T. Operation247.2.2Test Setup Diagram247.2.3Measurement Procedure and Data247.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS257.3.1E.U.T. Operation267.3.2Test Setup Diagram267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and Data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | •                                    |      |
| 7.2CONDUCTED PEAK OUTPUT POWER.247.2.1E.U.T. Operation247.2.2Test Setup Diagram.247.2.3Measurement Procedure and Data247.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.257.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                      |      |
| 7.2.1E.U.T. Operation247.2.2Test Setup Diagram.247.2.3Measurement Procedure and Data247.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.257.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and Data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                                      |      |
| 7.2.2Test Setup Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                      |      |
| 7.2.3Measurement Procedure and Data247.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.257.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | •                                    |      |
| 7.3RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.257.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 1 0                                  |      |
| 7.3.1E.U.T. Operation267.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                      |      |
| 7.3.2Test Setup Diagram.267.3.3Measurement Procedure and Data277.3.4Measurement Procedure and data287.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram.307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                      |      |
| 7.3.4 Measurement Procedure and data287.4 RADIATED SPURIOUS EMISSIONS297.4.1 E.U.T. Operation307.4.2 Test Setup Diagram307.4.3 Measurement Procedure and Data318 PHOTOGRAPHS359 APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | •                                    |      |
| 7.4RADIATED SPURIOUS EMISSIONS297.4.1E.U.T. Operation307.4.2Test Setup Diagram307.4.3Measurement Procedure and Data318PHOTOGRAPHS359APPENDIX36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                      |      |
| 7.4.1       E.U.T. Operation       30         7.4.2       Test Setup Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                      |      |
| 7.4.2Test Setup Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                      |      |
| 7.4.3 Measurement Procedure and Data       31         8 PHOTOGRAPHS       35         9 APPENDIX       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | •                                    |      |
| 8         PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 1 0                                  |      |
| 9 APPENDIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 | PHOTOGRAPHS                          |      |
| 9.1 PEAK OUTPUT POWER (SWEEP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 | APPENDIX                             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 9.1 PEAK OUTPUT POWER (SWEEP)        |      |



## 4 General Information

## 4.1 Details of E.U.T.

| Power supply:          | AC 120 V, 60 Hz                               |
|------------------------|-----------------------------------------------|
| Adapter                | Adaptor 1:                                    |
|                        | AC 100-240V ~ 50/60Hz 150mA to DC 5.0V 600 mA |
|                        | Model no: S003GU0500060                       |
|                        | Adaptor 2:                                    |
|                        | AC 100-240V ~ 50/60Hz 150mA to DC 5.0V 600 mA |
|                        | Model no: VT05EUS05060                        |
| Cable                  | Power Cable: 205cm unshielded 2-wire AC cable |
| Funtion                | Monitoring Device                             |
| Test Voltage           | AC120 V 60 Hz                                 |
| Operation Frequency:   | 2405-2475MHz                                  |
| Channel Numbers:       | 16                                            |
| Channel Separation:    | ≥ 2MHz                                        |
| Type of Modulation:    | Frequency Hopping Spread Spectrum (FHSS)      |
| Sample Type:           | Indoor                                        |
| Antenna Type:          | Dipole                                        |
| Declared Antenna Gain: | 0 dBi                                         |
| Series Number:         | A1                                            |
| Hardware Version:      | V001                                          |
| Software Version:      | V0101                                         |
| Frequency List         |                                               |

| Channel<br>Number | TX Freq (MHz) | Channel<br>Number | TX Freq (MHz) | Channel<br>Number | TX Freq (MHz) |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|
| 1                 | 2405          | 12                | 2428          | 23                | 2454          |
| 2                 | 2407          | 13                | 2430          | 24                | 2456          |
| 3                 | 2409          | 14                | 2433          | 25                | 2458.5        |
| 4                 | 2411          | 15                | 2435          | 26                | 2460.5        |
| 5                 | 2413          | 16                | 2437          | 27                | 2462.5        |
| 6                 | 2415          | 17                | 2439          | 28                | 2467          |
| 7                 | 2418          | 18                | 2441          | 29                | 2469          |
| 8                 | 2420          | 19                | 2444          | 30                | 2471          |
| 9                 | 2422          | 20                | 2446          | 31                | 2473          |
| 10                | 2424          | 21                | 2450          | 32                | 2475          |
| 11                | 2426          | 22                | 2452          |                   |               |

Remark: 1. Operation channel is only 16.

2. Testing Channels are highlighted in **bold**.



## 4.2 Description of Support Units

The EUT has been tested with corresponding accessories as below: Supplied by client

| Description     | Manufacturer      | Model No.         | SN/Certificate NO |
|-----------------|-------------------|-------------------|-------------------|
| UART Test board | N/A               | MX3232            | N/A               |
| Test Software   | MicroRidge System | Version 3.0.0.108 | N/A               |

Supplied by SGS:

| Description     | Manufacturer | Model No. | SN/Certificate NO |
|-----------------|--------------|-----------|-------------------|
| NoteBook (EMC2) | Dell         | P75F      | N/A               |



### 4.3 Measurement Uncertainty(95% confidence level, k=2)

| No. | Item                            | Measurement Uncertainty   |
|-----|---------------------------------|---------------------------|
| 1   | Radio Frequency                 | ± 7.25 x 10 <sup>-8</sup> |
| 2   | Duty cycle                      | ± 0.37%                   |
| 3   | Occupied Bandwidth              | ± 3%                      |
| 4   | Conduction emission             | ± 3.0dB (150kHz to 30MHz) |
| 5   | RF conducted power              | ± 0.75dB                  |
| 6   | RF power density                | ± 2.84dB                  |
| 7   | Conducted Spurious emissions    | ± 0.75dB                  |
|     |                                 | ± 4.5dB (Below 1GHz)      |
| 8   | RF Radiated power               | ± 4.8dB (Above 1GHz)      |
|     |                                 | ± 4.5dB (Below 1GHz)      |
| 9   | Radiated Spurious emission test | ± 4.8dB (Above 1GHz)      |
| 10  | Temperature test                | ± 1 ℃                     |
| 11  | Humidity test                   | ± 3%                      |
| 12  | Supply voltages                 | ± 1.5%                    |
| 13  | Time                            | ± 3%                      |

Remark:

The  $U_{\text{lab}}$  (lab Uncertainty) is less than  $U_{\text{cispr}}$  (CISPR Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;

- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

According to decision rule based on Clause 4.2 of CISPR 16-4-2, the EUT complied with the standards specified above.



### 4.4 Test Location

All tests were performed at:

SGS Hong Kong Limited

Unit 2 and 3, G/F, Block A, Po Lung Centre,

11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong

Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

### 4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • HOKLAS (Lab Code: 009)

SGS HONG KONGLimited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2017 an it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

#### IAS Accreditation (Lab Code: TL-187)

SGS HONG KONGLimited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government.

#### • FCC Recognized Accredited Test Firm(CAB Registration No.: 514599)

SGS HONG KONG Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599.

#### • Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015)

SGS HONG KONG Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103.

#### 4.6 Deviation from Standards

None

#### 4.7 Abnormalities from Standard Conditions

None



# 5 Equipment List

| Conducted Emissions at Mains Terminals (150kHz-30MHz) |                 |                         |              |           |              |  |
|-------------------------------------------------------|-----------------|-------------------------|--------------|-----------|--------------|--|
| Equipment                                             | Manufacturer    | Model No                | Inventory No | Cal Date  | Cal Due Date |  |
| EMI Test Receiver 9kHz<br>to 3.6GHz                   | Rohde & Schwarz | ESR3 / 102326           | E231         | 2019/9/2  | 2020/9/1     |  |
| Signal Generator                                      | Rohde & Schwarz | SMT03                   | E177         | 2020/5/11 | 2021/5/10    |  |
| Artificial Mains Network<br>(LISN)                    | Schwarzbeck     | NSLK 8127 /<br>8127312  | TE10         | 2020/5/11 | 2021/5/10    |  |
| Impulse Limiter                                       | Rohde & Schwarz | ESH-3-Z2 /<br>357881052 | TE36         | 2020/5/11 | 2021/5/10    |  |
| EMC32 Test Software                                   | R&S             | Version 10              | N/A          |           |              |  |

| Radiated Spurious Emissions (30MHz-1GHz)                 |                 |               |              |            |              |
|----------------------------------------------------------|-----------------|---------------|--------------|------------|--------------|
| Equipment                                                | Manufacturer    | Model No      | Inventory No | Cal Date   | Cal Due Date |
| 3m Semi-Anechoic<br>Chamber                              | ChamPro         | N/A           | E229         | 2020/8/9   | 2021/8/8     |
| Coaxial Cable                                            | SGS             | N/A           | E167         | 2020/7/20  | 2021/7/19    |
| EMI Test Receiver<br>9kHz to 7GHz                        | Rohde & Schwarz | ESR7 / 102298 | E314         | 2020/5/18  | 2021/5/17    |
| TRILOG Super Broadb.<br>Test Antenna,<br>(25) 30-1000MHz | Schwarzbeck     | VULB 9168     | E264         | 2018/10/20 | 2020/10/19   |
| Boresight Mast<br>Controller                             | ChamPro         | AM-BS-4500-E  | E237         |            |              |
| Turntable with Controller                                | ChamPro         | EM1000        | E238         |            |              |
| EMC32 Test Software                                      | R&S             | Version 10    | N/A          |            |              |

| Radiated Spurious Emissions (above 1GHz) |              |          |              |           |              |  |
|------------------------------------------|--------------|----------|--------------|-----------|--------------|--|
| Equipment                                | Manufacturer | Model No | Inventory No | Cal Date  | Cal Due Date |  |
| 3m Semi-Anechoic<br>Chamber              | ChamPro      | N/A      | E229         | 2020/8/9  | 2021/8/8     |  |
| Coaxial Cable                            | SGS          | N/A      | E167         | 2020/7/20 | 2021/7/19    |  |



| EMC32 Test Software                                       | R&S             | Version 10                   | N/A    |            |            |
|-----------------------------------------------------------|-----------------|------------------------------|--------|------------|------------|
| Turntable with Controller                                 | ChamPro         | EM1000                       | E238   |            |            |
| Boresight Mast<br>Controller                              | ChamPro         | AM-BS-4500-E                 | E237   |            |            |
| RF cable SMA to SMA<br>10000mm                            | HUBER+SUHNER    | SF104-<br>26.5/2*11SMA<br>45 | E207-1 | 2019/9/26  | 2020/9/25  |
| Band Reject Filter<br>2.4-2.5GHz                          | Wainwright      | WRCJV<br>2400/2500-<br>2100  | E206   | 2019/4/24  | 2021/4/23  |
| Highpass Filter<br>3.5-26.5GHz                            | Wainwright      | WHNX3.5/26.5<br>G-6SS        | E205   | 2019/4/24  | 2021/4/23  |
| Broadband Coaxial<br>Preamplifier typ. 30 dB,<br>18-40GHz | Schwarzbeck     | BBV 9721                     | E266   | 2019/8/22  | 2021/8/21  |
| Preamplifier 33dB,<br>18 - 26.5GHz                        | Schwarzbeck     | BBV9719                      | E215   | 2019/4/24  | 2021/4/23  |
| Preamplifier 33dB,<br>1 - 18GHz                           | Schwarzbeck     | BBV9718                      | E214   | 2020/4/14  | 2021/4/12  |
| Horn Antenna<br>15 - 40GHz                                | Schwarzbeck     | BBHA9170                     | E212   | 2020/01/29 | 2022/01/28 |
| 9kHz - 30GHz<br>Horn Antenna 1 - 18GHz                    | Schwarzbeck     | BBHA9120D                    | E204   | 2020/1/29  | 2022/1/29  |
| Spectrum Analyzer                                         | Rohde & Schwarz | FSP30                        | E204   | 2020/5/11  | 2021/5/10  |
| Signal and Spectrum<br>Analyzer 2Hz - 26.5GHz             | Rohde & Schwarz | FSW26                        | E296   | 2019/10/29 | 2020/10/28 |
| EMI Test Receiver<br>9kHz to 7GHz                         | Rohde & Schwarz | ESR7 / 102298                | E314   | 2020/5/18  | 2021/5/17  |

| General used equipment                     |              |              |              |            |              |
|--------------------------------------------|--------------|--------------|--------------|------------|--------------|
| Equipment                                  | Manufacturer | Model No     | Inventory No | Cal Date   | Cal Due Date |
| Digital temperature & humidity data logger | SATO         | SK-L200TH II | E232         | 2019/10/28 | 2020/10/27   |



| Electronic Digital<br>Thermometer with<br>Hygrometer | nil                              | 2074/2075 | E159 | 2019/10/28 | 2020/10/27 |
|------------------------------------------------------|----------------------------------|-----------|------|------------|------------|
| Barometer with digital thermometer                   | SATO                             | 7612-00   | E218 | 2020/04/23 | 2021/04/22 |
| Conditional Chamber                                  | Zhong Zhi Testing<br>Instruments | CZ-E-608D | E216 | 2020/08/21 | 2021/08/20 |



## 6 Radio Spectrum Technical Requirement

### 6.1 Antenna Requirement

#### 6.1.1 Test Requirement:

FCC Part 15 Subpart C Section 15.247 & 15.203

**RSS-Gen Section 8.3** 

#### 6.1.2 Conclusion

Standard Requirement:

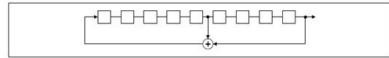
Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

#### EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Photo of antenna refer to Appendix – Internal photo.






#### 6.2 Pseudorandom Frequency Hopping Sequence

#### 6.2.1 Test Requirement:

FCC Part 15 Subpart C Section 15.247(a)(1) RSS-247 Section 5.1(a)

#### 6.2.2 Test Setup Diagram



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

| 20 62 46 77 | 7 64 | 8 73 | 16 75 1 |
|-------------|------|------|---------|
|             |      |      |         |
|             |      |      |         |
|             |      |      |         |

#### 6.2.3 Conclusion

Standard Requirement:

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



## 7 Radio Spectrum Matter Test Results

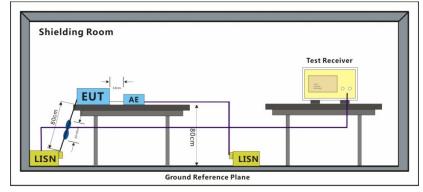
## 7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement47 CFR Part 15, Subpart C 15.207, RSS-Gen Section 8.8Test Method:ANSI C63.10 (2013) Section 6.2Limit:

|                            | Conducted limit(dBµV) |           |  |  |
|----------------------------|-----------------------|-----------|--|--|
| Frequency of emission(MHz) | Quasi-peak            | Average   |  |  |
| 0.15-0.5                   | 66 to 56*             | 56 to 46* |  |  |
| 0.5-5                      | 56                    | 46        |  |  |
| 5-30                       | 60                    | 50        |  |  |



#### 7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 22.5 °C Humidity: 51.2 % RH :

Test mode a:TX\_Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).

Pretest on Adaptor 1 and Adaptor 2, and only show worse result on Adaptor 2 in report.

#### 7.1.2 Test Setup Diagram

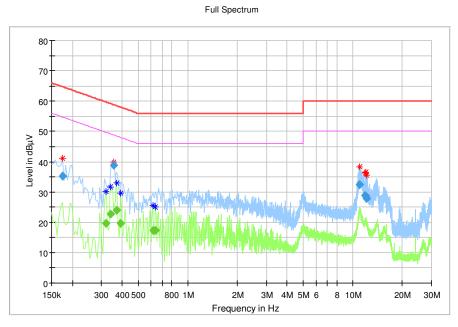


#### 7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

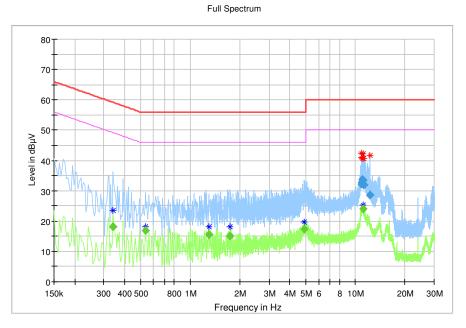
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor




## Mode:a; Line:Live Line



| Frequency | QuasiPeak | Average | Limit  | Margin | Corr. | Description |
|-----------|-----------|---------|--------|--------|-------|-------------|
| (MHz)     | (dBµV)    | (dBµV)  | (dBµV) | (dB)   | (dB)  | Result      |
| 0.174000  | 35.31     |         | 64.77  | 29.45  | 10.1  | Pass        |
| 0.318000  |           | 19.57   | 49.76  | 30.19  | 10.1  | Pass        |
| 0.342000  |           | 22.65   | 49.16  | 26.50  | 10.1  | Pass        |
| 0.354000  | 38.81     |         | 58.87  | 20.06  | 10.1  | Pass        |
| 0.370000  |           | 23.97   | 48.50  | 24.53  | 10.1  | Pass        |
| 0.390000  |           | 19.66   | 48.06  | 28.40  | 10.1  | Pass        |
| 0.614000  |           | 17.38   | 46.00  | 28.62  | 10.1  | Pass        |
| 0.634000  |           | 17.28   | 46.00  | 28.72  | 10.1  | Pass        |
| 10.978000 | 32.41     |         | 60.00  | 27.59  | 10.7  | Pass        |
| 11.922000 | 28.85     |         | 60.00  | 31.15  | 10.8  | Pass        |
| 12.022000 | 28.55     |         | 60.00  | 31.45  | 10.8  | Pass        |
| 12.146000 | 27.92     |         | 60.00  | 32.08  | 10.8  | Pass        |



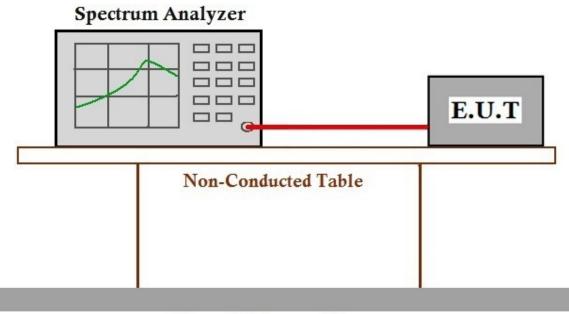
## Line: Neutral Line



| Frequency | QuasiPeak | Average | Limit  | Margin | Corr. | Description |
|-----------|-----------|---------|--------|--------|-------|-------------|
| (MHz)     | (dBµV)    | (dBµV)  | (dBµV) | (dB)   | (dB)  | Result      |
| 0.342000  |           | 18.13   | 49.16  | 31.02  | 10.0  | Pass        |
| 0.538000  |           | 16.83   | 46.00  | 29.17  | 10.1  | Pass        |
| 1.294000  |           | 15.71   | 46.00  | 30.29  | 10.3  | Pass        |
| 1.734000  |           | 15.03   | 46.00  | 30.97  | 10.4  | Pass        |
| 4.894000  |           | 17.35   | 46.00  | 28.65  | 10.6  | Pass        |
| 10.890000 | 32.23     |         | 60.00  | 27.77  | 11.0  | Pass        |
| 10.926000 | 32.81     |         | 60.00  | 27.19  | 11.0  | Pass        |
| 11.002000 | 33.80     |         | 60.00  | 26.20  | 11.0  | Pass        |
| 11.110000 | 33.38     |         | 60.00  | 26.62  | 11.0  | Pass        |
| 11.146000 |           | 24.10   | 50.00  | 25.90  | 11.0  | Pass        |
| 11.258000 | 31.86     |         | 60.00  | 28.14  | 11.0  | Pass        |
| 12.230000 | 28.67     |         | 60.00  | 31.33  | 11.2  | Pass        |



## 7.2 Conducted Peak Output Power


| Test Requirement                       | 47 CFR Part 15, Subpart C 15.247:2019(b)(1) & 15.247(b)(3), RSS-247 |
|----------------------------------------|---------------------------------------------------------------------|
|                                        | Section 5.4(b)                                                      |
| Test Method:<br>7.2.1 E.U.T. Operation | ANSI C63.10 (2013) Section 7.8.5                                    |
|                                        |                                                                     |

Operating Environment:

| Temperature: | 22.5 | °C | Humidity: | 51.2 | % RH | : |
|--------------|------|----|-----------|------|------|---|
|--------------|------|----|-----------|------|------|---|

Test mode a:TX\_Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).

#### 7.2.2 Test Setup Diagram



## **Ground Reference Plane**

#### 7.2.3 Measurement Procedure and Data

The detailed test data see section 9: Appendix



### 7.3 Radiated Emissions which fall in the restricted bands

| Test Requirement | 47 CFR Part 15, Subpart C 15.209 & 15.247(d), Section 3.3 & |
|------------------|-------------------------------------------------------------|
|                  | RSS-Gen Section 8.10                                        |
| Test Method:     | ANSI C63.10 (2013) Section 6.10.5                           |
| Limit:           |                                                             |

## Table 5 - General field strength limits at frequencies above 30 MHz

| Frequency<br>(MHz) | Field strength<br>( µ V/m at 3 m) |
|--------------------|-----------------------------------|
| 30 - 88            | 100                               |
| 88 - 216           | 150                               |
| 216 - 960          | 200                               |
| Above 960          | 500                               |

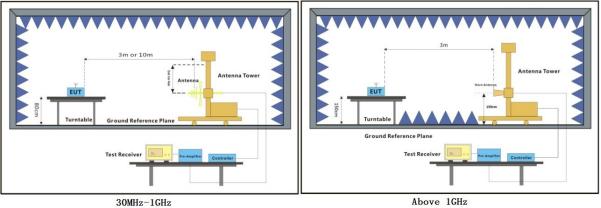
## Table 6 - General field strength limits at frequencies below 30 MHz

| Frequency      | Magnetic field strength<br>(H-Field)<br>( µ A/m) | Measurement distance<br>(m) |
|----------------|--------------------------------------------------|-----------------------------|
| 9 - 490 kHz 1  | 6.37/F (F in kHz)                                | 300                         |
| 490 - 1705 kHz | 63.7/F (F in kHz)                                | 30                          |
| 1.705 - 30 MHz | 0.08                                             | 30                          |

**Note 1:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.



:


## 7.3.1 E.U.T. Operation

Operating Environment:

|  | Temperature: | 22.5 | °C | Humidity: | 51.2 | % RH |  |
|--|--------------|------|----|-----------|------|------|--|
|--|--------------|------|----|-----------|------|------|--|

Test mode a:TX\_Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).

## 7.3.2 Test Setup Diagram





#### 7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



#### 7.3.4 Measurement Procedure and data

| Frequency<br>(MHz) | Antenna<br>Polarizatio | Emission Level<br>(dBµV/m) |         | Limit (dBµV/m) |         | Remark |
|--------------------|------------------------|----------------------------|---------|----------------|---------|--------|
|                    | n                      | Peak                       | Average | Peak           | Average |        |
| 2390.000           | Н                      | 50.1                       | /       | 74.0           | 54.0    | Pass   |
| 2483.500           | Н                      | 49.2                       | /       | 74.0           | 54.0    | Pass   |
| 2390.000           | V                      | 52.1                       | /       | 74.0           | 54.0    | Pass   |
| 2483.500           | V                      | 50.3                       | /       | 74.0           | 54.0    | Pass   |



## 7.4 Radiated Spurious Emissions

Test RequirementSection 3.3 & RSS-Gen Section 8.9Test Method:ANSI C63.10 (2013) Section 6.4&6.5&6.6Limit:

## Table 5 - General field strength limits at frequencies above 30 MHz

| Frequency<br>(MHz) | Field strength<br>( μ V/m at 3 m) |
|--------------------|-----------------------------------|
| 30 - 88            | 100                               |
| 88 - 216           | 150                               |
| 216 - 960          | 200                               |
| Above 960          | 500                               |

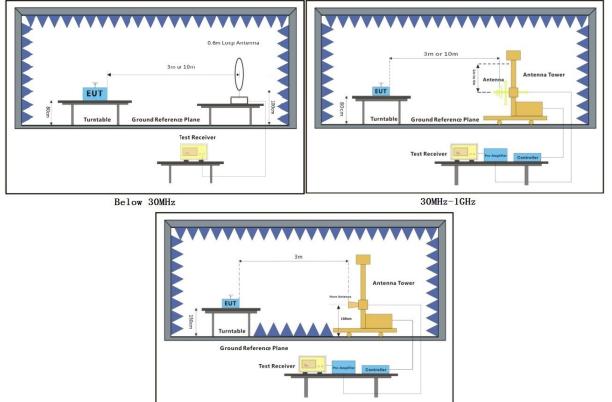
| Table 6 - | General field strength limits at frequencies below 30 MHz |
|-----------|-----------------------------------------------------------|
|-----------|-----------------------------------------------------------|

| Frequency      | Magnetic field strength<br>(H-Field)<br>( µ A/m) | Measurement distance<br>(m) |
|----------------|--------------------------------------------------|-----------------------------|
| 9 - 490 kHz 1  | 6.37/F (F in kHz)                                | 300                         |
| 490 - 1705 kHz | 63.7/F (F in kHz)                                | 30                          |
| 1.705 - 30 MHz | 0.08                                             | 30                          |

**Note 1:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.



:


## 7.4.1 E.U.T. Operation

Operating Environment:

|  | Temperature: | 22.5 | °C | Humidity: | 51.2 | % RH |  |
|--|--------------|------|----|-----------|------|------|--|
|--|--------------|------|----|-----------|------|------|--|

Test mode a:TX\_Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).

## 7.4.2 Test Setup Diagram



Above 1GHz



#### 7.4.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fullyanechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

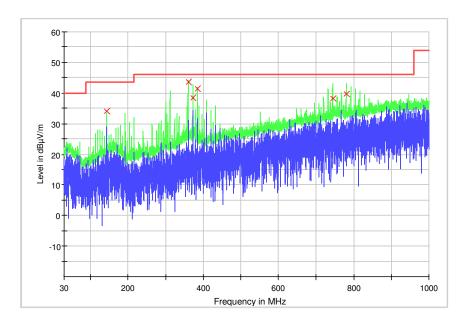
j. Repeat above procedures until all frequencies measured was complete.

#### Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

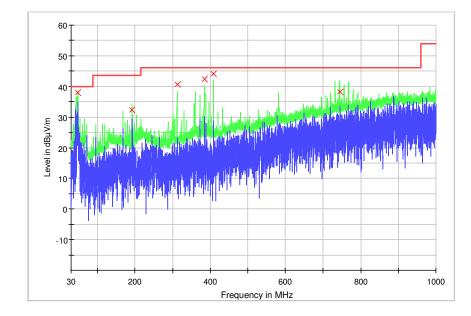

3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



### Radiated emission below 1GHz

Horizontal (worse plots was shown as below)




| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Pol. | Corr.<br>(dB/m) | Margin<br>(dB) | Limit<br>(dBµV/m) | Result |
|--------------------|-----------------------|------|-----------------|----------------|-------------------|--------|
| 143.950000         | 34.1                  | Н    | 13.6            | 9.4            | 43.5              | Pass   |
| 360.010000         | 43.5                  | Н    | 15.8            | 2.5            | 46.0              | Pass   |
| 371.905000         | 38.5                  | н    | 16.2            | 7.5            | 46.0              | Pass   |
| 383.995000         | 41.5                  | н    | 16.3            | 4.5            | 46.0              | Pass   |
| 744.062500         | 38.1                  | Н    | 24.2            | 7.9            | 46.0              | Pass   |
| 780.040000         | 39.7                  | Н    | 24.4            | 6.3            | 46.0              | Pass   |

## Remark:

- 1. All readings are Quasi-Peak values.
- 2. Correction Factor = Antenna Factor + Cable Loss.
- 3. Pol. = antenna polarization





## Vertical (worse plots was shown as below)

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Pol. | Corr.<br>(dB/m) | Margin<br>(dB) | Limit<br>(dBµV/m) | Result |
|--------------------|-----------------------|------|-----------------|----------------|-------------------|--------|
| 48.010000          | 38.0                  | v    | 14.2            | 2.0            | 40.0              | Pass   |
| 191.920000         | 32.4                  | v    | 11              | 11.2           | 43.5              | Pass   |
| 312.040000         | 40.6                  | v    | 14.8            | 5.4            | 46.0              | Pass   |
| 383.995000         | 42.3                  | v    | 16.3            | 3.7            | 46.0              | Pass   |
| 407.980000         | 44.0                  | v    | 16.4            | 2.0            | 46.0              | Pass   |
| 744.062500         | 38.3                  | v    | 24.2            | 7.7            | 46.0              | Pass   |

#### Remark:

- 1. All readings are Quasi-Peak values.
- 2. Correction Factor = Antenna Factor + Cable Loss.
- 3. Pol. = antenna polarization



## Above 1GHz

| Channel:L | ow                    |          |         |          |             |        |
|-----------|-----------------------|----------|---------|----------|-------------|--------|
| Frequency | Antenna<br>Polarizati | (dBuV/m) |         | Limit (d | BμV/m)      | Remark |
| (MHz)     | on                    | Peak     | Average | Peak     | Avera<br>ge | Hemark |
| 1158.003  | Н                     | 37.6     | /       | 74.0     | 54.0        | Pass   |
| 2281.462  | V                     | 43.7     | /       | 74.0     | 54.0        | Pass   |
| 3493.007  | Н                     | 44.1     | /       | 74.0     | 54.0        | Pass   |
| 4602.555  | Н                     | 47.8     | /       | 74.0     | 54.0        | Pass   |
| 6628.362  | V                     | 52.9     | /       | 74.0     | 54.0        | Pass   |
| 8760.027  | Н                     | 54.3     | 43.5    | 74.0     | 54.0        | Pass   |

## Channel:Middle

| Frequency | Antenna<br>Polarizat |      |         | Limit (dl | BμV/m)      | Remark |
|-----------|----------------------|------|---------|-----------|-------------|--------|
| (MHz)     | ion                  | Peak | Average | Peak      | Avera<br>ge | nemark |
| 1841.253  | Н                    | 35.2 | /       | 74.0      | 54.0        | Pass   |
| 2970.240  | V                    | 43.5 | /       | 74.0      | 54.0        | Pass   |
| 3236.013  | V                    | 46.7 | /       | 74.0      | 54.0        | Pass   |
| 4497.006  | V                    | 48.7 | /       | 74.0      | 54.0        | Pass   |
| 6560.026  | V                    | 53.7 | /       | 74.0      | 54.0        | Pass   |
| 8607.149  | V                    | 57.4 | 47.5    | 74.0      | 54.0        | Pass   |

## Channel: High

| Frequency | Antenna<br>Polarizati | (dBuV/m) |         | Limit (d | BμV/m)      | Remark |
|-----------|-----------------------|----------|---------|----------|-------------|--------|
| (MHz)     | on                    | Peak     | Average | Peak     | Avera<br>ge | Hemark |
| 1236.281  | Н                     | 38.2     | /       | 74.0     | 54.0        | Pass   |
| 3498.570  | V                     | 45.3     | /       | 74.0     | 54.0        | Pass   |
| 4514.093  | Н                     | 43.7     | /       | 74.0     | 54.0        | Pass   |
| 5607.486  | Н                     | 47.5     | /       | 74.0     | 54.0        | Pass   |
| 7706.259  | Н                     | 49.2     | /       | 74.0     | 54.0        | Pass   |
| 9834.021  | V                     | 56.2     | 47.2    | 74.0     | 54.0        | Pass   |



Report No.: HKEM200800087602 Page: 35 of 37

# 8 Photographs

Remark: Photos refer to Appendix: External Photo, Internal Photo, Setup Photo of HKEM2008000876AT



# 9 Appendix

## 9.1 Peak output power (Sweep)

| DUT Frequency<br>(MHz) | Measured<br>Conducted<br>Power<br>(dBm) | Cable Loss<br>(dB) | Final<br>Result<br>(dBm) | Limit Max<br>(dBm) | Result |
|------------------------|-----------------------------------------|--------------------|--------------------------|--------------------|--------|
| 2405.000000            | 14.2                                    | 0.2                | 14.4                     | 21.0               | PASS   |
| 2439.000000            | 13.0                                    | 0.2                | 13.2                     | 21.0               | PASS   |
| 2475.000000            | 11.4                                    | 0.2                | 11.6                     | 21.0               | PASS   |

|                | 30.00 dBm |     |         | RBW 3 MH         |         |            |           |                                 |
|----------------|-----------|-----|---------|------------------|---------|------------|-----------|---------------------------------|
| Att<br>1Pk Max |           | SWT | 15 ms 😑 | <b>VBW</b> 10 MH | Iz Mode | Auto Sweep |           |                                 |
| IPK Max        | ZPK Max   |     |         |                  | м       | 1[1]       | <br>2.404 | 14. <b>1</b> 7 dBr<br>I37100 GH |
| 20 dBm         |           |     |         | M1               |         |            |           |                                 |
| 10 dBm         |           | -   |         | -                |         |            |           |                                 |
| D dBm —        |           |     |         |                  |         |            |           |                                 |
| /              |           |     |         |                  |         |            |           |                                 |
| -10 dBm—       |           |     |         |                  |         |            |           |                                 |
| -20 dBm—       |           |     |         |                  |         |            |           |                                 |
| -30 dBm—       |           |     |         |                  |         |            |           |                                 |
| -40 dBm—       |           |     |         |                  |         |            | <br>      |                                 |
| -50 dBm—       |           |     |         |                  |         |            |           |                                 |
| -60 dBm—       |           |     |         |                  |         |            |           |                                 |



| Ref Level 30.0<br>Att | 40 dB  SWT | 10.00 dB - RB |       | Auto Cuesos  |  |                            |  |  |
|-----------------------|------------|---------------|-------|--------------|--|----------------------------|--|--|
| 1Pk Maxe2Pk           |            | 12 ms 🖷 VB1   |       | a Auto Sweep |  |                            |  |  |
|                       |            |               | M1[1] |              |  | 13.01 dBn<br>2.43842100 GH |  |  |
| 20 dBm                |            |               | 41    |              |  |                            |  |  |
| .0 dBm                |            |               |       |              |  |                            |  |  |
| dBm-                  |            |               |       |              |  |                            |  |  |
| 10 dBm                |            |               |       |              |  |                            |  |  |
|                       |            |               |       |              |  |                            |  |  |
| 20 dBm                |            |               |       |              |  |                            |  |  |
| 30 dBm                |            |               |       |              |  |                            |  |  |
| 40 dBm                |            |               |       | +            |  |                            |  |  |
| 50 dBm                |            |               |       |              |  |                            |  |  |
| 60 dBm                |            |               |       |              |  |                            |  |  |

| Att      |         | SWT | 15 ms 👄 | <b>VBW</b> 10 M | Hz Mode | Auto Sweep | ) |       |                        |
|----------|---------|-----|---------|-----------------|---------|------------|---|-------|------------------------|
| 1Pk Max  | 2Pk Max |     |         |                 | M       | 1[1]       |   | 2.474 | 11.40 dBr<br>433100 GH |
| 20 dBm   |         |     |         | M1              |         |            |   |       |                        |
| 10 dBm   |         |     |         |                 |         |            | - |       |                        |
| 0 dBm    |         |     |         |                 |         |            |   |       |                        |
| -10 dBm— |         |     |         |                 |         |            |   |       |                        |
| -20 dBm  |         |     |         |                 |         |            |   |       |                        |
|          |         |     |         |                 |         |            |   |       |                        |
| -30 dBm  |         |     |         |                 |         |            |   |       |                        |
| -40 dBm  |         |     |         |                 |         |            |   |       |                        |
| -50 dBm  |         |     |         |                 |         |            |   |       |                        |
| -60 dBm  |         |     |         |                 |         |            |   |       |                        |

- End of Report -