FCC PART 15 Subpart C EMI MEASUREMENT AND TEST REPORT For

VTech Telecommunications Ltd.

23/F Tai Ping Industrial Center Block 1 57 Ting Kok Road, Tai Po NT, Hong Kong

FCC ID: EW75299-H00

February 13, 2003

This Report Cor	icerns:	Equipment Type:				
🛛 Original Repo	rt	Cordless Phone				
	I. 00 I					
Test Engineer:	Jeff Lee					
Report No.:	R0212231					
Test Date:	January 03, 2003					
Reviewed By:	Hans Mellberg					
Prepared By:	Bay Area Complia	ance Laboratory Corporation (BACL) Street				
	230 Commercial S					
	Sunnyvale, CA 94	085				
	Tel (408) 732-916	62				
	Fax (408) 732-910	164				

Note: This test report is specially limited to the above client company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 1.2 OBJECTIVE 1.3 RELATED SUBMITTAL(S)/GRANT(S) 1.4 TEST METHODOLOGY 1.5 TEST FACILITY 1.6 TEST EQUIPMENT LIST 1.7 LOCAL SUPPORT EQUIPMENT LIST AND DETAILS 1.8 EXTERNAL I/O CABLING LIST AND DETAILS	3 3 3 4 4 4
2 - SYSTEM TEST CONFIGURATION	5
 2.1 DESCRIPTION OF TEST CONFIGURATION 2.2 CONFIGURATION OF TEST SYSTEM	5 5 5 5
3 - RADIATED EMISSION DATA	6
 3.1 MEASUREMENT UNCERTAINTY 3.2 EUT SETUP 4.3 SPECTRUM ANALYZER SETUP 3.4 TEST PROCEDURE 3.5 CORRECTED AMPLITUDE & MARGIN CALCULATION 3.6 SUMMARY OF TEST RESULTS. 	6 6 6 7 7
4 - BAND EDGES TESTIN G	10
4.1 TEST PROCEDURE 4.2 TEST EQUIPMENT 4.3 TEST RESULTS	10 10 10

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The VTech Telecommunications Ltd.'s product, model name: gz 2434 or "EUT" as referred to in this report is 900MHz handset of a cordless telephone. The EUT is measured approximately 7.5" L x 2.25" W x 1.1"H.

* The test data gathered is from typical production samples provided by the manufacturer.

1.2 Objective

This document is a qualification tes report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992.

The object of the manufacturer is to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined by FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.249.

1.3 Related Submittal(s)/Grant(s)

No related submittals.

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at BACL. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.5 Test Facility

The Open Area Test site used by BACL to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

VTech Telecommunications Ltd.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22: 1997: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods.

1.6 Test Equipment List

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Spectrum Analyzer	8564E	08303	12/6/2003
HP	Spectrum Analyzer	8593B	2919A00242	12/20/2003
HP	Amplifier	8349B	2644A02662	12/20/2003
HP	Quasi-Peak Adapter	85650A	917059	12/6/2003
HP	Amplifier	8447E	1937A01046	12/6/2003
A.H. System	Horn Antenna	SAS0200/571	261	12/27/2003
Com-Power	Log Periodic Antenna	AL-100	16005	11/2/2003
Com-Power	Biconical Antenna	AB-100	14012	11/2/2003
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/2003
Com-Power	LISN	LI-200	12208	12/20/2003
Com-Power	LISN	LI-200	12005	12/20/2003
BACL	Data Entry Software	DES1	0001	12/20/2003

***Statement of Traceability: BACL Corp.** certifies that all calibration has been performed using suitable standards traceable to the NIST.

1.7 Local Support Equipment List and Details

Manufacturer	Manufacturer Description		Serial Number	FCC ID		
TELTONE CORP.	Simulator	TLS-3B-01	80071	DOC		
Panasonic	Telephone	KX-T3175	6IBTB142741	ACJMLA -75986-MT-E		

1.8 External I/O Cabling List and Details

Cable Description	Length (M)	Port/From	То
Non-Shielded telephone cable	2.0	RJ 11 Port/EUT	Telephone Simulator RJ11Port
Non-Shielded telephone cable	2.0	RJ 11 Port/Simulator	Telephone RJ11 Port/Panasonic

2 - SYSTEM TEST CONFIGURATION

2.1 Description of Test Configuration

The EUT was configured for testing in a typical fashion (as normally used by a typical user).

Handset being tested: The Handset unit was placed on the wooden table and tested in three orthogonal axis. The handset was connected to the headset via its headset port. The Low, middle, and high channels were tested. The handset was transmitting to and receiving from the Base unit. The EUT was investigated for emissions while off hook. The radiated data was taken in this mode of operation. All initial and final investigations were performed with the EMI receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the 2.3.

2.2 Configuration of Test System

Radiated Emission: Handset

2.3 Test Setup Block Diagram

Radiated Emission: Handset

2.4 Equipment Modifications

No modification(s) to the EUT were made by BACL to comply with the applicable limits.

Report # R0212231Rpt-HS.doc

3 - RADIATED EMISSION DATA

3.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

3.2 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with the ANSI C63.4 - 1992. The specification used was the FCC 15 Subpart C limits.

The EUT was connected to 110Vac/60Hz power source and it was placed center and the back edge of the test table.

The spacing between the peripherals was 10 centimeters.

The external I/O cables were draped over edge of the test table and bundle when necessary.

4.3 Spectrum Analyzer Setup

According to FCC Rules, 47 CFR 15.33 (a) (1), the system was tested to 25GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	10kHz	10kHz
30 – 1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

3.4 Test Procedure

For the radiated emissions test, the handset is positioned and tested in 3 orthogonal axis with new battery operated.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a " \mathbf{Qp} " in the data table.

3.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for applicable limits. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Applicable Limit

3.6 Summary of Test Results

According to the data in section 4.7, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.249 after tested to 10^{th} harmonics as required by FCC and had the worst margin of:

Handset, 30MHz to 25GHz, 3 Meters:

-13.4 dB at 912.75 MHz in the Vertical polarization at Low Frequency

-13.0 dB at 917.1 MHz in the Horizontal polarization at High Frequency

-1.3 dB at 799.74 MHz in the Horizontal polarization, Unintentional Emission

3.7 Radiated Emissions Test Result Data

3.7.2 Handset Unit, 30 MHz to 25GHz, 3 meters

INDICATED		TABLE	ANTENNA CORRECTION FACTOR			CORRECTED AMPLITUDE	FCC 15 Subpart C				
Frequency	Ampl.		Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m	Comments	Degree	Meter	H/ V	dBµV/m	DB	dB	dBµV/m	dBµV/m	dB
					Low F	requency					
912.75	78.5	PEAK, FUND	315	1	V	24.6	4.2	25.0	80.6	94	-13.4
3651.00	30.2	AVG	270	1.5	Н	30.3	4.3	30.0	34.8	54	-19.2
4563.75	27.3	AVG	315	1.0	V	32.5	4.9	30.0	34.7	54	-19.3
4563.75	27.3	AVG	270	1.5	Н	32.5	4.9	30.0	34.7	54	-19.3
3651.00	30.0	AVG	315	1.0	V	30.3	4.3	30.0	34.6	54	-19.4
1825.50	36.0	AVG	315	1.0	V	25.3	2.6	30.0	33.9	54	-20.1
1825.50	35.7	AVG	270	1.5	Н	25.3	2.6	30.0	33.6	54	-20.4
912.75	71.2	PEAK, FUND	270	1.5	Н	24.6	4.2	25.0	73.3	94	-20.7
2738.25	29.0	AVG	315	1.0	V	29.0	3.7	30.0	31.7	54	-22.3
2738.25	29.0	AVG	270	1.5	Η	29.0	3.7	30.0	31.7	54	-22.3
3651.00	43.3	PEAK	315	1.0	V	30.3	4.3	30.0	48.0	74	-26.0
2738.25	42.3	PEAK	315	1.0	V	29.0	3.7	30.0	45.0	74	-29.0
3651.00	40.0	PEAK	270	1.5	Н	30.3	4.3	30.0	44.6	74	-29.4
4563.75	35.0	PEAK	270	1.5	Н	32.5	4.9	30.0	42.4	74	-31.6
4563.75	34.5	PEAK	315	1.0	V	32.5	4.9	30.0	41.9	74	-32.1
2738.25	39.0	PEAK	270	1.5	Н	29.0	3.7	30.0	41.7	74	-32.3
1825.50	41.2	PEAK	315	1.0	V	25.3	2.6	30.0	39.1	74	-34.9
1825.50	38.4	PEAK	270	1.5	Н	25.3	2.6	30.0	36.3	74	-37.7

VTech Telecommunications Ltd.

FCC ID: EW75299-H00

1	NDICATEI)	TABLE	ANTI	ENNA	CORREC	CTION FA	CTOR	CORRECTED A MPLITUDE	FCC 15 Subpart C	
Frequency	Ampl.		Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBµV/m	Comments	Degree	Meter	H/ V	dBµV/m	DB	dB	dBµV/m	dBµV/m	dB
High Frequency									·		
		PEAK,			8						
917.1	78.9	FUND	90	1.4	Н	24.6	4.2	25.0	81.0	94	-13.0
917.1	76.4	PEAK, FUND	225	1	v	24.6	4.2	25.0	78.5	94	-15.5
3668.40	30.7	AVG	90	1.4	Н	30.3	4.3	30.0	35.3	54	-18.7
3668.40	30.0	AVG	225	1.0	V	30.3	4.3	30.0	34.6	54	-19.4
4585.50	26.8	AVG	225	1.0	V	32.5	4.9	30.0	34.2	54	-19.8
4585.50	26.0	AVG	90	1.4	Н	32.5	4.9	30.0	33.4	54	-20.6
1834.20	35.4	AVG	225	1.0	V	25.3	2.6	30.0	33.3	54	-20.7
1834.20	33.5	AVG	90	1.4	Η	25.3	2.6	30.0	31.4	54	-22.6
2751.30	28.6	AVG	90	1.4	Η	29.0	3.7	30.0	31.3	54	-22.7
2751.30	27.9	AVG	225	1.0	V	29.0	3.7	30.0	30.6	54	-23.4
3668.40	43.0	PEAK	90	1.4	Η	30.3	4.3	30.0	47.6	74	-26.4
3668.40	42.5	PEAK	225	1.0	V	30.3	4.3	30.0	47.1	74	-26.9
4585.50	38.9	PEAK	225	1.0	V	32.5	4.9	30.0	46.3	74	-27.7
2751.30	42.4	PEAK	225	1.0	V	29.0	3.7	30.0	45.1	74	-28.9
4585.50	37.0	PEAK	90	1.4	Η	32.5	4.9	30.0	44.4	74	-29.6
2751.30	40.0	PEAK	90	1.4	Н	29.0	3.7	30.0	42.7	74	-31.3
1834.20	41.0	PEAK	225	1.0	V	25.3	2.6	30.0	38.9	74	-35.1
1834.20	39.4	PEAK	90	1.4	Н	25.3	2.6	30.0	37.3	74	-36.7
			Unin	tentional	Emissio	on, 30MHz	to 10001	MHz			
799.74	43.0		45	2.0	Н	23.0	3.7	25.0	44.7	46	-1.3
64.00	49.7		180	1.0	V	9.7	1.3	25.0	35.7	40	-4.3
240.02	51.3		225	1.5	Н	12.6	2.3	25.0	41.2	46	-4.8
80.01	46.8		315	1.4	V	9.6	1.4	25.0	32.8	40	-7.2
112.20	43.0		315	1.0	V	11.7	1.3	25.0	31.0	43.5	-12.5
135.99	41.0		180	1.8	V	12.9	1.8	25.0	30.7	43.5	-12.8
160.00	40.8		270	1.0	V	13.2	1.6	25.0	30.6	43.5	-12.9
480.00	36.8		180	1.8	Н	18.7	2.5	25.0	33.0	46	-13.0
264.09	36.5		180	1.0	Н	13.3	4.9	25.0	29.7	46	-16.3
224.00	38.0		225	1.0	Н	12.1	3.9	25.0	29.0	46	-17.0

Note: The handset was positioned and tested in 3 orthogonal axis and new battery.

AVG: Average FUND: Fundamental

4 - BAND EDGES TESTING

Requirements: FCC 15.249 (c), the emission power at the START and STOP frequencies shall be at least 50 dB below the level of the fundamental or to the general radiated emission limits in FCC 15.209, whichever is the lesser attenuation.

4.1 Test Procedure

With the EUT's antenna attached, the EUT's radiated emission power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

4.2 Test Equipment

HP 8566B Spectrum Analyzer HP 7470A Plotter

4.3 Test Results

Refer to the attached plots.

Handset - Low Frequency Handset - High Frequency VTech Telecommunications Ltd.

FCC ID: EW75299-H00

Report # R0212231Rpt-HS.doc