Test Report:	1W03875 Issue: 2.0
Applicant:	VTECH Engineering Canada 200-7671 Alderbridge Way Richmond, BC V6X 1Z9
Equipment Under Test: (EUT)	AT&T 2230 2.4GHz FHSS Cordless Telephone
In Accordance With:	FCC Part 15, Subpart C Frequency Hopping Transmitters 2400 - 2483.5 MHz
Tested By:	Nemko Canada Inc. (Formerly KTL Ottawa Inc.) 3325 River Road, R.R. 5 Ottawa, Ontario K1V 1H2
Authorized By:	R. Grant, Wireless Group Manager
Date:	
Total Number of Pages:	70

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

 $EQUIPMENT:\ AT\&T\ 2230,\ 2.4GHz\ FHSS\ Cordless\ Telephone$

ISSUE: 2.0

Table of Contents

Section 1.	Summary of Test Results	3
	General Equipment Specification	
	Powerline Conducted Emissions	
Section 4.	Channel Separation	12
Section 5.	Pseudorandom Hopping Algorithm	15
Section 6.	Time of Occupancy	31
Section 7.	Occupied Bandwidth	36
Section 8.	Peak Power Output	43
Section 9.	Spurious Emissions (Radiated)	50
Section 10.	Test Equipment List	70
Annex A	Block Diagrams	A1

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

Section 1. Summary of Test Results

General

All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-1992. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

	New Submission	Production Unit
	Class II Permissive Change	Pre-Production Unit
D S S	Equipment Code	Family Listing

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAP LAB CODE: 100351-0

TESTED BY: _____ DATE: ____

Glen Westwell, Wireless Technologist

Nemko Canada Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

Summary Of Test Data

Name Of Test	Para. No.	Result
Powerline Conducted Emissions	15.207(a)	Complies
Channel Separation	15.247(a)(1)	Complies
Pseudorandom Hopping Algorithm	15.247(a)(1)	Complies
Time of Occupancy	15.247(a)(1)(ii)	Complies
20 dB Occupied Bandwidth	15.247(a)(1)	Complies
Peak Power Output	15.247(b)	Complies
Spurious Emissions (Radiated)	15.247(c)	Complies

Footnotes For N/A's:

Test Conditions:

Indoor Temperature: 22 °C

Humidity: 31 %

Outdoor Temperature: 18 °C

Humidity: 39 %

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

Section 2. General Equipment Specification

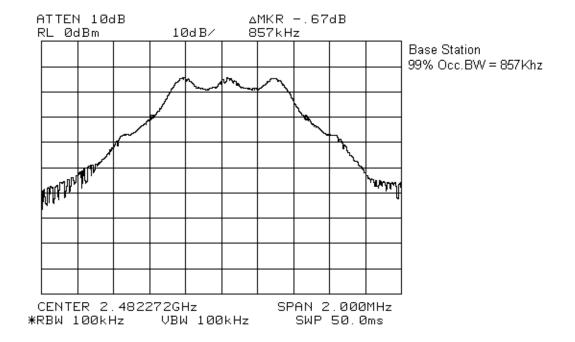
Manufacturer: VTECH Engineering Canada (AT&T)

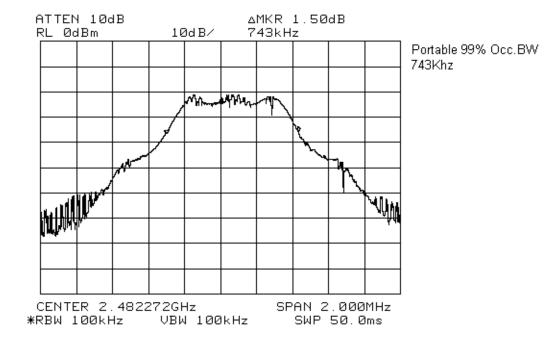
Model No.: AT&T 2230

Serial No.: Non (Portable & Base Station)

Date Received In Laboratory: May 9, 2001

Nemko Identification No.: Item #1&2


Frequency Range: 2401.056MHz to 2482.272MHz


Modulation: GFSK

Number of Channels: 95

Channel Spacing: 864kHz

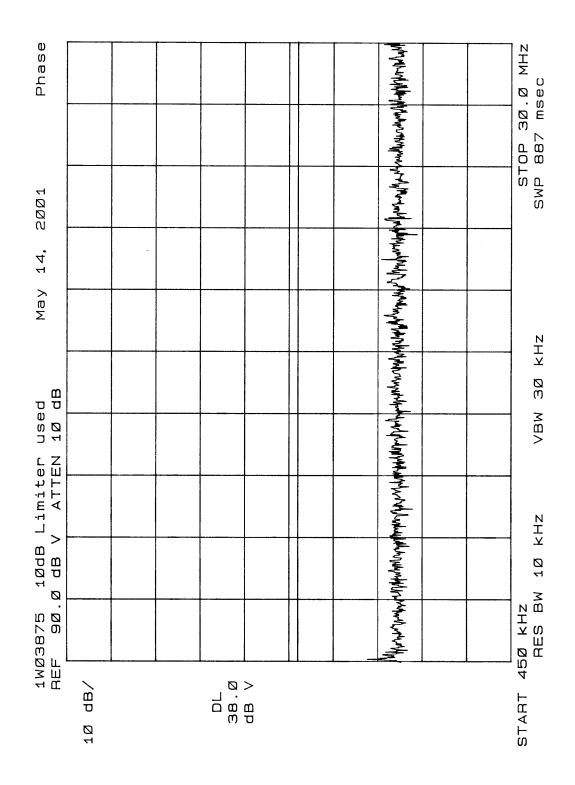
Emissions Designator: 857KF1D

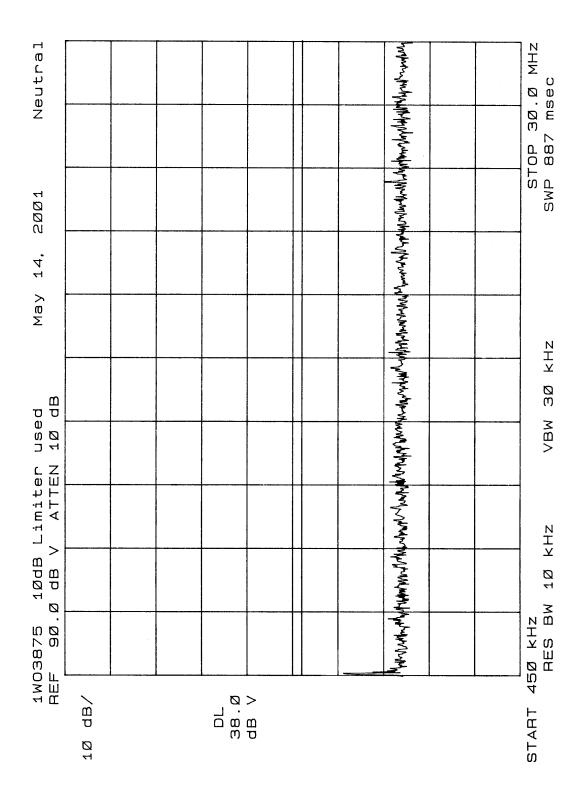
FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

Section 3. Powerline Conducted Emissions

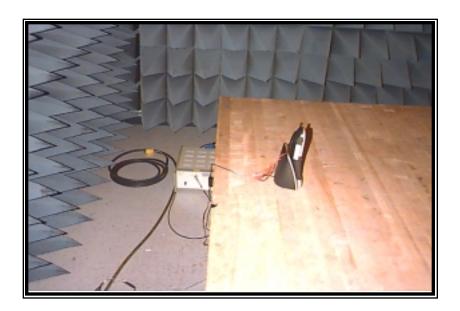

Para. No.: 15.207 (a)

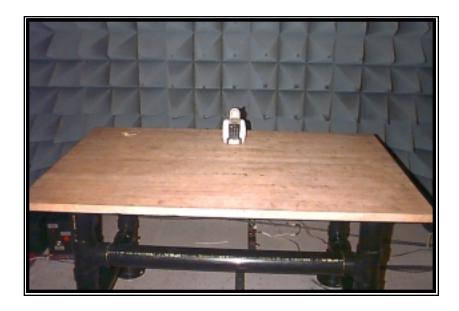

Test Performed By: Glen Westwell **Date of Test:** May 11, 2001

Test Results: Complies. See attached graph.

Measurement Data: See attached graph.

Page 8 of 70




ISSUE: 2.0

Conducted Photographs (Worst Case Configuration)

Side View

Front View

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

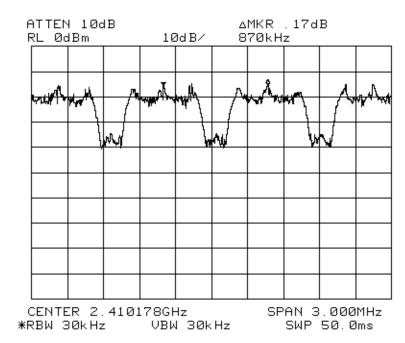
EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

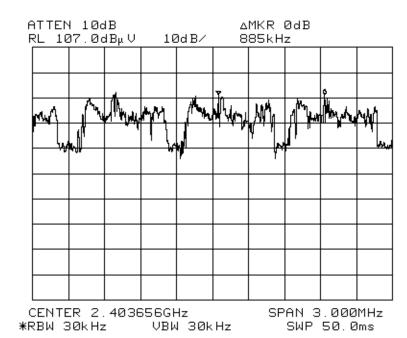
Section 4. Channel Separation

Para. No.: 15.247 (a)(1)

Test Performed By: Glen Westwell **Date of Test:** May 21, 2001


Test Results: Complies.

Measurement Data: Channel Separation: 870kHz


Maximum 20dB Bandwidth: 707kHz

See attached graphs.

Page 12 of 70

CH. Separation =870Khz Portable Hopping "On"

CH. Separation =885Khz Base Station Hopping "On"

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

Section 5. Pseudorandom Hopping Algorithm

Para. No.: 15.247 (a)(1)

Test Performed By: Glen Westwell **Date of Test:** May 22, 2001

Test Results: Complies.

Measurement Data: Number of Hopping Frequencies: 95

See attached Manufacturers Data

See attached graphs.

Page 15 of 70

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

3. Adaptation to 2.4GHz ISM band

3.1 Frame format:

Down-link (FP to PP) Up-link (PP to FP)

0 1 2 3 4 5 6 7

length 10 ms

Crystal frequency 10.368000 MHz

Symbol rate: 576 kbit/sec.

Frame length: 8 timeslots, same as 10 ms.

Frame frequency: 100 Hz

Number of symbols for frame: 5760

Number of symbols per slot: 720 (440 in burst and 280 in guard space)

3.1.2 Frequency hopping

Slots are used in pairs for duplex bearers (0,4), (1,5), etc. The FP transmit on a frequency in a slot-pair, and the PP responds on the same carrier in the up-link direction. Handset uses preamble antenna diversity to detect the best antenna for reception/transmission.

Frame	
N	
N+1	
N+2	

Fre	que	ncy	vei	sus	slo	t	
0	1	2	3	4	5	6	7
х		у		х		у	
z		w		z		w	
v		t		v		t	

Burst format: 3.2

-	Sync field	A field	B Held	XZ	Guard space

3.2.1 Sync-field

Length: 48 symbols consisting of

Prolonged preamble:

Preamble for bit-synchronization: 16 bit data (1010b sequence) Frame synchronization word:

16 bit data (1010b sequence)

FP: E98Ah (1110 1001 1000 1010b sequence) PP: 1675h (0001 0110 0111 0101b sequence)

RIX	Tecl MAR	Specification		
File marsalgorithmstypeappr	Date 2001-05-09	Revision 0.7	Ref. JTP/FM	Page 4 of 9

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

3.2.2 A-field

Total length 64 symbols

Header: 8 bit Tail: 40 bit CRC: 16 bit

3.2.2.1 T-MUX:

NT: RFPI is normally broadcast 7 out of every 8 frames.

QT: Static system information PT: Broadcast, paging MT: MAC layer control

CT: Connection oriented higher layer signaling

3.2.2.2 Derive hopping SeQuenceCode (SQC) from RFPI

In order to distribute usage of different hopping sequences, the actual used sequence is derived from the FP identity, RFPI. The RFPI is normally broadcast 7 out of every 8 frames which then allows immediate recognition of hopping sequence by the PP during the initial synchronization.

The RFPI consists of 40 bits (5 bytes):

E ARC 1		SQC	
a8		 a4'	7

The SQC is located from bit a40 to a44.

3.2.2.3 Excluding fixed carriers.

List of excluded RF carriers or parts hereof is broadcast using paging (reserved code 3).

The method is defined:

PT₃ (1): ExcpPattern0[32] (32 bits used)
PT₃ (2): ExcpPattern1[32] (32 bits used)
PT₃ (3): ExcpPattern2[15] (31 bits used)

ExcpPatternx describes a complete pattern of excluded RF carriers (If a bit is set the carrier is excluded).

3.2.3 B-field

Format and usage of B-field is similar to DECT. 320 bits of ADPCM data.

3.2.4 XZ-field

Format and usage of XZ-field is similar to DECT. X-field is a 4-bit CRC on the B-field content. Z-field is a copy of the X field and is used to detect sliding collision.

RIX		Techr MARS	Specification		
File	Date	2001-05-09	Revision 0.7	Ref. JTP/FM	Page 5 of 9
marsalgorithmstypeappr	*				
oval.doc					

3.3 Frequency hopping algorithm

The number of used frequencies (NUF) in the hopping algorithm is 95. In FP and PP exists a PrimaryHoppingIndexNumber (PHIN). This number is incremented modulo NUF in the end of the normal downlink half-frame. It is broadcast in Q0 message instead of PSCN.

To a simplex or an established duplex bearer is assigned a HoppingIndexOffset (HIO), which is analogue to the used RF carrier in a FDMA system. This value is broadcast in place of CN in Q0 message. In the FP in all unused slots in up-link direction the receiver is scanning with HIO=0. The receiver scanning doesn't exclude RF-carriers.

Different FPs use different hopping sequences. The different sequences are derived from the hopping table by adding an offset, SeQuenceCode (SQC). See section 3.2.2.2.

A hopping table maps an index I to a carrier number: CN = f(I)

The physical RF carrier is calculated by the formula:

CN = (f((PHIN+HIO) mod NUF) + SQC) mod NUF

3.3.1 Excluded carriers

Excluded carriers (exceptions) are fixed carriers that constantly are interfered by CW RF-carrier. The decision for excluding a RF carrier, are based on:

- RSSI monitor during scanning in the FP.
- Bearer quality in FP correlated to specific RF-carriers.
- Bearer quality detected in PP and reported using Q1 in MAC-header.

When exception carriers are included the complete algorithm is:

```
I = (PHIN+HIO) mod NUF
CN = (f(I) + SQC) mod NUF
While CN in ExclusionList
{
    I = (I + FreqHopIndexExcpShift) mod NUF
    CN = (f(I) + SQC) mod NUF
}
where FreqHopIndexExcpShift = (NUF-1).
```

3.3.2 Hopping tables

Three different hopping tables are defined.

3.3.2.1 Hopping sequence for North America and most of Europe

For 10.368000 MHz crystal the frequencies are derived as: Frequency: 2401.056 MHz + CN * 0.864000 MHz

RIX		Techi MARS	Specification		
File	Date	2001-05-09	Revision 0.7	Ref. JTP/FM	Page 6 of 9
marsalgorithmstypeappr					
oval.doc			1		

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

i	f(I)								
0	0	20	2	40	27	60	13	80	40
1	23	21	18	41	12	61	33	81	1
2	62	22	81	42	89	62	65	82	28
3	8	23	11	43	25	63	50	83	55
4	43	24	36	44	87	64	79	84	35
5	16	25	72	45	14	65	56	85	53
6	71	26	54	46	57	66	91	86	24
7	47	27	69	47	41	67	42	87	44
8	19	28	21	48	74	68	80	88	82
9	61	29	3	49	32	69	48	89	51
10	76	30	37	50	70	70	15	90	90
11	29	31	10	51	9	71	85	91	38
12	59	32	34	52	58	72	5	92	83
13	22	33	66	53	78	73	88	93	30
14	52	34	7	54	45	74	17	94	46
15	86	35	68	55	20	75	84		
16	63	36	94	56	73	76	6		
17	26	37	75	57	93	77	67		
18	77	38	4	58	64	78	49		
19	31	39	60	59	39	79	92		

3.4 PP synchronization procedure

PP selects a random RF carrier and tries to receive a frame within 0.9 sec. If nothing is received then a new RF carrier is selected.

When a burst with correct A-CRC is received and it is a Nt (RFPI) the hopping sequence (SQC) is known and the PP must receive in the following frames using the hopping sequence. If the received A-field is different from a Nt, the PP selects a new RF carrier randomly and waits for Nt. In this state the PP do not have information of excluded RF carriers, but just follows the known hopping sequence without excluding any RF carriers. Only individual frames are missed on the excluded carriers. When PT3 is received, the PP is able to receive on exception carriers.

3.5 Dual slot diversity

Dual slot diversity is activated in case interference is detected. That is, two bearers are active, carrying the same B-field content. The receiver decides which of the received speech frames to use, depending on A-CRC and/or X-CRC. The setup and release of the 2nd bearer are performed dynamically by the FP-MAC and PP-MAC to adapt to current interference level. The two bearers are managed independently in the MAC, like a stalled intra-cell bearer hand-over with two established bearers. HoppingIndexOffset (HIO) for the two bearers are selected independently.

RIX		Techr MARS	Specification		
File	Date	2001-05-09	Revision 0.7	Ref. JTP/FM	Page 7 of 9
marsalgorithmstypeappr					
oval.doc					

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone *ISSUE: 2.0*

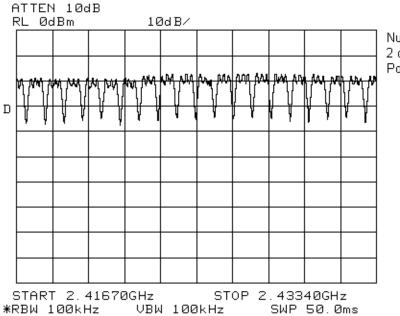
3.6 Power amplifier activation

External connection

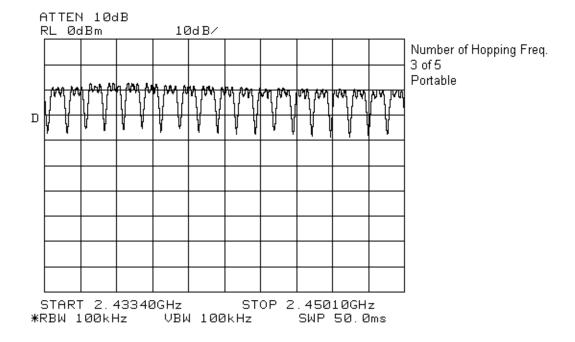
The FP has one connection active at all times to make synchronization of the PP possible. In case a speech connection is active one slot will be active in down-link direction and one slot will be active from in uplink direction. The power amplifier will be active from start of sync field to the end of XZ field, which is slightly less than 1/12 of the total frame. In case dual slot diversity is active, two slots will be active equal to 2/12 of a frame.

3.6.2 Internal connection

Two handsets are able to make an internal connection. In this case two bearers will be active in the downlink direction from FP, and one bearer will be active from each handset. The two bearers in down-link direction are not correlated and uses different HoppingIndeOfffset. Dual slot diversity is activated independently towards each handset, i.e. up to four bearers may be activated in down-link direction, and two bearer may be active in up-link direction.

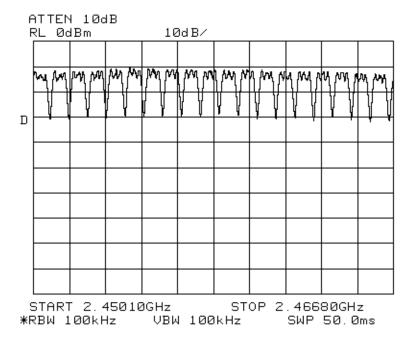

R I X		Techi MARS	Specification					
File	Date	2001-05-09	Revision 0.7	Ref. JTP/FM	Page 8 of 9			
marsalgorithmstypeappr								
oval.doc								
Oval.doc This document and the information contained is property of RTY Telecom A/S. Denmark. I hauthorized conving is not allowed.								

ISSUE: 2.0

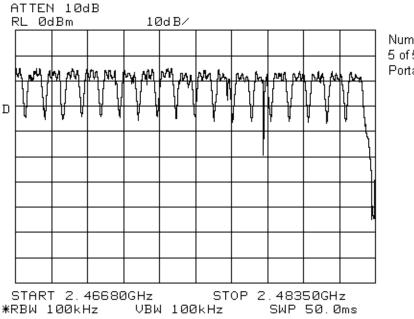


Number of Hopping Freq. 1 of 5 Portable

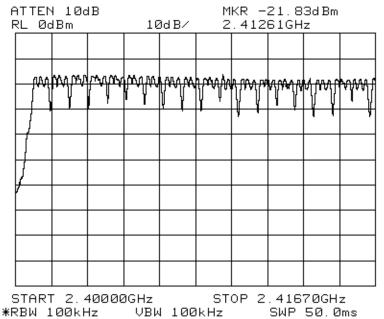
ISSUE: 2.0


Number of Hopping Freq. 2 of 5 Portable

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

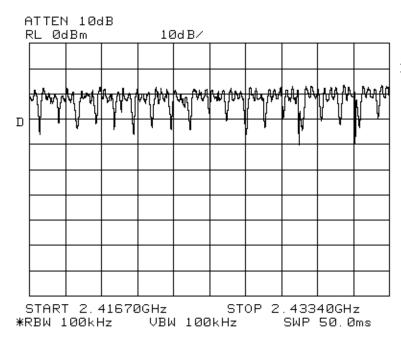

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

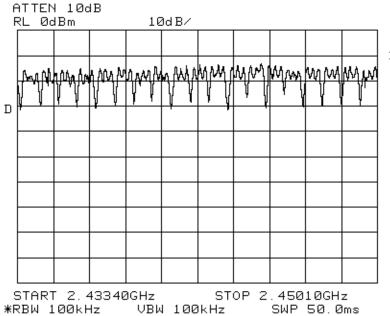


Number of Hopping Freq. 4 of 5 Portable

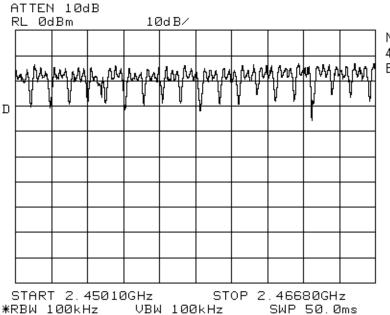
ISSUE: 2.0

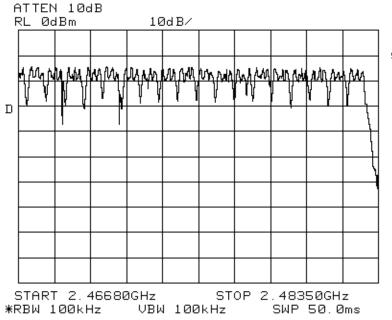


Number of Hopping Freq. 5 of 5 Portable



Number of Hopping Freq. 1 of 5 Base Station


ISSUE: 2.0


Number of Hopping Freq. 2 of 5 Base Station

Number of Hopping Freq. 3 of 5 Base Station

Number of Hopping Freq. 4 of 5 Base Station

Number of Hopping Freq. 5 of 5 Base Station

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

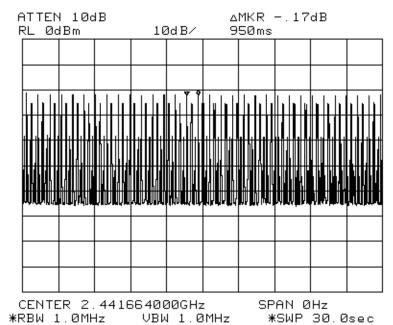
Section 6. Time of Occupancy

Para. No.: 15.247 (a)(1)(ii)

Test Performed By: Glen Westwell **Date of Test:** May 22, 2001

Test Results: Complies.

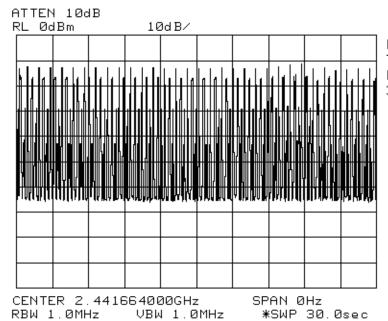
Measurement Data: Maximum Dwell Time On Any Channel:


32 Time Occupied on Channel 47 in a 30 second period.

Base Station: $32 \times 835.2 \mu Sec = 26.73 m Sec$ Portable: $32 \times 840 \mu Sec = 26.88 m Sec$

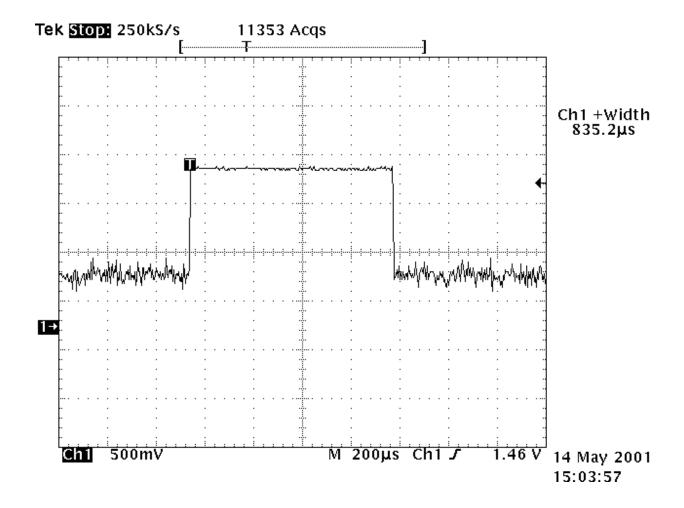
See attached graphs.

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875


EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

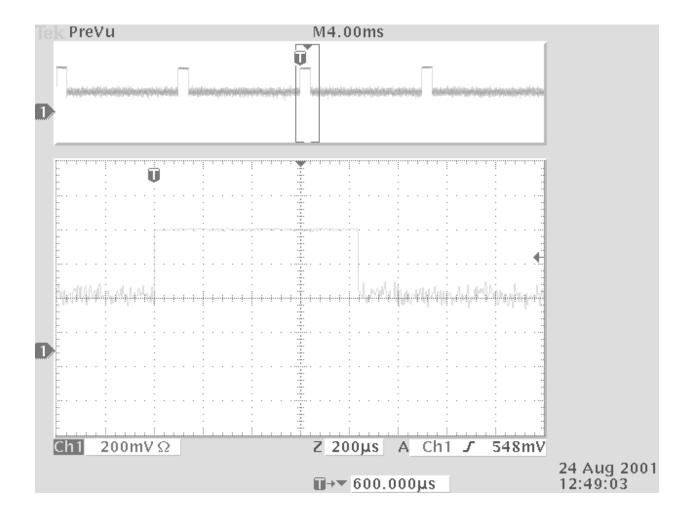
Base Station Time of Occupancy Hopping "on" 32 Peaks in a 30Sec Period.

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875


EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

Portable Time of Occupancy Hopping "On" 32 Peaks in a 30Sec Period.

ISSUE: 2.0


Base Station

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone ISSUE: 2.0

Portable

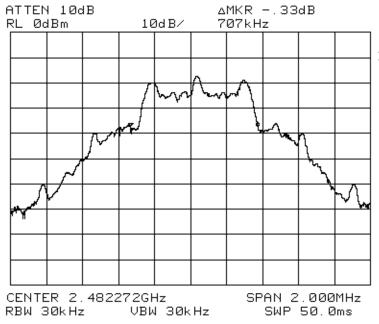
FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

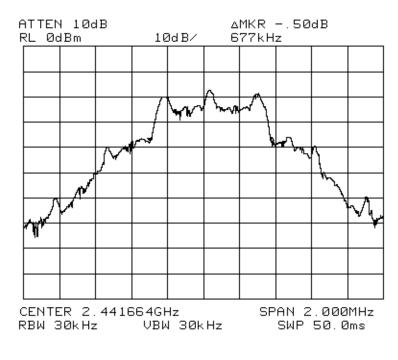
ISSUE: 2.0

Section 7. Occupied Bandwidth

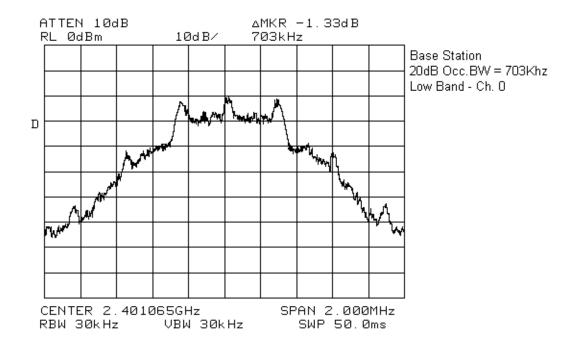
Para. No.: 15.247 (a)(1)(ii)

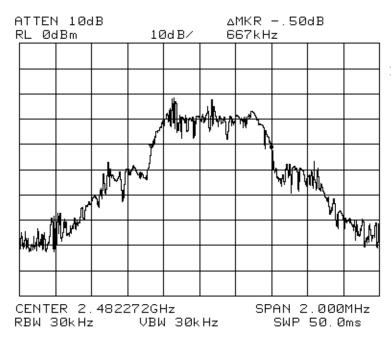

Test Performed By: Glen Westwell **Date of Test:** May 23, 2001

Test Results: Complies.

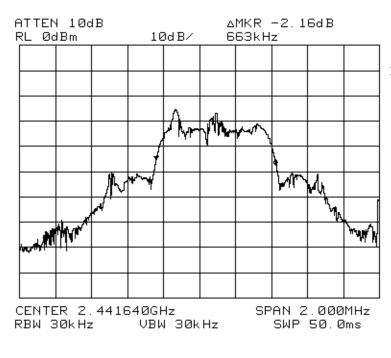

Measurement Data: Maximum Occupied Bandwidth = 707kHz

See attached graphs.

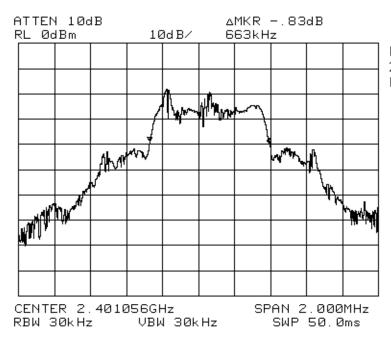

Page 36 of 70



Base Station 20dB Occ.BW = 707Khz High Band - CH. 94



Base Station 20dB Occ.BW = 677Khz Mid Band - Ch. 47



Portable 20dB Occ.BW = 667Khz High Band - Ch. 94

Portable 20dB Occ.BW = 663Khz Mid Band - Ch. 47

Portable 20dB Occ BW. = 663Khz Low band Ch. 0

Nemko Canada Inc.

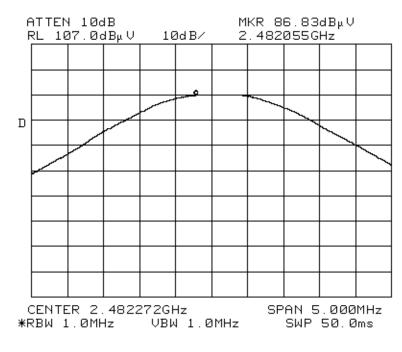
FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

Handset:

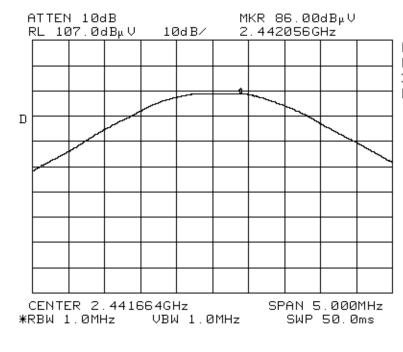
Base Set:

ISSUE: 2.0

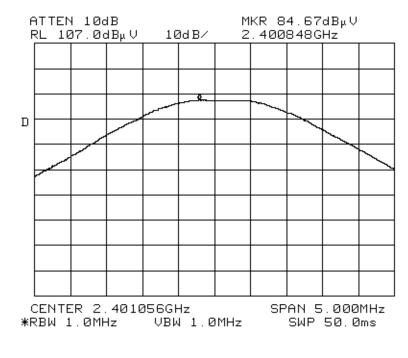

Section 8. Peak Power Output

Para. No.: 15.247 (b) Test Performed By: Glen Westwell & Russell Grant Date of Test: August 22, 2001 **Test Results:** Complies. The maximum peak power output of the transmitter is 0.155W. Yes No **Measurement Data:** Detachable antenna? If yes, state the type of non-standard connector used at the antenna port: Directional Gain of Antenna: 0 dBi or 1 Numeric. Maximum Peak Power Output = 21.9dBm, 0.155W This was measured using the signal substitution method. The EUT was replaced with signal generator and standard gain horn antenna. The measured RF power into the horn antenna and gain of the antenna were used to determine maximum EIRP. Manufacturers Rating of RF Power Output:

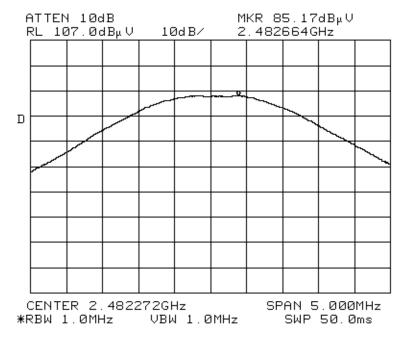
23dBm


24dBm

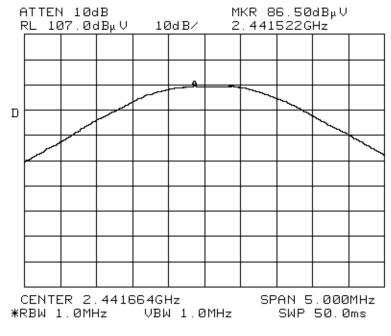
ISSUE: 2.0


Max. Radiated Output Power High Band - Ch. 94 Portable Antenna Factor = 36dB Pt= 122.83dBuV

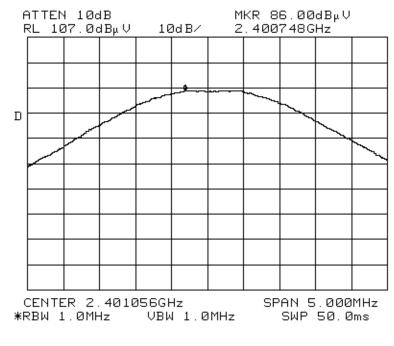
ISSUE: 2.0


Max. Radiated Output Power Mid Band - Ch. 47 3 Meters Portable Antenna Factor = 36dB Pt= 122dBuV

ISSUE: 2.0


Max. Radiated Output Power Low Band - Ch. 0 3 meters Portable Antenna Factor = 36dB Pt= 120.7dBuV

ISSUE: 2.0


Max. Radiated Output Power High Band - Ch. 94 Base Station 3 Meters Antenna Factor = 36dB Pt = 121.2dBuV

ISSUE: 2.0

Max. Radiated Output Power Mid Band - Ch. 47 Base Station 3 Meters Antenna Factor = 36dB Pt= 122.5dBuV

ISSUE: 2.0

Max. Radiated Output Power Low Band - Ch. 0 Base Station 3 Meters Antenna Factor = 36dB Pt = 122dBuV

Nemko Canada Inc.

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

Section 9. Spurious Emissions (Radiated)

Para. No.: 15.247 (c)

Test Performed By: Glen Westwell **Date of Test:** May 24, 2001

Test Results: Complies. The worst case emission level is 50.0dBμV/m @ 3m at

4883MHz. This is 4.0 dB below the specification limit.

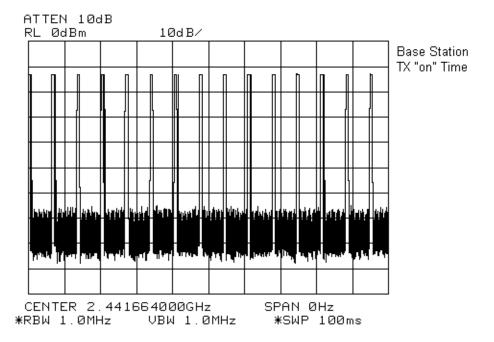
Measurement Data: See attached table.

Duty Cycle Calculation: Base Station: $15 \times 835.2 \mu \text{Sec} = 12.53 \text{mSec}$

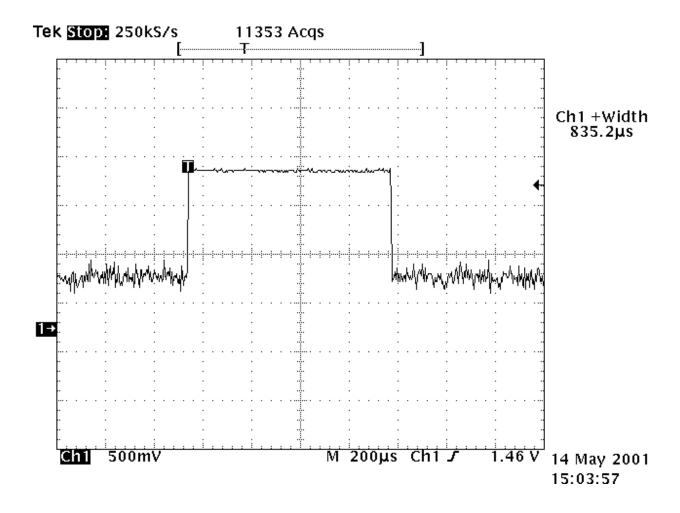
 $20\text{Log } \frac{12.53ms}{100ms} = -18\text{dB}$

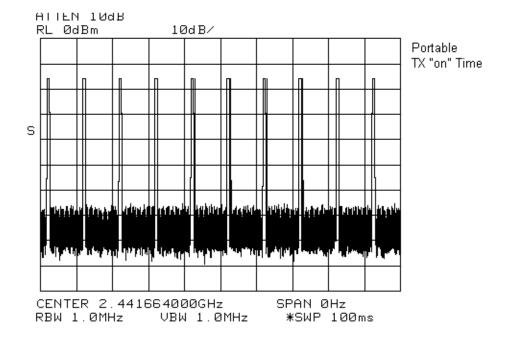
Portable: $10 \times 165.6 \mu \text{Sec} = 1.66 \text{mSec}$

 $20 \text{Log } \frac{1.66 ms}{100 ms} = -35.6 \text{dB}, \therefore -20 \text{dB}$

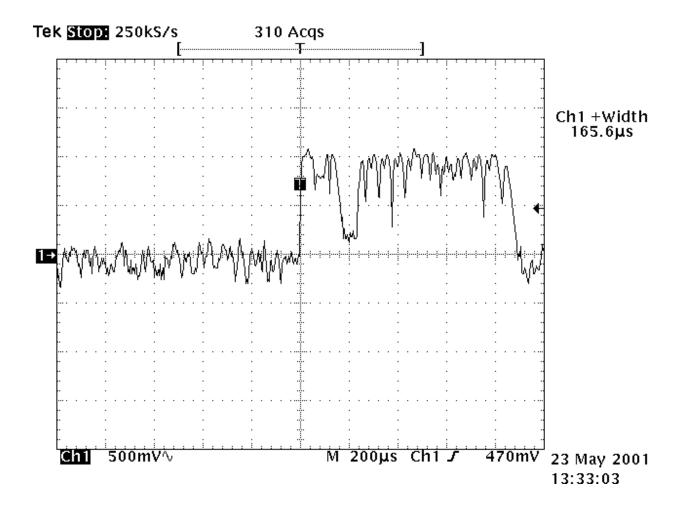

 Handheld portable and base station equipment is tested on three orthogonal axis.

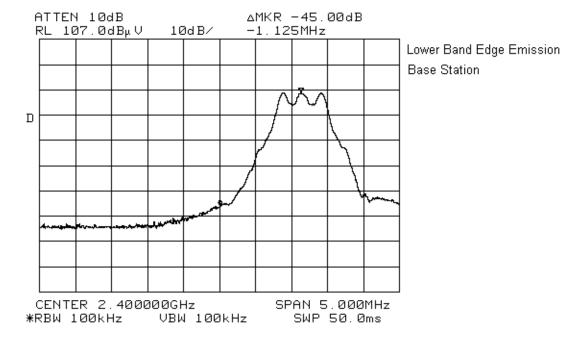
• The worst case emission levels are reported.

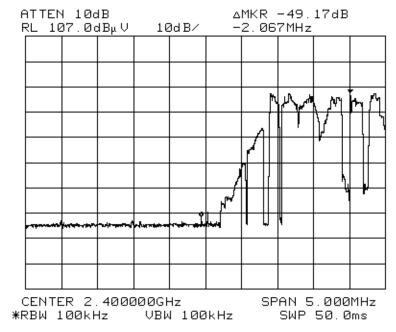

Nemko Canada Inc.


FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

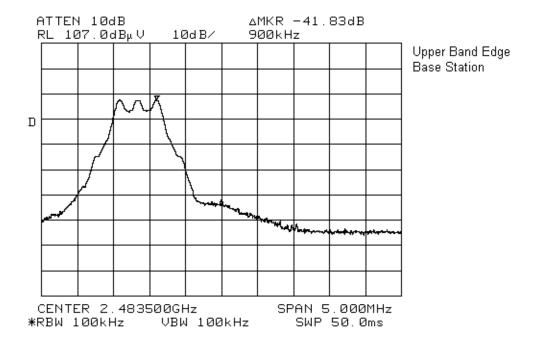
EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

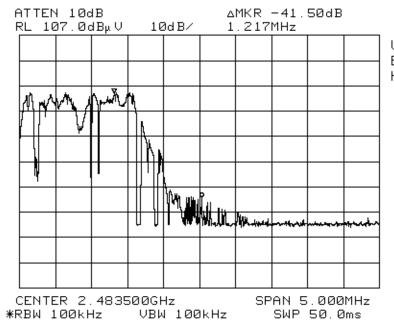

Base Station

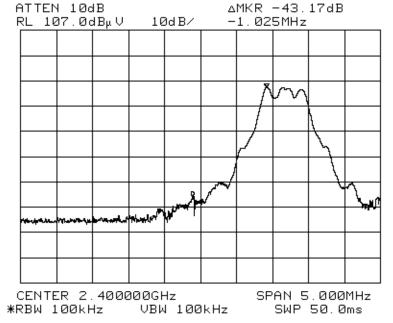


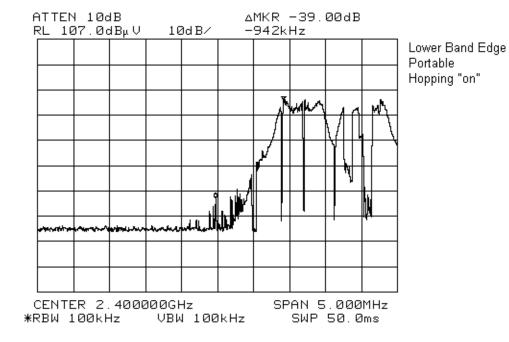


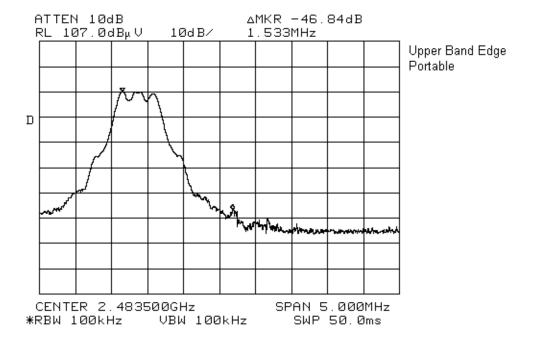
ISSUE: 2.0

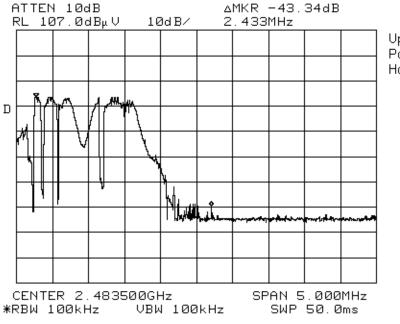

Portable



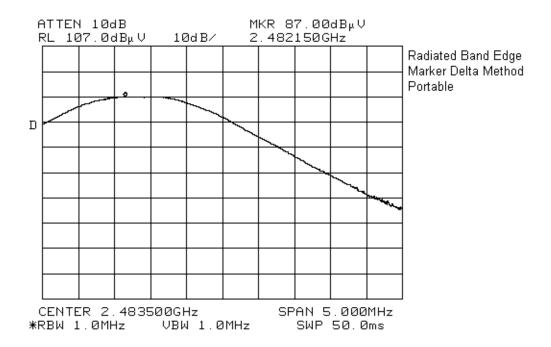

Lower Band Edge Emission Base Station Hopping "On"




Upper Band Edge Base Station Hopping "On"

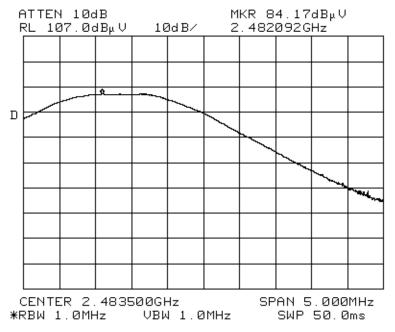

ISSUE: 2.0

Lower band Edge Emission Portable



Upper Band Edge Portable Hopping "on"

ISSUE: 2.0


Band Edge Level: $= 87.0 - 8 = 79.0 dB\mu V$

Antenna Factor: = 36dBBand Edge Peak: $= 115dB\mu V$

 $\begin{array}{ll} Band\ Edge\ Level: & 115dB\mu V \\ Marker\ Delta: & -46.8dB \\ Duty\ Cycle\ Correction: & -20.0dB \end{array}$

 $48.2 dB \mu V$ @ 3 meters

ISSUE: 2.0

Radiated Upper Band Edge Marker Delta Method

Band Edge Level: $= 84.2 - 8 = 76.2 dB\mu V$

Antenna Factor: = 36dB

Band Edge Peak: $= 112.2 dB\mu V$

Band Edge Level: 112.2dBμV Marker Delta: -41.8dB Duty Cycle Correction: -18.0dB

52.4dBµV @ 3 meters

ISSUE: 2.0

Test Data - Radiated Emissions (Peak) Portable

Test Distance (meters): 3		Range: A Tower		Receiver: HP 8465E		RBW: 1 MHz		Detector: Peak	
Freq. (MHz)	Ant. *	Pol. (V/H)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Dist. Corr. (dB)	Field Strength (dB _µ V/m)	Limit (dBµV/m)	Margin (dB)
Channel 1									
4802.11		Н	77.2	43.6	-55.6		65.2	74.0	8.8
4802.11		V	77.1	43.6	-55.6		65.1	74.0	8.9
7203.17		Н	64.3	50.7	-55.8		59.2	74.0	14.8
7203.17		V	66.2	50.7	-55.8		61.1	74.0	12.9
Channel 47									
4883.33		Н	74.3	43.9	-55.4		62.8	74.0	11.2
4883.33		V	73.3	43.9	-55.4		61.8	74.0	12.2
7324.99		Н	65.7	50.9	-55.7		60.9	74.0	13.1
7324.99		V	65.4	50.9	-55.7		60.6	74.0	13.4
Channel 94									
4964.54		Н	71.5	44.2	-55.1		60.6	74.0	13.4
4964.54		V	22.0	44.2	-55.1		61.1	74.0	12.9
7446.82		Н	64.2	51.3	-55.7		59.8	74.0	14.2
7446.82		V	64.9	51.3	-55.7		60.5	74.0	13.5

Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

* Re-measured using dipole antenna.

** Includes cable loss when amplifier is not used.

*** Includes cable loss.

() Denotes failing emission level.

ISSUE: 2.0

Test Data - Radiated Emissions (Average) Portable

Test Distance (meters): 3		Range: A Tower		Receiver: HP 8465E		RBW: 1 MHz		Detector: Peak	
Freq. (MHz)	Ant. *	Pol. (V/H)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Duty Cycle Corr. (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Channel 1									
4802.11		Н	77.2	43.6	-55.6	-20	45.2	54.0	8.8
4802.11		V	77.1	43.6	-55.6	-20	45.1	54.0	8.914.8
7203.17		Н	64.3	50.7	-55.8	-20	39.2	54.0	18.9
7203.17		V	66.2	50.7	-55.8	-20	41.1	54.0	
Channel 47									
4883.33		Н	74.3	43.9	-55.4	-20	42.8	54.0	11.2
4883.33		V	73.3	43.9	-55.4	-20	41.8	54.0	12.2
7324.99		Н	65.7	50.9	-55.7	-20	40.9	54.0	13.1
7324.99		V	65.4	50.9	-55.7	-20	40.6	54.0	13.4
Channel 94	Channel 94								
4964.54		Н	71.5	44.2	-55.1	-20	40.6	54.0	13.4
4964.54	·	V	22.0	44.2	-55.1	-20	41.1	54.0	12.9
7446.82	·	Н	64.2	51.3	-55.7	-20	39.8	54.0	14.2
7446.82		V	64.9	51.3	-55.7	-20	40.5	54.0	13.5

Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

* Re-measured using dipole antenna.

** Includes cable loss when amplifier is not used.

*** Includes cable loss.

() Denotes failing emission level.

ISSUE: 2.0

Test Data - Radiated Emissions (Peak) Base Station

Test Distance (meters): 3		Range: A Tower		Receiver: HP 8465E		RBW: 1 MHz		Detector: Peak	
Freq. (MHz)	Ant. *	Pol. (V/H)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Dist. Corr. (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Channel 1									
4802.11		V	72.5	43.6	-55.6		60.5	74.0	13.5
4802.11		Н	76.7	43.6	-55.6		64.7	74.0	9.3
7203.17		V	67.2	50.7	-55.8		62.1	74.0	11.9
7203.17		Н	72.8	50.7	-55.8		67.7	74.0	6.3
Channel 4									
4883.33		Н	79.5	43.9	-55.4		68.0	74.0	6.0
4883.33		V	73.8	43.9	-55.4		62.3	74.0	11.7
7324.99		Н	71.0	50.9	-55.7		66.2	74.0	7.8
7324.99		V	72.3	50.9	-55.7		67.5	74.0	6.5
Channel 94	Channel 94								
4964.54		V	77.0	44.2	-55.1		66.1	74.0	7.9
4964.54		Н	78.0	44.2	-55.1		67.1	74.0	6.9
7446.82		V	66.7	51.3	-55.7		62.3	74.0	11.7
7446.82		Н	67.0	51.3	-55.7		62.6	74.0	11.4

Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

* Re-measured using dipole antenna.

** Includes cable loss when amplifier is not used.

*** Includes cable loss.

() Denotes failing emission level.

ISSUE: 2.0

Test Data - Radiated Emissions (Average) Base Station

Test Distance (meters): 3		Range: A Tower		Receiver: HP 8465E		RBW: 1 MHz		Detector: Peak		
Freq. (MHz)	Ant. *	Pol. (V/H)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Dist. Corr. (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Channel 1	Channel 1									
4802.11		V	72.5	43.6	-55.6	-18.0	42.5	54.0	11.5	
4802.11		Н	76.7	43.6	-55.6	-18.0	46.7	54.0	7.3	
7203.17		V	67.2	50.7	-55.8	-18.0	44.1	54.0	9.9	
7203.17		Н	72.8	50.7	-55.8	-18.0	49.7	54.0	4.3	
Channel 4										
4883.33		Н	79.5	43.9	-55.4	-18.0	50.0	54.0	4.0	
4883.33		V	73.8	43.9	-55.4	-18.0	44.3	54.0	9.7	
7324.99		Н	71.0	50.9	-55.7	-18.0	48.2	54.0	5.8	
7324.99		V	72.3	50.9	-55.7	-18.0	49.5	54.0	4.5	
Channel 94	Channel 94									
4964.54		V	77.0	44.2	-55.1	-18.0	48.1	54.0	5.9	
4964.54		Н	78.0	44.2	-55.1	-18.0	49.1	54.0	4.9	
7446.82		V	66.7	51.3	-55.7	-18.0	44.3	54.0	9.7	
7446.82		Н	67.0	51.3	-55.7	-18.0	44.6	54.0	9.4	

Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

* Re-measured using dipole antenna.

** Includes cable loss when amplifier is not used.

*** Includes cable loss.

() Denotes failing emission level.

ISSUE: 2.0

Radiated Photographs (Worst Case Configuration)

Front View

Rear View

Nemko Canada Inc.

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0

Section 10. Test Equipment List

CAL	EQUIPMENT	MANUFACTURER	MODEL	SERIAL	LAST CAL.	NEXT CAL.
CYCLE						
1 Year	Spectrum Analyzer	Hewlett Packard	8565E	FA000981	June 16/00	June 16/01
1 Year	Spectrum Analyzer-1	Hewlett Packard	8566B	2311A02238	Dec. 10/00	Dec. 10/01
1 Year	Spectrum Analyzer	Hewlett Packard	8566B	2314A04759	Dec. 10/00	Dec. 10/01
	Display-1					
1 Year	Quasi-peak adapter-1	Hewlett-Packard	85650A	2043A00302	Dec. 14/00	Dec. 14/01
1 Year	LISN	EMCO	4825/2	0002-1/47	Feb. 14/00	Aug. 14/01
1 Year	Horn Antenna	EMCO #2	3115	4336	Dec. 1/00	Dec. 1/01
1 Year	Plotter	Hewlett Packard	7550A	FA001129	NCR	NCR
	High Pass Filter	K&L	11SH10-4000	FA001340	COU	COU
1 Year	RF AMP	JCA	48-600	FA001497	Aug. 31/00	Aug. 31/01

NA: Not Applicable NCR: No Cal Required COU: CAL On Use

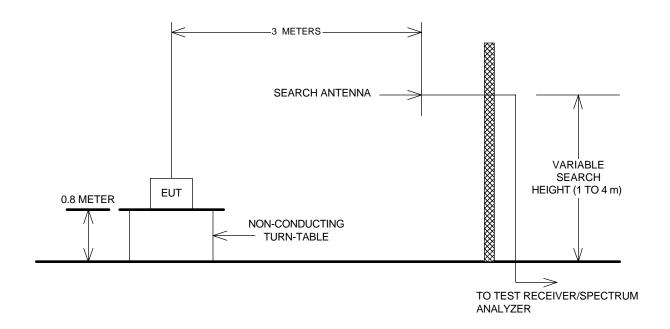
Nemko Canada Inc.

FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS

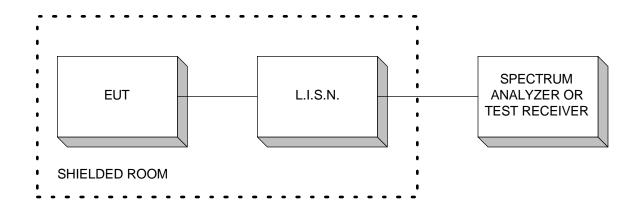
PROJECT NO.: 1W03875 ANNEX A

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone

ISSUE: 2.0


Annex A

Block Diagrams

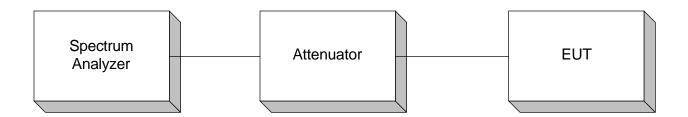

ANNEX A

EQUIPMENT: AT&T 2230, 2.4GHz FHSS Cordless Telephone ISSUE: 2.0

Test Site For Radiated Emissions

Conducted Emissions

Nemko Canada Inc.


FCC PART 15, SUBPART C FREQUENCY HOPPING TRANSMITTERS PROJECT NO.: 1W03875

ANNEX A

 $EQUIPMENT:\ AT\&T\ 2230,\ 2.4GHz\ FHSS\ Cordless\ Telephone$

ISSUE: 2.0

Peak Power At Antenna Terminals

