

TEST REPORT

Applicant Name :VTech Telecommunications LtdAddress :23/F Tai Ping Ind Center Block 1 57 Ting Kok RdTai Po NT, Hong Kong					
Report Number : FCC ID	SZNS220125-03651E-SAA EW780-S118-00				
Test Standard (s)					
FCC 47 CFR part 2.1093					
Sample Description					
Product Type:	DECT Cordless Handset				
Model No.:	M55				
Multiple Model(s) No.:	N/A				
Trade Mark:	SNOM				
Date Received:	2022/01/25				
Report Date:	2022/06/08				

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ianceli

Lance Li **EMC Engineer**

Approved By:

Candy . L' Candy Li

EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★ ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290

Fax: +86 755-26503396 Web: www.atc-lab.com

Version 821: 2021-11-09

Page 1 of 66

FCC SAR

Attestation of Test Results							
MODE Max. SAR Level(s) Reported(W/kg) Limit							
DECT	1g Head SAR	0.04					
DECT	1g Body SAR	0.02	- 1.6				
Simultaneous	1g Head SAR	0.08	- 1.0				
Simultaneous	1g Body SAR	0.06					
	FCC 47 CFR part 2. Radiofrequency radia	1093 tion exposure evaluation: portable devices					
	RF Exposure Procedures: TCB Workshop April 2019						
	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques						
Applicable Standards IEC 62209-1:2016 Measurement procedure for the assessment of specific absorption rate of human exposeration frequency fields from hand-held and body-mounted wireless communication development 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)							
KDB proceduresKDB 447498 D01 General RF Exposure Guidance v06KDB 648474 D04 Handset SAR v01r03.KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04KDB 865664 D02 RF Exposure Reporting v01r02							
General Population/Unc	controlled Exposure lim	be capable of compliance for localized specific absorption its specified in FCC 47 CFR part 2.1093 and has be pecified in IEEE 1528-2013 and RF exposure KDB pecified in IEEE 1528-2013 and Pecified in IEEE 152	een tested in				
		report pertain only to the device(s) evaluated.					

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	
EUT DESCRIPTION	
TECHNICAL SPECIFICATION	
REFERENCE, STANDARDS, AND GUIDELINES	
SAR LIMITS	7
FACILITIES	
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
EUT TEST STRATEGY AND METHODOLOGY Test Positions for Device Operating Next to a Person's Ear	
CHEEK/TOUCH POSITION	
EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS TEST DISTANCE FOR SAR EVALUATION	
SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	
MAXIMUM TARGET OUTPUT POWER	
TEST RESULTS:	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
STANDALONE SAR ESTIMATION: SAR test exclusion for considerations Result	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	
SAR PLOTS	
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B EUT TEST POSITION PHOTOS	
APPENDIX C PROBE CALIBRATION CERTIFICATES	
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	SZNS220125-03651E-SAA	Original Report	2022-06-08	

EUT DESCRIPTION

This report has been prepared on behalf of **VTech Telecommunications Ltd** and their product **DECT Cordless Handset**, Model: **M55**, FCC ID: **EW780-S118-00** or the EUT (Equipment under Test) as referred to in the rest of this report.

Technical Specification

Product Type	Portable		
Exposure Category:	Population / Uncontrolled		
Antenna Type(s):	Internal Antenna		
Body-Worn Accessories: None			
Modulation:	DECT: GFSK		
Modulation:	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK		
Eroquonay Dande	DECT: 1921.536-1928.448 MHz;		
Frequency Band:	Bluetooth: 2402~2480MHz		
Power Source:	Rechargeable Battery		
Normal Operation:	Head and Body		

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

- The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.
- This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

SAR Limits

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

FCC Limit(1g Tissue)

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) applied to the EUT.

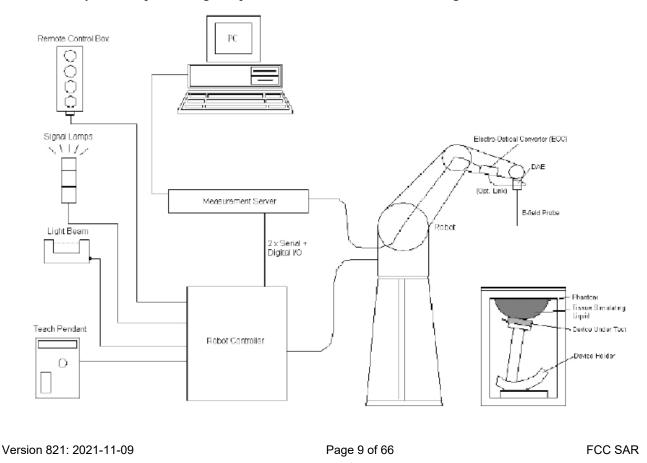
FACILITIES

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358,the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

The test site has been registered with ISED Canada under ISED Canada Registration Number CN0016.


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

- The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.
- The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.
- The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

- The SAM Twin Phantom (shown in front of DASY5) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm.
- When the phantom is mounted inside allocated slot of the DASY5 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY5 platform is used to mount the
- Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.
- In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:
- Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.
- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

Calibration Frequency	Frequency	Range(MHz)	Conversion Factor			
Point(MHz)	From To		X	Y	Z	
450 Head	350	550	8.89	8.89	8.89	
600 Head	500	680	8.96	8.96	8.96	
750 Head	680	810	8.63	8.63	8.63	
835 Head	810	860	8.50	8.50	8.50	
900 Head	860	1000	8.28	8.28	8.28	
1750 Head	1650	1810	7.33	7.33	7.33	
1900 Head	1810	2000	7.07	7.07	7.07	
2450 Head	2350	2500	6.69	6.69	6.69	
2600 Head	2500	2700	6.53	6.53	6.53	
5250 Head	5140	5360	4.37	4.37	4.37	
5600 Head	5490	5700	4.03	4.03	4.03	
5800 Head	5700	5910	3.93	3.93	3.93	

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 3619 Calibrated: 2021/08/25

Area Scans

- Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.
- Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

- The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.
- When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.
- The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

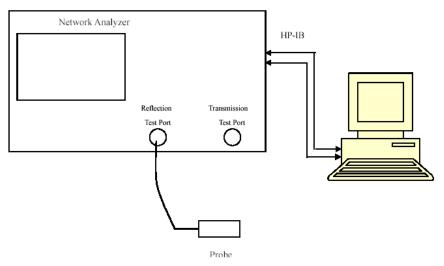
The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (o)	
MHz	ε _r	S/m	
300	45,3	0,87	
450	43,5		
750	41,9	0,89	
835	41,5	0,90	
900	41,5	0,97	
1 450	40,5	1,20	
1 500	40,4	1,23	
1 6 4 0	40,2	1,31	
1 750	40,1	1,37	
1 800	40,0	1,40	
1 900	40,0	1,40	
2 000	40,0	1,40	
2 100	39,8	1,49	
2 300	39,5	1,67	
2 450	39,2	1,80	
2 600	39,0	1,96	
3 000	38,5	2,40	
3 500	37,9	2,91	
4 000	37,4	3,43	
4 500	36,8	3,94	
5 000	36,2	4,45	
5 200	36,0	4,66	
5 400	35,8	4,86	
5 600	35,5	5,07	
5 800	35,3	5,27	
6 0 0 0	35,1	5,48	

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.4	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1211	2022/03/01	2023/02/28
E-Field Probe	EX3DV4	3619	2021/08/25	2022/08/24
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V5.0	1744	NCR	NCR
Dipole, 1900MHz	D1900V2	5d128	2021/10/27	2024/10/26
Simulated Tissue Liquid Head(500-9500MHz)	HBBL600-10000V6	180622-2	Each Time	/
Network Analyzer	8753D	3410A08288	2021/7/07	2022/7/06
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
Signal Generator	SMB100A	108362	2021/12/23	2022/12/22
USB wideband power sensor	U2021XA	MY52350001	2021/12/23	2022/12/22
Power Amplifier	CBA 1G-070	T44328	2021/12/23	2022/12/22
Linear Power Amplifier	AS0860-40/45	1060913	2021/12/23	2022/12/22
Directional Coupler	4223-20	3.113.277	2021/12/23	2022/12/22
6dB Attenuator	8493B 6dB Attenuator	2708A 04769	2021/12/23	2022/12/22
Digital Radio Communication Tester	CMD60	830861/029	2021/12/23	2022/12/22

SAR MEASUREMENT SYSTEM VERIFICATION

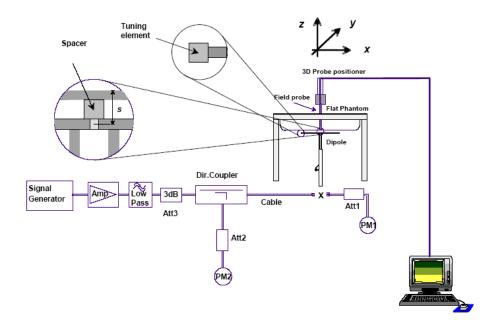
Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency Liquid		Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Туре	8 _r	0' (S/m)	8r	0' (S/m)	$\Delta \epsilon_{ m r}$	ΔΟ΄ (S/m)	(%)
1900	Tissue Liquid Head	39.529	1.388	40.0	1.40	-1.18	-0.86	±5
1921.536	Tissue Liquid Head	39.471	1.381	40.0	1.40	-1.32	-1.36	±5
1924.992	Tissue Liquid Head	39.485	1.386	40.0	1.40	-1.29	-1.00	±5
1928.448	Tissue Liquid Head	39.476	1.383	40.0	1.40	-1.31	-1.21	±5

*Liquid Verification above was performed on 2022/05/20.


System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1$ 000 MHz;
- b) $s=10~mm\pm0.2~mm$ for 1 000 MHz $< f \le 3$ 000 MHz;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz < f \leq 6 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band (MHz)	Liquid Type	Input Pow er (mW)		asured SAR V/kg)	Normalized to 1W (W/kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2022/05/20	1900	Head	100	1g	4.11	41.1	40.0	2.750	±10

*The SAR values above are normalized to 1 Watt forward power.

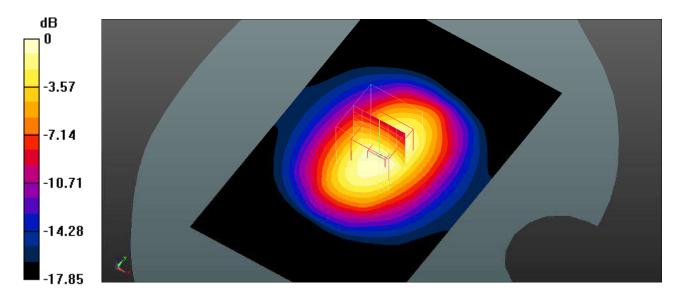
SAR SYSTEM VALIDATION DATA

System Performance 1900 MHz Head

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d128

Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.388$ S/m; $\epsilon_r = 39.529$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

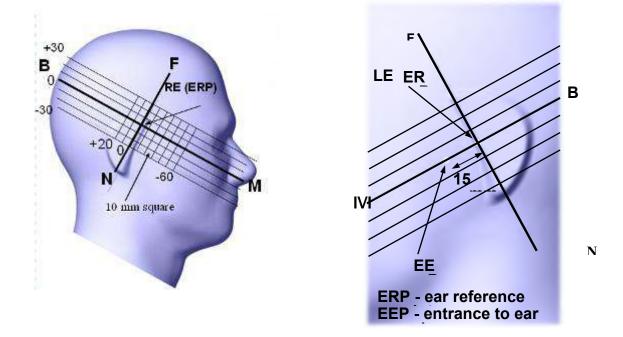

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Head 1900MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.72 W/kg

Head 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.04 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 7.53W/kg

SAR(1 g) = 4.11 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 4.64 W/kg

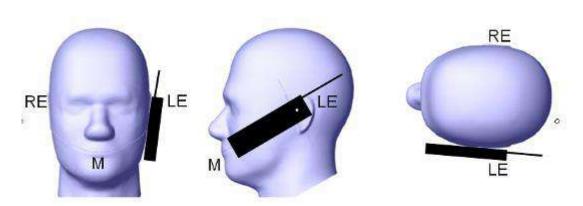


0 dB = 4.64 W/kg = 6.67 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

- This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper 1/4 of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear reference point" (left and right) and the tip of the mouth.
- A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:


Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.
- For existing head phantoms when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

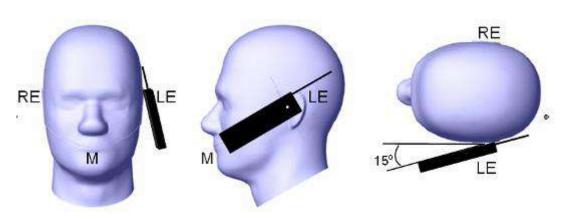
Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":

1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the


Version 821: 2021-11-09

FCC SAR

Shenzhen Accurate Technology Co., Ltd.

SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

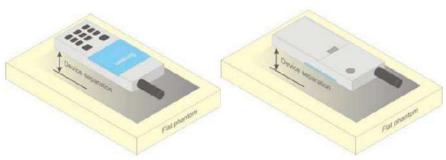


Figure 5 - Test positions for body-worn devices

Test Distance for SAR Evaluation

For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Maximum Target Output Power

Max Target Power(dBm)					
Mada/Dand	Channel				
Mode/Band	Low	High			
DECT	19.0	19.0	19.0		
Bluetooth	0.0	0.0	0.0		

Test Results:

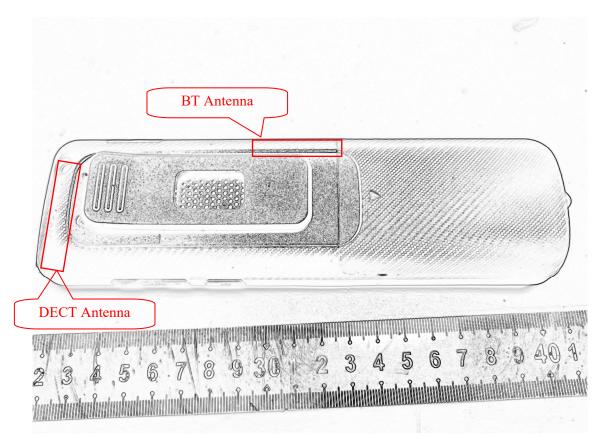
Bluetooth:

Mode	Frequency (MHz)	RF Output Peak Power (dBm)
	2402	-1.96
BDR(GFSK)	2441	-2.60
	2480	-1.01
	2402	-3.25
$EDR(\pi/4-DQPSK)$	2441	-4.07
	2480	-2.32
	2402	-2.83
EDR(8DPSK)	2441	-3.53
	2480	-2.01

DECT:

Mode	Frequency (MHz)	RF Output Peak Power (dBm)
DECT	1921.536	18.62
	1924.992	18.65
	1928.448	18.51

Note:


- 1. Rohde & Schwarz Radio Communication Tester (CMD60) was used for the measurement of DECT peak output power.
- 2. Duty Cycle=1:21.2(From the RF report)
- 3. The EUT belongs to a low duty cycle device.
- 4. Per KDB 447498 D01, 1 Channel shall be tested; the middle channel was selected to test:

$$N_{\rm e} = Round \left\{ \left[100 (f_{\rm high} - f_{\rm low}) / f_{\rm e} \right]^{0.5} \times (f_{\rm c} / 100)^{0.2} \right\},\$$

where f_{high} is the highest frequency in the band and f_{low} , is the lowest f_c is the center frequency in the band.

Standalone SAR test exclusion considerations

Antennas Location:

EUT Back View

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusion
Bluetooth	2480	0.0	1.00	0	0.3	3.0	Yes

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Standalone SAR estimation:

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Estimated 1-g (W/kg)	
BT Head	2480	0.0	1.00	0	0.04	
BT Body	2480	0.0	1.00	0	0.04	

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)] ·

 $\left[\sqrt{f(GHz)}/x\right]$

W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion

SAR test exclusion for considerations Result

Test exclusion result				
Antenna Back				
DECT	Required			
BT	Exclusion			

Note:

Required: Test is required. **Exclusion:** SAR test exclusion evaluation has been done above.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	22.3-23.5℃
Relative Humidity:	40-54%
ATM Pressure:	101.3kPa
Test Date:	2022/05/20

Testing was performed by Seven Liang.

DECT Mode:

EUT	Fraguanay	Test	Max. Meas.	Max. Rated	1g SAR	R (W/Kg), I	Limited=1.6W	// kg
Position	Frequency (MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1921.536	GFSK	/	/	/	/	/	/
Head Left Cheek	1924.992	GFSK	18.65	19.0	1.084	0.017	0.02	1#
	1928.448	GFSK	/	/	/	/	/	/
	1921.536	GFSK	/	/	/	/	/	/
Head Left Tilt	1924.992	GFSK	18.65	19.0	1.084	0.020	0.03	2#
	1928.448	GFSK	/	/	/	/	/	/
	1921.536	GFSK	18.62	19.0	1.091	0.029	0.04	3#
Head Right Cheek	1924.992	GFSK	18.65	19.0	1.084	0.028	0.04	4#
	1928.448	GFSK	18.51	19.0	1.119	0.029	0.04	5#
	1921.536	GFSK	/	/	/	/	/	/
Head Right Tilt	1924.992	GFSK	18.65	19.0	1.084	0.021	0.03	6#
	1928.448	GFSK	/	/	/	/	/	/
	1921.536	GFSK	18.62	19.0	1.091	0.015	0.02	7#
Body Back	1924.992	GFSK	18.65	19.0	1.084	0.015	0.02	8#
	1928.448	GFSK	18.51	19.0	1.119	0.015	0.02	9#

Note:

1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. 2. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance.

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities				
Transmitter Combination	Simultaneous?			
DECT + Bluetooth				

Simultaneous and Hotspot SAR test exclusion considerations:

Mode	Position	Reported S	$\Sigma SAR <$	
	1 001000	SAR1	SAR2	1.6W/kg
DECT + Bluetooth	Head Left Cheek	0.02	0.04	0.06
	Head Left Tilt	0.03	0.04	0.07
	Head Right Cheek	0.04	0.04	0.08
	Head Right Tilt	0.03	0.04	0.07
	Body Back	0.02	0.04	0.06

Conclusion:

Sum of SAR: $\Sigma SAR \le 1.6 \text{ W/kg}$ therefore simultaneous transmission SAR with Volume Scans is not required.

SAR Plots

Plot 1#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:21.2 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.386$ S/m; $\epsilon_r = 39.485$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Head Left Cheek/DECT Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0186 W/kg

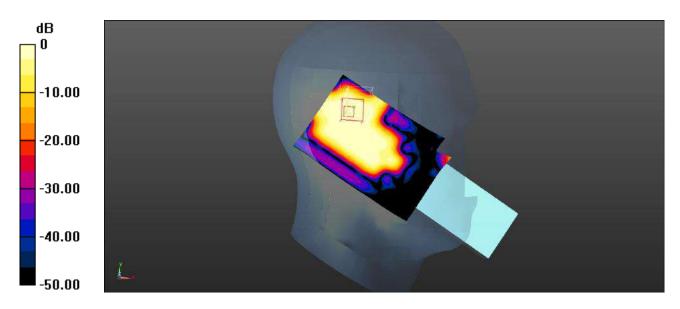
Head Left Cheek/DECT Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.840 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.0290 W/kg SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.00966 W/kg Maximum value of SAR (measured) = 0.0191 W/kg

0 dB = 0.0191 W/kg = -17.19 dBW/kg

Plot 2#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:21.2


Medium parameters used (interpolated): f = 1924.99 MHz; σ = 1.386 S/m; ϵ_r = 39.485; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Head Left Tilt/DECT Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0332 W/kg

Head Left Tilt/DECT Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.0300 W/kg SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.011 W/kg Maximum value of SAR (measured) = 0.0225 W/kg

0 dB = 0.0225 W/kg = -16.48 dBW/kg

Version 821: 2021-11-09

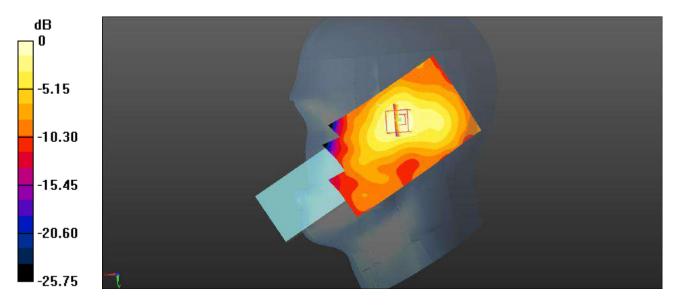
Plot 3#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1921.54 MHz;Duty Cycle: 1:21.2 Medium parameters used (interpolated): f = 1921.54 MHz; $\sigma = 1.381$ S/m; $\epsilon_r = 39.471$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)


Head Right Cheek/DECT Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0316 W/kg

Head Right Cheek/DECT Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.241 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.0420 W/kg

SAR(1 g) = 0.029 W/kg; SAR(10 g) = 0.017 W/kg

Maximum value of SAR (measured) = 0.0316 W/kg

0 dB = 0.0316 W/kg = -15.00 dBW/kg

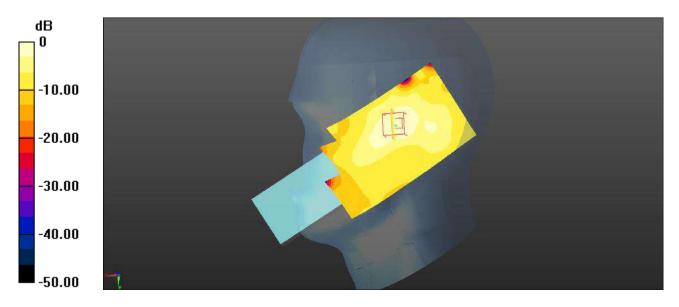
Plot 4#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:21.2 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.386$ S/m; $\epsilon_r = 39.485$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)


Head Right Cheek/DECT Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0287 W/kg

Head Right Cheek/DECT Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.325 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.0440 W/kg

SAR(1 g) = 0.028 W/kg; SAR(10 g) = 0.016 W/kg

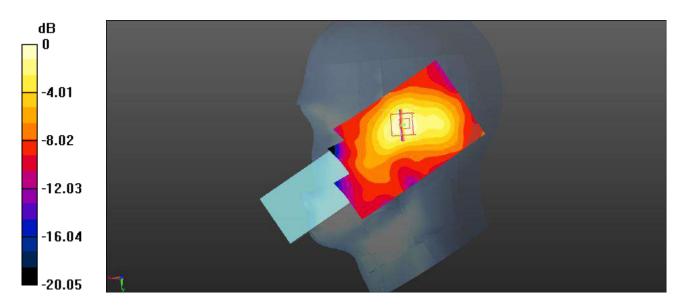
Maximum value of SAR (measured) = 0.0296 W/kg

0 dB = 0.0296 W/kg = -15.29 dBW/kg

Plot 5#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1928.45 MHz; Duty Cycle: 1:21.2


Medium parameters used (interpolated): f = 1928.45 MHz; σ = 1.383 S/m; ϵ_r = 39.476; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Head Right Cheek/DECT High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0338 W/kg

Head Right Cheek/DECT High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.586 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.0470 W/kg SAR(1 g) = 0.029 W/kg; SAR(10 g) = 0.017 W/kg Maximum value of SAR (measured) = 0.0319 W/kg

0 dB = 0.0319 W/kg = -14.96 dBW/kg

Version 821: 2021-11-09

Plot 6#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:21.2 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.386$ S/m; $\epsilon_r = 39.485$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Head Right Tilt/DECT Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0226 W/kg

Head Right Tilt/DECT Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.401 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.0330 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.012 W/kg

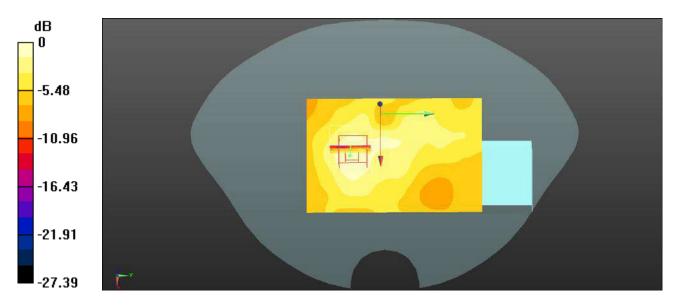
Maximum value of SAR (measured) = 0.0219 W/kg

0 dB = 0.0219 W/kg = -16.60 dBW/kg

Plot 7#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1921.54 MHz;Duty Cycle: 1:21.2 Medium parameters used (interpolated): f = 1921.54 MHz; $\sigma = 1.381$ S/m; $\epsilon_r = 39.471$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/DECT Low/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0165 W/kg

Body Back/DECT Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.671 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.0240 W/kg SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00864 W/kg

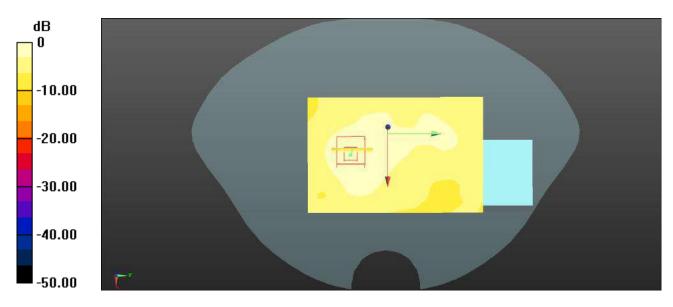
Maximum value of SAR (measured) = 0.0166 W/kg

0 dB = 0.0166 W/kg = -17.80 dBW/kg

Plot 8#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:21.2 Medium parameters used (interpolated): f = 1924.99 MHz; σ = 1.386 S/m; ϵ_r = 39.485; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/DECT Mid/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0171 W/kg

Body Back/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.746 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.0260 W/kg SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00899 W/kg

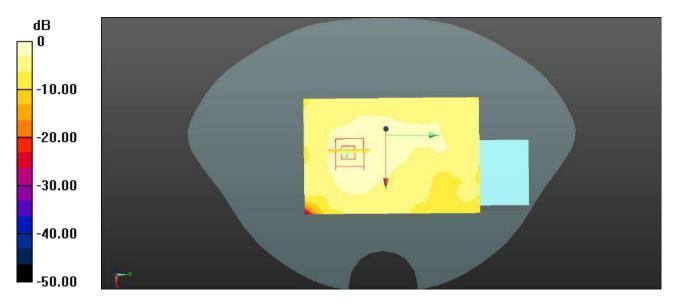
Maximum value of SAR (measured) = 0.0163 W/kg

0 dB = 0.0163 W/kg = -17.88 dBW/kg

Plot 9#

DUT: M55; Type: DECT Cordless Handset; Serial: SZNS220125-03651E-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1928.45 MHz;Duty Cycle: 1:21.2 Medium parameters used (interpolated): f = 1928.45 MHz; σ = 1.383 S/m; ϵ_r = 39.476; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4- SN3619; ConvF(7.07, 7.07, 7.07); Calibrated: 2021/08/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/DECT High/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0169 W/kg

Body Back/DECT High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.6810 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.0250 W/kg SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00892 W/kg

Maximum value of SAR (measured) = 0.0170 W/kg

0 dB = 0.0170 W/kg = -17.70 dBW/kg

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertaint y ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)			
Measurement system										
Probe calibration	6.55	Ν	1	1	1	6.6	6.6			
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7			
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0.0	0.0			
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6			
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7			
Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6			
Readout electronics	0.3	Ν	1	1	1	0.3	0.3			
Response time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0			
Integration time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0			
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6			
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6			
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5			
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9			
Post-processing	2.0	R	$\sqrt{3}$	1	1	1.2	1.2			
		Test sample	related							
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8			
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3			
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9			
		Phantom and	set-up		_		_			
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3			
Liquid conductivity target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2			
Liquid conductivity meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1			
Liquid permittivity target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4			
Liquid permittivity meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2			
Combined standard uncertainty		RSS				12.2	12.0			
Expanded uncertainty 95 % confidence interval)						24.3	23.9			

Measurement uncertainty evaluation	for IEC 62209-2 SAR test
------------------------------------	--------------------------

Source of uncertainty	Tolerance/ uncertai nty ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)
		Measurement	system				
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0.0	0.0
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Modulation Response	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Integration time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	$\sqrt{3}$	1	1	1.2	1.2
		Test sample	related				
Device holder Uncertainty	6.3	Ν	1	1	1	6.3	6.3
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Power scaling	4.5	R	$\sqrt{3}$	1	1	2.6	2.6
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
		Phantom and	set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.9	Ν	1	1	0.84	1.1	0.9
Liquid conductivity (meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1
Liquid permittivity (meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2
Temp. unc Conductivity	1.7	R	$\sqrt{3}$	0.78	0.71	0.8	0.7
Temp. unc Permittivity	0.3	R	$\sqrt{3}$	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				12.2	12.1
Expanded uncertainty 95 % confidence interval)						24.5	24.2

APPENDIX B EUT TEST POSITION PHOTOS

Please Refer to the Attachment.

APPENDIX C PROBE CALIBRATION CERTIFICATES

	A#00396		
Calibration Laborato Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zur	B)		Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredi The Swiss Accreditation Servi Multilateral Agreement for the	ce is one of the signatories	to the EA	reditation No.: SCS 0108
Client BACL USA			EX3-3619_Aug21
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:361	9	
Calibration procedure(s)	QA CAL-25.v7	A CAL-12.v9, QA CAL-14.v5, QA lure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	August 25, 2021		THE REAL PROPERTY.
Calibration Equipment used (Ma			
		Del Data (Delle ala Na V	
Primary Standards Power meter NRP	ID SN: 104778	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	Scheduled Calibration
Primary Standards	ID	Cal Date (Certificate No.) 09-Apr-21 (No. 217-0329 1/03292) 09-Apr-21 (No. 217-03291)	Scheduled Calibration Apr-22 Apr-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291	ID SN: 104778 SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	Apr-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator	ID SN: 104776 SN: 103244 SN: 103245 SN: CC2552 (20x)	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	Apr-22 Apr-22 Apr-22 Apr-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291	ID SN: 104778 SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243) 23-Dec-20 (No. DAE4-660_Dec20)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21
Primary Slandards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	ID SN: 104776 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Dec-21
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	ID SN: 104776 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (n house)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198	ID SN: 104778 SN: 103244 SN: 103245 SN: 022552 (20x) SN: 660 SN: 3013 ID SN: 6B41293674	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	ID SN: 104776 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 23-Dac-20 (No. DAE4-660_Dec20) 30-Dac-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Chock In house check: Jun-22 In house check: Jun-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power metor E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104776 SN: 103244 SN: 103245 SN: 02552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY4149067 SN: 000110210 SN: US342/201700	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	ID SN: 104776 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 0110210	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. 217-03343) 23-Dec-20 (No. 253-3013, Dec-20) 30-Dec-20 (No. ES3-3013, Dec-20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power metor E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104776 SN: 103244 SN: 103245 SN: 02552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY4149067 SN: 000110210 SN: US342/201700	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Apr-99 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	ID SN: 104776 SN: 103245 SN: 103245 SN: 202552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY4149687 SN: 00Y10210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243) 23-Dac-20 (No. DAE4-650_Dec20) 30-Dac-20 (No. ES3-3013_Dec20) Check Date (n house) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Cd-20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E44198 Power sensor E44198 Reference H4198 Reference H4198 Calibrated by: Approved by:	ID SN: 104776 SN: 103244 SN: 03245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: 6841293874 SN: 00110210 SN: 00110210 SN: 00110210 SN: 000110210 SN: 000100277 Name Michael Weber Niels Kuster	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243) 23-Dac-20 (No. DAE4-650 Dec20) 30-Dac-20 (No. ES3-3013, Dec20) Check Date in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Jun-20) Function Laboratory Technician	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

s

C

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

erecen j.	
TSL	tissue simulating liquid
NORMx.y.z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
-	i.e., 8 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

information used in DASY system to align probe sensor X to the robot coordinate system

- Calibration is Performed According to the Following Standards:
 - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020
 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(1), x, y, z = NORM(x, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
- Implemented in DAS Y4 software versions later than 4.2. The uncertainty of the requerty response is included in the stated uncertainty of *ConvF*. *DCPx*, *y*, *z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- . characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-ield (or Temperature Transfer .
- Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for Interspectrum of 12 and Minz. The same soups are used for assessment 3 the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3619 Aug21

Page 2 of 22

August 25, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)2)A	0.45	0.37	0.40	± 10.1 %
DCP (mV) ⁸	100.7	95.9	97.2	

UID	Communication System Name		A dB	B dBõW	С	D dB	VR mV	Max dev.	Max Unc ⁱⁱ (k=2)
0	CW	X	0.00	0.00	1.00	0.00	136.8	± 3.0%	±4.7%
	2013122.01	Y	0.00	0.00	1.00	201000355	140.2	1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Concerned.
		Z	0.00	0.00	1.00	1	129.7	Ê	
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	91.00	20.78	10.00	60.0	± 3.3 %	± 9.6 %
AAA		Y	20.00	91.31	20.32		60.0		100000000000000000000000000000000000000
	and the second s	Z	20.00	90.73	20.77	long over	60.0	la an concerne	
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	92,40	20.17	6.99	80.0	± 1.9 %	± 9.6 %
AAA		Y	20.00	94.02	20.51		80.0	1	
		Z	20.00	92.05	20.07		80.0		
10354- AAA	Pulse Waveform (200Hz, 40%)	X	20.00	95.90	20.43	3.98	95.0	±1.1%	± 9.6 %
	N 18 658 j	Y	20.00	100.99	22.55		95.0		
	5	Z	20.00	94.75	19.91		95.0		0
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	101.26	21.75	2.22	120.0	±0.9%	± 9.6 %
AAA		Y	20.00	110.57	25.81		120.0		
		Z	20.00	99.53	20.96		120.0	1	1 2
10387-	QPSK Waveform, 1 MHz	X	1.63	64.3)	14.18	1.00	150.0	± 1.6 %	± 9.6 %
AAA	and the second second second	Y	1.70	65.79	14.92		150.0		
		Z	1.75	65.33	14.77	h	150.0	1	
10388-	QPSK Waveform, 10 MHz	X	2.11	66.24	14.81	0.00	150.0	±1.0%	± 9.6 %
AAA		Y	2.24	67.52	15.58	0.002.81096	150.0	2020/02/2020	332.079.65
		Z	2.29	67.54	15.45	3	150.0	1	1
10396-	64-QAM Waveform, 100 kHz	X	3.00	69.58	18.20	3.01	150.0	±0.8%	± 9.6 %
AAA	Contraction and the second s	Y	2.91	69.50	18.29		150.0	0.0000.000.0000.0000.0000.0000.0000.0000	221122022
		Z	3.05	69.63	18.27	8	150.0	1	C. SPRING
10399-	64-QAM Waveform, 40 MHz	X	3.46	66.35	15.34	0.00	150.0	±0.7%	± 9.6 %
AAA		Y	3.57	67.04	15.78		150.0		
	· · · · · · · · · · · · · · · · · · ·	Z	3.43	66.28	15.34	Sector and	150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.90	65.28	15.30	0.00	150.0	± 1.4 %	± 9.6 %
AAA	6 2	Y	4.76	65.03	15.26		150.0		
		Z	4.86	65.14	15.25	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max, deviation from tinear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3619_Aug21

Page 3 of 22

August 25, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Sensor Model Parameters

	C1 fF	C2 fF	α V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V-1	T6
x	51.1	383.01	35.69	9.96	0.40	5.01	1.42	0.30	1.01
Y	45.1	338.51	35.83	9.28	0.00	5.03	1.02	0.31	1.01
Z	53.1	397.58	35.66	9.81	0.50	5.01	0.63	0.43	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-153.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

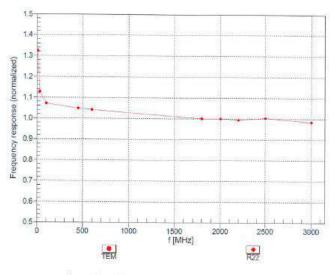
Certificate No: EX3-3619_Aug21

Page 4 of 22

August 25, 2021

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	8.89	8.89	8.89	0.16	1.30	± 13.3 %
600	56.1	0.95	8.96	8.96	8.96	0.10	1.25	± 13.3 %
750	41.9	0.89	8.63	8.63	8.63	0.42	0.90	± 12.0 %
835	41.5	0.90	8.50	8.50	8.50	0.43	0.80	± 12.0 %
900	41.5	0.97	8.28	8.28	8.28	0.34	0.99	± 12.0 %
1750	40.1	1.37	7.33	7.33	7.33	0.22	0.86	± 12.0 %
1900	40.0	1.40	7.07	7.07	7.07	0.26	0.86	± 12.0 %
2450	39.2	1.80	6.69	6.69	6.69	0.19	0.90	± 12.0 %
2600	39.0	1.96	6.53	6.53	6.53	0.15	0.90	± 12.0 %
5250	35.9	4.71	4.37	4.37	4.37	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.03	4.03	4.03	0.40	1.80	± 13.1 %
5800	35.3	5.27	3.93	3.93	3.93	0.40	1.80	± 13.1 %

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

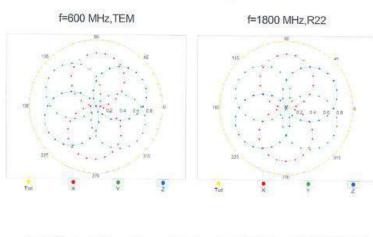

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessed at 5 MHz, and ConvF assessed at 13 MHz is ± 10 MHz, and ConvF assessed at 13 MHz is ± 10 MHz, and ConvF assessed at 5 MHz, and ConvF assessed at 13 MHz is ± 10 MHz, and ConvF assessed at 13 MHz is ± 10 MHz, and ConvF assessed at 5 MHz. Above 5 GHz frequencies values of 3 GHz, the validity of tissue parameters (*c* and *c*) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters.
⁶ AlphaDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3619_Aug21

Page 5 of 22

August 25, 2021

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

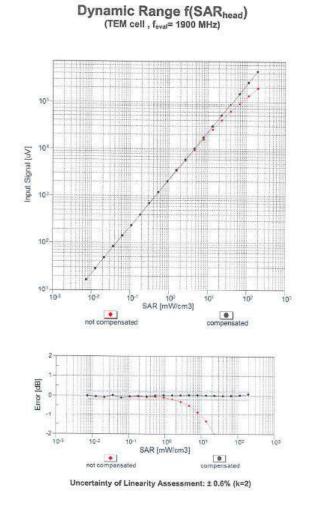

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3619_Aug21

Page 6 of 22

Version 821: 2021-11-09

August 25, 2021

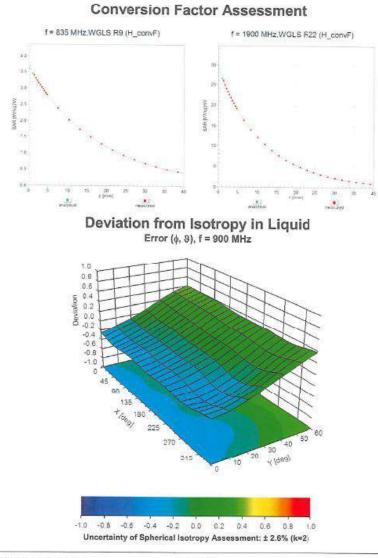

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3619_Aug21

Page 7 of 22

August 25, 2021



Certificate No. EX3-3619_Aug21

Page 8 of 22

Version 821: 2021-11-09

August 25, 2021

Certificate No: EX3-3619_Aug21

Page 9 of 22

August 25, 2021

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^e (k=2)
0		CW	CW	0.00	±4.7 9
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 9
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802,15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetcoth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6%
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.10	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Maps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps)	WLAN	9.09	± 9.6 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.00	± 9.6 %
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	
10068	CAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps)	WLAN	10.12	± 9.6 %
10069	CAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps)	WLAN	10.24	± 9.6 %
10071	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN		± 9.6 %
10072	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.83	± 9.6 %
10073	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10074	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 16 Mbps)	WLAN	9,94	± 9.6 %
10075	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10077	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6 %
10081		CDMA2000 (1xRTT, RC3)		11.00	± 9.6 %
10081	CAB	Contraction of the second s	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
80001	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 10 of 22

10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
0102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
0103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
0104	CAE	LTE-TOD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
0105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %
0109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
0110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
0111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
0112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
0113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
0114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
0115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
0116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
0117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
0118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
0119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
0140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
0141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
0144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
0145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
0146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
0147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
0149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
0150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
0151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TOD	9.28	± 9.6 %
0152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
0153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TOD	10.05	± 9.6 %
0154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
0155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
0156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
0157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
0158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
0159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
0160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
0161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
0162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
0166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
0167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
0168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
0169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
0172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
0173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
0174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
0175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
0176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 11 of 22

Version 821: 2021-11-09

August 25, 2021

10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6%
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	19.6%
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6%
10198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6%
10219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %
10220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	19.6%
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	-
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TOD	9.49	± 9.6 %
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-OAM)	LTE-TOD		± 9.6 %
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD		± 9.6 9
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	9.48	± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	10.25	±9.6 %
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)		9.19	± 9.6 %
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TOD	9.48	± 9.6 %
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	10.25	± 9.6 %
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.21	± 9.6 %
10236	CAD	LTE-TDD (SC-FDMA, 1 R8, 10 MHz, 16-QAM)	LTE-TOD	9.48	± 9.6 %
10237	CAD	LTE-TOD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TOD	10.25	± 9.6 %
10238		LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.21	± 9.6 %
10239	CAB	LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAB		LTE-TDD	10.25	± 9.6 %
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TOD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE TOD	10.06	± 9.6 %
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
0252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
0253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
0255	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
0256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 12 of 22

August 25, 2021

10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TOD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TOD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	19.6%
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAD	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAD	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAG	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, OPSK)	LTE-FDD	5.72	± 9.6 %
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	CAC	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	CAB	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.03	± 9.6 %
10303	CAB	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.57	
10304	CAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX		± 9.6 %
10305	CAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	± 9.6 %
10306	CAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	15.24	± 9.6 %
10307	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WIMAX	14.67	± 9.6 %
10308	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX		± 9.6 %
10309	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, POSC)	WIMAX	14.46	± 9.6 %
10310	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3)	WIMAX	14.58	± 9.6 %
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	14.57	± 9.6 %
10313	AAD	IDEN 1:3	IDEN	6.06	± 9.6 %
10314	AAD	IDEN 1:6	IDEN	10.51	± 9.6 %
10315	AAD	IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	13.48	± 9.6 %
10316	AAD	IEEE 802.110 WIFI 2.4 GHz (DSSS, 1 Mops, 96pc dc)	WLAN	1.71	± 9.6 %
10317	AAA	IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	8.36	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	10.00	19.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	6.99	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	3.98	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	2.22	± 9.6 %
10387	AAA	OPSK Waveform, 1 MHz	Generic	0.97	± 9.6 %
10388		QPSK Waveform, 10 MHz		5.10	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	5.22	± 9.6 %
10399	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10400	AAA		Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 98pc dc)	WLAN	8.37	± 9.6 %
	AAA	IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	± 9.6 %
10402	AAA	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 13 of 22

0414		LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
0415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10417	AAA	IEEE 802.11a/h WIFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	± 9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	± 9.6 %
10422	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	19.6%
10423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430	AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432	AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TOD	7.82	± 9.6 %
10447	AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10450	AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10453	AAC	Validation (Square, 10ms, 1ms)	Test	10.00	1 9.6 %
10456	AAC	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	± 9.6 %
10457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TOD	8.30	± 9.6 %
10463	AAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TOD	7.82	± 9.6 %
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10467	AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10469	AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10470	AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10471	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10475	AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TOD	8.32	± 9.6 %
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TOD	7.74	± 9.6 %
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TOD	8.18	± 9.6 %
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	19.6%
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	± 9.6 %
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TOD	8.39	± 9.6 %
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TOD	8.47	± 9.6 %
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	± 9.6 %
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	± 9.6 %
10487	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TOD	8.60	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 14 of 22

August 25, 2021

10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	± 9.6 9
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 9
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 9
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 9
10492	AAF	LTE-TOD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 9
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 9
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TOD	8.54	± 9.6 %
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 9
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, U. Sub)	LTE-TDD	8.40	± 9.6 9
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 9
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 9
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 9
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TOD	7.72	± 9.6 %
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 9
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 9
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 9
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 9
0513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6 9
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TOD	8.45	± 9.6 9
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 9
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6 9
0517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dci	WLAN	1.58	± 9.6 9
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6 9
10519	AAF	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	±9.6 %
10520	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	19.69
10521	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
0522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6%
0524	AAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	19.6%
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99ac dc)	WLAN	8.36	± 9.6 %
0526	AAF	IEEE 802.11ac WIFI (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 %
0527	AAF	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	19.6%
0528	AAF	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6 %
0529	AAF	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
0531	AAF	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
0532	AAF	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
0533	AAE	IEEE 802.11ac WIFI (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
0534	AAE	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
0535	AAE	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6 %
0536	AAF	IEEE 802.11ac WiFi (40MHz, MCS2, 99ac dc)	WLAN	8.32	± 9.6 %
0537	AAF	IEEE 802.11ac WiFi (40MHz, MCS3, 98pc dc)	WLAN	8.44	
0538	AAF	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.44	± 9.6 %
0540	AAA	IEEE 802.11ac WIFI (40MHz, MCS6, 99pc dc)	WLAN	8.54	and the second second
0541	AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN		± 9.6 %
0542	AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.46	± 9.6 %
0543		IEEE 802.11ac WiFI (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10544	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
0.044	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 15 of 22

August 25, 2021 10546 AAC IEEE 802.11ac WiFI (80MHz, MCS2, 99pc dc) WLAN 8.35 ± 9.6 % 10547 AAC IEEE 802,11ac WiFi (80MHz, MCS3, 99nc do) WLAN 8.49 ± 9.6 % 10548 IEEE 802.11ac WIFI (80MHz, MCS4, 99pc dc) AAC WLAN 8.37 ± 9.6 % 10550 AAC IEEE 802,11ac WiFi (80MHz, MCS6, 99pc do) WLAN 8.38 ± 9.6 % 10551 IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) AAC WLAN 8 50 ± 9.6 % IEEE 802.11ac WIFI (80MHz, MCS8, 99pc do 10552 AAC WLAN 8.42 ± 9.6 % 10553 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) 8.45 ± 9.6 % 8.48 ± 9.6 % 8.47 ± 9.6 % AAC WLAN IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) 10554 WLAN AAC 10555 AAC WLAN 10556 IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc AAC WLAN 8.50 ± 9.6 % 10557 IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc AAC WIAN 8.52 ± 9.6 % 10558 IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) AAC WLAN 8.61 ± 9.6 % IEEE 802.11ac WIFI (160MHz, MCS6, 99pc dc 10560 AAC WLAN 8.73 ± 9.6 % 10561 IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) AAC WI AN 8.56 ± 9.6 % IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) 10562 AAC WLAN 8.69 ± 9.6 % 10563 AAC IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) WLAN 8.77 ± 9.6 % 10564 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) AAC WLAN 8 25 ± 9.6 % IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) 10565 AAC WLAN 8.45 ± 9.6 % 10566 IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) ± 9.6 % AAC WLAN 8.13 IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) 10567 WLAN AAC 8.00 ±9.6% 10568 AAC IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN 8.37 ± 9.6 % IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) 10589 AAC WLAN 8.10 ± 9.6 % 10570 AAC WLAN 8.30 ± 9.6 % 10571 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN AAC 1.99 ± 9.6 % IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc dc) 10572 AAC WLAN 1.99 ± 9.6 % 10573 AAC IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1 98 ± 9.6 % 10574 AAC IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc c WLAN 1.98 ± 9.6 % 10575 AAC IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 9(pc dc) WLAN 8.59 ± 9.6 % 10576 AAC IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 9(pc dc) WLAN 8.60 ± 9.6 % 10577 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 10pc dc) AAC WIAN 8.70 ± 9.6 % 10578 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 50pc dc) AAD WLAN 8.49 ± 9.6 % 10579 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 50pc do AAD WLAN 8.36 ± 9.6 % 10580 AAD IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 50pc dc) WLAN 8.76 ± 9.6 % IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 50pc dc 10581 AAD WLAN 8.35 ± 9.6 % 10582 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) AAD WLAN 8.67 ±9.6% 10583 AAD IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) AAD IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10584 8.60 ± 9.6 % W/ AN 10585 AAD IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc) WLAN 8.70 ± 9.6 % 10586 AAD IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc WLAN 8.49 ± 9.6 % 10587 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) WLAN 8.36 ± 9.6 % 10588 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) AAA IEEF 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) WLAN 8.76 +9.6% 10589 WLAN 8.35 ± 9.6 % 10590 AAA IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) WLAN 8.67 ± 9.6 % 10591 AAA IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) WLAN 8.63 ± 9.6 % 10592 AAA IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) WLAN 8.79 ± 9.6 % AAA IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) 10593 WLAN 8.64 ± 9.6 % 10594 AAA IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN 8.74 ± 9.6 % 10595 IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc 8.74 ± 9.6 % AAA WLAN 10596 IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) WLAN AAA 871 ± 9.6 % AAA IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) 10597 WLAN 8.72 ± 9.6 % 10598 IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) ± 9.6 % AAA WLAN 8.50 10500 IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) WLAN 8.79 AAA ±9.6 % AAA IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) 10600 WLAN 8.88 ± 9.6 % 10601 AAA IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) WLAN 8.82 ± 9.6 % AAA IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) 10602 WLAN 8.94 ±9.6 % 10603 AAA IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) WLAN 9.03 ± 9.6 %

Certificate No: EX3-3619_Aug21

Page 16 of 22

Version 821: 2021-11-09

	August	25.	2021
--	--------	-----	------

10604	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
10605	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
10606	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10607	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
10608	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAC	IEEE 802.11ac WIFI (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAC	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6%
10613	AAC	IEEE 802.11ac WIFI (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
10614	AAC	IEEE 802.11ac WIFI (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
10615	AAC	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10616	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAC	IEEE 802.11ac WIFI (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
10618	AAC	IEEE 802.11ac WIFI (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10619	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10620	AAC	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
10621	AAC	IEEE 802.11ac WIFI (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10622	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10523	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	
10624	AAC	IEEE 802.11ac WiFI (40MHz, MCS8, 90pc dc)	WLAN		± 9.6 %
10625	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
10626	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.96	± 9.6 %
10827	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.83	± 9.6 %
10628	-	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)		8.88	± 9.6 %
10629	AAC	IEEE 802.11ac WiFI (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9.6 %
10630	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10631	AAC	IEEE 802.11ac WIFI (80MHz, MCS5, 90pc dc)	WLAN	8.72	± 9.6 %
10632	AAC		WLAN	8.81	± 9.6 %
10632	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
10635	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	8.80	± 9.6 %
10635	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10636	AAC	IEEE 802.11ac WIFI (160MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
0.207.500	AAC	IEEE 802.11ac WIFI (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802.11ac WIFI (160MHz, MCS2, 90pc dc)	WLAN	8.86	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10640	AAC	IEEE 802,11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WIFI (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WIFI (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFI (160MHz, MCS7, 90pc dc)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	± 9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
10654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAC	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAC	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 %
10660	AAC	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAC	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAC	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAC	Bluetooth Low Energy	Bluetooth	2.19	±9.6%
	m	IEEE 802.11ax (20MHz, MCS0, 90pc dc)	WLAN	4.18	1 9.0 %

Certificate No: EX3-3619_Aug21

Page 17 of 22

August 25, 2021

10872	AAD	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %
10673	AAD	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.78	± 9.6 %
10674	AAD	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10675	AAD	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8,90	± 9.6 %
10676	AAD	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10677	AAD	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10678	AAD	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10679	AAD	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAD	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAG	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAF	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 9
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	±9.6 %
10684	AAC	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 9
10685	AAC	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 9
10686	AAC	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 9
10687	AAE	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 9
10688	AAE	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 9
10689	AAD	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 9
10690	AAE	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 9
10691	AAB	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	± 9.6 9
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.57	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.78	± 9.6 9
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	±9.6%
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAC	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
0711	AAC	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
0713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
0714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
0715	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
0716	AAC	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
0717	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
0718	AAC	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
0719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
0720	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
0721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
0722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
0723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
0724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
0725	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
0726	AAC	IEEE 802.11ax (80MHz, MCS0, 80pc dc)	WLAN	8.74	± 9.6 %
	AAC	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	0.72	1 3.0 %

Certificate No: EX3-3619_Aug21

Page 18 of 22

August 25, 2021

10728	AAC	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10733	AAC	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	± 9.6 %
10734	AAC	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAC	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	± 9.6 %
10736	AAC	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10737	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 9
10739	AAC	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
0744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
0745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	19.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	
10750	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN		± 9.6 %
10751	AAC	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.79	± 9.6 %
0752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.82	± 9.6 %
0753	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	8.81	± 9.6 %
0754	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)		9.00	± 9.6 %
0755	AAC	IEEE 802.11ax (160MHz, MCS), 90pc 6c)	WLAN	8.94	± 9.6 %
10756	and the second second second	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10757	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
0758	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10759	AAC	IEEE 802.11ax (160MHz, MCS3, 98pc dc)	WLAN	8.69	± 9.6 %
10760		IEEE 802.11ax (160MHz, MCS4, 88pc dc)	WLAN	8.58	± 9.6 %
0761	AAC	IEEE 802.11ax (160MHz, MCS6, 98pc dc)	WLAN	8.49	± 9.6 %
10762	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.58	± 9.6 %
10763	AAC		WLAN	8.49	± 9.6 %
10764	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8,53	± 9.6 %
0765	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
0766	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
0766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
9016970	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
0768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
0769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
0770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
0771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
0773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
0774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
0775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
0776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
0777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
0778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
0779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
0780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
0781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
0782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
0783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 19 of 22

August 25, 2021

0784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
0786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
0787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
0788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
0789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
0790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
0791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
0792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
0793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
0794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
0795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
0796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
0797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
0798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
0799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
0801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
0802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
0803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
0805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
0806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
0809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
0817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
0819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
0820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
0821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
0822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
0825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
0830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	± 9.6 %
0831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6 %
0832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
0833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	
0834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	± 9.6 %
0835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 % ± 9.6 %
0836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6 %
0837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
0839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	
0840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	± 9.6 %
0841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	± 9.6 %
0843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	and the second second	± 9.6 %
0844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
0846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
0854	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
0855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
0856	and the second second	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	10.40.40.40.00.00.00.00.00.00.00.00.00.00	8.36	± 9.6 %
0855	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.37	± 9.6 %
0858	AAD	5G NR (CP-OFDM, 100% RB, 25 MHZ, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)		8.35	± 9.6 %
0859			5G NR FR1 TDD	8.36	± 9.6 %
0008	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 20 of 22

August 25, 2021

10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 9
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 9
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 84QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6%
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 LHz)	5G NR FR2 TDD	8.38	± 9.6 9
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6%
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6%
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6%
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	and the second second
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		± 9.6 %
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		± 9.6 %
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)		5.68	± 9.6 %
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68	± 9.6 %
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)		5.93	± 9.6 %
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	± 9.6 %
10911		5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHZ, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10913	AAD	5G NR (DF1-S-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR (DF1-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10914	AAD		5G NR FR1 TDD	5.85	± 9.6 %
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6 %
100 C 100 C 100 C	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6 %

Certificate No: EX3-3619_Aug21

Page 21 of 22

August 25, 2021

10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6 %
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5,90	± 9.6 %
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6 %
10940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6 %
10941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
10944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 %
10945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 %
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	± 9.6 %
10953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NE FR1 FDD	8.15	± 9.6 %
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NE FR1 FDD	8.23	± 9.6 %
10955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
10956	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NE FR1 FDD	8.14	and the second se
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6 %
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NE FR1 TDD	9.36	± 9.6 %
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NE FR1 TDD	9.40	± 9.6 %
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NE FR1 TDD	9.55	± 9.6 %
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NE FR1 TDD	9.29	± 9.6 %
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NE FR1 TDD	9.29	± 9.6 %
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NE FR1 TDD	9.55	
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NE FR1 TDD	9.55	± 9.6 %
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NE FR1 TDD	9.42	± 9.6 %
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
10972	AAB	5G NR (DFT-s-OFDM, 1 RB, 20 MHZ, QPSK, 15 kHZ) 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %
0910	MMD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %

⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3619_Aug21

Page 22 of 22

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

	T, s p	oration with	中国认可
	CALIBRA	TION LABORATORY	NASta
Add: No.52 HunYu		District, Beijing, 100191, Chi	CALIBRATION
Tel: +86-10-62304) E-mail: cttl@china		+86-10-62304633-2504	CNAS L0570
Client ATC			1-60439
CALIBRATION C	ERTIFICAT	ſE	
Object	D1900	V2 - SN: 5d128	
59991,493901	61000	FE ON OUTED	
Calibration Procedure(s)	FF-711	-003-01	
		ation Procedures for dipole validation kits	
Calibration date:	Octobe	er 27, 2021	
This calibration Cartificate	documente the	traceability to national standards, which rea	lize the physical units of
		the uncertainties with confidence probability	and a state grant with a state of the state
pages and are part of the ce		The shortestate with octave providency i	are given on the lonowing
All calibrations have been	conducted in t	the closed laboratory facility: environment t	emperature (22±3)°C and
	conducted in t	the closed laboratory facility: environment t	emperature (22±3)°C and
	conducted in t	the closed laboratory facility; environment t	emperature (22±3)℃ and
humidity<70%.		8 8.	emperature (22±3)°C and
humidity≺70%. Calibration Equipment used	(M&TE critical fe	or calibration)	
humidity<70%. Calibration Equipment used Primary Standards	(M&TE critical fo	or calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical fe ID # 106277	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical fe ID # 106277 104291	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical fe ID # 106277 104291 SN 7517	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-50001)	Scheduled Calibration Sep-22 Sep-22 Feb-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical fe ID # 106277 104291	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical fe ID # 106277 104291 SN 7517	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-50001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Scheduled Calibration Sep-22 Sep-22 Feb-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical fe ID # 106277 104291 SN 7517 SN 1556	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-50001)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fe ID # 106277 104291 SN 7517 SN 1556 ID #	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-50001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-50001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG, No.Z21-50001) 15-Jan-21 (SPEAG, No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-50001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-50001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG, No.Z21-50001) 15-Jan-21 (SPEAG, No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-50001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by:	(M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-50001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer SAR Test Engineer	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22 Signature

Certificate No: Z21-60439

Page 1 of 6

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

lossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
- Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human
- exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60439

Page 2 of 6

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl/@chinattl.com
 http://www.chinattl.cn

Measurement Conditions DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.D	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	1222	5 212

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60439

Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079. Fax: +86-10-62304633-2504 E-mail: ettl@chinatl.com http://www.chinatl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

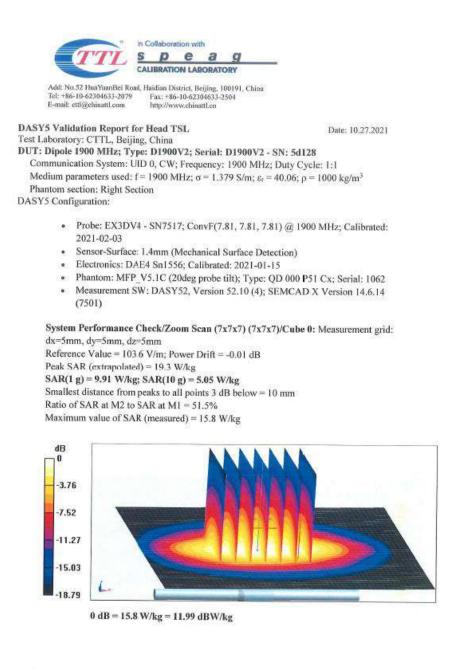
Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7Ω+ 7.45jΩ	
Return Loss	- 21.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.110 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoin; may be damaged.

Additional EUT Data

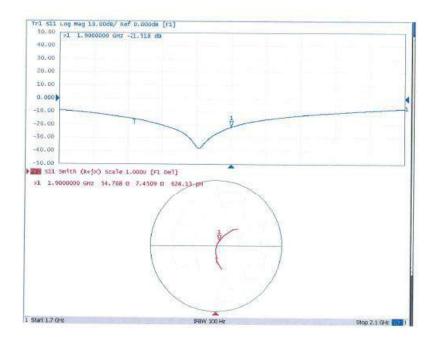
Manufactured by	SPEAG
2	- NY777765 (

Certificate No: Z21-60439

Page 4 of 6

Certificate No: Z21-60439

Page 5 of 6



 Add: No.52 HuaYuanBei Rond, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

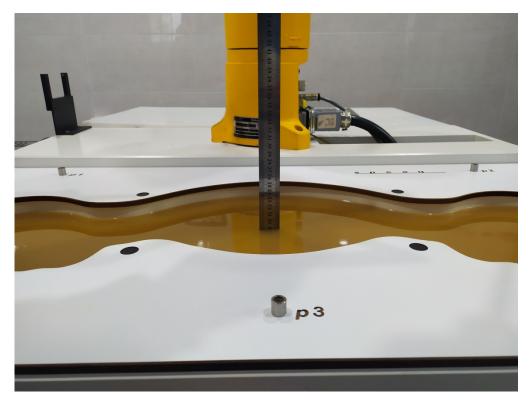
 E-mail: ettl@chinattl.com
 http://www.chinattl.cu

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60439

Page 6 of 6

******* END OF REPORT *******


Version 821: 2021-11-09

Page 66 of 66

APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth \geq 15cm

Phantom Type: Twin SAM Phantom ; Type: QD000 P40 CD; Serial: TP:1744

Head Left Cheek Setup Photo

Head Left Tilt Setup Photo

Head Right Cheek Setup Photo

Head Right Tilt Setup Photo

Body Back Setup Photo (0mm)

