

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003 & IEEE 1528a-2005

SAR EVALUATION REPORT

For **WIFI MODULE**

(Tested inside of Host Device)

MODEL: DWM-W081 FCC ID: EW4DWMW081

REPORT NUMBER: 12J14490-21 ISSUE DATE: 9/13/2012

Prepared for MITSUMI ELECTRIC CO., LTD. 1601, SAKAI, ASUGI-SHI, KANAGAWA, 243-8533 JAPAN

Prepared by
UL CCS
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888

REPORT NO: 12J14490-21 FCC ID: EW4DWMW081

DATE: 9/13/2012

Revision History

Rev.	Issue Date	<u>Revisions</u>	Revised By
	9/13/2012	Initial Issue	

Table of Contents

1.	Attestation of Test Results	5
2.	Test Methodology	6
3.	Facilities and Accreditation	6
4.	Calibration and Uncertainty	7
4.1		
4.2		
5.	Measurement System Description and Setup	9
6.	SAR Measurement Procedure	10
6.1	. Normal SAR Measurement Procedure	10
6.2	. Volume Scan Procedures	11
7.	Device Under Test	12
7.1	. Band and Air Interfaces	12
8.	Summary of Test Configurations	13
8.1	· · · · · · · · · · · · · · · · · · ·	
8.2		
9.	RF Output Power Verification	14
9.1	. RF Power Verification for 5.2 GHz	15
9.2	RF Power Verification for 5.8 GHz	15
10.	Tissue Dielectric Property	16
10.	1. Composition of Ingredients for the Tissue Material Used in the SAR Tests	17
10.	2. Tissue Dielectric Parameters Check Results	18
11.	System Performance Check	19
11.	System Performance Check Measurement Conditions	19
11.	2. Reference SAR Values for System Performance Check	19
11.	3. System Performance Check Results	19
11.	4. System Performance Check Plots	20
12.	SAR Test Results	24
12.	1. SAR Test Plots	25
13.	Appendixes	41
13.	Calibration Certificate for E-Field Probe EX3DV4 SN 3772	41
13.	2. Calibration Certificate for D5GHzV2 SN 1075	41
	Page 3 of 45	

14.	External/Host Device Photos	.42
15.	Antenna Locations & Separation Distances	. 43
16.	Set-up Photos	44

1. Attestation of Test Results

Applicant	MITSUMI ELECTRIC CO., LTD.					
DUT description	WIFI Module (Tested in	nside of Host)				
Model	DWM-W081					
Device type	An identical prototype					
Device category	Portable					
Exposure category	General Population/Und	General Population/Uncontrolled Exposure				
Date tested	8/24/2012	8/24/2012				
FCC/IC Rule Parts	Freq. Range [MHz]	Freq. Range [MHz] Highest 1-g SAR Limit (W/kg)				
15.407	5180 - 5240					
15.247	5745 - 5825 0.409 W/kg (Edge 1, w/ 5 mm separation distance)					
	Applicable Standards Test Result					
FCC OET Bulletin 65 Supplement C 01-01 IEEE STD 1528:2003 & IEEE 1528a-2005 Pass						

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Tested By:

Sunny Shih

Engineering Leader

UL CCS

Ray Su

SAR Engineer

ULCCS

47173 BENICIA STREET, FREMONT, CA 94538, USA

TEL: (510) 771-1000 FAX: (510) 661-0888

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528:2003 & IEEE 1528a-2005 and the following KDB Test Procedures.

- o 248227 D01 SAR meas for 802.11abg v01r02
- 865664 SAR 3 to 6 GHz Rev
- o 941225 D07 UMPC Mini Tablet Devices v01
- KDB Inquiry: 454638

3. Facilities and Accreditation

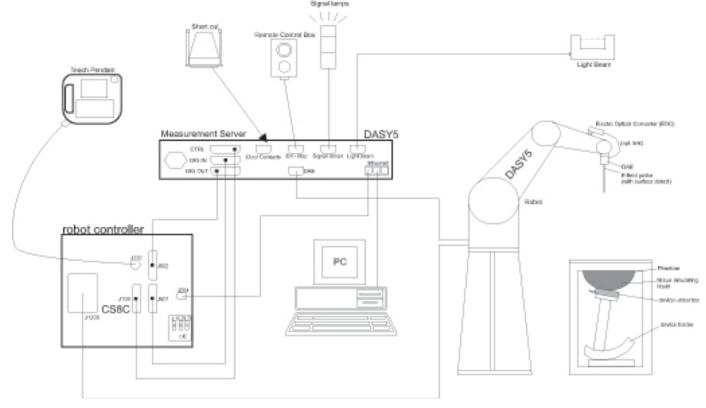
The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.


Name of Equipment	Manufacturar	Manufacturer Type/Model		Cal. Due date			
Name of Equipment	Mandiacturei Type/Model		Serial No.	MM	DD	Year	
ENA Series Network Analyzer	Agilent	E5071B	MY42100131	2 11 2		2013	
Dielectronic Probe kit	HP	85070E	594		N/	/A	
Synthesized Signal Generator	HP	8665B	3438A00633	2	22	2013	
Power Meter	HP	438A	3513U04320	9	17	2013	
Power Sensor A	HP	HP 8481A 2237A31744		8	17	2013	
Power Sensor B	HP	8481A	3318A95392	8	17	2013	
Amplifier	MITEQ	4D00400600-50-30P	1622052	N/A		/A	
Directional coupler	Werlatone	C8060-102	2149	N/A		/A	
Thermometer	ERTCO	639-1S	8350	7	30	2013	
E-Field Probe	SPEAG	EX3DV4	3772	2	16	2013	
Data Acquisition Electronics	SPEAG	DAE4	1258 3		8	2013	
System Validation Dipole	SPEAG	D5GHzV2	1075	2 14 2013		2013	
Power Meter	R&S	NRP	100673	5 5 2013		2013	
Power Sensor	R&S	NRP - Z23	100168	5	5	2013	

4.2. Measurement Uncertainty

Measurement uncertainty for 3 to 6 GHz averaged over		Distribution	Distant	0 141-14	11 ()6) 0/
Component	Error, %	Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1)	6.55	Normal	1	1	6.55
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	1.00	Normal	1	1	1.00
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	3.90	Rectangular	1.732	1	2.25
Test Sample Related					
Test Sample Positioning	1.10	Normal	1	1	1.10
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	1.48	Normal	1	0.64	0.95
Liquid Permittivity - deviation from target	10.00	Rectangular	1.732	0.6	3.46
Liquid Permittivity - measurement uncertainty	-3.42	Normal	1	0.6	-2.05
	•	Combined S	tandard Uncert	ainty Uc(y), %:	10.69
Expanded Uncertain	ty U, Coverage Facto			20.96	%
	tv U. Coverage Facto			1.65	dB

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6. SAR Measurement Procedure

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and EN 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $\geq 7x7x9$ (above 3 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

6.2. Volume Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $\geq 7x7x9$ (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

7. Device Under Test

WIFI 11A/N Module (Tested inside of host device) Model: DWM-W081			
Mode of operation	Hand-held or lap-h	eld	
Antenna tested	Manufacturer Mitsumi	Part number Main: ANT-01 Aux: ANT-02	Antenna Gain (dBi) 2.55 2.55

7.1. Band and Air Interfaces

Tx Frequency Bands	802.11n:	5150 - 5250 MHz, HT20
		5725 - 5850 MHz, HT20

8. Summary of Test Configurations

Refer to Section 15 "Antenna Location and Separation Distances" for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

8.1. Body Exposure Conditions for the Main Antenna

Configuration	Antenna-to- edge/surface	SAR Required	Note
Rear (bottom)	32.6 mm	Yes	
Front	3.4	Yes	
Edge 1	4.2 mm	Yes	
Edge 2	172.7 mm	No	SAR is not required because the distance from the tested antenna to this edge is > 2.5 cm and is not the most conservative exposure condition
Edge 3	128.6 mm	No	Ditto
Edge 4	57.7 mm	No	Ditto

8.2. Body Exposure Conditions for the Auxiliary Antenna

Configuration	Antenna-to- edge/surface	SAR Required	Note
Rear (bottom)	32.6 mm	Yes	
Front	3.4	Yes	
Edge 1	4.2 mm	Yes	
Edge 2	57.7 mm	No	SAR is not required because the distance from the tested antenna to this edge is > 2.5 cm and is not the most conservative exposure condition
Edge 3	128.6 mm	No	Ditto
Edge 4	172.7 mm	No	Ditto

9. RF Output Power Verification

Required Test Channels per KDB 248227 D01

Required Test Charmels per RDB 2+0227 Bot							
Mode	Band	GHz	Channal	"Default Test Channels"			
Mode	Danu		Channel	802.11b	802.11g		
		2.412	1#	√	∇		
802.11b/g	2.4 GHz	2.437	6	√	∇		
		2.462	11#	1	∇		
Mode	Band	GHz	Channel	"Default Tes	st Channels"		
		5.400	20	1			

Mode		Band	GHz	Channel	"Default Tes	st Channels"
			5.180	36	√	
			5.200	40		*
			2.220	44		*
			5.240	48	√	
			5.260	52	√	
		5.3 GHz	5.280	56		*
		5.3 GHZ	5.300	60		*
			5.320	64	√	
		5.5 GHz	5.500	100		
	UNII (15.407)		5.520	104	√	
			5.540	108		*
802.11a			5.560	112		*
002.11a			5.580	116	√	
			5.600	120		*
			5.620	124	√	
			5.640	128		*
			5.660	132		*
			5.680	136	√	
			5.700	140		*
			5.745	149	√	
	5.70		5.765	153		*
	DTS (15.247)	5.8 GHz	5.785	157	√	
	(10.247)		5.805	161		*
			5.825	165	√	

^{* =} possible 802.11a channels with maximum average output > the "default test channels"

^{√ = &}quot;default test channels"

 $[\]nabla$ = possible 802.11g channels with maximum average output ¼ dB \geq the "default test channels"

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

9.1. RF Power Verification for 5.2 GHz

Band (GHz) Mode		Ch. # Freq. (MHz)			Pwr (dBm) EMC report	Measured Avg Pwr (dBm)	
(GH2)			(1711 12)	Main Ant.	Aux Ant.	Main Ant.	Aux Ant.
		36	5180	10.9		10.9	
		40	5200	10.4		10.4	
5.2	802.11n HT20	48	5240	10.4		10.4	
5.2	002.111111120	36	5180		10.9		10.9
		40	5200		10.4		10.4
		48	5240		10.4		10.5

9.2. RF Power Verification for 5.8 GHz

Band (GHz) Mo	Mode	Ch. #	Freq. (MHz)		Pwr (dBm) I EMC report	Measured Avg Pwr (dBm)	
(GH2)			(1011-12)	Main Ant.	Aux Ant.		Aux Ant.
		149	5745	10.9		10.9	
		157	5785	10.2		10.3	
5.8	802.11n HT20	165	5825	10.5		10.5	
3.0	002.111111120	149	5745		10.9		10.9
		157	5785		10.2		10.3
		165	5825		10.5		10.6

Notes:

ENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661

This report shall not be reproduced except in full, without the written approval of UL CCS.

^{1.} Original average output power is from EMC reports 12J14490-1 and 12J14490-2. Refer to original reports (FCC ID: EW4DWMW081) for Average Power information as documented in 7/25/2012 original filing.

10. Tissue Dielectric Property

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	He	ad
Target Frequency (MHz)	$\varepsilon_{\rm r}$	σ (S/m)
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 – 2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40

FCC OET Bulletin 65 Supplement C 01-01

Torget Frequency (MHz)	Н	ead	Body			
Target Frequency (MHz)	$\epsilon_{\rm r}$	σ (S/m)	ϵ_{r}	σ (S/m)		
150	52.3	0.76	61.9	0.8		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.9	55.2	0.97		
900	41.5	0.97	55	1.05		
915	41.5	0.98	55	1.06		
1450	40.5	1.2	54	1.3		
1610	40.3	1.29	53.8	1.4		
1800 – 2000	40	1.4	53.3	1.52		
2450	39.2	1.8	52.7	1.95		
3000	38.5	2.4	52	2.73		
5000	36.2	4.45	49.3	5.07		
5100	36.1	4.55	49.1	5.18		
5200	36.0	4.66	49.0	5.30		
5300	35.9	4.76	48.9	5.42		
5400	35.8	4.86	48.7	5.53		
5500	35.6	4.96	48.6	5.65		
5600	35.5	5.07	48.5	5.77		
5700	35.4	5.17	48.3	5.88		
5800	35.3	5.27	48.2	6.00		

ENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	45	450		835 915		1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose HEC: Hydroxyethyl Cellulose Water: De-ionized, 16 MΩ+ resistivity DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

MSI 5800 (Body liquids for 4600 - 6000 MHz)

MSESSOU (Body liquids in	51 4000 – 0000 WH2)			
Item	Body Tissue Simulation Liquids MSL8500			
	Muscle (body) Tissue Simulation Liquids HSL1750			
Type No	SL AAM 850 AD			
Manufacturer	SPEAG			
-The item is composed of the following ingredients:				
H ² O	78%			
Mineral oil	11%			
Emulsifiers	9%			
Additives and Salt	2%			

10.2. Tissue Dielectric Parameters Check Results

Tissue dielectric parameters measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 5180	e'	47.7190	Relative Permittivity (ε_r) :	47.72	49.05	-2.71	10
	Body 5160	e"	18.1874	Conductivity (σ):	5.24	5.27	-0.63	5
	Body 5200	e'	47.6767	Relative Permittivity (ε_r) :	47.68	49.02	-2.74	10
		e"	18.2053	Conductivity (σ):	5.26	5.29	-0.58	5
8/24/2012	Body 5500	e'	47.1133	Relative Permittivity (ε_r):	47.11	48.61	-3.09	10
0/24/2012		e"	18.4939	Conductivity (σ):	5.66	5.64	0.20	5
	Body 5800	e'	46.6255	Relative Permittivity (ε_r) :	46.63	48.20	-3.27	10
	Body 3600	e"	18.6804	Conductivity (σ):	6.02	6.00	0.41	5
	Body 5825	e'	46.5513	Relative Permittivity (ε_r) :	46.55	48.20	-3.42	10
	Douy 3623	e"	18.7996	Conductivity (σ):	6.09	6.00	1.48	5

11. System Performance Check

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dinale	Serial No.	Cal. Date	Doto From (MHT)		SAR Measured (mW/g)			
System Dipole	Seriai No.	Cai. Date	Freq. (MHz)	1g/10g	Head	Body		
			5200	1g	79.4	72.7		
			5200	10g	22.8	20.5		
D5GHzV2	1075	2/14/12	5500	1g	85.7	77.7		
DOGHZVZ	1075	2/14/12	3300	10g	24.3	21.7		
			5800	1g	78.9	72.5		
			3600	10g	22.5	20.2		

11.3. System Performance Check Results

<u> </u>								
Date Tested	- 3 -	tem on dipole		sured ed to 1 W)	Target	Delta (%)	Tolerance (%)	
8/24/2012	D5GHzV2	1075	Body	1g	73.1	72.7	0.55	
	(5.2GHz)	1075	Бойу	10g	<u> </u>			
	D5GHzV2	1075	Body	1g	72.2	72.5	-0.41	
	(5.8GHz)	1075	Body 10g		21.1	20.2	4.46	

11.4. System Performance Check Plots

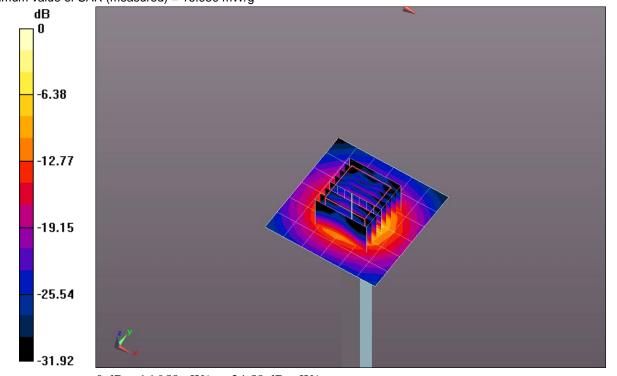
Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

20120824 SystemPerformanceCheck-D5GHzV2 SN 1075

Frequency: 5200 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5200 MHz; σ = 5.266 mho/m; ϵ_r = 47.677; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1119

Body/5.2 GHz, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 11.754 mW/g

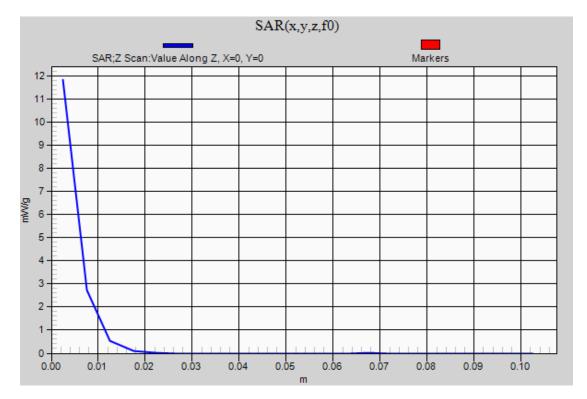

Body/5.2 GHz, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 50.922 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 28.5160

SAR(1 g) = 7.31 mW/g; SAR(10 g) = 2.07 mW/gMaximum value of SAR (measured) = 16.950 mW/g


0 dB = 16.950 mW/g = 24.58 dB mW/g

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

20120824 SystemPerformanceCheck-D5GHzV2 SN 1075

Frequency: 5200 MHz; Duty Cycle: 1:1

Body/5.2 GHz, Pin=100mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 11.828 mW/g

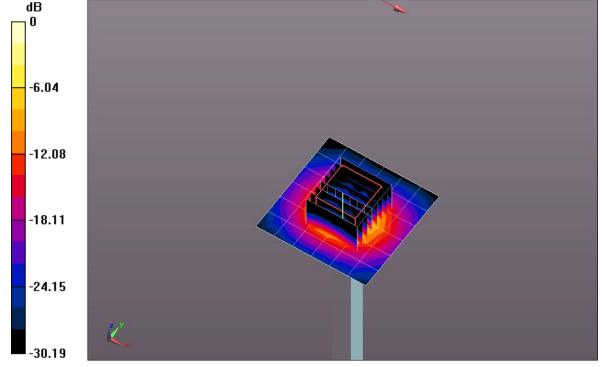
Test Laboratory: UL CCS SAR Lab A

20120824 SystemPerformanceCheck-D5GHzV2 SN 1075

Frequency: 5800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5800 MHz; σ = 6.027 mho/m; ε_r = 46.626; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258: Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(3.58, 3.58, 3.58); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1119

Body/5.8 GHz, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.241 mW/g


Body/5.8 GHz, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

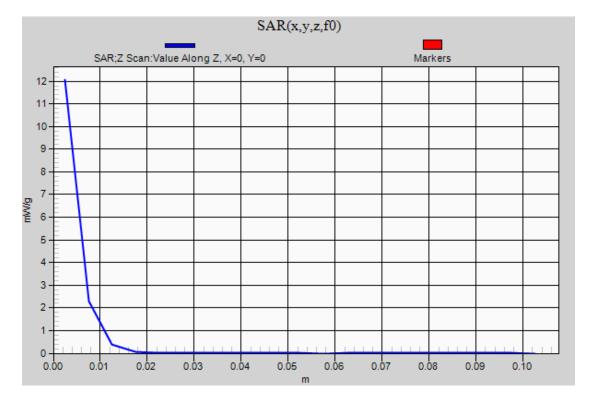
Reference Value = 49.262 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 31.7120

SAR(1 g) = 7.53 mW/g; SAR(10 g) = 2.11 mW/gMaximum value of SAR (measured) = 18.104 mW/g

0 dB = 18.100 mW/g = 25.15 dB mW/g

FORM NO: CCSUP4031G


FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

20120824 SystemPerformanceCheck-D5GHzV2 SN 1075

Frequency: 5800 MHz; Duty Cycle: 1:1

Body/5.8 GHz, Pin=100mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 12.052 mW/g

12. SAR Test Results

Main Antenna (ANT1V2) SAR Value

Test	Separation	Mode	Band	Ch#	Freq.	Avg.Pwr	SAR (mW/g)	Note					
Position	Distance (mm)	ivioue	Danu	5 #	(MHz)	(dBm)	1-g	10-g	Note					
			5.2 GHz	36	5180	10.9	0.117	0.037						
	802.11n	5.2 GHZ	48	5240	10.4			1						
Front	Front 9	HT20		149	5745	10.9	0.074	0.028						
	11120	5.8 GHz	157	5785	10.4			1						
				165	5825	10.5			1					
		802.11n HT20						5.2 GHz	36	5180	10.9	0.029	0.007	
Rear @			5.2 GHZ	48	5240	10.4			1					
15°	5			149	5745	10.9	0.040	0.014						
10			5.8 GHz	157	5785	10.4			1					
				165	5825	10.5			1					
			5.2 GHz	36	5180	10.9	0.212	0.061						
		002 11n	5.2 GHZ	48	5240	10.4			1					
Edge 1	5	802.11n HT20		149	5745	10.9	0.248	0.068						
	11120	5.8 GHz	157	5785	10.4			1						
				165	5825	10.5			1					

Aux Antenna (ANT2V2) SAR Value

	nna (ANT2V2) S	JAIN Value	-		-		045 (
Test	Separation	Mode	Band	Ch#	Freq.	Avg. Pwr	SAR (mW/g)	Note
Position	Distance (mm)		1 5	0::	(MHz)	(dBm)	1-g	10-g	
			5.2 GHz	36	5180	10.9	0.183	0.060	
Front 9	802.11n	3.2 GHZ	48	5240	10.5			1	
	HT20		149	5745	10.9	0.232	0.076		
	11120	5.8 GHz	157	5785	10.3			1	
				165	5825	10.6			1
		802.11n HT20	5.2 GHz	36	5180	10.9	0.056	0.019	
Rear @			3.2 GHZ	48	5240	10.5			1
15°	5			149	5745	10.9	0.059	0.022	
10			5.8 GHz	157	5785	10.3			1
				165	5825	10.6			1
			5.2 GHz	36	5180	10.9	0.370	0.108	
		002 11n	3.2 GHZ	48	5240	10.5			1
Edge 1	5	802.11n HT20		149	5745	10.9	0.409	0.120	
			5.8 GHz	157	5785	10.3			1
					165	5825	10.6		

Note(s):

- 1. For frequency bands with an operating range of < 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 2. A device to phantom separation distance of 9 mm was used to carry out testing for the Front Test Position because the analog joysticks protrude 9 mm upwards from the front surface, therefore preventing the use of the usual 5 mm separation distance.
- 3. A device to phantom separation distance of 5 mm was used to carry out testing for the Rear @ 15° and Edge 1 test positions in accordance with KDB Inquiry #: 454638.

ENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

12.1. SAR Test Plots

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

WiFi 5GHz Bands

Frequency: 5180 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5180 MHz; σ = 5.241 mho/m; ε_r = 47.719; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Front/Main Ant._802.11n_Ch 36/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.195 mW/g

Front/Main Ant. 802.11n Ch 36/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2.5mm

Reference Value = 6.383 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.3680

SAR(1 g) = 0.117 mW/g; SAR(10 g) = 0.037 mW/gMaximum value of SAR (measured) = 0.209 mW/g

Test Laboratory: UL CCS SAR Lab A

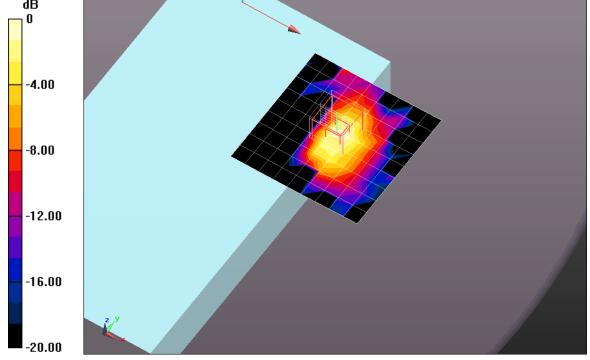
WiFi 5GHz Bands

Frequency: 5745 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5745 MHz; $\sigma = 5.98 \text{ mho/m}$; $\epsilon_r = 46.791$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(3.58, 3.58, 3.58); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Front/Main Ant._802.11n_Ch 149/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.136 mW/g

Front/Main Ant. 802.11n Ch 149/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2.5mm

Reference Value = 5.178 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.4120

SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.028 mW/g

Maximum value of SAR (measured) = 0.156 mW/g

0 dB = 0.160 mW/g = -15.92 dB mW/g

Test Laboratory: UL CCS SAR Lab A

WiFi 5GHz Bands

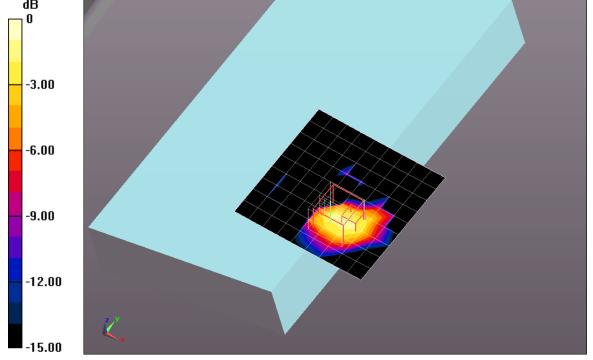
Frequency: 5180 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5180 MHz; $\sigma = 5.241 \text{ mho/m}$; $\varepsilon_r = 47.719$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Rear @ 15 deg./Main Ant._802.11n_Ch 36/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.031 mW/g

Rear @ 15 deg./Main Ant._802.11n_Ch 36/Zoom Scan (7x7x9)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 2.686 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.2780

SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.00699 mW/g

Maximum value of SAR (measured) = 0.036 mW/g

0 dB = 0.040 mW/g = -27.96 dB mW/g

Test Laboratory: UL CCS SAR Lab A

WiFi 5GHz Bands

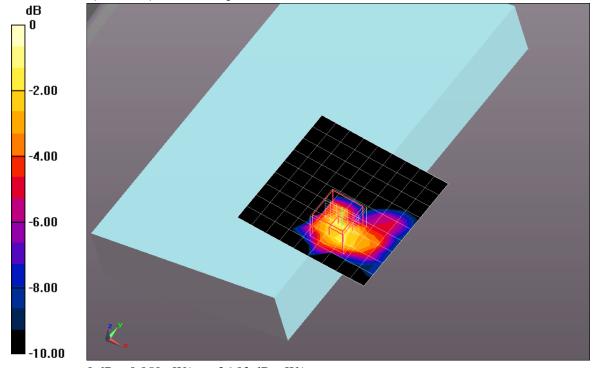
Frequency: 5745 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5745 MHz; σ = 5.98 mho/m; ϵ_r = 46.791; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(3.58, 3.58, 3.58); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Rear @ 15 deg./Main Ant._802.11n_Ch 149/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.035 mW/g

Rear @ 15 deg./Main Ant._802.11n_Ch 149/Zoom Scan (7x7x9)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 2.412 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.3830

SAR(1 g) = 0.040 mW/g; SAR(10 g) = 0.014 mW/g

Maximum value of SAR (measured) = 0.049 mW/g

0 dB = 0.050 mW/g = -26.02 dB mW/g

Test Laboratory: UL CCS SAR Lab A

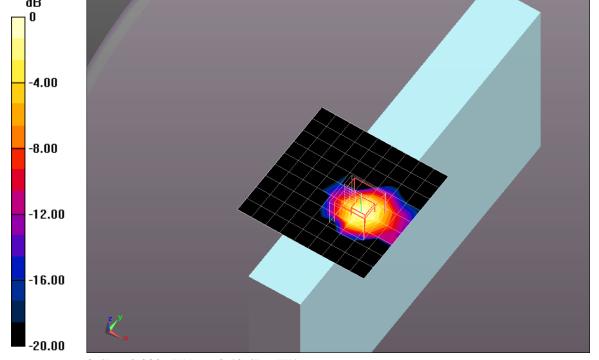
WiFi 5GHz Bands

Frequency: 5180 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5180 MHz; $\sigma = 5.241 \text{ mho/m}$; $\varepsilon_r = 47.719$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Edge 1/Main Ant._802.11n_Ch 36/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.361 mW/g

Edge 1/Main Ant. 802.11n Ch 36/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

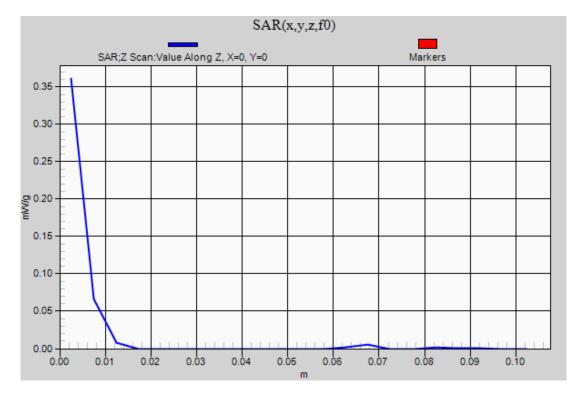

dy=4mm, dz=2.5mm

Reference Value = 8.937 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.7270

SAR(1 g) = 0.212 mW/g; SAR(10 g) = 0.061 mW/g

Maximum value of SAR (measured) = 0.385 mW/g


0 dB = 0.380 mW/g = -8.40 dB mW/g

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

WiFi 5GHz Bands

Frequency: 5180 MHz; Duty Cycle: 1:1

Edge 1/Main Ant._802.11n_Ch 36/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.361 mW/g

UL CCS FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888

Test Laboratory: UL CCS SAR Lab A

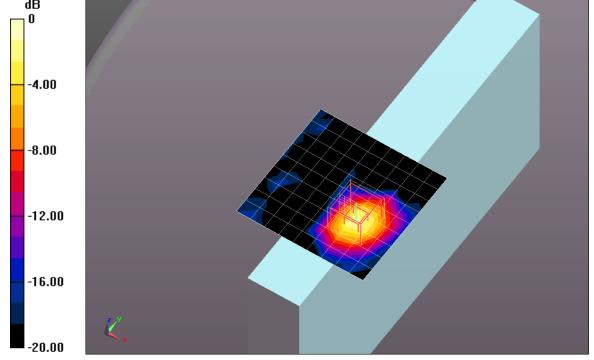
WiFi 5GHz Bands

Frequency: 5745 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5745 MHz; σ = 5.98 mho/m; ϵ_r = 46.791; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(3.58, 3.58, 3.58); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Edge 1/Main Ant._802.11n_Ch 149/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.351 mW/g

Edge 1/Main Ant._802.11n_Ch 149/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

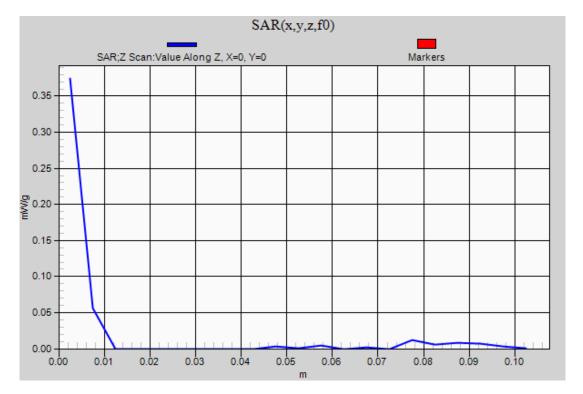

dy=4mm, dz=2.5mm

Reference Value = 8.674 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.9610

SAR(1 g) = 0.248 mW/g; SAR(10 g) = 0.068 mW/g

Maximum value of SAR (measured) = 0.497 mW/g


0 dB = 0.500 mW/g = -6.02 dB mW/g

Test Laboratory: UL CCS SAR Lab A Date: 8/25/2012

WiFi 5GHz Bands

Frequency: 5745 MHz; Duty Cycle: 1:1

Edge 1/Main Ant._802.11n_Ch 149/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.374 mW/g

Test Laboratory: UL CCS SAR Lab A

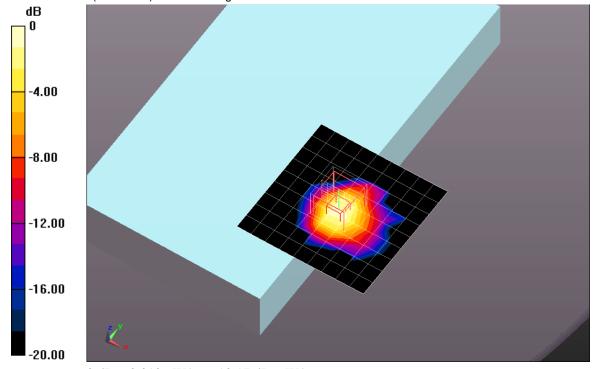
WiFi 5GHz Bands

Frequency: 5180 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5180 MHz; σ = 5.241 mho/m; ϵ_r = 47.719; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Front/Aux Ant._802.11n_Ch 36/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.279 mW/g

Front/Aux Ant._802.11n_Ch 36/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2.5mm

Reference Value = 7.843 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.5950

SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.060 mW/g

Maximum value of SAR (measured) = 0.312 mW/g

0 dB = 0.310 mW/g = -10.17 dB mW/g

Test Laboratory: UL CCS SAR Lab A

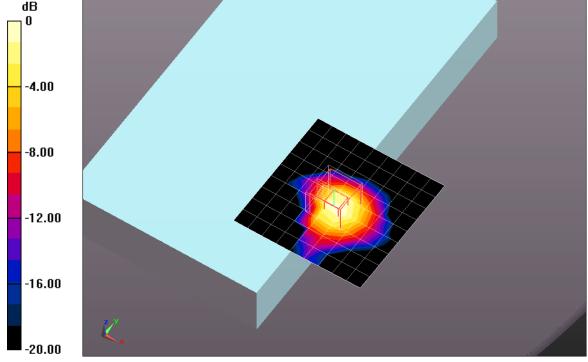
WiFi 5GHz Bands

Frequency: 5745 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5745 MHz; $\sigma = 5.98 \text{ mho/m}$; $\epsilon_r = 46.791$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(3.58, 3.58, 3.58); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Front/Aux Ant._802.11n_Ch 149/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.388 mW/g

Front/Aux Ant. 802.11n Ch 149/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2.5mm

Reference Value = 8.383 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.8020

SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.076 mW/g

Maximum value of SAR (measured) = 0.406 mW/g

0 dB = 0.410 mW/g = -7.74 dB mW/g

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

WiFi 5GHz Bands

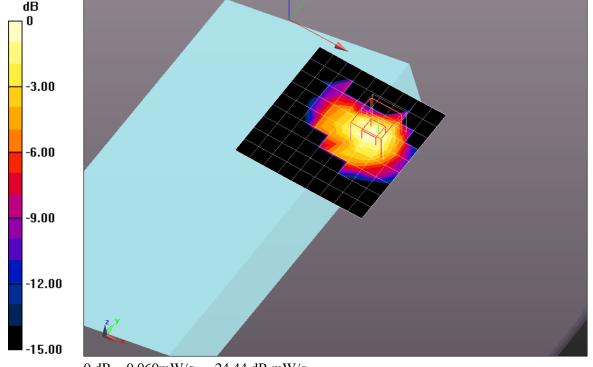
Frequency: 5180 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5180 MHz; $\sigma = 5.241 \text{ mho/m}$; $\varepsilon_r = 47.719$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Rear @ 15 deg./Aux Ant._802.11n_Ch 36/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.057 mW/g

Rear @ 15 deg./Aux Ant._802.11n_Ch 36/Zoom Scan (7x7x9)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 3.659 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.5340

SAR(1 g) = 0.056 mW/g; SAR(10 g) = 0.019 mW/g

Maximum value of SAR (measured) = 0.064 mW/g

0 dB = 0.060 mW/g = -24.44 dB mW/g

UL CCS FORM NO: CCSUP4031G FAX: (510) 661-0888 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000

Test Laboratory: UL CCS SAR Lab A

WiFi 5GHz Bands

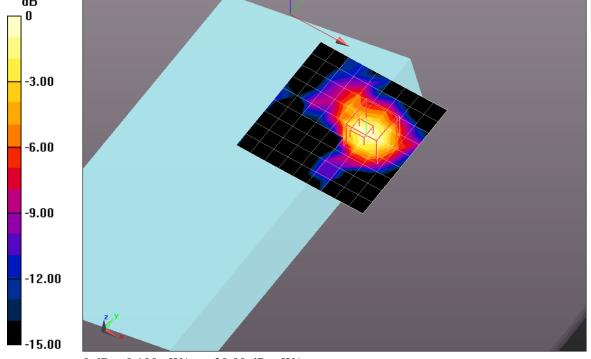
Frequency: 5745 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5745 MHz; σ = 5.98 mho/m; ϵ_r = 46.791; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(3.58, 3.58, 3.58); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Rear @ 15 deg./Aux Ant._802.11n_Ch 149/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.101 mW/g

Rear @ 15 deg./Aux Ant._802.11n_Ch 149/Zoom Scan (7x7x9)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 4.309 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.5030

SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.022 mW/g

Maximum value of SAR (measured) = 0.099 mW/g

0 dB = 0.100 mW/g = -20.00 dB mW/g

REPORT NO: 12J14490-21 FCC ID: EW4DWMW081

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

WiFi 5GHz Bands

Frequency: 5180 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5180 MHz; $\sigma = 5.241$ mho/m; $\epsilon_r = 47.719$; $\rho = 1000$ kg/m³ DASY5 Configuration:

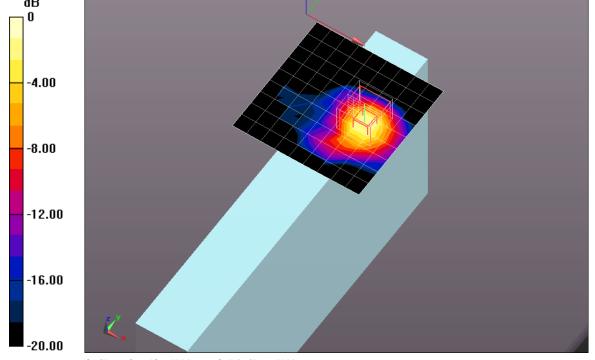
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

DATE: 9/13/2012

- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Edge 1/Aux Ant._802.11n_Ch 36/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.470 mW/g

Edge 1/Aux Ant._802.11n_Ch 36/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

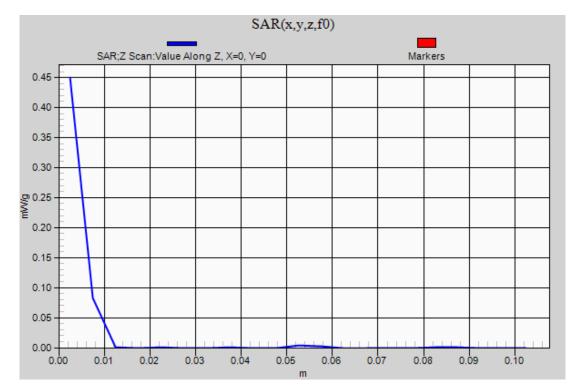

dz=2.5mm

Reference Value = 9.980 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.3100

SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.108 mW/g

Maximum value of SAR (measured) = 0.651 mW/g


0 dB = 0.650 mW/g = -3.74 dB mW/g

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

WiFi 5GHz Bands

Frequency: 5180 MHz; Duty Cycle: 1:1

Edge 1/Aux Ant._802.11n_Ch 36/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.450 mW/g

Test Laboratory: UL CCS SAR Lab A

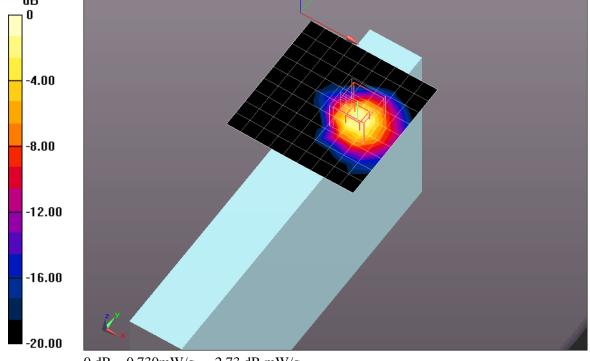
WiFi 5GHz Bands

Frequency: 5745 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 25.0°C; Liquid Temperature: 24.0°C Medium parameters used: f = 5745 MHz; $\sigma = 5.98$ mho/m; $\epsilon_r = 46.791$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(3.58, 3.58, 3.58); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Edge 1/Aux Ant._802.11n_Ch 149/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.558 mW/g

Edge 1/Aux Ant._802.11n_Ch 149/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

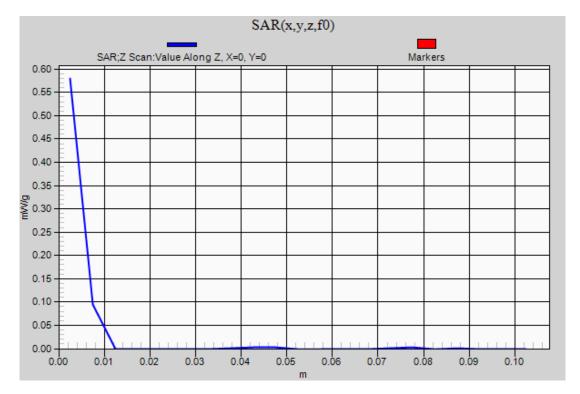

dy=4mm, dz=2.5mm

Reference Value = 10.523 V/m; Power Drift = 0.0018 dB

Peak SAR (extrapolated) = 1.4980

SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.120 mW/g

Maximum value of SAR (measured) = 0.731 mW/g


0 dB = 0.730 mW/g = -2.73 dB mW/g

Test Laboratory: UL CCS SAR Lab A Date: 8/24/2012

WiFi 5GHz Bands

Frequency: 5745 MHz; Duty Cycle: 1:1

Edge 1/Aux Ant._802.11n_Ch 149/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.579 mW/g

UL CCS FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888

13. Appendixes

Refer to separated files for the following appendixes.

- 13.1. Calibration Certificate for E-Field Probe EX3DV4 SN 3772
- 13.2. Calibration Certificate for D5GHzV2 SN 1075