

Page: 1 of 59

TEST REPORT

HKEM2007000667AT Application No.:

Applicant: VTECH TELECOMMUNICATIONS LTD

Address of Applicant: 23/F.,BLOCK 1, TAI PING INDUSTRIAL CENTRE,NO, 57 TING KOK

ROAD, TAI PO, N.T., Hong Kong

Equipment Under Test (EUT):

EUT Name: 2.4 GHz FHSS Video Baby Monitor (BU) Model No.: VM5262 BU, VM5262-2 BU, VM5X62-ab BU

♣Please refer to section 2 of this report which indicates which item was **Additional Model:**

actually tested and which were electrically identical.

FCC ID: EW780-1499-07 IC: 1135B-80149907 HVIN: 35-201400BU

Standard(s): CFR 47 FCC Part 15, Subpart C, 2019

> RSS-247 Issue 2: May 2017 RSS-Gen: Issue 5 Amdt 2019

2020-07-20 Date of Receipt:

2020-07-22 to 2020-08-13 Date of Test:

Date of Issue: 2020-08-13

Pass* **Test Result:**

Law Man Kit **EMC Manager**

consists of the property of the company is and conditions for Electronic Documents at http://www.sgs.com/en/Terms-and.com/illons.aspx and, for the company is a facility of the company is

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: HKEM200700066702 Page: 2 of 59

Revision Record						
Version	Chapter	Date	Modifier	Remark		
01		2020-08-13		Original		

Authorized for issue by:		
	Zen Xn.	
	Leo Xu /Project Engineer	Date: 2020-08-13
	Law	
	Law Man Kit	
	/Reviewer	Date: 2020-08-13

Report No.: HKEM200700066702 Page: 3 of 59

2 Test Summary

Radio Spectrum Tech	Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass		
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	Pass		

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass

Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result	
Antenna Requirement	RSS-247 Issue 2, February 2017	N/A	RSS-Gen Section 6.8	Pass	
Pseudorandom Frequency Hopping Sequence	RSS-247 Issue 2, February 2017	N/A	RSS-247 Section 5.1(a)	Pass	

Report No.: HKEM200700066702 Page: 4 of 59

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 6.2	RSS-Gen Section 8.8	Pass	
99% Bandwidth	RSS-247 Issue 2, February 2017	ANSI C63.10 Section 6.9.3	RSS-Gen Section 6.7	Pass	
Conducted Peak Output Power	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.5	RSS-247 Section 5.4(b)	Pass	
20dB Bandwidth	RSS-247 Issue 2, February 2017	ANSI C63.10 Section 6.9.2	RSS-247 Section 5.1(a)	Pass	
Carrier Frequencies Separation	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.2	RSS-247 Section 5.1(b)	Pass	
Hopping Channel Number	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.3	RSS-247 Section 5.1(d)	Pass	
Dwell Time	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.4	RSS-247 Section 5.1(d)	Pass	
Conducted Band Edges Measurement	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section7.8.6	RSS-247 Section 5.5	Pass	
Conducted Spurious Emissions	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 7.8.8	RSS-247 Section 5.5	Pass	
Radiated Emissions which fall in the restricted bands	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 6.10.5	Section 3.3 & RSS-Gen Section 8.10	Pass	
Radiated Spurious Emissions	RSS-247 Issue 2, February 2017	ANSI C63.10 (2013) Section 6.4&6.5&6.6	Section 3.3 & RSS-Gen Section 8.9	Pass	
Frequency stability	RSS-247 Issue 2, February 2017	RSS-Gen Section 6.11	RSS-Gen Section 8.11	Pass	

Note: Frequency stability requested in RSS GEN Section 8.1.1 has been complied since the result of band edge can demonstrate.

Page: 5 of 59

Declaration of EUT Family Grouping:

Item no.: VM5262 BU, VM5262-2 BU, VM5X62-ab BU

a = any alphanumeric character or blank is presenting number of baby unit.

b = any alphanumeric character or blank is presenting color of enclosure

x = any alphanumeric character is presenting different type packaging

According to the confirmation from the applicant, the above models are identical in all electrical aspects in relating to the circuit design, PCB layout, electrical components used, internal wiring and functions. The differences are only the color, cosmetic details and model number.

Therefore only the model VM5262 BU was tested in this report.

Abbreviation:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

Report No.: HKEM200700066702 Page: 6 of 59

Contents

			Page
1	COV	/ER PAGE	1
2	TES	T SUMMARY	3
_			_
3	CON	ITENTS	6
4	GEN	IERAL INFORMATION	8
	4.1	DETAILS OF E.U.T.	
	4.2	DESCRIPTION OF SUPPORT UNITS	
	4.3	MEASUREMENT UNCERTAINTY	
	4.4	TEST LOCATION	
	4.5	TEST FACILITY	
	4.6	DEVIATION FROM STANDARDS	
	4.7	ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQL	JIPMENT LIST	12
6	RAD	DIO SPECTRUM TECHNICAL REQUIREMENT	15
	6.1	Antenna Requirement	1.5
	6.1.		-
	6.1.	•	
	6.2	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE	
	6.2.	1 Test Requirement:	16
	6.2.		
	6.3	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.3.		
	6.3.	1 0	
	6.3.		
7	RAD	DIO SPECTRUM MATTER TEST RESULTS	
	7.1	CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)	18
	7.1.		
	7.1.2	, 0	
	7.1.		
	7.2	99% BANDWIDTH	
	7.2. 7.2.		
	7.2.		
	7.2.	Conducted Peak Output Power	
	_	1 E.U.T. Operation	
	7.3.		
	7.3.		
	7.4	20dB Bandwidth	26
	7.4.		
	7.4.		
	7.4.		
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.5.	- F	
	7.5.2		
	7.5.		
	7.6	HOPPING CHANNEL NUMBER	28

Report No.: HKEM200700066702 Page: 7 of 59

	7.6.1	E.U.T. Operation	28
	7.6.2		
	7.6.3		
	7.7	DWELL TIME	
	<i>7.7.</i> 1	E.U.T. Operation	29
	7.7.2		
	7.7.3		
	7.8	CONDUCTED BAND EDGES MEASUREMENT	
	7.8.1	·	
	7.8.2		
	7.8.3		
	7.9	CONDUCTED SPURIOUS EMISSIONS	
	7.9.1	-	
	7.9.2		
	7.9.3		
	7.10	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.10.		
	7.10.		
	7.10.		
	7.10.		
	7.11	RADIATED SPURIOUS EMISSIONS	
	7.11. 7.11.		
	7.11. 7.11.	= : 00: 00:ap = ag: a	
	7.11.	3 Measurement Procedure and Data	39
8	PHO	TOGRAPHS	43
9	APP	ENDIX	44
	9.1	PEAK CONDUCTED OUTPUT POWER	44
	9.2	EMISSION BANDWIDTH 20 DB	46
	9.3	OCCUPIED CHANNEL BANDWIDTH 99%	48
	9.4	CARRIER FREQUENCY SEPARATION	
	9.5	DWELL TIME	
	9.6	HOPPING FREQUENCIES	53
	9.7	CONDUCTED BAND EDGE MEASUREMENT	54
	9.8	CONDUCTED SPURIOUS EMISSION	58

Report No.: HKEM200700066702 Page: 8 of 59

General Information

4.1 Details of FILT

4.1 Details of E.U.T.	Details of E.U.T.		
Power supply:	Adaptor Model 1: VT05EUS05100		
	Input: AC 100 V - 240 V, 50/60 Hz, 0.15 A		
	Output: DC 5.0 V, 1.0 A		
	Adaptor Model 2: S006AKU0500100		
	Input: 100 V - 240 V, 50/60 Hz, 0.2 A		
	Output: DC 5.0 V, 1 A		
Test voltage:	AC 110 V		
Cable:	Adaptor Model 1: VT05EUS05100		
	Power Cable: 201.5 cm unshielded 2-wire DC cable		
	Adaptor Model 2: S006AKU0500100		
	Power Cable: 185.5 cm unshielded 2-wire DC cable		
Antenna Gain:	0 dBi		
Antenna Type:	PCB Antenna		
Channel Spacing:	2 MHz		
Modulation Type:	GFSK		
Number of Channels:	16		
Operation Frequency:	2405 MHz to 2475 MHz		
Spectrum Spread	Frequency Hopping Spread Spectrum(FHSS)		
Technology:			
Series Number:	A1		
Hardware Version:	35-201400		
Firmware version	R0		

Page: 9 of 59

Frequency List

Channel Number	TX Freq (MHz)	Channel Number	TX Freq (MHz)	Channel Number	TX Freq (MHz)
1	2405	12	2428	23	2454
2	2407	13	2430	24	2456
3	2409	14	2433	25	2458.5
4	2411	15	2435	26	2460.5
5	2413	16	2437	27	2462.5
6	2415	17	2439	28	2467
7	2418	18	2441	29	2469
8	2420	19	2444	30	2471
9	2422	20	2446	31	2473
10	2424	21	2450	32	2475
11	2426	22	2452		

Remark: 1. Operation channel is only 16 within total channel 32.

2. Testing Channels are highlighted in **bold**.

4.2 Description of Support Units

Description	Manufacturer	Model No.	SN/Certificate NO
UART Test board	SGS HK Limited	MX3232	N/A
Test Software	MicroRidge System	Version 3.0.0.108	N/A
NoteBook (EMC4)	Dell	P75F	N/A

Page: 10 of 59

4.3 Measurement Uncertainty

RF

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power (30MHz-40GHz)	1.5dB
5	RF power density	1.5dB
6	Conducted Spurious emissions	1.5dB
7	DE Dodieted versex	5.1dB (below 1GHz)
/	RF Radiated power	5.3dB (above 1GHz)
8	Dadiated Churique emission test	5.1dB (below 1GHz)
0	Radiated Spurious emission test	5.3dB (above 1GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Remark:

The U_{lab} (lab Uncertainty) is less than U_{cispr} (CISPR Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

According to decision rule based on Clause 4.2 of CISPR 16-4-2, the EUT complied with the standards specified above.

Page: 11 of 59

4.4 Test Location

All tests were performed at:

SGS Hong Kong Limited

Unit 2 and 3, G/F, Block A, Po Lung Centre,

11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong

Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· HOKLAS (Lab Code: 009)

SGS Hong Kong Limited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2017 an it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

• IAS Accreditation (Lab Code: TL-187)

SGS Hong Kong Limited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government.

• FCC Recognized Accredited Test Firm(CAB Registration No.: 514599)

SGS Hong Kong Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599.

• Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015)

SGS Hong Kong Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: HKEM200700066702 Page: 12 of 59

5 Equipment List

RF Conducted Test					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A		

Conducted Emissions at Mains Terminals (150kHz-30MHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Test Receiver	Rohde & Schwarz	ESHS 30 / 839667/002	TE279D	2019/8/21	2020/8/20
Signal Generator	Rohde & Schwarz	SMT03	E177	2020/5/11	2021/5/10
Artificial Mains Network (LISN)	Schwarzbeck	NSLK 8127 / 8127312	TE10	2020/5/11	2021/5/10
Impulse Limiter	Rohde & Schwarz	ESH-3-Z2 / 357881052	TE36	2020/5/11	2021/5/10
EMC32 Test Software	R&S	Version 10	N/A		

Radiated Spurious Emissions (30MHz-1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2020/8/9	2021/8/8
Coaxial Cable	SGS	N/A	E167	2020/7/22	2021/7/21
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2019/9/2	2020/9/1
TRILOG Super Broadb. Test Antenna, (25) 30- 1000 (2	Schwarzbeck	VULB 9168	E264	2018/10/20	2020/10/19
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	1	
Turntable with Controller	ChamPro	EM1000	E238		
EMC32 Test Software	R&S	Version 10	N/A		

Report No.: HKEM200700066702 Page: 13 of 59

Radiated Spurious Emissions (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2020/8/9	2021/8/8
Coaxial Cable	SGS	N/A	E167	2020/7/22	2021/7/21
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2019/9/2	2020/9/1
Signal and Spectrum Analyzer 2Hz - 26.5GHz	Rohde & Schwarz	FSW26	E296	2019/10/29	2020/10/28
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2020/5/11	2021/5/10
Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2020/1/29	2022/1/29
Horn Antenna 15 - 40GHz	Schwarzbeck	BBHA9170	E212	2017/10/17	2020/10/16
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2020/4/14	2021/4/12
Preamplifier 33dB, 18 - 26.5GHz	Schwarzbeck	BBV9719	E215	2019/4/24	2021/4/23
Broadband Coaxial Preamplifier typ. 30 dB, 18-40 G	Schwarzbeck	BBV 9721	E266	2019/8/22	2020/8/21
Highpass Filter 3.5- 26.5GHz	Wainwright	WHNX3.5/26.5 G-6SS	E205	2019/4/24	2021/4/23
Band Reject Filter 2.4- 2.5GHz	Wainwright	WRCJV 2400/2500- 2100	E206	2019/4/24	2021/4/23
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207-1	2019/9/26	2020/9/25
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237		
Turntable with Controller	ChamPro	EM1000	E238		
EMC32 Test Software	R&S	Version 10	N/A		

Conducted Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A		

Report No.: HKEM200700066702 Page: 14 of 59

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2019/10/28	2020/10/27
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2019/10/28	2020/10/27
Barometer with digital thermometer	SATO	7612-00	E218	2020/4/23	2021/4/22
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2019/08/22	2020/08/21

Page: 15 of 59

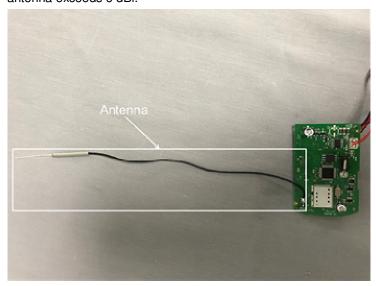
6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

FCC Part 15 Subpart C Section 15.247 & 15.203 RSS-Gen Section 8.3

6.1.2 Conclusion


Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RSS-Gen Section 6.8,Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

Page: 16 of 59

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- > Number of shift register stages: 9
- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

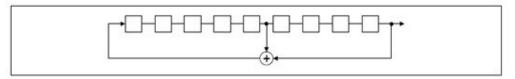
Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

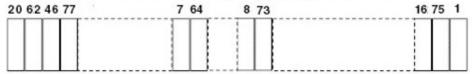
According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.


Page: 17 of 59

6.3 Pseudorandom Frequency Hopping Sequence

6.3.1 Test Requirement:


FCC Part 15 Subpart C Section 15.247(a)(1) RSS-247 Section 5.1(a)

6.3.2 Test Setup Diagram

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

6.3.3 Conclusion

Standard Requirement:

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- ? Number of shift register stages: 9
- ? Length of pseudo-random sequence: 29 -1 = 511 bits
- ? Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Page: 18 of 59

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207, RSS-Gen Section 8.8

Test Method: ANSI C63.10 (2013) Section 6.2

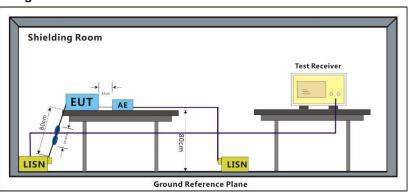
Limit:

Francisco (MALIE)	Conducted limit(dBµV)				
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the	frequency.				

Page: 19 of 59

7.1.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously

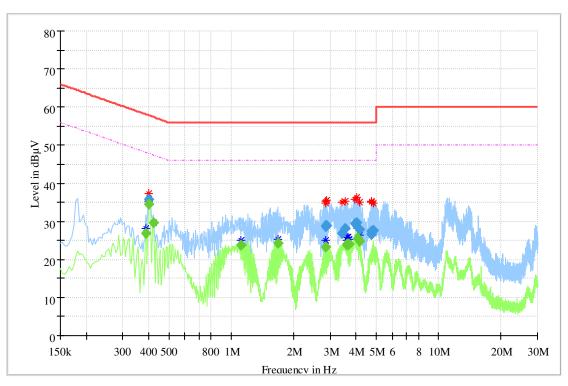
transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

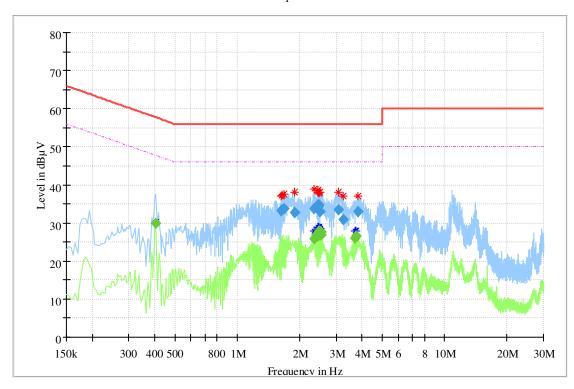
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: HKEM200700066702 Page: 20 of 59

Adaptor Model 1: VT05EUS05100 Mode: c Line: Live

Full Spectrum

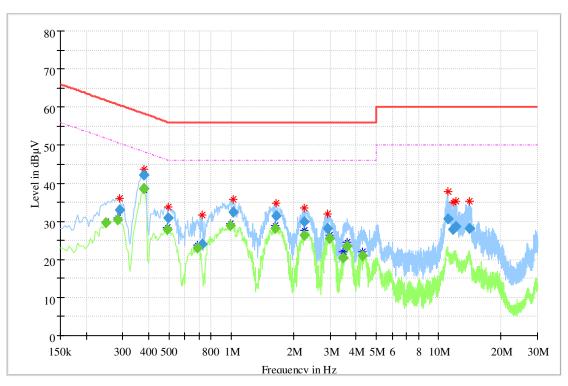

Frequency	QuasiPeak	Average	Limit	Margin	Corr.	
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	Result
2.862000	28.9		56.0	27.1	10.2	Pass
2.878000	28.9		56.0	27.1	10.2	Pass
3.422000	26.9		56.0	29.1	10.2	Pass
3.554000	28.0		56.0	28.0	10.2	Pass
3.602000		24.1	46.0	21.9	10.2	Pass
3.638000		23.7	46.0	22.4	10.3	Pass
3.670000		23.9	46.0	22.1	10.3	Pass
3.686000		24.0	46.0	22.0	10.3	Pass
3.934000	29.3		56.0	26.7	10.3	Pass
4.022000	29.8		56.0	26.2	10.3	Pass
4.054000		25.5	46.0	20.5	10.3	Pass
4.142000		24.9	46.0	21.1	10.3	Pass

Report No.: HKEM200700066702 Page: 21 of 59

Mode:c Line: Neutral

Full Spectrum

Frequency	QuasiPeak	Average	Limit	Margin	Corr.	Dooule
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	Result
2.358000		25.9	46.0	20.2	10.2	Pass
2.358000	33.7		56.0	22.3	10.2	Pass
2.394000		26.9	46.0	19.1	10.2	Pass
2.446000	34.4		56.0	21.6	10.2	Pass
2.446000		26.6	46.0	19.4	10.2	Pass
2.462000	34.7		56.0	21.3	10.2	Pass
2.474000		26.8	46.0	19.2	10.2	Pass
2.478000	34.8		56.0	21.2	10.2	Pass
2.494000		28.0	46.0	18.0	10.2	Pass
2.506000	33.0		56.0	23.1	10.2	Pass
2.510000		27.9	46.0	18.1	10.2	Pass
3.066000	33.6		56.0	22.4	10.2	Pass

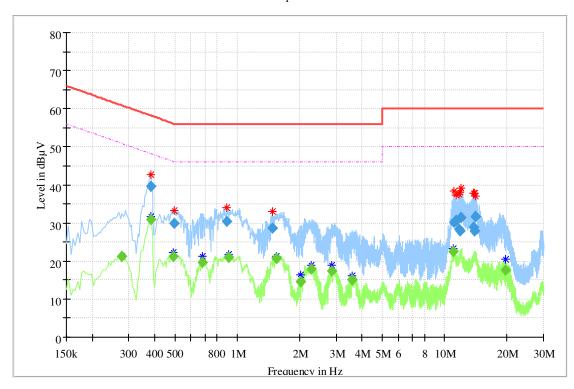


Report No.: HKEM200700066702 Page: 22 of 59

Adaptor Model 2: S006AKU0500100

Mode:c Line: Live

Full Spectrum


Frequency	QuasiPeak	Average	Limit	Margin	Corr.	Dlt
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	Result
0.282000		30.4	50.8	20.4	10.1	Pass
0.290000	32.9		60.5	27.6	10.1	Pass
0.378000		38.6	48.3	9.7	10.1	Pass
0.378000	42.3		58.3	16.1	10.1	Pass
0.490000		27.9	46.2	18.3	10.1	Pass
0.498000	30.8		56.0	25.2	10.1	Pass
0.690000		23.1	46.0	22.9	10.1	Pass
0.726000	24.0		56.0	32.0	10.1	Pass
0.990000		28.8	46.0	17.2	10.1	Pass
1.026000	32.4		56.0	23.6	10.1	Pass
1.634000		28.1	46.0	17.9	10.2	Pass
1.654000	31.4		56.0	24.6	10.2	Pass

Report No.: HKEM200700066702 Page: 23 of 59

Mode:c Line: Neutral

Full Spectrum

Frequency	QuasiPeak	Average	Limit	Margin	Corr.	December
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	Result
1.542000		20.6	46.0	25.4	10.2	Pass
2.018000		14.6	46.0	31.4	10.2	Pass
2.274000		18.0	46.0	28.0	10.2	Pass
2.866000		17.3	46.0	28.7	10.2	Pass
3.594000		15.0	46.0	31.0	10.2	Pass
10.974000		22.5	50.0	27.5	10.7	Pass
11.106000	30.3		60.0	29.7	10.7	Pass
11.354000	30.6		60.0	29.4	10.7	Pass
11.742000	28.5		60.0	31.5	10.7	Pass
11.890000	27.8		60.0	32.2	10.8	Pass
11.946000	31.4		60.0	28.6	10.8	Pass
13.802000	28.8		60.0	31.2	10.9	Pass

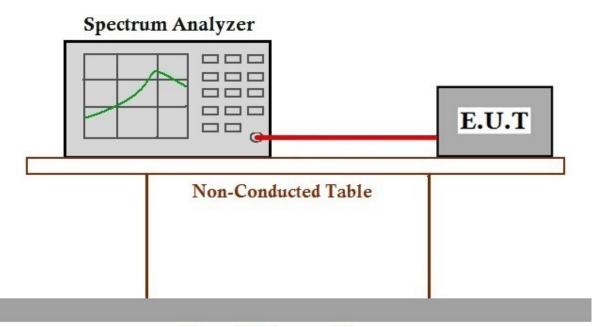
Page: 24 of 59

7.2 99% Bandwidth

Test Requirement RSS-Gen Section 6.7
Test Method: ANSI C63.10 Section 6.9.3

7.2.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously

transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Page: 25 of 59

7.3 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(1) / RSS-247 Section 5.4(b)

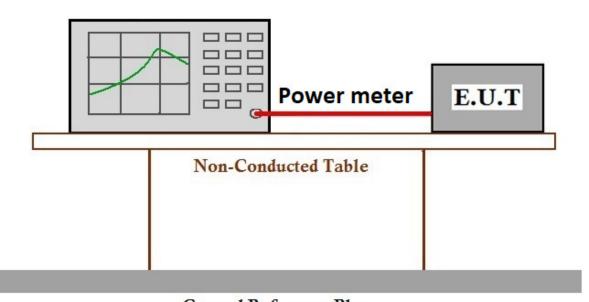
Test Method: ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

7.3.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH :

Test mode: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously

transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

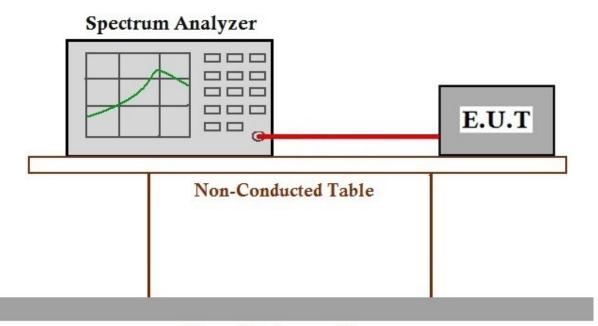
Page: 26 of 59

7.4 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.7

7.4.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously

transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

Page: 27 of 59

7.5 Carrier Frequencies Separation

Test Requirement 47 CFR Part 15, Subpart C 15.247:2019a(1), RSS-247 Section 5.1(b)

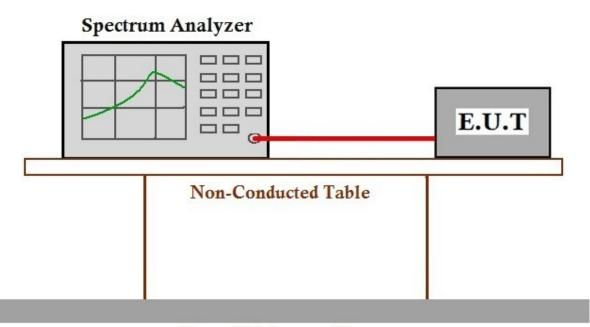
Test Method: ANSI C63.10 (2013) Section 7.8.2

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than

0.125W

7.5.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK

modulation. All modes have been tested and only the data of worst case is

recorded in the report.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

Page: 28 of 59

7.6 Hopping Channel Number

Test Requirement 47 CFR Part 15, Subpart C 15.247:2019a(1)(iii), RSS-247 Section 5.1(d)

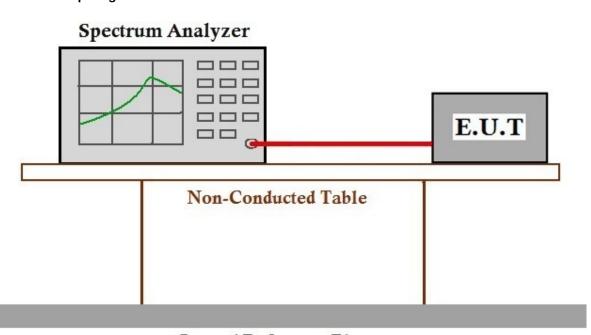
Test Method: ANSI C63.10 (2013) Section 7.8.3

Limit:

Frequency range(MHz)	Hz) Number of hopping channels (minimum)		
902-928	50 for 20dB bandwidth <250kHz		
	25 for 20dB bandwidth ≥250kHz		
2400-2483.5	15		
5725-5850	75		

7.6.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK

modulation. All modes have been tested and only the data of worst case is

recorded in the report.

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

Page: 29 of 59

7.7 Dwell Time

Test Requirement 47 CFR Part 15, Subpart C 15.247:2019a(1)(iii), RSS-247 Section 5.1(d)

Test Method: ANSI C63.10 (2013) Section 7.8.4

Limit:

Frequency(MHz)	Limit		
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)		
	0.4S within a 10S period(20dB bandwidth≥250kHz)		
2400-2483.5	0.4S within a period of 0.4S multiplied by the number		
	of hopping channels		
5725-5850	0.4S within a 30S period		

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 50 % RH

Test mode a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK

modulation. All modes have been tested and only the data of worst case is

recorded in the report.

7.7.2 Test Setup Diagram

Spectrum Analyzer E.U.T Non-Conducted Table

Ground Reference Plane

7.7.3 Measurement Procedure and Data

Page: 30 of 59

7.8 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247:2019(d), RSS-247 Section 5.5

Test Method: ANSI C63.10 (2013) Section7.8.6

In any 100 kHz bandwidth outside the frequency band in which the spread Limit:

spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

FCC Part15 C Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			

RSS-Gen Section 8.10 Restricted bands of operation.

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

(a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio

Page: 31 of 59

apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, *Emergency Position Indicating Radio Beacons (EPIRB)*, *Emergency Locator Transmitters (ELT)*, *Personal Locator Beacons (PLB)*, and *Maritime Survivor Locator Devices (MSLD)*. (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the

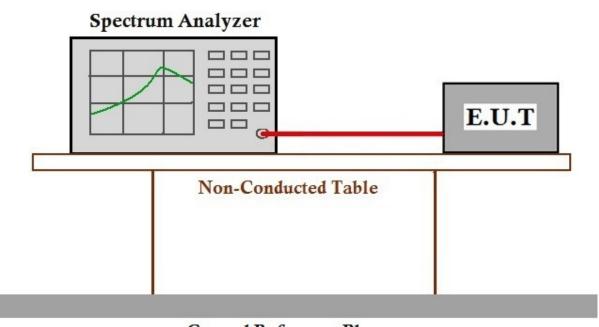
limits specified in table 5 and table 6.
(c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

Table 7 – Restricted frequency bands* MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	* Certain frequency bands
8.37625 - 8.38675	1718.8 - 1722.2	listed in table 7 and in bands above 38.6 GHz are
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	designated for licence-exemptapplications. These frequency
12.51975 - 12.52025	2483.5 - 2500	bands and the requirements
12.57675 - 12.57725	2655 - 2900	that apply to related devices
13.36 - 13.41	3260 - 3267	are set out in the 200 and 300
16.42 - 16.423	3332 - 3339	series of RSSs.
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

Page: 32 of 59

7.8.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH

Test mode: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously

transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

Page: 33 of 59

7.9 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247:2019(d), RSS-247 Section 5.5

Test Method: ANSI C63.10 (2013) Section 7.8.8

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition,

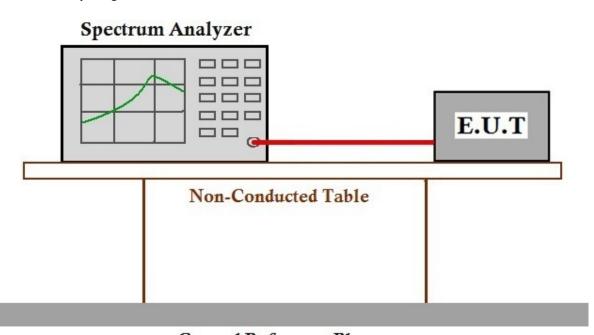
radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.9.1 E.U.T. Operation

Operating Environment:


Temperature: 25 °C Humidity: 50 % RH :

Test mode: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously

transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.9.2 Test Setup Diagram

Ground Reference Plane

7.9.3 Measurement Procedure and Data

Page: 34 of 59

7.10 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.247(d), Section 3.3 & RSS-Gen

Section 8.10

Test Method: ANSI C63.10 (2013) Section 6.10.5

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Page: 35 of 59

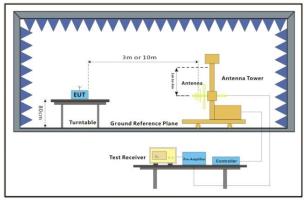
7.10.1 E.U.T. Operation

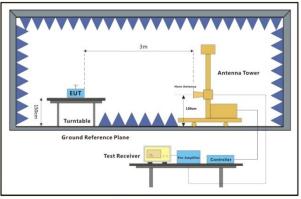
Operating Environment:

Temperature: 25 °C Humidity: 50 % RH

Pretest these b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modes to find modulation. All modes have been tested and only the data of worst case is

the worst case: recorded in the report.


c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation. All modes have been tested and only


the data of worst case is recorded in the report.

The worst case c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously for final test: transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.10.2 Test Setup Diagram

30MHz-1GHz Above 1GHz

Page: 36 of 59

7.10.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

7.10.4 Measurement Procedure and data

Frequency Antenna		Emission Level (dBμV/m)		Limit (dBμV/m)		Remark
(MHz)	Polarization	Peak	Average	Peak	Average	Heiliaik
2390.000	Н	43.8	22.9	74.0	54.0	Pass
2483.500	Н	65.8	37.3	74.0	54.0	Pass
2390.000	V	67.5	39.5	74.0	54.0	Pass
2483.500	V	51.8	23.2	74.0	54.0	Pass

Page: 37 of 59

7.11 Radiated Spurious Emissions

Test Requirement Section 3.3 & RSS-Gen Section 8.9
Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

Limit:

Table 5 - General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (µ V/m at 3 m)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

Table 6 - General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H- Field) (μ A/m)	Measurement distance (m)
9 - 490 kHz 1	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Page: 38 of 59

7.11.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 50 % RH :

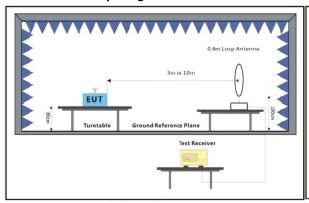
Pretest these modes to find

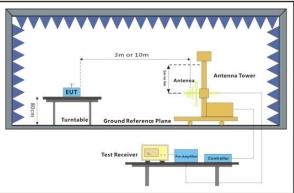
b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK

modulation. All modes have been tested and only the data of worst case is

the worst case: recorded in the report.

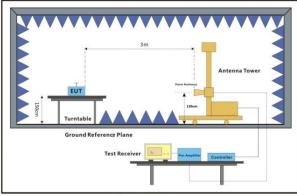
c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation. All modes have been tested and only


the data of worst case is recorded in the report.


The worst case for final test:

c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.


7.11.2 Test Setup Diagram

Below 30MHz

30MHz-1GHz

Above 1GHz

Page: 39 of 59

7.11.3 Measurement Procedure and Data

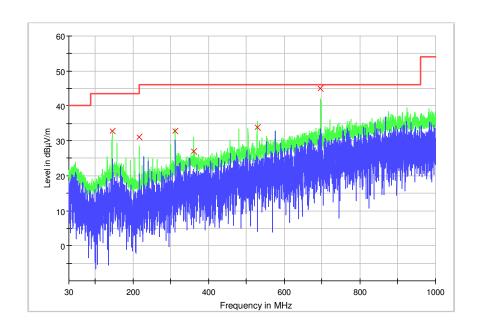
a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

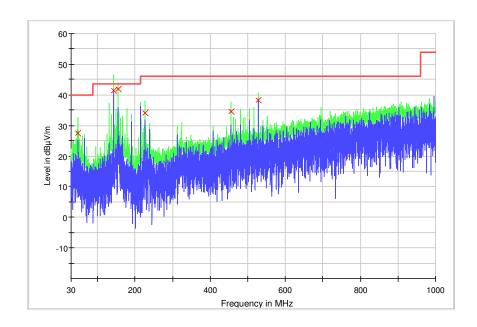
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: HKEM200700066702 Page: 40 of 59

Radiated emission below 1GHz

Horizontal (worse plots was shown as below)



Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Decult
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
143.975000	32.9	Н	13.6	10.6	43.5	Pass
216.046000	31.1	Н	10.5	15.0	46.0	Pass
311.979000	32.8	Н	14.8	13.2	46.0	Pass
359.897000	27.1	Н	15.8	19.0	46.0	Pass
527.998000	33.9	Н	19.6	12.1	46.0	Pass
696.099000	45.1	Н	23.1	0.9	46.0	Pass

Report No.: HKEM200700066702 Page: 41 of 59

Vertical (worse plots was shown as below)

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Decult
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
47.760000	27.3	٧	14.3	12.7	40.0	Pass
143.960000	41.5	V	13.6	2.0	43.5	Pass
156.000000	42.0	٧	14.8	1.5	43.5	Pass
227.960000	34.2	٧	11.3	11.8	46.0	Pass
455.920000	34.6	٧	18.4	11.4	46.0	Pass
528.080000	38.2	V	19.6	7.9	46.0	Pass

Report No.: HKEM200700066702 Page: 42 of 59

Above 1GHz Channel:Low

Frequency	Antenna	Emission Le	vel (dBμV/m)	Limit (dl	BμV/m)	
(MHz)	Polarization	Peak	Average	Peak	Averag e	Remark
2692.500	Н	48.7	40.3	74.0	54.0	Pass
4809.000	Н	47.4	36.7	74.0	54.0	Pass
7216.500	Н	57.0	47.2	74.0	54.0	Pass
2693.000	V	56.2	49.1	74.0	54.0	Pass
4811.500	V	46.6	35.2	74.0	54.0	Pass
7213.500	V	56.5	46.6	74.0	54.0	Pass

Channel:Middle

Frequency	Antenna	Emission Le	vel (dBμV/m)	Limit (d	BμV/m)	
(MHz)	Polarization	Peak	Average	Peak	Averag e	Remark
2743.000	Н	48.0	38.1	74.0	54.0	Pass
4877.500	Н	48.5	37.3	74.0	54.0	Pass
7315.000	Н	61.8	52.5	74.0	54.0	Pass
2135.000	V	50.1	42.8	74.0	54.0	Pass
2742.500	V	53.1	44.8	74.0	54.0	Pass
7315.000	V	62.8	53.5	74.0	54.0	Pass

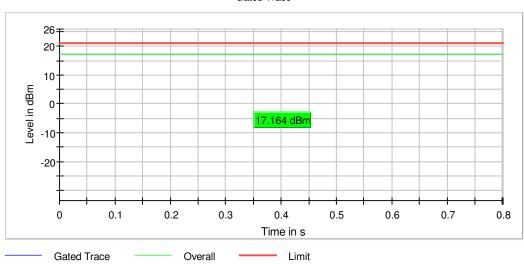
Channel: High

Frequency	Antenna	Emission Le	vel (dBμV/m)	Limit (de	BμV/m)	
(MHz)	Polarization	Peak	Average	Peak	Averag e	Remark
2187.000	Н	50.0	42.7	74.0	54.0	Pass
2762.500	Н	50.0	42.1	74.0	54.0	Pass
4949.000	Н	50.7	40.8	74.0	54.0	Pass
2187.000	V	55.3	48.4	74.0	54.0	Pass
2763.500	V	56.3	48.7	74.0	54.0	Pass
3091.500	V	47.7	34.4	74.0	54.0	Pass

Report No.: HKEM200700066702 Page: 43 of 59

Photographs 8

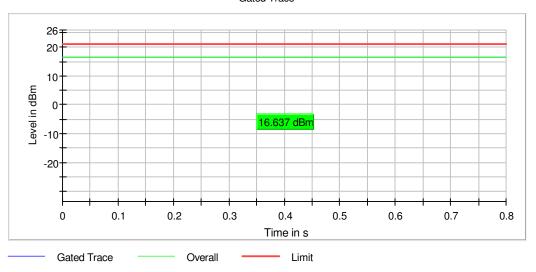
Remark: Photos refer to Appendix: External Photo, Internal Phot, and Setup Photo

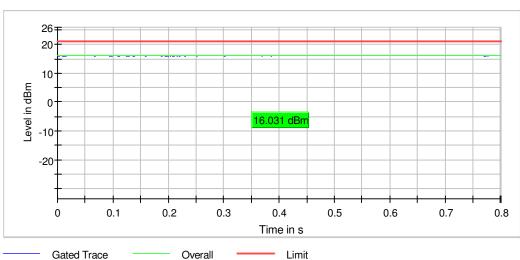

Report No.: HKEM200700066702 Page: 44 of 59

9 Appendix

9.1 Peak conducted output power

DUT Frequency (MHz)	Peak Power (dBm)	Limit Max (dBm)	Result
2405.000000	17.2	21.0	PASS
2439.000000	16.6	21.0	PASS
2475.000000	16.0	21.0	PASS


Gated Trace

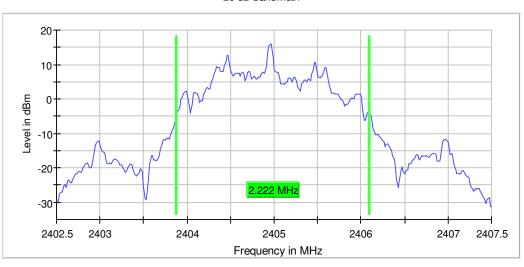


Page: 45 of 59

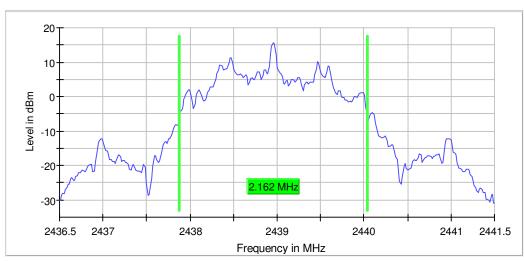
Gated Trace

Gated Trace

Remark: Cable loss 0.8 dB was considered and set in system configuration.

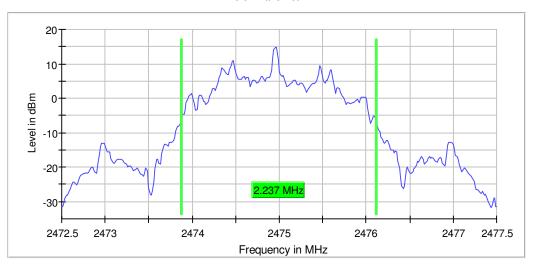


Report No.: HKEM200700066702 Page: 46 of 59


9.2 Emission Bandwidth 20 dB

DUT Frequency (MHz)	Bandwidth (MHz)	Limit (MHz)	Result
2405.000000	2.22		PASS
2439.000000	2.16		PASS
2475.000000	2.24		PASS

20 dB Bandwidth


20 dB Bandwidth

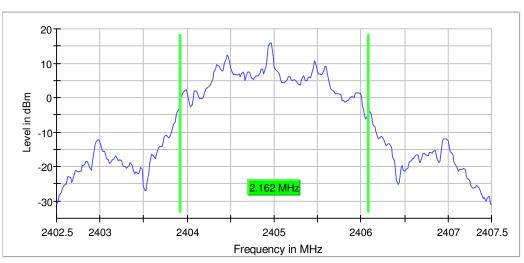
Report No.: HKEM200700066702 Page: 47 of 59

20 dB Bandwidth

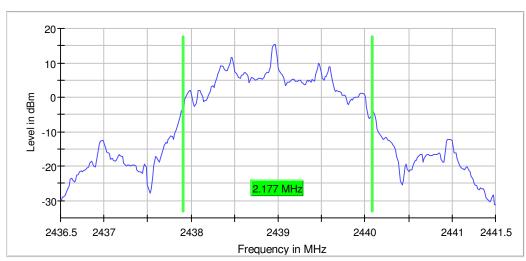
Measurement

Setting	Instrument Value	Target Value
Start Frequency	2.47250 GHz	2.47250 GHz
Stop Frequency	2.47750 GHz	2.47750 GHz
Span	5.000 MHz	5.000 MHz
RBW	30.000 kHz	>= 25.000 kHz
VBW	100.000 kHz	>= 90.000 kHz
SweepPoints	333	~ 333
Sweeptime	63.218 µs	AUTO
Reference Level	10.000 dBm	10.000 dBm
Attenuation	30.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	200	200
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	FFT	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	32 / max. 150	max. 150
Stable	5 / 5	5
Max Stable Difference	0.00 dB	0.50 dB

Remark: Cable loss 0.8 dB was considered and set in system configuration.

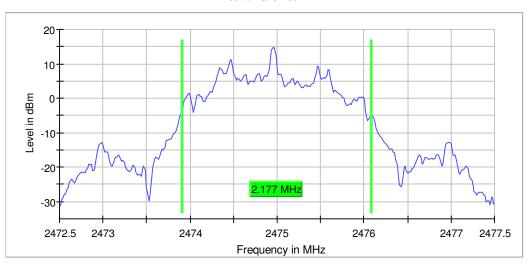


Page: 48 of 59


9.3 Occupied Channel Bandwidth 99%

DUT Frequency (MHz)	Bandwidth (MHz)	Limit (MHz)	Result
2405.000000	2.16		PASS
2439.000000	2.18		PASS
2475.000000	2.18		PASS

99 % Bandwidth


99 % Bandwidth

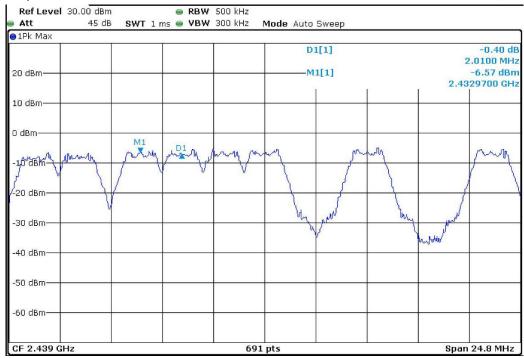
Report No.: HKEM200700066702 Page: 49 of 59

99 % Bandwidth

Measurement

Setting	Instrument Value	Target Value
Start Frequency	2.47250 GHz	2.47250 GHz
Stop Frequency	2.47750 GHz	2.47750 GHz
Span	5.000 MHz	5.000 MHz
RBW	30.000 kHz	>= 25.000 kHz
VBW	100.000 kHz	>= 90.000 kHz
SweepPoints	333	~ 333
Sweeptime	63.218 µs	AUTO
Reference Level	10.000 dBm	10.000 dBm
Attenuation	30.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	500	500
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	FFT	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.30 dB	0.30 dB
Run	35 / max. 150	max. 150
Stable	3/3	3
Max Stable Difference	0.00 dB	0.30 dB

Remark: Cable loss 0.8 dB was considered and set in system configuration.

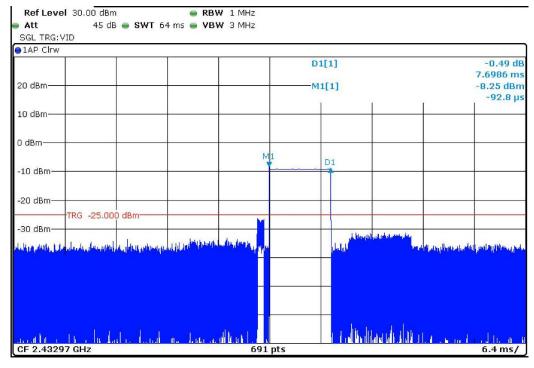


Page: 50 of 59

9.4 Carrier Frequency Separation

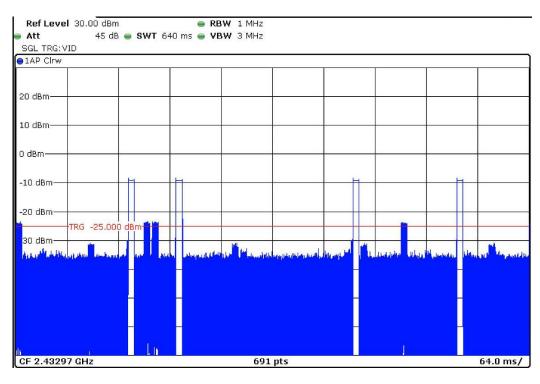
DUT Frequency (MHz)	Frequency Separation (MHz)	Limit (MHz)	Result
2432.970000	2.010	1.49	PASS

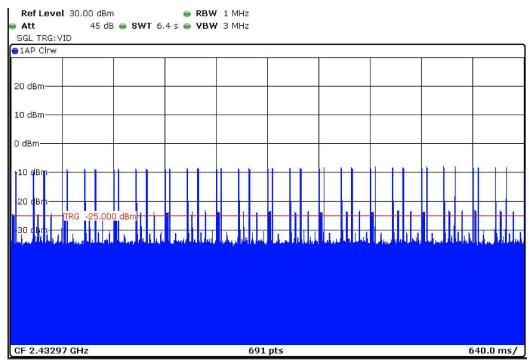
Remark: Limit = 2/3* 20dB Bandwidth Worst case plot was shown as below:



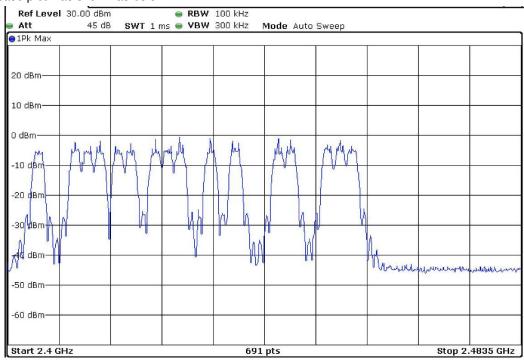
Page: 51 of 59

9.5 Dwell Time


Channel (MHz)	Width of Burst (ms)	Number of Burst(s)	Active Channels	Measurem ent Time (s)	Dwell Time (ms)	Limit (ms)	Result
2433	7.70	40	16	6.4	307.9	≤400	Pass


*Remark: the channel shown is the worst case.

Page: 52 of 59



Page: 53 of 59

9.6 Hopping Frequencies

Channels	Limit Min	Result
16	15	PASS

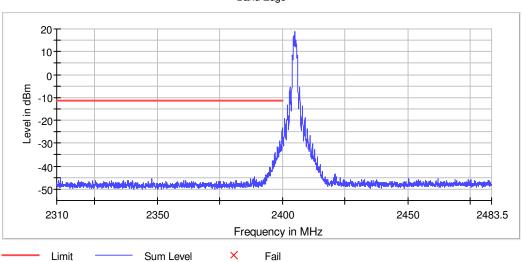
Worst case plot was shown as below:

Rbw<spaing

Report No.: HKEM200700066702 Page: 54 of 59

9.7 Conducted Band Edge Measurement

Non-hopping Channel: Low


Inband Peak

Frequency	Level	
(MHz)	(dBm)	
2404.975000	18.7	

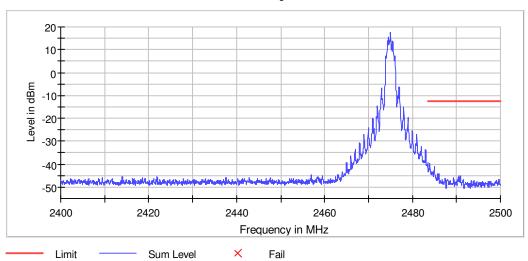
Measurements

Frequency	Level	Margin	Limit	Result		
(MHz)	(dBm)	(dB)	(dBm)			
2399.975000	-23.1	11.8	-11.3	PASS		
2399.925000	-25.3	14.0	-11.3	PASS		
2398.975000	-28.8	17.5	-11.3	PASS		
2399.025000	-28.9	17.5	-11.3	PASS		
2399.875000	-29.5	18.2	-11.3	PASS		
2398.925000	-30.2	18.9	-11.3	PASS		
2399.075000	-30.2	18.9	-11.3	PASS		
2399.275000	-30.6	19.3	-11.3	PASS		
2399.125000	-30.8	19.4	-11.3	PASS		
2399.225000	-31.0	19.6	-11.3	PASS		
2399.575000	-31.0	19.6	-11.3	PASS		
2399.625000	-31.2	19.9	-11.3	PASS		
2398.875000	-31.3	20.0	-11.3	PASS		
2399.775000	-31.5	20.1	-11.3	PASS		
2398.025000	-31.5	20.2	-11.3	PASS		

Band Edge

Report No.: HKEM200700066702 Page: 55 of 59

Channel: High


Inband Peak

Frequency	Level	
(MHz)	(dBm)	
2474.975000	17.5	

Measurements

oaoaromonto					
Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result	
2483.975000	-39.7	27.3	-12.5	PASS	
2483.925000	-40.1	27.6	-12.5	PASS	
2484.975000	-41.0	28.5	-12.5	PASS	
2484.025000	-41.1	28.6	-12.5	PASS	
2483.575000	-41.9	29.4	-12.5	PASS	
2483.625000	-41.9	29.4	-12.5	PASS	
2485.025000	-42.0	29.5	-12.5	PASS	
2484.925000	-42.0	29.5	-12.5	PASS	
2483.725000	-42.0	29.6	-12.5	PASS	
2483.675000	-42.1	29.6	-12.5	PASS	
2483.875000	-42.1	29.6	-12.5	PASS	
2483.825000	-42.1	29.6	-12.5	PASS	
2484.075000	-43.1	30.6	-12.5	PASS	
2483.775000	-43.2	30.7	-12.5	PASS	
2484.125000	-43.2	30.8	-12.5	PASS	

Band Edge

Report No.: HKEM200700066702 Page: 56 of 59

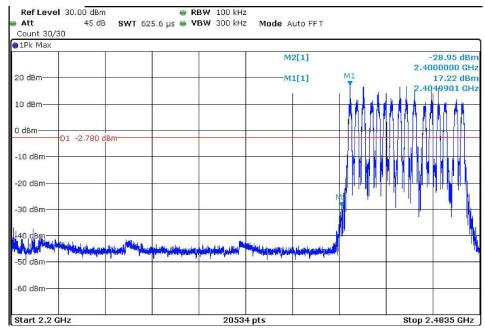
Measurement 1

Setting	Instrument Value	Target Value
Start Frequency	2.40000 GHz	2.40000 GHz
Stop Frequency	2.48350 GHz	2.48350 GHz
Span	83.500 MHz	83.500 MHz
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	1670	~ 1670
Sweeptime	1.670 ms	AUTO
Reference Level	10.000 dBm	10.000 dBm
Attenuation	30.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	15 / max. 150	max. 150
Stable	3 / 3	3
Max Stable Difference	0.02 dB	0.50 dB

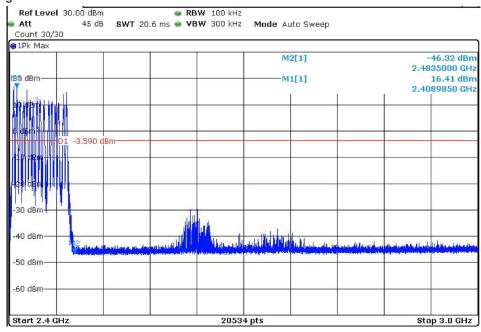
Measurement 2

Setting	Instrument Value	Target Value
Start Frequency	2.48350 GHz	2.48350 GHz
Stop Frequency	2.50000 GHz	2.50000 GHz
Span	16.500 MHz	16.500 MHz
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	330	~ 330
Sweeptime	37.969 us	AUTO
Reference Level	10.000 dBm	10.000 dBm
Attenuation	30.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	FFT	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	4 / max. 150	max. 150
Stable	3/3	3
Max Stable Difference	0.00 dB	0.50 dB

Remark: Cable loss 0.8 dB was considered and set in system configuration.



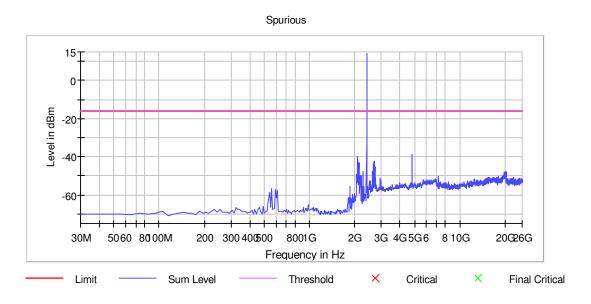
Page: 57 of 59

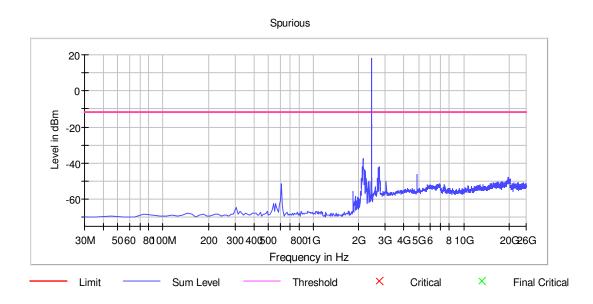

Hopping

Band Edge (MHz)	Reading (dBm)	Limit (dBm)	Result
2400.000	-29.0	-2.8	PASS
2483.500	-46.3	-3.6	PASS

Channel: Low

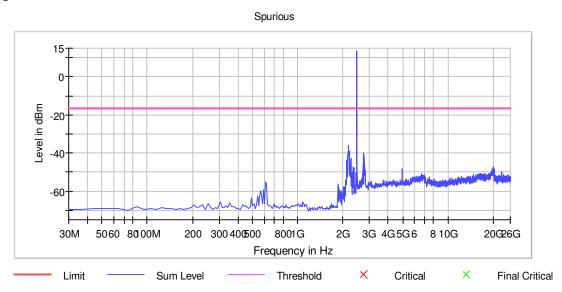
Channel: High




Page: 58 of 59

9.8 Conducted spurious emission

Lowest Channel


Middle Channel

Page: 59 of 59

Highest Channel

Pre Measurement 1

Setting	Instrument Value	Target Value
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	238	~ 238
Sweeptime	23.700 ms	AUTO
Reference Level	-10.000 dBm	-30.000 dBm
Attenuation	20.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	3	3
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	12 / max. 40	max. 40
Stable	3 / 3	3
Max Stable Difference	0.00 dB	0.50 dB

Remark: Cable loss 0.8 dB was considered and set in system configuration.

- End of the Report -