# 7.9.802.11n HT40 MODE IN THE 5.6 GHz BAND

# 7.9.1. 26 dB and 99% BANDWIDTH

#### LIMITS

None; for reporting purposes only.

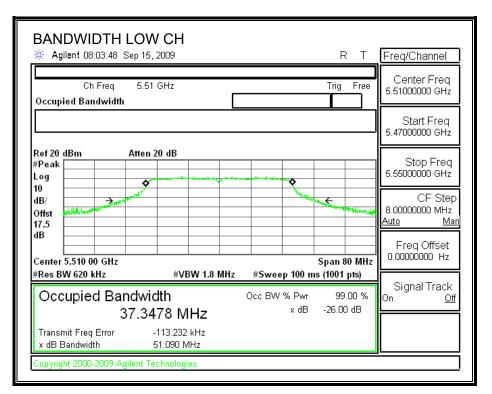
### TEST PROCEDURE

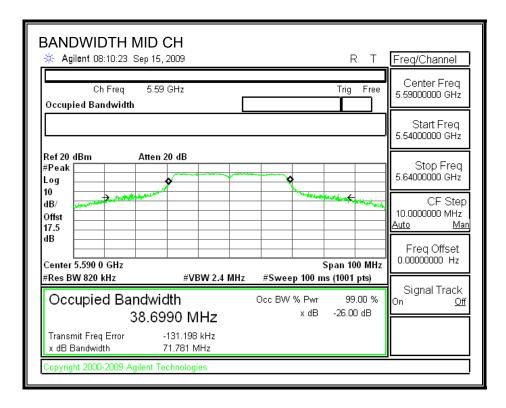
The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

#### **RESULTS**

#### CHAIN 1

| Channel | Frequency | 26 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (MHz)           | (MHz)         |
| Low     | 5510      | 51.090          | 36.3021       |
| Middle  | 5590      | 71.781          | 36.3436       |
| High    | 5670      | 62.033          | 36.1709       |


#### CHAIN 2

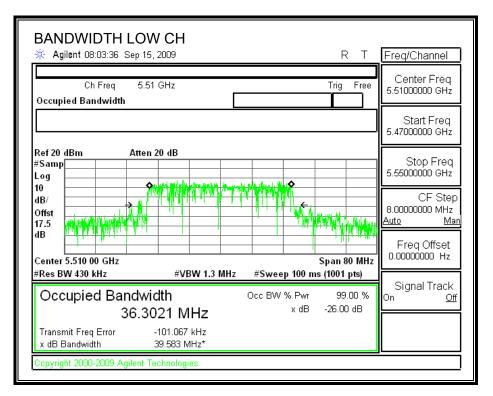

| Channel | Frequency | 26 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (MHz)           | (MHz)         |
| Low     | 5510      | 50.849          | 36.3129       |
| Middle  | 5590      | 78.836          | 36.3537       |
| High    | 5670      | 67.785          | 36.1777       |

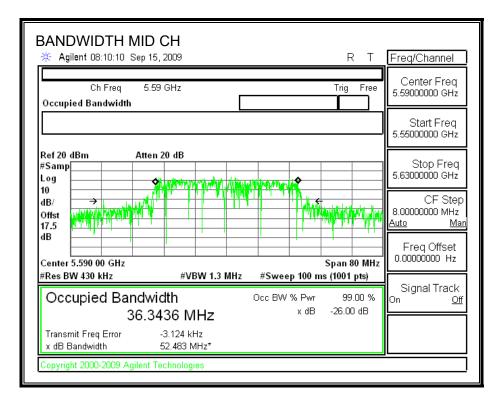
Page 201 of 344

# REPORT NO: 09U12784-2 FCC ID: EW4DWMW034 CHAIN 1

#### 26 dB BANDWIDTH







Page 202 of 344

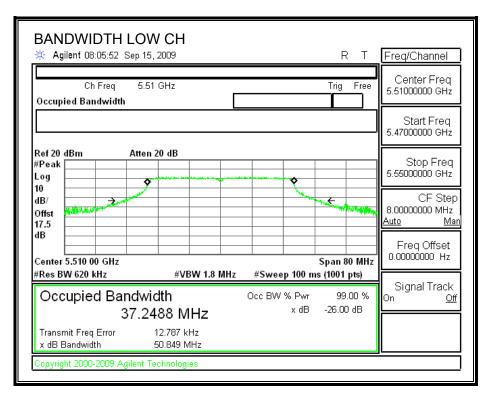
| BANDWIDTH HIC                         | -                        |                      | RТ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freq/Channel                                |
|---------------------------------------|--------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Ch Freq 5.<br>Occupied Bandwidth      | 67 GHz                   |                      | Trig Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Center Freq<br>5.6700000 GHz                |
|                                       |                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Freq<br>5.6200000 GHz                 |
| #Peak                                 | en 20 dB                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop Freq<br>5.7200000 GHz                  |
| 10<br>dB/<br>Offst<br>17.5            |                          |                      | In the state of th | CF Step<br>10.000000 MHz<br><u>Auto Man</u> |
| dB<br>Center 5.670 0 GHz              |                          |                      | Span 100 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Freq Offset<br>0.00000000 Hz                |
| #Res BW 560 kHz                       | #VBW 1.8 MHz             | #Sweep 100 m         | s (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cignel Treek                                |
| Occupied Bandw<br>37.3                | vidth<br>3151 MHz        | Occ BW % Pwr<br>x dB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal Track<br>On <u>Off</u>               |
| Transmit Freq Error<br>x dB Bandwidth | 29.225 kHz<br>62.033 MHz |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| Copyright 2000-2009 Agilent           | Technologies             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |

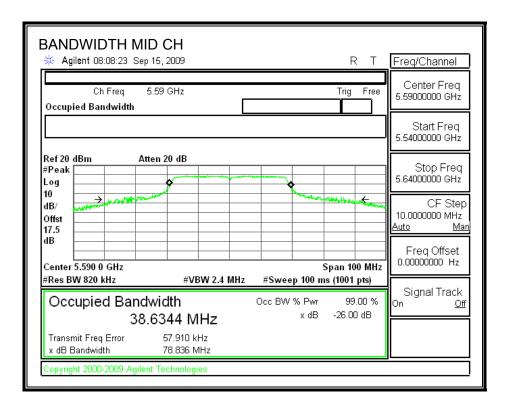
Page 203 of 344

### 99% BANDWIDTH






Page 204 of 344

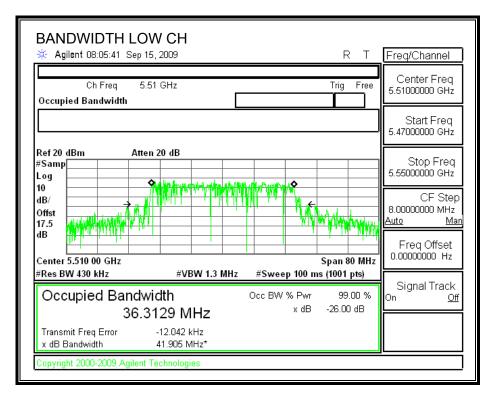

| BANDWIDTH HIGH CH<br>* Agilent 08:11:57 Sep 15, 2009 R T              | Freq/Channel                                 |
|-----------------------------------------------------------------------|----------------------------------------------|
| Ch Freq 5.67 GHz Trig Free<br>Occupied Bandwidth                      | Center Freq<br>5.67000000 GHz                |
|                                                                       | Start Freq<br>5.63000000 GHz                 |
| Ref 20 dBm Atten 20 dB #Samp Log                                      | Stop Freq<br>5.71000000 GHz                  |
| 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10              | CF Step<br>8.00000000 MHz<br><u>Auto Man</u> |
| dB Center 5.670 00 GHz Span 80 MHz                                    | Freq Offset<br>0.00000000 Hz                 |
| #Res BW 430 kHz #VBW 1.3 MHz #Sweep 100 ms (1001 pts)                 | Signal Track                                 |
| Occupied Bandwidth Occ BW % Pwr 99.00 %<br>36.1709 MHz × dB -26.00 dB | On <u>Off</u>                                |
| Transmit Freq Error -86.076 kHz<br>x dB Bandwidth 45.629 MHz*         |                                              |
| Copyright 2000-2009 Agilent Technologies                              |                                              |

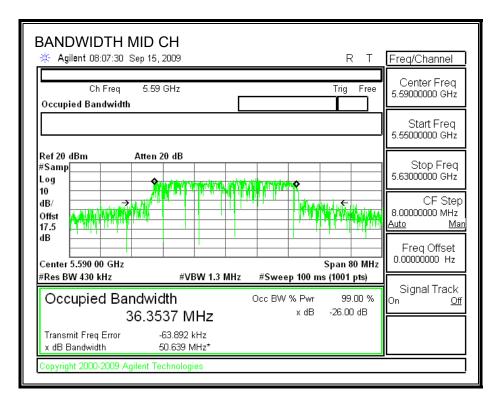
Page 205 of 344

# REPORT NO: 09U12784-2 FCC ID: EW4DWMW034 CHAIN 2

#### 26 dB BANDWIDTH







Page 206 of 344

| BANDWIDTH HI                          |                           | F                              | ? Т           | Freq/Channel                                |
|---------------------------------------|---------------------------|--------------------------------|---------------|---------------------------------------------|
| Ch Freq<br>Occupied Bandwidth         | 5.67 GHz                  | Trig                           | Free          | Center Freq<br>5.67000000 GHz               |
|                                       |                           |                                |               | Start Freq<br>5.6200000 GHz                 |
| Ref 20 dBm At<br>#Peak<br>Log<br>10   | ten 20 dB                 |                                |               | Stop Freq<br>5.7200000 GHz                  |
| dB/<br>Offst<br>17.5                  |                           |                                |               | CF Step<br>10.000000 MHz<br><u>Auto Man</u> |
| dB                                    |                           | Span 10                        | 0 MHz         | Freq Offset<br>0.00000000 Hz                |
| #Res BW 750 kHz                       | #VBW 2.4 MHz              | #Sweep 100 ms (1001            | pts)          | Signal Track                                |
| Occupied Band<br>37                   | width<br>.7481 MHz        | Occ BW % Pwr 99<br>x dB -26.00 | .00 %<br>) dB | On <u>Off</u>                               |
| Transmit Freq Error<br>x dB Bandwidth | -24.474 kHz<br>67.785 MHz |                                |               |                                             |
| Copyright 2000-2009 Agiler            | nt Technologies           |                                |               |                                             |

Page 207 of 344

### 99% BANDWIDTH





Page 208 of 344

| BANDWIDTH HIGH CH<br># Agilent 08:13:52 Sep 15, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RT                                     | Freq/Channel                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|
| Ch Freq 5.67 GHz<br>Occupied Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trig Free                              | Center Freq<br>5.67000000 GHz               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | Start Freq<br>5.63000000 GHz                |
| Ref 20 dBm Atten 20 dB<br>#Samp Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arild Date of the All of State         | Stop Freq<br>5.71000000 GHz                 |
| Corp         Corp <t< th=""><th></th><th>CF Step<br/>8.0000000 MHz<br/><u>Auto Man</u></th></t<> |                                        | CF Step<br>8.0000000 MHz<br><u>Auto Man</u> |
| dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Span 80 MHz                            | Freq Offset<br>0.00000000 Hz                |
| #Res BW 430 kHz #VBW 1.3 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | Signal Track                                |
| Occupied Bandwidth<br>36.1777 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Occ BW % Pwr 99.00 %<br>x dB -26.00 dB | On <u>Off</u>                               |
| Transmit Freq Error -82.561 kHz<br>x dB Bandwidth 41.660 MHz*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                             |
| Copyright 2000-2009 Agilent Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                             |

Page 209 of 344

# 7.9.2. OUTPUT POWER

# <u>LIMITS</u>

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

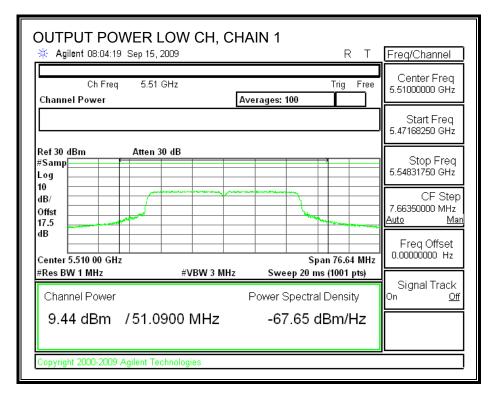
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

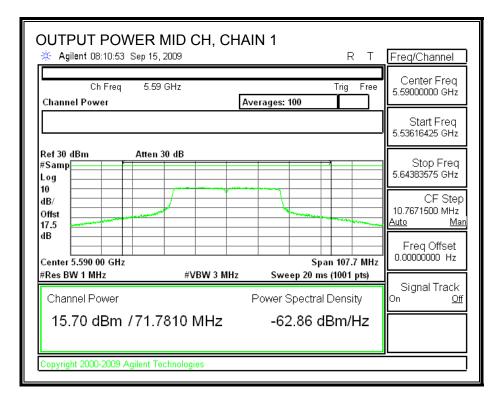
### TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

# **RESULTS**


Limit

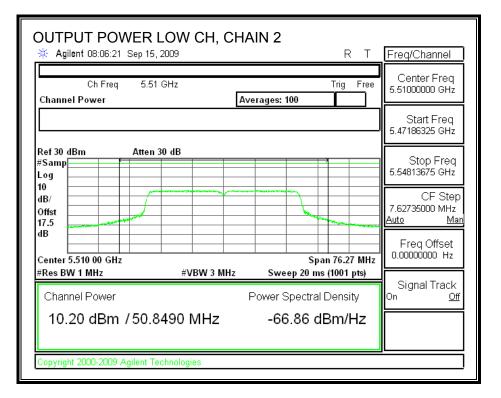

| Channel | Frequency | Fixed | В      | 11 + 10 Log B | Antenna | Limit |
|---------|-----------|-------|--------|---------------|---------|-------|
|         |           | Limit |        | Limit         | Gain    |       |
|         | (MHz)     | (dBm) | (MHz)  | (dBm)         | (dBi)   | (dBm) |
| Low     | 5510      | 24    | 51.090 | 28.08         | 2.13    | 24.00 |
| Mid     | 5590      | 24    | 71.781 | 29.56         | 2.13    | 24.00 |
| High    | 5670      | 24    | 62.033 | 28.93         | 2.13    | 24.00 |

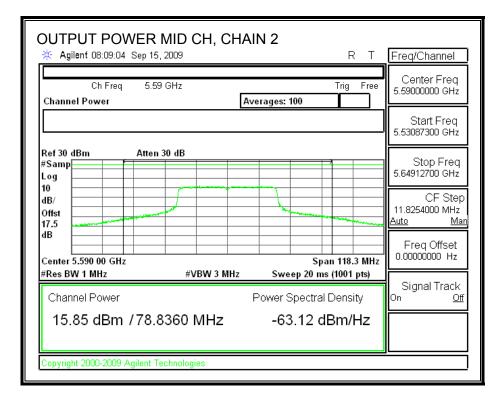
### Individual Chain Results

| Channel | Frequency | Chain 1 | Chain 2 | Total | Limit | Margin |
|---------|-----------|---------|---------|-------|-------|--------|
|         |           | Power   | Power   | Power |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm) | (dBm) | (dB)   |
| Low     | 5510      | 9.44    | 10.20   | 12.85 | 24.00 | -14.56 |
| Mid     | 5590      | 15.70   | 15.85   | 18.79 | 24.00 | -8.30  |
| High    | 5670      | 13.09   | 13.48   | 16.30 | 24.00 | -10.91 |

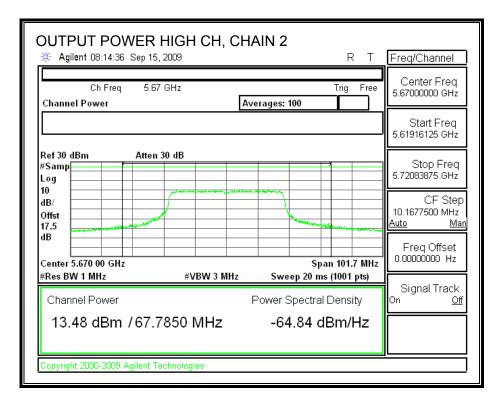
### **CHAIN 1 OUTPUT POWER**







Page 211 of 344

| Agilent 08:12:49 Sep 15            | ,           | AIN 1               | RТ        | Freq/Channel                                 |
|------------------------------------|-------------|---------------------|-----------|----------------------------------------------|
| Ch Freq 5.6<br>Channel Power       | 7 GHz       | verages: 100        | Trig Free | Center Freq<br>5.67000000 GHz                |
|                                    |             |                     |           | Start Freq<br>5.62347525 GHz                 |
| #Samp Log                          | 30 dB       |                     |           | Stop Freq<br>5.71652475 GHz                  |
| 10<br>dB/<br>Offst<br>17.5         |             |                     | 14.4 L    | CF Step<br>9.30495000 MHz<br><u>Auto Mar</u> |
| dB                                 | #VBW 3 MHz  | Span<br>Sweep 20 ms | 93.05 MHz | Freq Offset<br>0.00000000 Hz                 |
| Channel Power                      |             | Power Spectral D    | • •       | Signal Track<br>On <u>Off</u>                |
| 13.09 dBm /62.0                    | 0330 MHz    | -64.84 dE           | 3m/Hz     |                                              |
| L<br>Copyright 2000-2009 Agilent T | echnologies |                     |           |                                              |


Page 212 of 344

### **CHAIN 2 OUTPUT POWER**





Page 213 of 344



Page 214 of 344

# 7.9.3. AVERAGE POWER

# LIMITS

None; for reporting purposes only.

## TEST PROCEDURE

The transmitter output is connected to a power meter.

### **RESULTS**

The cable assembly insertion loss of 17.5 dB (including 10 dB pad and 7.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Chain 1 | Chain 2 | Total |
|---------|-----------|---------|---------|-------|
|         |           | Power   | Power   | Power |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm) |
| Low     | 5510      | 10.14   | 10.74   | 13.46 |
| Middle  | 5590      | 16.03   | 16.41   | 19.23 |
| High    | 5670      | 12.90   | 13.31   | 16.12 |

Page 215 of 344

# 7.9.4. PEAK POWER SPECTRAL DENSITY

## <u>LIMITS</u>

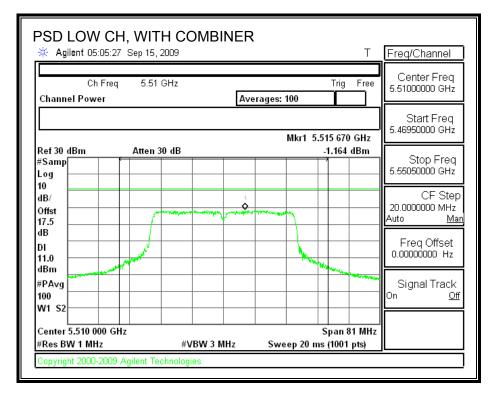
FCC §15.407 (a) (2)

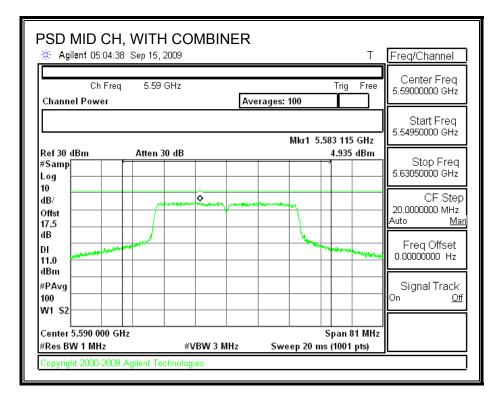
IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.

# TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


#### RESULTS

| Channel | Frequency | PPSD With Combiner | Limit | Margin |
|---------|-----------|--------------------|-------|--------|
|         | (MHz)     | (dBm)              | (dBm) | (dB)   |
| Low     | 5510      | -1.16              | 11    | -12.16 |
| Middle  | 5590      | 4.94               | 11    | -6.07  |
| High    | 5670      | 1.13               | 11    | -9.87  |

Page 216 of 344

#### POWER SPECTRAL DENSITY WITH COMBINER





Page 217 of 344

| Agilent 05:03:36 Sep 1                | 5,2009   |          |            | Т                       | Freq/Channel                               |
|---------------------------------------|----------|----------|------------|-------------------------|--------------------------------------------|
| Ch Freq 5.<br>Channel Power           | 67 GHz   | Averages |            | Trig Fre                | Center Freq<br>5.67000000 GHz              |
|                                       |          |          |            | 53 520 GHz              | Start Freq<br>5.62950000 GHz               |
| Ref 30 dBm Atte<br>#Samp Log<br>10    | n 30 dB  |          |            | 1.127 dBm               | Stop Freq                                  |
| dB/<br>Offst<br>17.5<br>dB            | × *      | V        | ~          |                         | CF Step<br>8.1000000 MHz<br><u>Auto Ma</u> |
| DI<br>11.0<br>dBm                     |          |          |            | Marriel -               | Freq Offset<br>0.00000000 Hz               |
| #PAvg<br>100<br>W1 S2                 |          |          |            |                         | Signal Track<br>On <u>Off</u>              |
| Center 5.670 000 GHz<br>#Res BW 1 MHz | #VBW 8 I | MH7 Sv   | veep 20 ms | pan 81 MH<br>(1001 pts) | IZ                                         |

Page 218 of 344

# 7.9.5. PEAK EXCURSION

# <u>LIMITS</u>

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

### TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

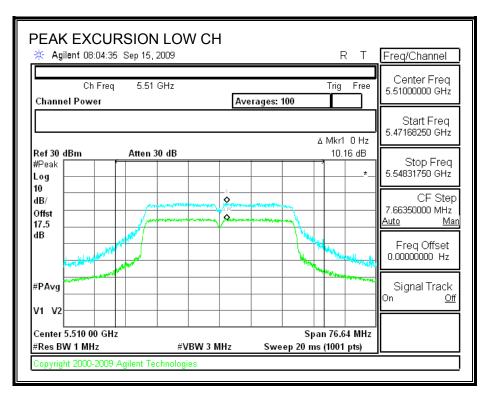
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

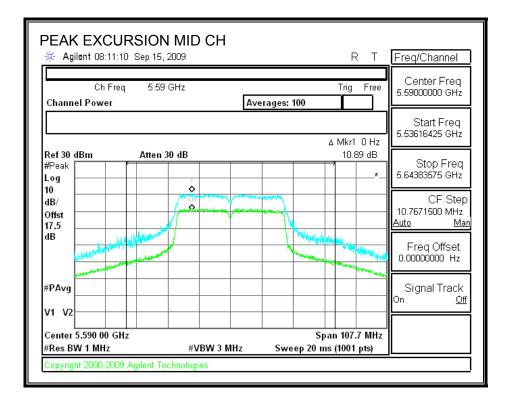
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

### RESULTS

### CHAIN 1

| Channel | Frequency | Peak Excursion | Limit | Margin |
|---------|-----------|----------------|-------|--------|
|         | (MHz)     | (dB)           | (dB)  | (dB)   |
| Low     | 5510      | 10.16          | 13    | -2.84  |
| Middle  | 5590      | 10.89          | 13    | -2.11  |
| High    | 5670      | 10.59          | 13    | -2.41  |


### CHAIN 2


| Channel | Frequency | Peak Excursion | Limit | Margin |
|---------|-----------|----------------|-------|--------|
|         | (MHz)     | (dB)           | (dB)  | (dB)   |
| Low     | 5510      | 9.31           | 13    | -3.69  |
| Middle  | 5590      | 9.90           | 13    | -3.10  |
| High    | 5670      | 10.04          | 13    | -2.96  |

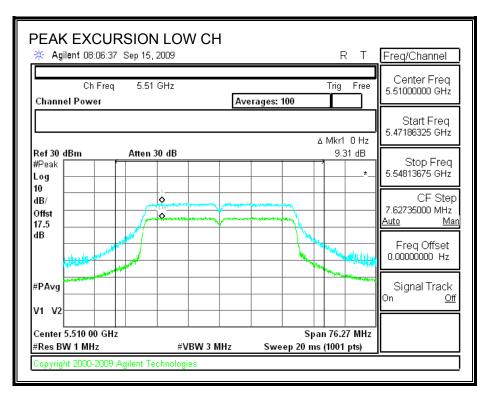
Page 219 of 344

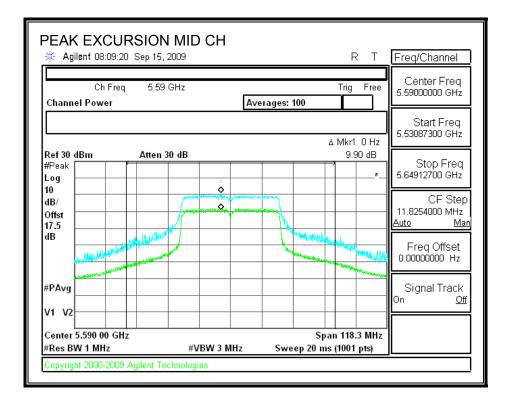
# REPORT NO: 09U12784-2 FCC ID: EW4DWMW034 CHAIN 1

### PEAK EXCURSION






Page 220 of 344


| PEAK EXCURSION                       |            |                  | RΤ                              | Freq/Channel                                |
|--------------------------------------|------------|------------------|---------------------------------|---------------------------------------------|
| Ch Freq 5.67<br>Channel Power        | GHz        | Averages: 100    | Trig Free                       | Center Freq<br>5.67000000 GHz               |
|                                      |            | -                | ∆ Mkr1 0 Hz                     | Start Freq<br>5.62347525 GHz                |
| Ref 30 dBm Atten<br>#Peak<br>Log     | 30 dB      |                  | 10.59 dB                        | Stop Freq<br>5.71652475 GHz                 |
| 10<br>dB/<br>Offst<br>17.5           |            |                  |                                 | CF Step<br>9.30495000 MHz<br><u>Auto Ma</u> |
| dB                                   |            |                  |                                 | Freq Offset<br>0.00000000 Hz                |
| #PAvg                                |            |                  | And the Baland Astrophysics and | Signal Track<br>On <u>Of</u>                |
| Center 5.670 00 GHz<br>#Res BW 1 MHz | #VBW 3 MHz | Sp<br>Sweep 20 m | an 93.05 MHz<br>s (1001 pts)    |                                             |

Page 221 of 344

# REPORT NO: 09U12784-2 FCC ID: EW4DWMW034 CHAIN 2

## PEAK EXCURSION





Page 222 of 344

| - Agilent 08:14:54 Sep 15                     | , 2009 |        |                  | R                        | 2 T          | Freq/Channel                                |
|-----------------------------------------------|--------|--------|------------------|--------------------------|--------------|---------------------------------------------|
| Ch Freq 5.6.<br>Channel Power                 | 7 GHz  | Averag | es: 100          | Trig                     | Free         | Center Freq<br>5.67000000 GHz               |
|                                               |        |        |                  | ∆ Mkr1                   | 0 Hz         | Start Freq<br>5.61916125 GHz                |
| #Peak                                         | 30 dB  |        |                  | 10.0                     | )4 dB<br>*   | Stop Freq<br>5.72083875 GHz                 |
| 10 dB/<br>Offst 7.5                           |        |        | 7                |                          |              | CF Step<br>10.1677500 MHz<br><u>Auto Ma</u> |
| dB                                            |        |        |                  |                          | ulles de lot | Freq Offset<br>0.00000000 Hz                |
| #PAvg                                         |        |        |                  | Hill market              | Marton Vine  | Signal Track<br>On <u>Of</u> t              |
| V1 V2<br>Center 5.670 00 GHz<br>#Res BW 1 MHz | #VBW 3 | MHz    | Si<br>Sweep 20 n | )<br>an 101.<br>ns (1001 |              |                                             |

Page 223 of 344

# 7.9.6. CONDUCTED SPURIOUS EMISSIONS

## <u>LIMITS</u>

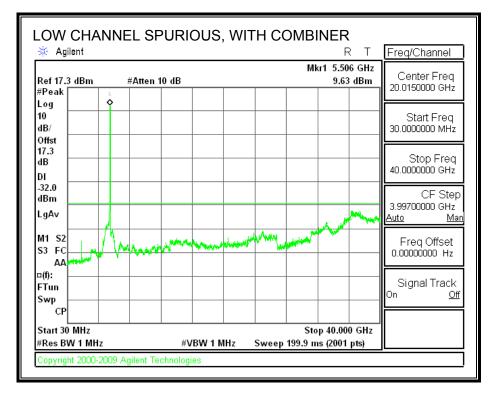
FCC §15.407 (b) (3)

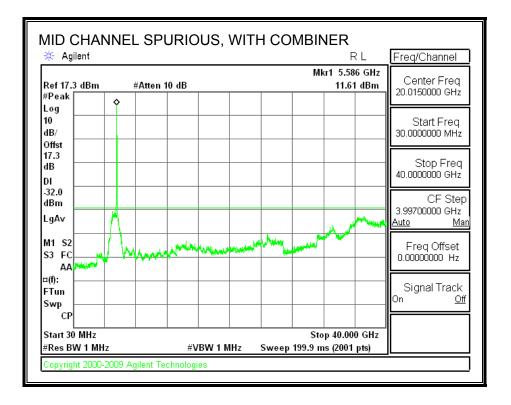
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

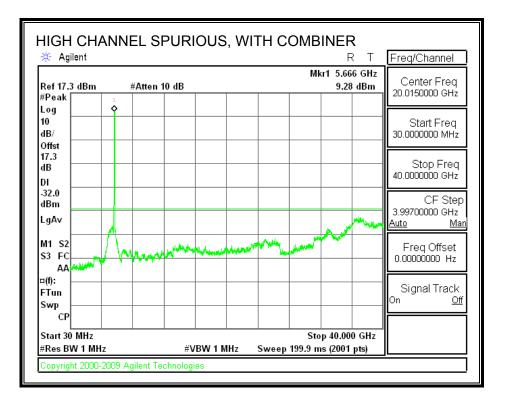
### TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Page 224 of 344


## **RESULTS**

#### SPURIOUS EMISSIONS WITH COMBINER





Page 225 of 344



Page 226 of 344

# 8. RADIATED TEST RESULTS

# 8.1. LIMITS AND PROCEDURE

# <u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

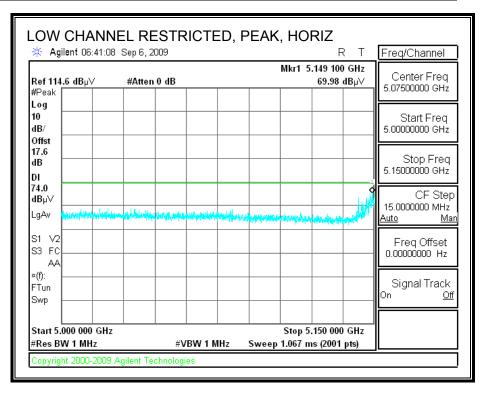
| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |
|--------------------------|---------------------------------------|-----------------------------------------|
| 30 - 88                  | 100                                   | 40                                      |
| 88 - 216                 | 150                                   | 43.5                                    |
| 216 - 960                | 200                                   | 46                                      |
| Above 960                | 500                                   | 54                                      |

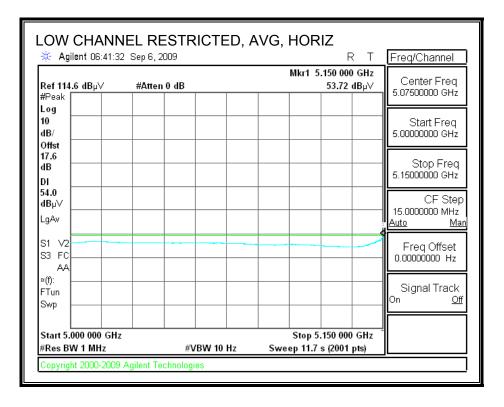
# TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

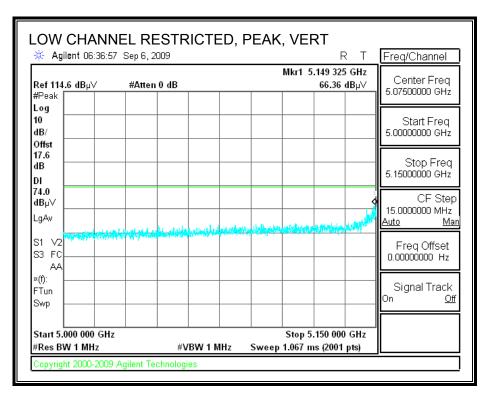
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

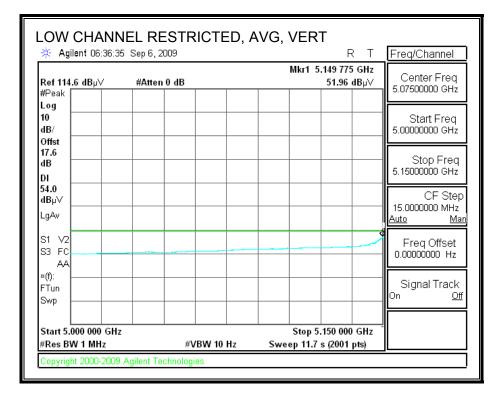

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

BAND

# 8.2. TRANSMITTER ABOVE 1 GHz 8.2.1. 802.11a DUAL CHAIN LEGACY MODE IN THE LOWER 5.2 GHz


DIPOLE ANTENNA - RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





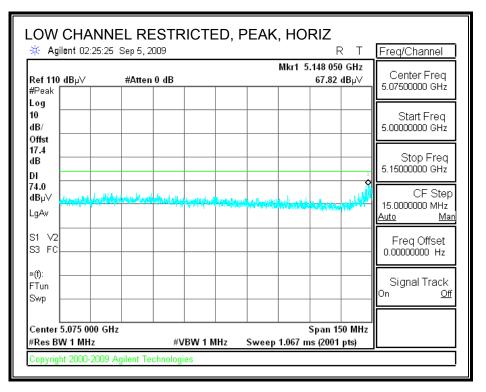

Page 228 of 344

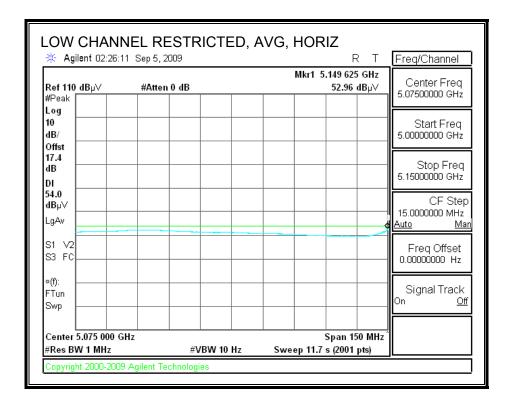
#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**





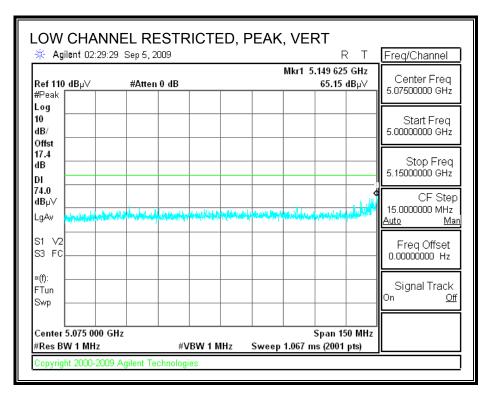
Page 229 of 344

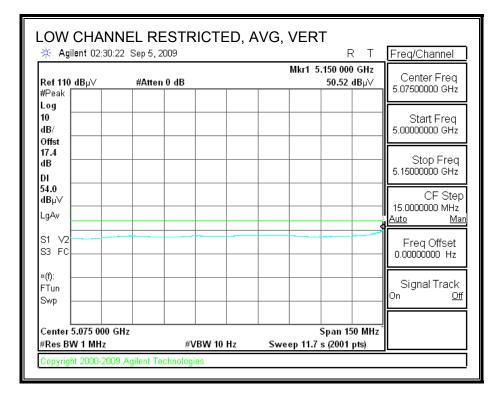

#### HARMONICS AND SPURIOUS EMISSIONS


| F                                                        |                          | D                    |              |             |                |                                          |            |              |              |               |              |        |       |
|----------------------------------------------------------|--------------------------|----------------------|--------------|-------------|----------------|------------------------------------------|------------|--------------|--------------|---------------|--------------|--------|-------|
| Test Engr:                                               |                          | Devin Cl<br>09/07/08 | -            |             |                |                                          |            |              |              |               |              |        |       |
| Date:                                                    |                          |                      |              |             |                |                                          |            |              |              |               |              |        |       |
| Project #:                                               |                          | 09J12784             |              |             |                |                                          |            |              |              |               |              |        |       |
| Company:                                                 |                          | Mitsumi              |              |             |                |                                          |            |              |              |               |              |        |       |
| EUT Descri                                               | -                        |                      |              | nna) i      | with La        | ptop                                     |            |              |              |               |              |        |       |
| Mode Oper                                                |                          | Tx_a mo              |              |             |                |                                          |            |              |              |               |              |        |       |
|                                                          |                          |                      |              |             | -              | Preamp Gain Average Field Strength Limit |            |              |              |               |              |        |       |
|                                                          |                          |                      |              |             |                | Distance                                 |            |              |              |               | ld Strength  |        |       |
|                                                          | Read                     | Analyzer             | -            |             | Avg            | -                                        |            | trength @    |              | _             | s. Average   |        |       |
|                                                          | AF                       | Antenna              |              |             | Peak           |                                          |            | Field Stre   | ength        | Margin v      | rs. Peak Lis | nit    |       |
|                                                          | CL                       | Cable Los            | 55           |             | HPF            | High Pas                                 | s Filter   | r            |              |               |              |        |       |
| f                                                        | Dist                     | Read                 | AF           | CL          | Amp            | D Corr                                   | Fltr       | Corr.        | Limit        | Margin        | Ant. Pol.    | Det.   | Notes |
| CHz                                                      | (m)                      | dBuV                 | dB/m         | dB          | dB             | dB                                       | dB         |              | dBuV/m       | dB            | V/H          | P/A/QP |       |
| 5180MHz                                                  |                          |                      |              |             |                |                                          |            |              |              |               |              | -      |       |
| 10.360                                                   | 3.0                      | 44.5                 | 37.4         | 8.9         | -34.6          | 0.0                                      | 0.8        | 57.0         | 74.0         | -17.0         | н            | P      |       |
| 10.360                                                   | 3.0                      | 32.0                 | 37.4         | 8.9         | -34.6          | 0.0                                      | 0.8        | 44.6         | 54.0         | <b>-9.4</b>   | H            | A      |       |
| 15.540                                                   | 3.0                      | 40.8                 | 38.9         | 11.3        | -32.3          | 0.0                                      | 0.7        | 59.5         | 74.0         | -14.5         | H            | P      |       |
| 15.540                                                   | 3.0                      | 27.3                 | 38.9         | 11.3        | -32.3          | 0.0                                      | 0.7        | 45.9         | 54.0         | - <b>8.1</b>  | H            | Α      |       |
| 10.360                                                   | 3.0                      | 49.9                 | 37.4         | 8.9         | -34.6          | 0.0                                      | 0.8        | 62.4         | 74.0         | - <b>11.6</b> | V            | P      |       |
| 10.360                                                   | 3.0                      | 36.1                 | 37.4         | 8.9         | -34.6          | 0.0                                      | 0.8        | 48.6         | 54.0         | -5.4          | V            | A      |       |
| 15.540                                                   | 3.0                      | 44.3                 | 38.9         | 11.3        | -32.3          | 0.0                                      | 0.7        | 62.9         | 74.0         | -11.1         | V            | P      |       |
| 15.540                                                   | 3.0                      | 30.4                 | 38.9         | 11.3        | -32.3          | 0.0                                      | 0.7        | 49.1         | 54.0         | -4.9          | V            | A      |       |
| 5200MHz                                                  |                          | ļ                    |              |             |                | ļ                                        |            |              |              |               |              |        |       |
| 10.400                                                   | 3.0                      | 43.8                 | 37.5         | 8.9         | -34.6          | 0.0                                      | 0.8        | 56.4         | 74.0         | - <b>17.6</b> | H            | P      |       |
| 10.400                                                   | 3.0                      | 32.2                 | 37.5         | 8.9         | -34.6          | 0.0                                      | 0.8        | 44.8         | 54.0         | -9.2          | H            | A      |       |
| 15.600                                                   | 3.0                      | 41.2                 | 38.7         | 11.4        | -32.3          | 0.0                                      | 0.7        | 59.7         | 74.0         | -14.3         | H            | P      |       |
| 15.600                                                   | 3.0                      | 27.8                 | 38.7         | 11.4        | -32.3          | 0.0                                      | 0.7        | 46.4         | 54.0         | -7.6          | H            | A      |       |
| 10.400                                                   | 3.0                      | 49.4                 | 37.5         | 8.9         | -34.6          | 0.0                                      | 0.8        | 62.0         | 74.0         | -12.0         | V            | P      |       |
| 10.400                                                   | 3.0                      | 35.8                 | 37.5         | 8.9         | -34.6          | 0.0                                      | 0.8        | 48.4         | 54.0         | -5.6          | V            | A      |       |
| 15.600                                                   | 3.0                      | 44.8                 | 38.7         | 11.4        | -32.3          | 0.0                                      | 0.7        | 63.4         | 74.0         | -10.6         | V            | P      |       |
| 15.600<br>5240MHz                                        | 3.0                      | 31.2                 | 38.7         | 11.4        | -32.3          | 0.0                                      | 0.7        | 49.8         | 54.0         | -4.2          | V            | A      |       |
|                                                          | 20                       | 44.9                 | 37.5         | 0.0         | 24 =           | 0.0                                      | 0.0        |              | 74.0         | 16.4          | ŢŢ           | D      |       |
|                                                          | 3.0                      | 44.8<br>33.3         | 37.5         | 9.0<br>9.0  | -34.5<br>-34.5 | 0.0                                      | 0.8<br>0.8 | 57.6<br>46.0 | 74.0<br>54.0 | -16.4<br>-8.0 | H<br>H       | P<br>A |       |
| 10.480                                                   | 20                       |                      | 37.5         | 9.0<br>11.4 | -34.5          | 0.0                                      | 0.8        | 46.0<br>59.4 | 54.0<br>74.0 | -8.0<br>-14.6 | н<br>Н       | A<br>P |       |
| 10.480<br>10.480                                         | 3.0                      |                      |              | 11.4        | -32.3          | 0.0                                      | 0.7        | 59.4<br>45.8 | 74.0<br>54.0 | -14.0<br>-8.2 | н<br>Н       | A      |       |
| 10.480<br>10.480<br>15.720                               | 3.0                      | 41.1                 | 384          |             |                | : U.U                                    | · • • /    | : 10.0       | 0-h.U        | -0.4          |              |        |       |
| 10.480<br>10.480<br>15.720<br>15.720                     | 3.0<br>3.0               | 27.5                 | 38.4         | ¢           |                | ¢                                        | 0.8        | 64.0         | 74.0         | -10.0         | V            | P      |       |
| 10.480<br>10.480<br>15.720<br>15.720<br>10.480           | 3.0<br>3.0<br>3.0        | 27.5<br>51.2         | 37.5         | <b>9.0</b>  | -34.5          | 0.0                                      | 0.8        | 64.0<br>50.9 | 74.0<br>54.0 | -10.0         | v<br>v       | P      |       |
| 10.480<br>10.480<br>15.720<br>15.720<br>10.480<br>10.480 | 3.0<br>3.0<br>3.0<br>3.0 | 27.5<br>51.2<br>38.1 | 37.5<br>37.5 | 9.0<br>9.0  | -34.5<br>-34.5 | 0.0<br>0.0                               | 0.8        | 50.9         | 54.0         | - <b>3.1</b>  | V            | A      |       |
| 10.480<br>10.480<br>15.720<br>15.720<br>10.480           | 3.0<br>3.0<br>3.0        | 27.5<br>51.2         | 37.5         | <b>9.0</b>  | -34.5          | 0.0                                      |            |              |              |               |              |        |       |

Page 230 of 344

## PIFA ANTENNA


# **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**



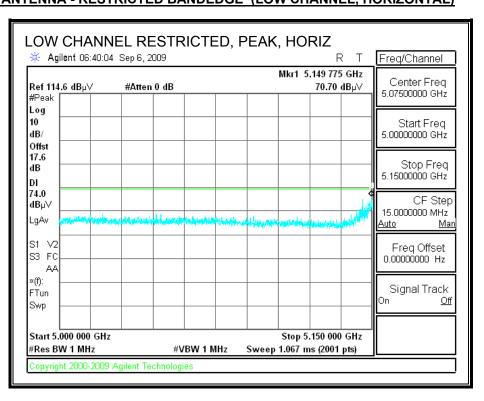


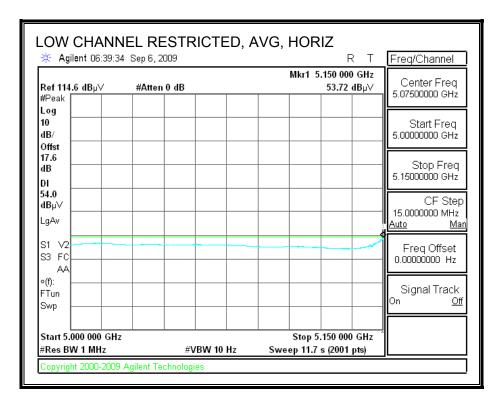

Page 231 of 344

#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**



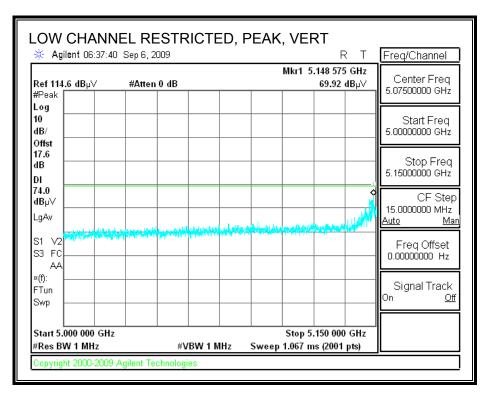


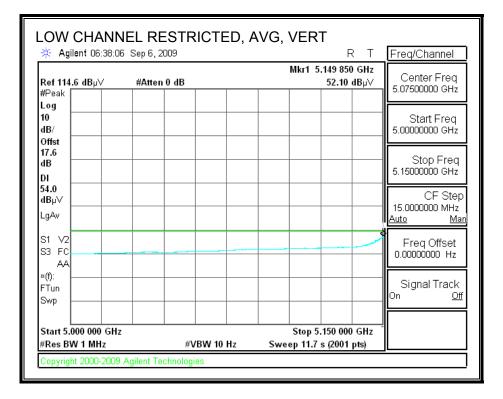

Page 232 of 344


#### HARMONICS AND SPURIOUS EMISSIONS

| Test Engr         |                                                     | Devin C      | hang         |             |                                                                                                    |            |            |              |              |                                                |            |        |        |
|-------------------|-----------------------------------------------------|--------------|--------------|-------------|----------------------------------------------------------------------------------------------------|------------|------------|--------------|--------------|------------------------------------------------|------------|--------|--------|
| Date:             |                                                     | 09/09/08     |              |             |                                                                                                    |            |            |              |              |                                                |            |        |        |
| Project #         | :                                                   | 09J1278      |              |             |                                                                                                    |            |            |              |              |                                                |            |        |        |
| Company           |                                                     | Mitsumi      |              |             |                                                                                                    |            |            |              |              |                                                |            |        |        |
|                   | -                                                   | EUT(PIF.     |              | na) wi      | ith Lapt                                                                                           | ор         |            |              |              |                                                |            |        |        |
| Mode Op           |                                                     | Tx_a mo      |              |             |                                                                                                    | _          |            |              |              |                                                |            |        |        |
|                   | f                                                   | Measuren     |              | -           | Preamp Gain Average Field Strength Limit<br>Distance Correct to 3 meters Peak Field Strength Limit |            |            |              |              |                                                |            |        |        |
|                   | Dist                                                |              |              |             |                                                                                                    |            |            |              |              |                                                |            |        |        |
|                   | Read Analyzer Reading Avg<br>AF Antenna Factor Peak |              |              | Avg<br>Peak | _                                                                                                  |            | trength @  |              | _            | <ol> <li>Average</li> <li>Destation</li> </ol> |            |        |        |
|                   | AF<br>CL                                            | Cable Lo     |              |             | HPF                                                                                                | High Pas   |            | : Field Stre | engtn        | Margin V                                       | s. Peak Li | mit    |        |
|                   | CL                                                  | Cable Lo     | 55           |             | TIFT .                                                                                             | riigh Fas  | s rute     |              |              |                                                |            |        |        |
| f                 | Dist                                                | Read         | AF           | CL          | Amp                                                                                                | D Corr     | Fltr       | Corr.        | Limit        | Margin                                         | Ant. Pol.  | Det.   | Notes  |
| GHz               | (m)                                                 | dBuV         | dB/m         | dB          | dB                                                                                                 | dB         | dB         |              | dBuV/m       |                                                | V/H        | P/A/QP | 110120 |
| 5180MHz           |                                                     |              |              |             |                                                                                                    |            |            |              |              |                                                |            |        |        |
| 10.360            | 3.0                                                 | 41.9         | 37.4         | 8.9         | -34.6                                                                                              | 0.0        | 0.8        | 54.4         | 68.2         | -13.8                                          | н          | Р      |        |
| 15.540            | 3.0                                                 | 38.9         | 38.9         | 11.3        | -32.3                                                                                              | 0.0        | 0.7        | 57.6         | 74.0         | - <b>16.4</b>                                  | H          | P      |        |
| 15.540            | 3.0                                                 | 25.8         | 38.9         | 11.3        | -32.3                                                                                              | 0.0        | 0.7        | 44.5         | 54.0         | - <b>9.5</b>                                   | H          | A      |        |
| 10.360            | 3.0                                                 | 47.9         | 37.4         | 8.9         | -34.6                                                                                              | 0.0        | 0.8        | 60.4         | 68.2         | - <b>7.8</b>                                   | V          | P      |        |
| 15.540            | 3.0                                                 | 42.2         | 38.9         | 11.3        | -32.3                                                                                              | 0.0        | 0.7        | 60.9         | 74.0         | -13.1                                          | <u>v</u>   | P      |        |
| 15.540<br>5200MHz | 3.0                                                 | 28.4         | 38.9         | 11.3        | -32.3                                                                                              | 0.0        | 0.7        | 47.1         | 54.0         | - <mark>6.9</mark>                             | V          | A      |        |
| 5200MH2           | 3.0                                                 | 42.4         | 37.5         | 8.9         | -34.6                                                                                              | 0.0        | 0.8        | 55.0         | 68.2         | -13.2                                          | н          | Р      |        |
| 15.600            | 3.0                                                 | 38.3         | 38.7         | 11.4        | -32.3                                                                                              | 0.0        | 0.7        | 56.9         | 74.0         | -17.1                                          | H          | P      |        |
| 15.600            | 3.0                                                 | 25.9         |              | 11.4        | -32.3                                                                                              | 0.0        | 0.7        | 44.4         | 54.0         | -9.6                                           | H          | Ā      |        |
| 10.400            | 3.0                                                 | 47.6         | 37.5         | 8.9         | -34.6                                                                                              | 0.0        | 0.8        | 60.2         | 68.2         | - <mark>8.0</mark>                             | V          | P      |        |
| 15.600            | 3.0                                                 | 41.3         | 38.7         | 11.4        | -32.3                                                                                              | 0.0        | 0.7        | 59.9         | 74.0         | -14.1                                          | V          | Р      |        |
| 15.600            | 3.0                                                 | 28.2         | 38.7         | 11.4        | -32.3                                                                                              | 0.0        | 0.7        | 46.7         | 54.0         | -7.3                                           | V          | A      |        |
| 5240MHz           |                                                     | 40.0         |              |             | 24.5                                                                                               |            |            | 0            | <i>(</i> 0.0 | 12.0                                           |            |        |        |
| 10.480<br>15.720  | 3.0                                                 | 42.2<br>39.4 | 37.5<br>38.4 | 9.0<br>11.4 | -34.5<br>-32.3                                                                                     | 0.0<br>0.0 | 0.8<br>0.7 | 55.0<br>57.7 | 68.2<br>74.0 | -13.2<br>-16.3                                 | H<br>H     | P<br>P |        |
| 15.720            | 3.0                                                 | 26.3         |              | 11.4        | -32.3                                                                                              | 0.0        | 0.7        | 44.6         | 54.0         | -10.5                                          | H          | A      |        |
| 10.480            | 3.0                                                 | 48.7         | 37.5         | 9.0         | -34.5                                                                                              | 0.0        | 0.8        | 61.5         | 68.2         | -6.7                                           | v          | P      |        |
| 15.720            | 3.0                                                 | 39.4         | 38.4         | 11.4        | -32.3                                                                                              | 0.0        | 0.7        | 57.7         | 74.0         | -16.3                                          | V          | P      |        |
|                   | 3.0                                                 | 27.2         | 38.4         | 11.4        | -32.3                                                                                              | 0.0        | 0.7        | 45.5         | 54.0         | - <b>8.5</b>                                   | V          | A      |        |
| 15.720            |                                                     |              |              | Į           |                                                                                                    | ļ          |            |              |              |                                                |            |        |        |

Page 233 of 344


# 8.2.2. 802.11n HT20 MODE IN THE LOWER 5.2 GHz BAND DIPOLE ANTENNA - RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





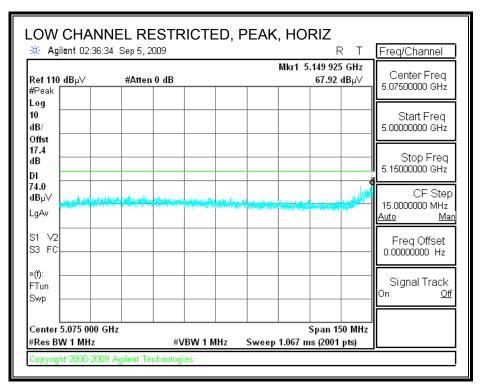

Page 234 of 344

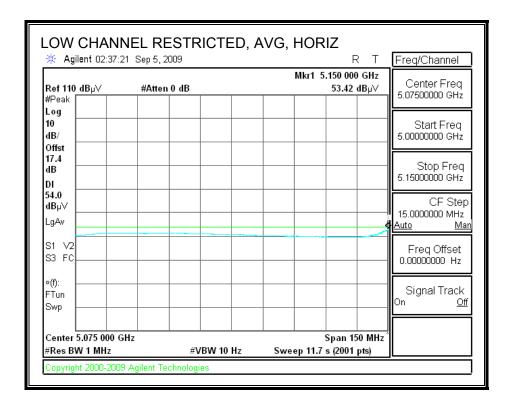
#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**





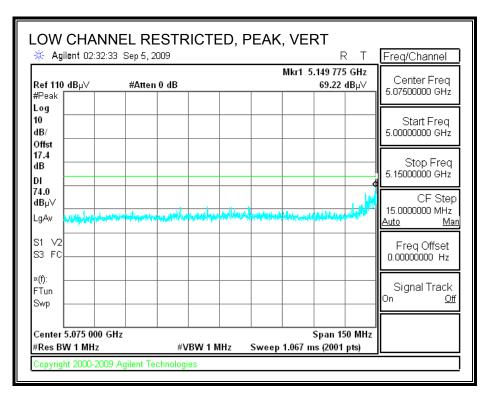
Page 235 of 344

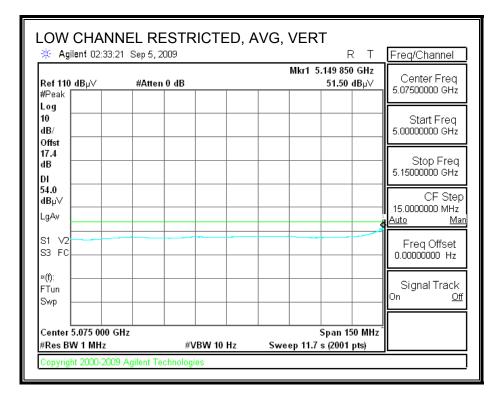

#### HARMONICS AND SPURIOUS EMISSIONS


| Test Engr        |            | Devin C      | hang         |             |                |            |            |              |                 |                    |                  |                |       |
|------------------|------------|--------------|--------------|-------------|----------------|------------|------------|--------------|-----------------|--------------------|------------------|----------------|-------|
| Date:            |            | 09/13/08     |              |             |                |            |            |              |                 |                    |                  |                |       |
| Project #        | :          | 09J1278      | 4            |             |                |            |            |              |                 |                    |                  |                |       |
| Company          | <b>7</b> : | Mitsumi      | i            |             |                |            |            |              |                 |                    |                  |                |       |
| EUT Desc         | ription:   | EUT(Dip      | ole ante     | enna) i     | with La        | ptop       |            |              |                 |                    |                  |                |       |
| Mode Op          | er:        | Tx_HT20      | )            |             |                |            |            |              |                 |                    |                  |                |       |
|                  | f          | Measuren     |              |             | -              | Preamp (   |            |              |                 | _                  | Field Stren      | -              |       |
|                  | Dist       |              |              |             |                | Distance   |            |              |                 | Peak Fiel          |                  |                |       |
|                  |            |              | Reading      |             | Avg            | _          |            | trength @    |                 | _                  | s. Average       |                |       |
|                  | AF         | Antenna      |              |             | Peak           |            |            | Field Stre   | ength           | Margin v           | s. Peak Lis      | mit            |       |
|                  | CL         | Cable Lo     | 55           |             | HPF            | High Pas   | s Filter   | r            |                 |                    |                  |                |       |
| f                | Dist       | Read         | AF           |             |                | D Corr     | 171.       | Corr.        | T 1 1           |                    | A                | Det.           | Notes |
| GHz              | (m)        | dBuV         | Ar<br>dB/m   | CL<br>dB    | Amp<br>dB      | dB         | Fltr<br>dB |              | Limit<br>dBuV/m |                    | Ant. Pol.<br>V/H | Det.<br>P/A/QP | Notes |
| 5180MH2          |            | abuv         | ub/m         | ab          | ab             | <u>ab</u>  | ab         | abuv/m       | abuv/m          | an                 | V/11             | ringr          |       |
| 10.360           | 3.0        | 44.3         | 37.4         | 8.9         | -34.6          | 0.0        | 0.8        | 56.8         | 68.2            | -11.4              | н                | P              |       |
| 15.540           | 3.0        | 40.5         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 59.2         | 74.0            | -14.8              | H                | P              |       |
| 15.540           | 3.0        | 26.8         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 45.5         | 54.0            | -8.5               | H                | Ā              |       |
| 10.360           | 3.0        | 46.5         | 37.4         | 8.9         | -34.6          | 0.0        | 0.8        | 59.0         | 68.2            | - <b>9.2</b>       | V                | P              |       |
| 15.540           | 3.0        | 41.8         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 60.5         | 74.0            | -13.5              | V                | P              |       |
| 15.540           | 3.0        | 28.4         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 47.1         | 54.0            | - <mark>6.9</mark> | V                | A              |       |
| 5200MH2          |            |              |              |             |                | ļ          |            |              |                 |                    |                  | _              |       |
| 10.400           | 3.0        | 42.2<br>39.4 | 37.5<br>38.7 | 8.9<br>11.4 | -34.6<br>-32.3 | 0.0<br>0.0 | 0.8<br>0.7 | 54.8         | 68.2<br>74.0    | -13.4<br>-16.1     | H<br>H           | P              |       |
| 15.600<br>15.600 | 3.0        | 26.4         | 38.7         | 11.4        | -32.3          | 0.0        | 0.7        | 57.9<br>45.0 | 74.0<br>54.0    | -10.1<br>-9.0      | H                | P<br>A         |       |
| 10.400           | 3.0        | 46.9         | 37.5         | 8.9         | -34.6          | 0.0        | 0.8        | 59.5         | 68.2            | -8.7               | v                | P              |       |
| 15.600           | 3.0        | 43.1         | 38.7         | 11.4        | -32.3          | 0.0        | 0.7        | 61.7         | 74.0            | -12.3              | V                | P              |       |
| 15.600           | 3.0        | 29.9         | 38.7         | ¢           | -32.3          | 0.0        | 0.7        | 48.4         | 54.0            | - <b>5.6</b>       | V                | A              |       |
| 5240MH2          | 5          |              |              |             |                | ļ          |            |              |                 | ĮĮ                 |                  |                |       |
| 10.480           | 3.0        | 45.6         | 37.5         | 9.0         | -34.5          | 0.0        | 0.8        | 58.4         | 68.2            | - <mark>9.8</mark> | H                | Р              |       |
| 15.720           | 3.0        | 42.6         | 38.4         | 11.4        | -32.3          | 0.0        | 0.7        | 60.9         | 74.0            | -13.1              | H                | P              |       |
| 15.720           | 3.0        | 28.6         |              | 11.4        | -32.3          | 0.0        | 0.7        | 46.9         | 54.0            | -7.1               | H<br>V           | A              |       |
| 10.480<br>15.720 | 3.0        | 47.8<br>45.5 | 37.5<br>38.4 | 9.0<br>11.4 | -34.5<br>-32.3 | 0.0<br>0.0 | 0.8<br>0.7 | 60.6<br>63.8 | 68.2<br>74.0    | -7.6<br>-10.2      | v                | P<br>P         |       |
|                  | 3.0        | 31.4         |              | 11.4        | -32.3          | 0.0        | 0.7        | 49.6         | 54.0            | -4.4               | v                | A              |       |
| 15.720           |            |              |              |             |                |            |            |              | -               | 11                 |                  |                |       |

Page 236 of 344

#### PIFA ANTENNA


#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**

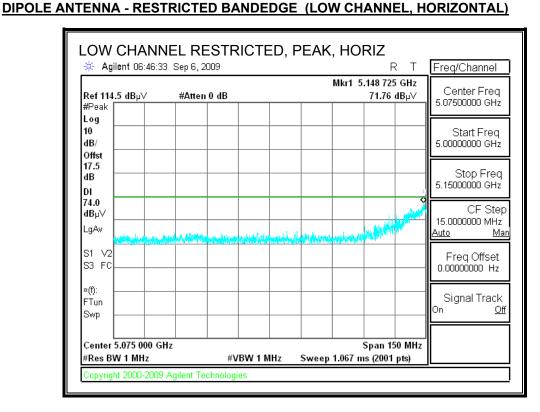


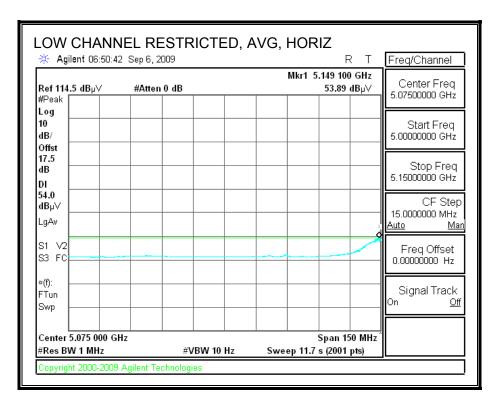



Page 237 of 344

#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**

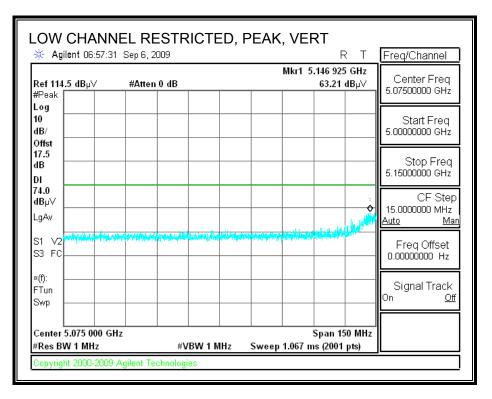


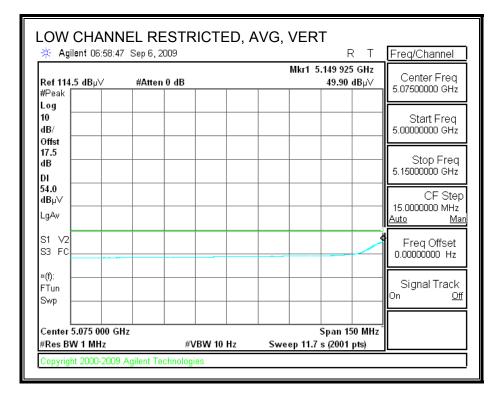




Page 238 of 344

| Fest Engr        |            | Devin C      | hang         |             |                |            |            |              |              |                    |                  |                |       |
|------------------|------------|--------------|--------------|-------------|----------------|------------|------------|--------------|--------------|--------------------|------------------|----------------|-------|
| Date:            |            | 09/09/08     |              |             |                |            |            |              |              |                    |                  |                |       |
| Project #        |            | 09J1278      | 4            |             |                |            |            |              |              |                    |                  |                |       |
| Company          | 7 <b>1</b> | Mitsumi      | i i          |             |                |            |            |              |              |                    |                  |                |       |
| EUT Desc         | ription:   | EUT(PIF.     | A anten      | na) wi      | th Lapt        | ор         |            |              |              |                    |                  |                |       |
| Mode Op          | er:        | Tx_HT20      | )            |             |                |            |            |              |              |                    |                  |                |       |
|                  | f          | Measuren     |              | •           | •              | Preamp (   |            |              |              | _                  | Field Stren      | -              |       |
|                  | Dist       | Distance     |              |             |                | Distance   |            |              |              |                    | ld Strength      |                |       |
|                  | Read       | Analyzer     | -            |             | Avg            |            |            | trength @    |              |                    | s. Average       |                |       |
|                  | AF         | Antenna      |              |             | Peak           |            |            | c Field Str  | ength        | Margin v           | s. Peak Li       | mit            |       |
|                  | CL         | Cable Los    | 38           |             | HPF            | High Pas   | s Filter   | r            |              |                    |                  |                |       |
| f                | Dist       | Read         | AF           | CL          |                | D Corr     | Fltr       | Corr.        | Limit        | . ·                | A                | Det.           | Notes |
| GHz              | (m)        | dBuV         | Ar<br>dB/m   | dB          | Amp<br>dB      | dB         | dB         |              | dBuV/m       |                    | Ant. Pol.<br>V/H | Det.<br>P/A/QP | Notes |
| 5180MHz          |            | abuv         | ub/m         | ab          | ab             | ab         | ab         | abuv/m       | dDuv/m       | an                 | V/11             | ringr          |       |
| 10.360           | 3.0        | 39.9         | 37.4         | 8.9         | -34.6          | 0.0        | 0.8        | 52.4         | 68.2         | -15.8              | H                | Р              |       |
| 15.540           | 3.0        | 38.1         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 56.8         | 74.0         | -17.2              | H                | P              |       |
| 15.540           | 3.0        | 25.6         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 44.3         | 54.0         | - <b>9.7</b>       | H                | A              |       |
| 10.360           | 3.0        | 46.4         | 37.4         | 8.9         | -34.6          | 0.0        | 0.8        | 58.9         | 68.2         | - <b>9.3</b>       | V                | P              |       |
| 15.540           | 3.0        | 43.9         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 62.5         | 74.0         | -11.5              | V                | P              |       |
| 15.540           | 3.0        | 28.7         | 38.9         | 11.3        | -32.3          | 0.0        | 0.7        | 47.4         | 54.0         | - <mark>6.6</mark> | V                | A              |       |
| 5200MHz          |            |              | ~ ~ ~        |             |                |            |            |              |              |                    |                  | _              |       |
| 10.400<br>15.600 | 3.0<br>3.0 | 43.3<br>38.0 | 37.5<br>38.7 | 8.9<br>11.4 | -34.6<br>-32.3 | 0.0<br>0.0 | 0.8<br>0.7 | 55.9<br>56.5 | 68.2<br>74.0 | -12.3              | H<br>H           | P              |       |
| 15.600           | 3.0        | 38.0<br>25.5 | 38.7         | 11.4        | -32.3          | 0.0        | 0.7        | 44.0         | 74.0<br>54.0 | -17.5<br>-10.0     | н<br>Н           | P<br>A         |       |
| 10.400           | 3.0        | 47.1         | 37.5         | 8.9         | -34.6          | 0.0        | 0.8        | 59.7         | 68.2         | -10.0              | v                | P              |       |
| 15.600           | 3.0        | 41.6         | 38.7         | 11.4        | -32.3          | 0.0        | 0.7        | 60.1         | 74.0         | -13.9              | V                | P              |       |
| 15.600           | 3.0        | 28.6         | 38.7         | 11.4        | -32.3          | 0.0        | 0.7        | 47.2         | 54.0         | - <b>6.8</b>       | V                | A              |       |
| 5240MHz          | :          |              |              |             |                | ļ          |            |              |              |                    |                  |                |       |
| 10.480           | 3.0        | 40.7         | 37.5         | 9.0         | -34.5          | 0.0        | 0.8        | 53.5         | 68.2         | -14.7              | H                | Р              |       |
| 15.720           | 3.0        | 38.4         | 38.4         | 11.4        | -32.3          | 0.0        | 0.7        | 56.7         | 74.0         | -17.3              | H                | Р              |       |
| 15.720           | 3.0        | 25.3         |              | 11.4        | -32.3          | 0.0        | 0.7        | 43.6         | 54.0         | -10.4              | H                | A              |       |
| 10.480           | 3.0<br>3.0 | 47.3<br>41.2 | 37.5<br>38.4 | 9.0<br>11.4 | -34.5<br>-32.3 | 0.0<br>0.0 | 0.8<br>0.7 | 60.0<br>59.5 | 68.2<br>74.0 | -8.2<br>-14.5      | v<br>v           | P<br>P         |       |
|                  | 3.0        | 41.2<br>27.5 | 38.4         | 11.4        | -32.3          | 0.0        | 0.7        | 45.8         | 74.0<br>54.0 | -14.5              | v                | A              |       |
| 15.720<br>15.720 |            |              |              |             |                |            | ~          |              | - 110        |                    | *                |                |       |

Page 239 of 344


# 8.2.3. 802.11n HT40 MODE IN THE LOWER 5.2 GHz BAND



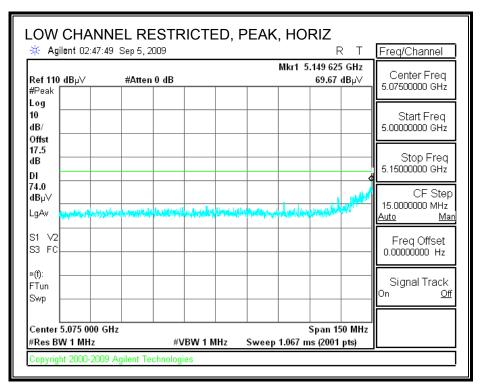


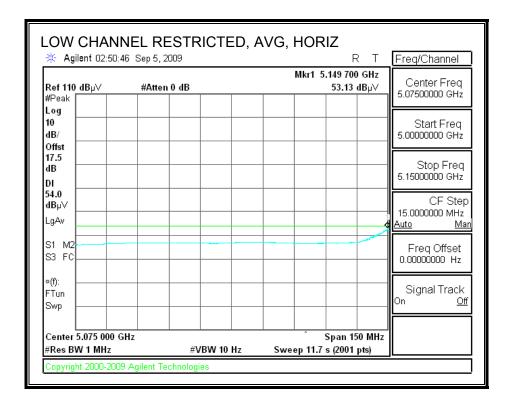

Page 240 of 344

#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**





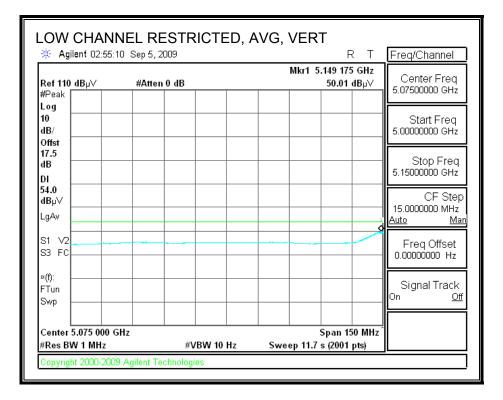

Page 241 of 344


| -              |            | Measuren<br>tification |              | s, Frei     | mont 5n        | n Chamb      | er            |              |              |                    |              |            |       |
|----------------|------------|------------------------|--------------|-------------|----------------|--------------|---------------|--------------|--------------|--------------------|--------------|------------|-------|
| -              |            |                        |              |             |                |              |               |              |              |                    |              |            |       |
| est Engr       | :          | Devin C                | _            |             |                |              |               |              |              |                    |              |            |       |
| )ate:          |            | 09/13/08               |              |             |                |              |               |              |              |                    |              |            |       |
| roject #:      |            | 09J1278                | 4            |             |                |              |               |              |              |                    |              |            |       |
| Company        |            | Mitsumi                |              |             |                |              |               |              |              |                    |              |            |       |
| UT Desc        | ription:   | EUT(Dip                | ole ante     | nna) i      | with Lap       | ptop         |               |              |              |                    |              |            |       |
| lode Op        | er:        | Tx_HT40                |              |             |                |              |               |              |              |                    |              |            |       |
|                | f          | Measuren               |              |             | Amp            | Preamp (     | Jain          |              |              | _                  | Field Stren  | -          |       |
|                | Dist       | Distance               | to Anter     | na          | D Corr         | Distance     | Correc        | t to 3 me    | ters         | Peak Fie           | ld Strength  | Limit      |       |
|                | Read       | Analyzer               |              |             | Avg            | Average      | Field St      | trength @    | 3 m          | Margin v           | s. Average   | Limit      |       |
|                | AF         | Antenna                | Factor       |             | Peak           | Calculate    | d Peak        | Field Stre   | ength        | Margin v           | rs. Peak Lis | mit        |       |
|                | CL         | Cable Los              | is           |             | HPF            | High Pas     | s Filter      |              |              |                    |              |            |       |
|                | . D        |                        | 47           | 01          |                | D.C.         | 771.          |              |              |                    | A ( D 1      | <b>D</b> ( | N. (  |
| f<br>CH-       | Dist       | Read                   | AF           | CL<br>dB    | •              | D Corr<br>dB |               | Corr.        |              |                    | Ant. Pol.    |            | Notes |
| GHz            | (m)        | dBuV                   | dB/m         | aß          | dB             | ab           | aB            | abuV/m       | dBuV/m       | dB                 | V/H          | P/A/QP     |       |
| 190MHz         |            | 20.0                   | 27 /         |             | 34.6           |              | 0.0           | <b>50 7</b>  | (0.0         | 17.0               | TT           | n          |       |
| 0.380          | 3.0        | 38.2                   | 37.4         | 8.9         | -34.6          | 0.0          | 0.8           | 50.7         | 68.2         | -17.5              | H            | P          |       |
| 5.570<br>5.570 | 3.0<br>3.0 | 34.8<br>22.4           | 38.8<br>38.8 |             | -32.3<br>-32.3 | 0.0<br>0.0   | 0.7<br>0.7    | 53.4<br>41.0 | 74.0         | -20.6              | H<br>H       | P          |       |
| .380           | 3.0        | 36.6                   | 37.4         | 11.4<br>8.9 | -34.6          | 0.0          | 0.7           | 41.0         | 54.0<br>68.2 | -13.0<br>-19.1     | л<br>V       | A          |       |
| 5.570          | 3.0        | 35.3                   | 38.8         |             | -34.0          | 0.0          | 0.8           | 49.1<br>53.9 | 08.2<br>74.0 | -19.1              | v            | P<br>P     |       |
| .570           | 3.0        | 22.3                   | 38.8         |             | o              | 0.0          | 0.7           | 40.9         | 54.0         | -13.1              | v            | A          |       |
| 230MHz         |            |                        | 20.0         | 11.7        | -04-0          | 0.0          | V./           | 40.2         | 24.0         | -10.1              |              |            |       |
| .460           | 3.0        | 42.8                   | 37.5         | 9.0         | -34.5          | 0.0          | 0.8           | 55.5         | 68.2         | -12.7              | H            | Р          |       |
| 5.690          | 3.0        | 39.0                   | 38.5         |             | o              | \$<          | 0.7           | 57.3         | 74.0         | -16.7              | H            | P          |       |
| 5.690          | 3.0        | 25.9                   | 38.5         |             | -32.3          | 0.0          | 0.7           | 44.3         | 54.0         | -9.7               | H            | Ā          |       |
| 0.460          | 3.0        | 45.7                   | 37.5         | 9.0         | -34.5          | 0.0          | 0.8           | 58.4         | 68.2         | - <b>9.8</b>       | V            | P          |       |
| 5.690          | 3.0        | 39.8                   | 38.5         | 11.4        | -32.3          | 0.0          | 0.7           | 58.2         | 74.0         | - <b>15.8</b>      | v<br>v       | P          |       |
| 5.690          | 3.0        | 27.7                   | 38.5         | 11.4        | -32.3          | 0.0          | 0.7           | 46.0         | 54.0         | - <mark>8.0</mark> | V            | Α          |       |
|                |            |                        |              |             |                |              |               |              |              |                    |              |            |       |
| ev. 4.1.2      |            |                        |              |             |                |              |               |              |              |                    |              |            |       |
| ote: No        | other e    | <u>missions</u>        | were de      | tected      | l above 1      | the system   | <u>n nois</u> | e floor.     |              |                    |              |            |       |

Page 242 of 344

#### PIFA ANTENNA

#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**



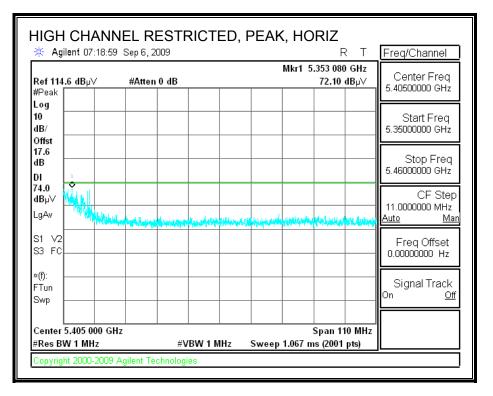


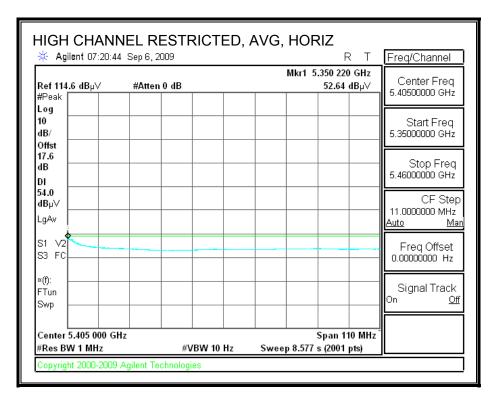

Page 243 of 344

#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**

|                           |                                                                                                                 | EL RESTR                  | RICTED,                                | PEAK, V                                                                                                        |                                 |                                             |
|---------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|
| 🔆 Agi                     | lent 02:54:22                                                                                                   | Sep 5, 2009               |                                        |                                                                                                                | RT                              | Freq/Channel                                |
| Ref 110<br>#Peak          | dBµ∀                                                                                                            | #Atten 0 dB               |                                        | Mkr                                                                                                            | 1 5.147 150 GHz<br>64.75 dBµ∨   | Center Freq<br>5.07500000 GHz               |
| Log<br>10<br>dB/<br>Offst |                                                                                                                 |                           |                                        |                                                                                                                |                                 | Start Freq<br>5.0000000 GHz                 |
| 17.5<br>dB<br>DI          |                                                                                                                 |                           |                                        |                                                                                                                |                                 | Stop Freq<br>5.1500000 GHz                  |
| 74.0<br>dBµ∨<br>LgAv      | Albert ver Andreweit                                                                                            | riteriti yili wa na misin | leadered and a line of the line of the | All and a second se |                                 | CF Step<br>15.000000 MHz<br><u>Auto Man</u> |
| S1 V2<br>S3 FC            | The second se |                           |                                        |                                                                                                                |                                 | Freq Offset<br>0.00000000 Hz                |
| ×(f):<br>FTun<br>Swp -    |                                                                                                                 |                           |                                        |                                                                                                                |                                 | Signal Track<br>On <u>Off</u>               |
|                           | 5.075 000 GH<br>N 1 MHz                                                                                         | -                         | /BW 1 MHz                              | Sweep 1.06                                                                                                     | Span 150 MHz<br>7 ms (2001 pts) |                                             |
| Copyrigh                  | nt 2000-2009 /                                                                                                  | Agilent Technolog         | ies                                    |                                                                                                                |                                 |                                             |



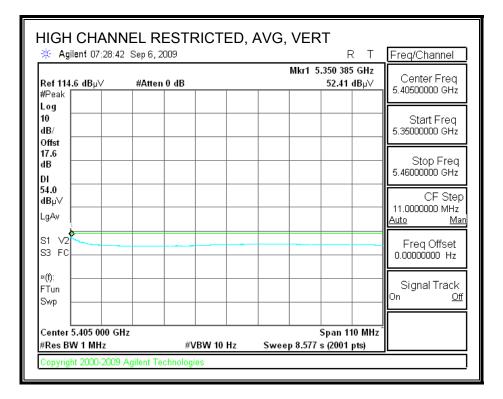

Page 244 of 344


| -                     |             | Measuren<br>tification |              | s, Frei    | mont 5n        | a Chamb    | er         |              |                 |                |                  |                |        |
|-----------------------|-------------|------------------------|--------------|------------|----------------|------------|------------|--------------|-----------------|----------------|------------------|----------------|--------|
| -                     |             |                        |              |            |                |            |            |              |                 |                |                  |                |        |
| est Engr              |             | Devin Cl               | _            |            |                |            |            |              |                 |                |                  |                |        |
| ate:                  |             | 09/09/08               |              |            |                |            |            |              |                 |                |                  |                |        |
| roject #:             |             | 09J1278                |              |            |                |            |            |              |                 |                |                  |                |        |
| ompany                |             | Mitsumi                |              |            |                |            |            |              |                 |                |                  |                |        |
|                       | -           | EUT(PIF                |              | na) wi     | ith Lapt       | ор         |            |              |                 |                |                  |                |        |
| lode Op               |             | Tx_HT40                |              |            |                | _          |            |              |                 |                |                  |                |        |
|                       | f           | Measuren               |              |            |                | Preamp (   |            |              |                 | _              | Field Stren      | -              |        |
|                       | Dist        | Distance               |              |            |                | Distance   |            |              |                 |                | ld Strength      |                |        |
|                       | Read        | Analyzer               |              |            | Avg            | _          |            | trength @    |                 | -              | s. Average       |                |        |
|                       | AF          | Antenna                |              |            | Peak           | Calculate  |            |              | ength           | Margin v       | rs. Peak Lir     | nit            |        |
|                       | CL          | Cable Los              | is           |            | HPF            | High Pas   | s Filter   |              |                 |                |                  |                |        |
| f                     | Dist        | Read                   | AF           | CL         | A              | D Corr     | E14        | Corr.        | Limit           | March          | Ant. Pol.        | Det.           | Notes  |
| t<br>GHz              | Dist<br>(m) | Kead<br>dBuV           |              | dB         | Amp<br>dB      | dB         |            |              | Limit<br>dBuV/m | Margin<br>dB   | Ant. Pol.<br>V/H | Det.<br>P/A/QP | Inotes |
|                       |             | abuv                   | ab/m         | ab         | db             | ab         | ab         | abuv/m       | abuv/m          | ab             | v/n              | PINIQP         |        |
| 190MHz                |             | 20.0                   | 274          | 00         | 246            | 0.0        | 0.0        | en e         | 20.1            | 15.7           | TT               | D              |        |
| 0.380<br>5.570        | 3.0         | 39.9<br>36.6           | 37.4<br>38.8 | 8.9        | -34.6<br>-32.3 | 0.0<br>0.0 | 0.8<br>0.7 | 52.5<br>55.2 | 68.2<br>74.0    | -15.7<br>-18.8 | H<br>H           | P              |        |
| 5.570<br>5.570        | 3.0         | 30.0<br>24.6           | 38.8         |            | -32.3          | 0.0        | 0.7        | 43.2         | 74.0<br>54.0    | -10.8          | п<br>Н           | P<br>A         |        |
| 0.380                 | 3.0         | 41.4                   | 37.4         | 8.9        | -34.6          | 0.0        | 0.7        | 43.2<br>53.9 | 54.0<br>68.2    | -10.8          | v<br>V           | P              |        |
| 5.570                 | 3.0         | 38.2                   | 38.8         |            | -34.0          | 0.0        | 0.8        | 56.8         | 74.0            | -14.5          | v                | P              |        |
| 5.570                 | 3.0         | 26.0                   | 38.8         |            | o              | 0.0        | 0.7        | 44.6         | 54.0            | -9.4           | v                | A              |        |
| 230MHz                |             |                        |              |            |                |            |            |              | ~ 114           |                |                  |                |        |
| 0.460                 | 3.0         | 37.7                   | 37.5         | 9.0        | -34.5          | 0.0        | 0.8        | 50.5         | 68.2            | -17.7          | H                | P              |        |
| 5.690                 | 3.0         | 35.7                   | 38.5         |            | o              | \$<        | 0.7        | 54.1         | 74.0            | -19.9          | H                | P              |        |
| 5.690                 | 3.0         | 23.4                   | 38.5         |            | -32.3          | 0.0        | 0.7        | 41.8         | 54.0            | -12.2          | H                | Α              |        |
| 0.460                 | 3.0         | 44.3                   | 37.5         | <b>9.0</b> | -34.5          | 0.0        | 0.8        | 57.0         | 68.2            | -11.2          | V                | P              |        |
| 5. <b>69</b> 0        | 3.0         | 38.1                   | 38.5         |            | -32.3          | 0.0        | 0.7        | 56.5         | 74.0            | - <b>17.5</b>  | v<br>v           | P              |        |
| 5.690                 | 3.0         | 25.1                   | 38.5         | 11.4       | -32.3          | 0.0        | 0.7        | 43.4         | 54.0            | - <b>10.6</b>  | V                | A              |        |
|                       |             | ļ                      |              |            |                | ļ          |            |              |                 | ļ              |                  |                |        |
| ev. 4.1.2<br>fote: No |             | missions               | were de      | tected     | above t        | the system | m nois     | e floor.     |                 |                |                  |                |        |

Page 245 of 344

# 8.2.4. 802.11a DUAL CHAIN LEGACY MODE IN THE UPPER 5.2 GHz BAND

#### DIPOLE ANTENNA - RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





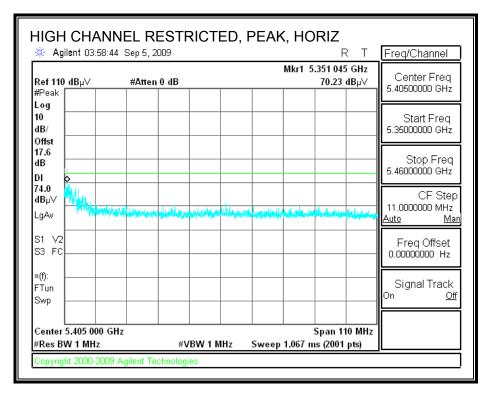

Page 246 of 344

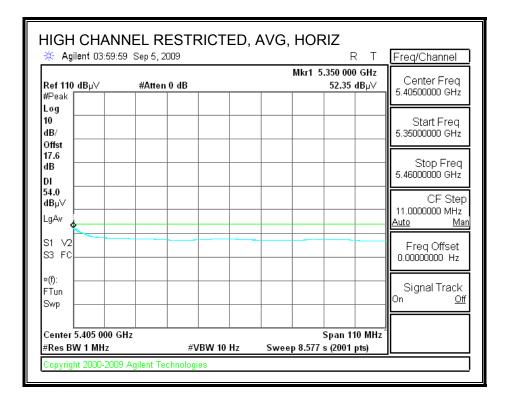
#### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**

| HIGH CHANNEL                          | RESTRICTE                                   | ED, PEAK, '                                                                                                    | VERT                              |                                              |
|---------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|
| 🔆 🔆 Agilent 07:27:38 Sep              | 6,2009                                      |                                                                                                                | RT                                | Freq/Channel                                 |
| Ref 114.6 dBµ∨ #At<br>#Peak           | ten 0 dB                                    | Mk                                                                                                             | r1 5.350 165 GHz<br>67.75 dBµ∨    | Center Freq<br>5.40500000 GHz                |
| Log<br>10<br>dB/<br>Offst             |                                             |                                                                                                                |                                   | Start Freq<br>5.35000000 GHz                 |
| 17.6<br>dB<br>DI                      |                                             |                                                                                                                |                                   | Stop Freq<br>5.46000000 GHz                  |
| 74.0<br>dBµ∨<br>LgAv                  | where the management of the matching of the | an the state of the | rilmanirantahiranasi ayanyingi at | CF Step<br>11.0000000 MHz<br><u>Auto Man</u> |
| S1 V2<br>S3 FC                        |                                             |                                                                                                                |                                   | Freq Offset<br>0.00000000 Hz                 |
| ×(f):<br>FTun<br>Swp                  |                                             |                                                                                                                |                                   | Signal Track<br>On <u>Off</u>                |
| Center 5.405 000 GHz<br>#Res BW 1 MHz | #VBW 1 M                                    | Hz Sweep 1.0                                                                                                   | Span 110 MHz<br>67 ms (2001 pts)  |                                              |
| Copyright 2000-2009 Agilent           | : Technologies                              |                                                                                                                |                                   |                                              |



Page 247 of 344

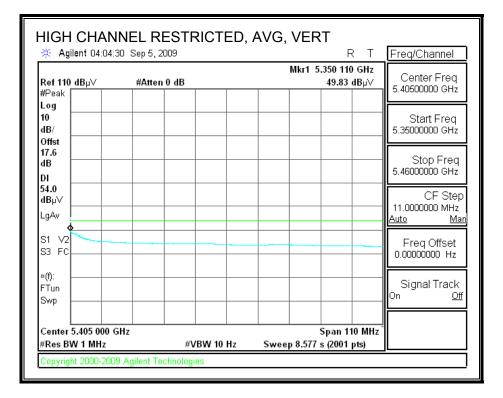

| Date:             |            | Devin C      | hang         |             |                |           |            |              |              |                      |             |           |       |
|-------------------|------------|--------------|--------------|-------------|----------------|-----------|------------|--------------|--------------|----------------------|-------------|-----------|-------|
|                   |            | 09/13/08     |              |             |                |           |            |              |              |                      |             |           |       |
| Project #:        |            | 09J1278      | 4            |             |                |           |            |              |              |                      |             |           |       |
| Company           |            | Mitsumi      | l            |             |                |           |            |              |              |                      |             |           |       |
| EUT Descr         | iption:    | EUT(Dip      | ole ante     | enna) 1     | with La        | ptop      |            |              |              |                      |             |           |       |
| Mode Ope          | r:         | Tx_a mo      | de           |             |                |           |            |              |              |                      |             |           |       |
|                   | f          | Measuren     | nent Freq    | quency      | Amp            | Preamp (  | Gain       |              |              | Average              | Field Stren | gth Limit |       |
|                   | Dist       | Distance     | to Anter     | ina         | D Corr         | Distance  | Correc     | et to 3 me   | eters        | Peak Fiel            | ld Strength | Limit     |       |
|                   | Read       | Analyzer     | Reading      |             | Avg            | Average   | Field S    | trength @    | 3 m          | Margin v             | s. Average  | Limit     |       |
|                   | AF         | Antenna      | Factor       |             | Peak           | Calculate | d Peak     | Field Str    | ength        | Margin v             | s. Peak Li  | mit       |       |
|                   | CL         | Cable Los    | 88           |             | HPF            | High Pas  | s Filter   | r            |              |                      |             |           |       |
| f                 | Dist       | Read         | AF           | CL          | Amp            | D Corr    | Fltr       | Corr.        | Limit        | Margin               | Ant. Pol.   | Det.      | Notes |
| GHz               | (m)        | dBuV         | dB/m         | dB          | dB             | dB        | dB         | dBuV/m       | dBuV/m       | dB                   | V/H         | P/A/QP    |       |
| 5260MHz           |            |              |              |             |                |           |            |              |              |                      |             |           |       |
| 10.520            | 3.0        | 45.2         | 37.5         | 9.0         | -34.4          | 0.0       | 0.8        | 58.0         | 68.2         | -10.2                | H           | P         |       |
| 15.780            | 3.0        | 41.7         | 38.2         | 11.5        | -32.2          | 0.0       | 0.7        | 59.9         | 74.0         | -14.1                | H           | P         |       |
| 15.780            | 3.0        | 28.2         | 38.2         | 11.5        | -32.2          | 0.0       | 0.7        | 46.4         | 54.0         | - <b>7.6</b>         | H           | A         |       |
| 10.520            | 3.0        | 47.8         | 37.5         | 9.0         | -34.4          | 0.0       | 0.8        | 60.7         | 68.2         | -7.5                 | V           | Р         |       |
| 15.780            | 3.0        | 44.2         | 38.2         | 11.5        | -32.2          | 0.0       | 0.7        | 62.4         | 74.0         | -11.6                | V           | P         |       |
| 15.780            | 3.0        | 30.6         | 38.2         | 11.5        | -32.2          | 0.0       | 0.7        | 48.8         | 54.0         | - <b>5.2</b>         | V           | A         |       |
| 5300MHz<br>10.600 | 2.0        | 50.2         | 37.5         | 9.0         | -34.3          | 0.0       | 0.8        | 63.2         | 74.0         | 10.0                 | TT          | <b></b>   |       |
| 10.600            | 3.0<br>3.0 | 37.3         | 37.5         | 9.0<br>9.0  | -34.3<br>-34.3 | 0.0       | 0.8        | 50.3         | 74.0<br>54.0 | -10.8<br>-3.7        | H<br>H      | P<br>A    |       |
| 15.900            | 3.0        | 40.9         | 37.9         | 11.5        | -32.2          | 0.0       | 0.7        | 58.9         | 74.0         | -15.1                | H           | P         |       |
| 15.900            | 3.0        | 28.0         | 37.9         | 11.5        | -32.2          | 0.0       | 0.7        | 45.9         | 54.0         | -8.1                 | H           | Ā         |       |
| 10.600            | 3.0        | 50.7         | 37.5         | 9.0         | -34.3          | 0.0       | 0.8        | 63.7         | 74.0         | -10.3                | V           | P         |       |
| 10.600            | 3.0        | 37.7         | 37.5         | 9.0         | -34.3          | 0.0       | 0.8        | 50.8         | 54.0         | -3.2                 | V           | A         |       |
| 15.900            | 3.0        | 45.0         | 37.9         | 11.5        | -32.2          | 0.0       | 0.7        | 62.9         | 74.0         | -11.1                | V           | P         |       |
| 15.900            | 3.0        | 32.0         | 37.9         | 11.5        | -32.2          | 0.0       | 0.7        | 49.9         | 54.0         | -4.1                 | V           | A         |       |
| 5320MHz           |            |              |              |             |                |           |            |              |              |                      |             |           |       |
| 10.640            | 3.0        | 50.5         | 37.6         | 9.1         | -34.2          | 0.0       | 0.8        | 63.6         | 74.0         | -10.4                | H           | P         |       |
| 10.640            | 3.0        | 36.0         | 37.6         | 9.1         | -34.2          | 0.0       | 0.8        | 49.1         | 54.0         | -4.9                 | H           | A         |       |
| 15.960            | 3.0<br>3.0 | 41.9<br>28.8 | 37.7<br>37.7 | 11.5        | -32.2<br>-32.2 | 0.0       | 0.7<br>0.7 | 59.7<br>46.6 | 74.0<br>54.0 | -14.3                | H           | P         |       |
| 15.960<br>10.640  | 3.0        | 28.8<br>52.8 | 37.6         | 11.5<br>9.1 | -34.2          | 0.0       | 0.7        | 46.6         | 54.0<br>74.0 | -7.4<br>-8.1         | H<br>V      | A<br>P    |       |
| 10.640            | 3.0        | 37.9         | 37.6         | 9.1<br>9.1  | -34.2          | 0.0       | 0.8        | 51.0         | 74.0<br>54.0 | - <b>0.1</b><br>-3.0 | v           | A         |       |
| 15.960            | 3.0        | 47.0         | 37.7         | 11.5        | -32.2          | 0.0       | 0.7        | 64.8         | 74.0         | -9.2                 | v           | P         |       |
|                   | 3.0        | 30.9         | 37.7         | 11.5        | -32.2          | 0.0       | 0.7        | 48.7         | 54.0         | -5.3                 | v           | Ā         |       |
| 15.960            |            |              |              |             |                | <b>.</b>  |            |              |              | 1                    |             |           |       |


COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4701C 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661 This report shall not be reproduced except in full, without the written approval of CCS. FAX: (510) 661-0888

Page 248 of 344

#### PIFA ANTENNA

#### **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**



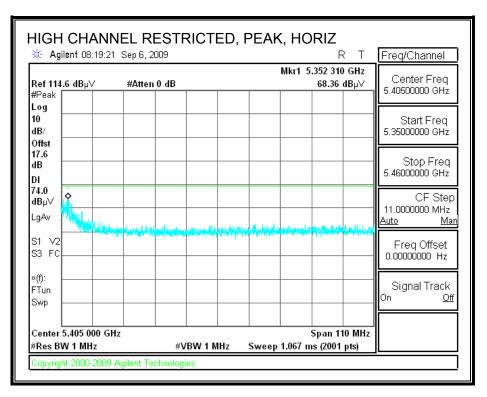


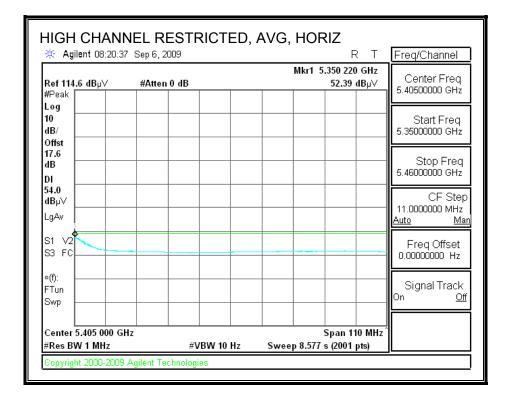

Page 249 of 344

#### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**

| HIGH CHANN                           | Sep 5, 2009                     | TED, PEAK, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>′ERT</b><br>кт               | Freq/Channel                                 |
|--------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|
| Ref 110 dBµ∀<br>#Peak                | #Atten 0 dB                     | Mkr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I 5.350 000 GHz<br>68.55 dBµ∀   | Center Freq<br>5.40500000 GHz                |
| Log<br>10<br>dB/<br>Offst            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Start Freq<br>5.3500000 GHz                  |
| 17.6<br>dB<br>DI                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Stop Freq<br>5.4600000 GHz                   |
| 74.0<br>dBµ∨<br>LgAv                 | n intritudentition teamperative | lin and a sector and a state of the state of | المطأم المجاري بغرام المراجع    | CF Step<br>11.0000000 MHz<br><u>Auto Man</u> |
| S1 V2<br>S3 FC                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Freq Offset<br>0.00000000 Hz                 |
| ×(f):<br>FTun<br>Swp                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Signal Track<br>On <u>Off</u>                |
| Center 5.405 000 GH<br>#Res BW 1 MHz | z<br>#VBW 1                     | MHz Sweep 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Span 110 MHz<br>7 ms (2001 pts) |                                              |
| Copyright 2000-2009 .                | Agilent Technologies            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |



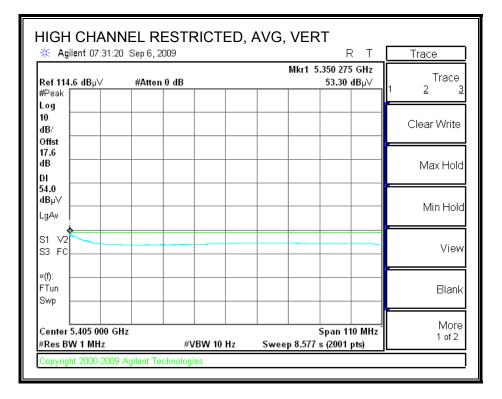

Page 250 of 344


| Date:<br>Project #: |            | Devin C      | hang         |             |                |            |            |              |              |                    |             |           |       |
|---------------------|------------|--------------|--------------|-------------|----------------|------------|------------|--------------|--------------|--------------------|-------------|-----------|-------|
| D                   |            | 09/09/08     |              |             |                |            |            |              |              |                    |             |           |       |
| Project #:          |            | 09J1278      | 4            |             |                |            |            |              |              |                    |             |           |       |
| Company             |            | Mitsumi      | i i          |             |                |            |            |              |              |                    |             |           |       |
| EUT Desci           | ription:   | EUT(PIF.     | A anten      | na) wi      | th Lapt        | ор         |            |              |              |                    |             |           |       |
| Mode Ope            | er:        | Tx_a mo      | de           |             |                |            |            |              |              |                    |             |           |       |
|                     | f          | Measuren     | nent Fred    | quency      | Amp            | Preamp (   | Gain       |              |              | Average            | Field Stren | gth Limit |       |
|                     | Dist       | Distance     | to Anter     | ina         | D Corr         | Distance   | Correc     | et to 3 me   | ters         | Peak Fie           | ld Strength | Limit     |       |
|                     | Read       | Analyzer     | Reading      |             | Avg            | Average    | Field S    | trength @    | 3 m          | Margin v           | s. Average  | Limit     |       |
|                     | AF         | Antenna      | Factor       |             | Peak           | Calculate  | d Peak     | Field Str    | ength        | Margin v           | s. Peak Li  | mit       |       |
|                     | CL         | Cable Los    | 35           |             | HPF            | High Pas   | s Filter   | r            |              |                    |             |           |       |
| f                   | Dist       | Read         | AF           | CL          | Amp            | D Corr     | Fltr       | Corr.        | Limit        | Margin             | Ant. Pol.   | Det.      | Notes |
| GHz                 | (m)        | dBuV         | dB/m         | dB          | dB             | dB         | dB         |              | dBuV/m       |                    | V/H         | P/A/QP    |       |
| 5260MHz             |            |              |              |             |                |            |            |              |              |                    |             | -         |       |
| 10.520              | 3.0        | 39.9         | 37.5         | 9.0         | -34.4          | 0.0        | 0.8        | 52.7         | 68.2         | -15.5              | H           | Р         |       |
| 15.780              | 3.0        | 37.7         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 55.9         | 74.0         | -18.1              | H           | P         |       |
| 15.780              | 3.0        | 25.8         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 44.0         | 54.0         | -10.0              | H           | A         |       |
| 10.520              | 3.0        | 47.7         | 37.5         | 9.0         | -34.4          | 0.0        | 0.8        | 60.5         | 68.2         | -7.7               | V           | P         |       |
| 15.780              | 3.0        | 39.7         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 57.9         | 74.0         | - <b>16.1</b>      | V           | Р         |       |
| 15.780              | 3.0        | 26.8         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 45.0         | 54.0         | - <mark>9.0</mark> | V           | A         |       |
| 5300MHz             |            |              |              |             |                |            |            |              |              |                    |             |           |       |
| 10.600              | 3.0        | 44.8         | 37.5         | 9.0         | -34.3          | 0.0        | 0.8        | 57.9         | 74.0         | -16.1              | H           | P         |       |
| 10.600<br>15.900    | 3.0<br>3.0 | 32.7<br>36.6 | 37.5<br>37.9 | 9.0<br>11.5 | -34.3<br>-32.2 | 0.0<br>0.0 | 0.8<br>0.7 | 45.7<br>54.5 | 54.0<br>74.0 | -8.3               | H           | A         |       |
| 15.900              | 3.0        | 24.4         | 37.9         | 11.5        | -32.2          | 0.0        | 0.7        | 42.3         | 74.0<br>54.0 | -19.5<br>-11.7     | H<br>H      | P<br>A    |       |
| 10.600              | 3.0        | 50.1         | 37.5         | 9.0         | -34.3          | 0.0        | 0.8        | 63.1         | 74.0         | -10.9              | V           | P         |       |
| 10.600              | 3.0        | 38.5         | 37.5         | 9.0         | -34.3          | 0.0        | 0.8        | 51.6         | 54.0         | -2.4               | v           | Ā         |       |
| 15.900              | 3.0        | 39.8         | 37.9         | 11.5        | -32.2          | 0.0        | 0.7        | 57.7         | 74.0         | -16.3              | v           | P         |       |
| 15.900              | 3.0        | 26.6         | 37.9         | 11.5        | -32.2          | 0.0        | 0.7        | 44.5         | 54.0         | -9.5               | V           | Ā         |       |
| 5320MHz             |            |              |              |             |                |            |            |              |              | 1                  |             |           |       |
| 10.640              | 3.0        | 45.7         | 37.6         | 9.1         | -34.2          | 0.0        | 0.8        | 58.9         | 74.0         | - <b>15.1</b>      | H           | P         |       |
| 10.640              | 3.0        | 33.5         | 37.6         | 9.1         | -34.2          | 0.0        | 0.8        | 46.7         | 54.0         | -7.3               | H           | A         |       |
| 15.960              | 3.0        | 39.2         | 37.7         | 11.5        | -32.2          | 0.0        | 0.7        | 57.0         | 74.0         | -17.0              | H           | Р         |       |
| 15.960              | 3.0        | 26.2         | 37.7         | 11.5        | -32.2          | 0.0        | 0.7        | 44.0         | 54.0         | -10.0              | H           | A         |       |
| 10.640              | 3.0        | 50.2         | 37.6         | 9.1         | -34.2          | 0.0        | 0.8        | 63.3         | 74.0         | -10.7              | V           | P         |       |
| 10.640              | 3.0<br>3.0 | 38.2<br>42.3 | 37.6         | 9.1<br>11.5 | -34.2          | 0.0        | 0.8<br>0.7 | 51.3         | 54.0         | -2.7               | V<br>V      | A         |       |
| 15.960<br>15.960    | 3.0        | 42.3         | 37.7<br>37.7 | 11.5        | -32.2<br>-32.2 | 0.0        | 0.7        | 60.1<br>46.3 | 74.0<br>54.0 | -13.9<br>-7.7      | v           | P<br>A    |       |
| 0.200               | 5.0        | 40.3         | 31.1         | 11.5        | -04.4          | 0.0        | 0.7        | 40.3         | 24.0         | -/./               | •           | <b>A</b>  |       |
|                     |            | :            | 1            | i           |                |            |            |              |              |                    |             |           |       |

Page 251 of 344

# 8.2.5. 802.11n HT20 MODE IN THE UPPER 5.2 GHz BAND

#### **DIPOLE ANTENNA - RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**





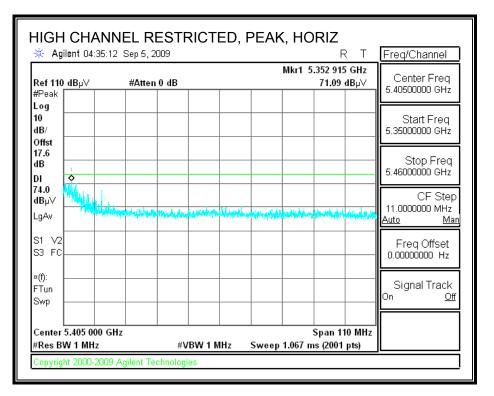

Page 252 of 344

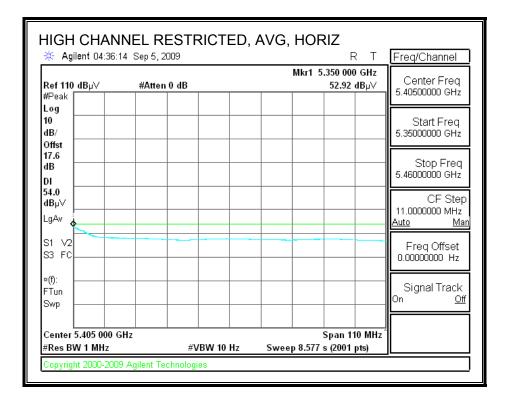
#### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**

| HIGH CHANNEL R                        | ESTRICTED                                                                                                      | , PEAK, VE           | RT                            |                       |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|-----------------------|
| 🔆 Agilent 07:30:16 Sep 6, 2           | 2009                                                                                                           |                      | RT                            | Trace                 |
| Ref 114.6 dBµ∨ #Atten<br>#Peak        | 0 dB                                                                                                           | Mkr1 5.              | .350 660 GHz<br>69.62 dBµ∨    | Trace<br>1 <u>2 3</u> |
| Log<br>10<br>dB/<br>Offst             |                                                                                                                |                      |                               | Clear Write           |
| 17.6<br>dB<br>DI                      |                                                                                                                |                      |                               | Max Hold              |
| 74.0 b<br>dBµ∨ u<br>LgAv              | and a second and a state of the second s | as burged in the set | haimadharidhai                | Min Hold              |
| S1 V2<br>S3 FC                        |                                                                                                                |                      |                               | View                  |
| ×(f):<br>FTun<br>Swp                  |                                                                                                                |                      |                               | Blank                 |
| Center 5.405 000 GHz<br>#Res BW 1 MHz | #VBW 1 MHz                                                                                                     | Sweep 1.067 m        | Span 110 MHz<br>is (2001 pts) | More<br>1 of 2        |
| Copyright 2000-2009 Agilent Te        | chnologies                                                                                                     |                      |                               |                       |



Page 253 of 344

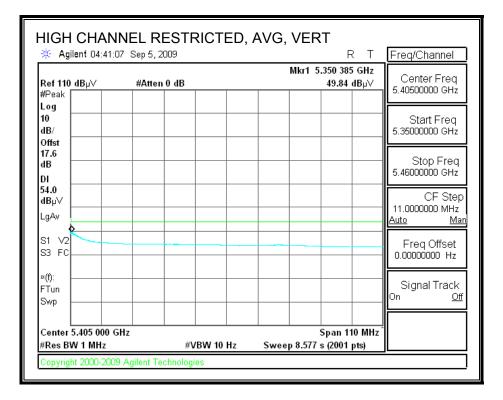

| Date:<br>Project #: |            | Devin Cl     | hang         |             |                |            |            |              |              |                    |                                        |           |       |
|---------------------|------------|--------------|--------------|-------------|----------------|------------|------------|--------------|--------------|--------------------|----------------------------------------|-----------|-------|
| Duntant H.          |            | 09/13/08     |              |             |                |            |            |              |              |                    |                                        |           |       |
| rroject #:          |            | 09J1278      | 4            |             |                |            |            |              |              |                    |                                        |           |       |
| Company             |            | Mitsumi      | l            |             |                |            |            |              |              |                    |                                        |           |       |
| EUT Descr           | iption:    | EUT(Dip      | ole ante     | enna) 1     | with La        | ptop       |            |              |              |                    |                                        |           |       |
| Mode Ope            | r:         | Tx_HT20      | )            |             |                |            |            |              |              |                    |                                        |           |       |
|                     | f          | Measuren     | nent Freq    | quency      | Amp            | Preamp (   | Gain       |              |              | Average            | Field Stren                            | gth Limit |       |
|                     | Dist       | Distance     | to Anter     | ina         | D Corr         | Distance   | Correc     | ct to 3 me   | ters         | Peak Fiel          | ld Strength                            | Limit     |       |
|                     | Read       | Analyzer     | Reading      |             | Avg            | Average    | Field S    | trength @    | 3 m          | Margin v           | s. Average                             | Limit     |       |
|                     | AF         | Antenna      | Factor       |             | Peak           | Calculate  | d Peak     | Field Str    | ength        | Margin v           | s. Peak Lis                            | mit       |       |
|                     | CL         | Cable Los    | 88           |             | HPF            | High Pas   | s Filter   | r            |              |                    |                                        |           |       |
| f                   | Dist       | Read         | AF           | CL          | Amp            | D Corr     | Fltr       | Corr.        | Limit        | Margin             | Ant. Pol.                              | Det.      | Notes |
| GHz                 | (m)        | dBuV         | dB/m         | dB          | dB             | dB         | dB         |              | dBuV/m       |                    | V/H                                    | P/A/QP    |       |
| 5260MHz             |            |              |              |             |                |            |            |              |              |                    |                                        | -         |       |
| 10.520              | 3.0        | 44.7         | 37.5         | 9.0         | -34.4          | 0.0        | 0.8        | 57.6         | 68.2         | -10.6              | H                                      | Р         |       |
| 15.780              | 3.0        | 41.2         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 59.4         | 74.0         | -14.6              | н                                      | P         |       |
| 15.780              | 3.0        | 27.7         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 45.9         | 54.0         | - <mark>8.1</mark> | H                                      | A         |       |
| 10.520              | 3.0        | 48.3         | 37.5         | 9.0         | -34.4          | 0.0        | 0.8        | 61.2         | 68.2         | <b>-7.0</b>        | V                                      | P         |       |
| 15.780              | 3.0        | 44.8         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 63.0         | 74.0         | -11.0              | V                                      | Р         |       |
| 15.780              | 3.0        | 31.5         | 38.2         | 11.5        | -32.2          | 0.0        | 0.7        | 49.6         | 54.0         | -4.4               | V                                      | A         |       |
| 5300MHz             |            |              |              |             |                |            |            |              |              |                    |                                        | _         |       |
| 10.600              | 3.0        | 47.9         | 37.5         | 9.0         | -34.3          | 0.0        | 0.8        | 61.0         | 74.0         | -13.0              | H                                      | P         |       |
| 10.600<br>15.900    | 3.0<br>3.0 | 35.7<br>40.6 | 37.5<br>37.9 | 9.0<br>11.5 | -34.3<br>-32.2 | 0.0<br>0.0 | 0.8<br>0.7 | 48.8<br>58.5 | 54.0         | -5.2               | H                                      | A         |       |
| 15.900              | 3.0        | 27.7         | 37.9         | 11.5        | -32.2          | 0.0        | 0.7        | 45.6         | 74.0<br>54.0 | -15.5<br>-8.4      | H<br>H                                 | P<br>A    |       |
| 10.600              | 3.0        | 52.1         | 37.5         | 9.0         | -34.3          | 0.0        | 0.8        | 65.1         | 74.0         | -8.9               | v                                      | P         |       |
| 10.600              | 3.0        | 37.8         | 37.5         | 9.0         | -34.3          | 0.0        | 0.8        | 50.8         | 54.0         | -3.2               | v                                      | Ā         |       |
| 15.900              | 3.0        | 45.8         | 37.9         | 11.5        | -32.2          | 0.0        | 0.7        | 63.7         | 74.0         | -10.3              | V                                      | P         |       |
| 15.900              | 3.0        | 31.7         | 37.9         | 11.5        | -32.2          | 0.0        | 0.7        | 49.7         | 54.0         | -4.3               | V                                      | A         |       |
| 5320MHz             |            |              |              |             |                | ļ          |            |              |              | ļ                  |                                        |           |       |
| 10.640              | 3.0        | <b>47.6</b>  | 37.6         | 9.1         | -34.2          | 0.0        | 0.8        | 60.7         | 74.0         | -13.3              | H                                      | P         |       |
| 10.640              | 3.0        | 34.6         | 37.6         | 9.1         | -34.2          | 0.0        | 0.8        | 47.7         | 54.0         | - <b>6.3</b>       | H                                      | A         |       |
| 15.960              | 3.0        | 38.2         | 37.7         | 11.5        | -32.2          | 0.0        | 0.7        | 56.0         | 74.0         | -18.0              | H                                      | P         |       |
| 15.960              | 3.0        | 25.0         | 37.7         | 11.5        | -32.2          | 0.0        | 0.7        | 42.8         | 54.0         | -11.2              | H                                      | A         |       |
| 10.640<br>10.640    | 3.0<br>3.0 | 50.4<br>37.7 | 37.6<br>37.6 | 9.1<br>9.1  | -34.2<br>-34.2 | 0.0        | 0.8<br>0.8 | 63.6<br>50.9 | 74.0<br>54.0 | -10.4<br>-3.1      | v<br>v                                 | P         |       |
| 10.640<br>15.960    | 3.0        | 37.7<br>42.9 | 37.6         | 9.1<br>11.5 | -34.2          | 0.0        | 0.8        | 60.7         | 54.0<br>74.0 | -3.1<br>-13.3      | •••••••••••••••••••••••••••••••••••••• | A<br>P    |       |
| 15.960              | 3.0        | 29.1         | 37.7         | 11.5        | -32.2          | 0.0        | 0.7        | 46.9         | 74.0<br>54.0 | -13.3              | v                                      | A         |       |
|                     |            |              |              |             |                |            | •••        | 1012         |              |                    | •                                      | **        |       |
|                     |            |              |              | ۵           |                |            |            |              |              |                    |                                        | i         |       |


COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 254 of 344

#### **PIFA ANTENNA**

#### **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**





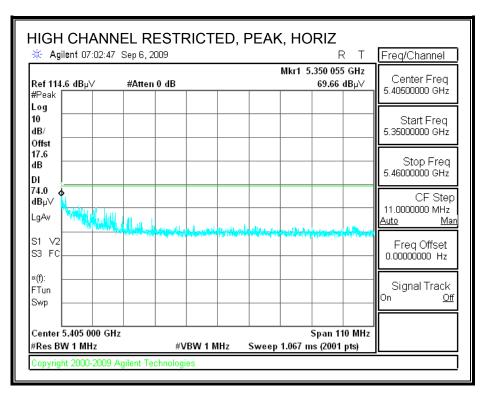

Page 255 of 344

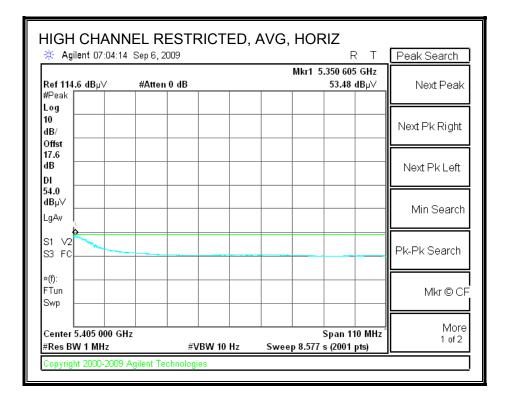
#### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**

|                                       |                           | ED, PEAK, VE                      |                               |                                              |
|---------------------------------------|---------------------------|-----------------------------------|-------------------------------|----------------------------------------------|
| 🔆 Agilent 04:39:48                    | Sep 5, 2009               |                                   | RT                            | Freq/Channel                                 |
| Ref 110 dBµ∨<br>#Peak                 | #Atten 0 dB               | Mkr1 5                            | 6.350 440 GHz<br>66.23 dBµ∀   | Center Freq<br>5.40500000 GHz                |
| Log<br>10<br>dB/<br>Offst             |                           |                                   |                               | Start Freq<br>5.3500000 GHz                  |
| 17.6<br>dB                            |                           |                                   |                               | Stop Freq<br>5.4600000 GHz                   |
| 74.0<br>dBµ∀ du<br>LgAv               | Contraction of the second | hermacher allocitation reasons as | وسعاريهم والمعرفية والمعرفية  | CF Step<br>11.0000000 MHz<br><u>Auto Man</u> |
| S1 V2<br>S3 FC                        |                           |                                   |                               | Freq Offset<br>0.00000000 Hz                 |
| ×(f):<br>FTun<br>Swp                  |                           |                                   |                               | Signal Track<br>On <u>Off</u>                |
| Center 5.405 000 GHz<br>#Res BW 1 MHz | #VBW 1                    |                                   | Span 110 MHz<br>ns (2001 pts) |                                              |
| Copyright 2000-2009 A                 | gilent Technologies       |                                   |                               |                                              |



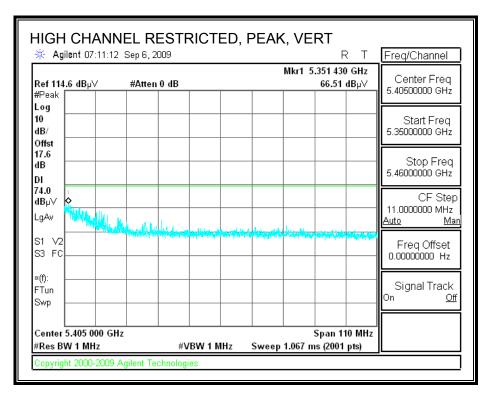
Page 256 of 344

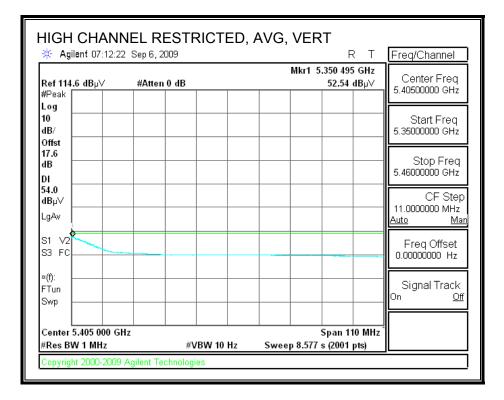

| Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         Peak       Calculated Peak Field Strength       Margin vs. Peak Limit         m       dB       dB       dB       dB       Corr.       Limit       Margin vs. Peak Limit         n       dB       dB       dB       dB       Corr.       Limit       Margin vs. Peak Limit         n       dB       dB       dB       dB       Corr.       Limit       Margin vs. Peak Limit         s       9.0       -34.4       0.0       0.8       52.6       68.2       -15.6       H       P         11.5       -32.2       0.0       0.7       55.5       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -18.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -19.7       V       P         2       11.5       -32.2       0.0       0.7       54.0       -7.3       H       A                                                                                                                                                                                                               | Test Engr:<br>Date:                                                                                         |                                               | Devin C                      | hang                         |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-----------|--------------------------------------|
| requency Amp       Preamp Gain       Average Field Strength Limit         tenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         ng       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         ng       Avg       Average Field Strength       Margin vs. Average Limit         Peak       Calculated Peak Field Strength       Margin vs. Peak Limit         HPF       High Pass Filter       Margin vs. Peak Limit         a       dB       dB       dB       dB       V/H       P/A/QP         s       9.0       -34.4       0.0       0.8       52.6       68.2       -15.6       H       P         2       11.5       -32.2       0.0       0.7       55.5       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2                                                                                                                                                                 |                                                                                                             | •                                             | 09/09/08                     | -                            |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| requency Amp       Preamp Gain       Average Field Strength Limit         tenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         ng       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         ng       Avg       Average Field Strength       Margin vs. Average Limit         HPF       High Pass Filter       Margin vs. Peak Limit       Margin vs. Peak Limit         n       dB       dB       dB       corr       Limit       Margin V/m       Ant. Pol.       Det.       Notes         s       9.0       -34.4       0.0       0.8       52.6       68.2       -15.6       H       P         2       11.5       -32.2       0.0       0.7       55.5       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -15.9       H       P         2       11.5       -32.2       0.                                                                                                                                                           | Project #:                                                                                                  |                                               | 09J1278                      |                              |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| requency Amp       Preamp Gain       Average Field Strength Limit         tenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         ng       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         ng       Avg       Average Field Strength       Margin vs. Average Limit         HPF       High Pass Filter       Margin vs. Peak Limit       Margin vs. Peak Limit         n       dB       dB       dB       corr       Limit       Margin V/m       Ant. Pol.       Det.       Notes         s       9.0       -34.4       0.0       0.8       52.6       68.2       -15.6       H       P         2       11.5       -32.2       0.0       0.7       55.5       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -15.9       H       P         2       11.5       -32.2       0.                                                                                                                                                           | Company                                                                                                     |                                               | Mitsumi                      | -                            |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| requency Amp       Preamp Gain       Average Field Strength Limit         tenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         ng       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         ng       Avg       Average Field Strength       Margin vs. Average Limit         HPF       High Pass Filter       Margin vs. Peak Limit       Margin vs. Peak Limit         n       dB       dB       dB       corr       Limit       Margin vs. Peak Limit         s       9.0       -34.4       0.0       0.8       52.6       68.2       -15.6       H       P         2       11.5       -32.2       0.0       0.7       55.5       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       54.6 <td< th=""><th></th><th></th><th></th><th></th><th>na) wi</th><th>ith Lant</th><th>on</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<> |                                                                                                             |                                               |                              |                              | na) wi                                                   | ith Lant                                                                      | on                                                   |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| tenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         ng       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         Peak       Calculated Peak Field Strength       Margin vs. Average Limit         HPF       High Pass Filter       Margin vs. Peak Limit         CL       Amp       D Corr       Fltr       Corr.       Limit       Margin vs. Peak Limit         n       dB       dB       dB       dB       dB       V/H       P/A/QP         5       9.0       -34.4       0.0       0.8       52.6       68.2       -15.6       H       P         2       11.5       -32.2       0.0       0.7       55.5       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       54.0       -9.1       V       A         5       9.0       -34.3       0.0       0.8       58.1       74.0                                                                                                                                                                                  | Mode Ope                                                                                                    | •                                             | Tx HT20                      |                              |                                                          | un zupi                                                                       | - P                                                  |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| tenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         ng       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         ng       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         Peak       Calculated Peak Field Strength       Margin vs. Peak Limit       Margin vs. Peak Limit         m       dB       dB       dB       dB       Margin V/m       Margin Ant. Pol.       Det.       Notes         n       dB       dB       dB       dB       dB       dB       V/m       P/A/QP         5       9.0       -34.4       0.0       0.8       52.6       68.2       -15.6       H       P         2       11.5       -32.2       0.0       0.7       55.5       74.0       -18.5       H       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       54.0       -9.1       V       A         5                                                                                                                                                                            |                                                                                                             | f                                             | _                            |                              | mency                                                    | Amp                                                                           | Preamp (                                             | Gain                                                 |                                                              |                                                              | Average                                                           | Field Stren                     | eth Limit |                                      |
| Avg         Average Field Strength @ 3 m         Margin vs. Average Limit           Peak         Calculated Peak Field Strength         Margin vs. Peak Limit           MPF         High Pass Filter         Margin vs. Peak Limit           CL         Amp         D Corr         Fltr         Corr.         Limit         Margin Ant. Pol.         Det.         Notes           dB         dB         dB         dB         dB         dB         Margin Ant. Pol.         Det.         Notes           5         9.0         -34.4         0.0         0.8         52.6         68.2         -15.6         H         P           2         11.5         -32.2         0.0         0.7         55.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         57.3         74.0         -16.7         V         P           2         11.5         -32.2         0.0         0.7         57.3         74.0         -16.7         V         P           2         11.5         -32.2         0.0         0.7         54.5         74.0         -15.9         H         P           5         9.0         -34.3                                                                                                                  |                                                                                                             | Dist                                          | Distance                     |                              |                                                          |                                                                               |                                                      |                                                      | ct to 3 me                                                   | ters                                                         | _                                                                 |                                 | -         |                                      |
| Peak<br>HPF         Calculated Peak Field Strength<br>High Pass Filter         Margin vs. Peak Limit<br>Margin vs. Peak Limit           CL         Amp<br>dB         D Corr<br>dB         Filtr<br>dB         Corr.<br>dB         Limit<br>dB         Margin<br>dB         Ant. Pol.<br>dB         Det.<br>P/A/QP         Notes           5         9.0         -34.4         0.0         0.8         52.6         68.2         -15.6         H         P           2         11.5         -32.2         0.0         0.7         55.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         55.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         57.3         74.0         -16.7         V         P           2         11.5         -32.2         0.0         0.7         54.0         -9.1         V         A           5         9.0         -34.3         0.0         0.8         58.1         74.0         -15.9         H         P           5         9.0         -34.3         0.0         0.8         54.0         -7.3         H         A           9                                                                                    |                                                                                                             | Read                                          | Analyzer                     |                              |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   | -                               |           |                                      |
| HPF High Pass Filter           CL         Amp         D Corr         Fltr         Corr.         Limit         Margin         Ant. Pol.         Det.         Notes           n         dB         dB         dB         dB         dB         dB         BUV/m         dB         V/H         P/A/QP         Notes           5         9.0         -34.4         0.0         0.8         \$2.6         68.2         -15.6         H         P           2         11.5         -32.2         0.0         0.7         \$5.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         \$5.3         74.0         -16.7         V         P           2         11.5         -32.2         0.0         0.7         \$7.3         74.0         -16.7         V         P           11.5         -32.2         0.0         0.7         \$7.3         74.0         -16.7         V         P           11.5         -32.2         0.0         0.7         \$4.9         \$54.0         -9.1         V         A           5         9.0         -34.3         0.0         0.8                                                                                                                                                          |                                                                                                             | AF                                            | Antenna                      | -                            |                                                          | _                                                                             | _                                                    |                                                      |                                                              |                                                              | -                                                                 | _                               |           |                                      |
| n         dB         dB         dB         dB         dB         dB         dB         V/m         dB         V/H         P/A/QP           5         9.0         -34.4         0.0         0.8         \$2.6         68.2         -15.6         H         P           2         11.5         -32.2         0.0         0.7         \$5.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         43.0         54.0         -11.0         H         A           5         9.0         -34.4         0.0         0.8         \$9.4         68.2         -8.8         V         P           2         11.5         -32.2         0.0         0.7         \$7.3         74.0         -16.7         V         P           2         11.5         -32.2         0.0         0.7         \$4.9         \$54.0         -9.1         V         A           5         9.0         -34.3         0.0         0.8         \$85.1         74.0         -15.9         H         P           5         9.0         -34.3         0.0         0.7         \$45.5         74.0         -1                                                                                                                                                       |                                                                                                             | CL                                            | Cable Los                    |                              |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| n         dB         dB         dB         dB         dB         dB         dB         dB         V/m         dB         V/H         P/A/QP           5         9.0         -34.4         0.0         0.8         52.6         68.2         -15.6         H         P           2         11.5         -32.2         0.0         0.7         55.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         43.0         54.0         -11.0         H         A           5         9.0         -34.4         0.0         0.8         59.4         68.2         -8.8         V         P           2         11.5         -32.2         0.0         0.7         57.3         74.0         -16.7         V         P           2         11.5         -32.2         0.0         0.7         44.9         54.0         -9.1         V         A           5         9.0         -34.3         0.0         0.8         58.1         74.0         -15.9         H         P           5         9.0         -34.3         0.0         0.7         54.5         74.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>D.C.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>N7</th>                |                                                                                                             |                                               |                              |                              |                                                          |                                                                               | D.C.                                                 |                                                      |                                                              |                                                              |                                                                   |                                 |           | N7                                   |
| 5         9.0         -34.4         0.0         0.8         52.6         68.2         -15.6         H         P           2         11.5         -32.2         0.0         0.7         55.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         55.5         74.0         -18.5         H         P           2         11.5         -32.2         0.0         0.7         43.0         54.0         -11.0         H         A           5         9.0         -34.4         0.0         0.8         59.4         68.2         -8.8         V         P           2         11.5         -32.2         0.0         0.7         57.3         74.0         -16.7         V         P           11.5         -32.2         0.0         0.7         54.0         -9.1         V         A           5         9.0         -34.3         0.0         0.8         58.1         74.0         -15.9         H         P           5         9.0         -34.3         0.0         0.8         46.7         54.0         -7.3         H         A           9                                                                                                                                                                       | f<br>GHz                                                                                                    | Dist<br>(m)                                   | Read<br>dBuV                 | AF<br>dB/m                   |                                                          | •                                                                             |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           | Notes                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5260MHz                                                                                                     |                                               |                              | uu/m                         |                                                          |                                                                               |                                                      | - 00                                                 |                                                              | ana v/m                                                      |                                                                   | 1/11                            | THE QE    |                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.520                                                                                                      | 3.0                                           | 39.8                         | 37.5                         | 9.0                                                      | -34.4                                                                         | 0.0                                                  | 0.8                                                  | 52.6                                                         | 68.2                                                         | -15.6                                                             | н                               | P         |                                      |
| 11.5       -32.2       0.0       0.7       43.0       54.0       -11.0       H       A         5       9.0       -34.4       0.0       0.8       59.4       68.2       -8.8       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       44.9       54.0       -9.1       V       A         5       9.0       -34.3       0.0       0.8       58.1       74.0       -15.9       H       P         5       9.0       -34.3       0.0       0.8       46.7       54.0       -7.3       H       A         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       41.9       54.0       -12.1       H       A         5       9.0       -34.3       0.0       0.8       50.0       54.0       -4.0                                                                                                                                                                                                                                                                | 15.780                                                                                                      | 3.0                                           | 37.4                         | 38.2                         |                                                          |                                                                               |                                                      |                                                      | - •                                                          |                                                              |                                                                   |                                 |           |                                      |
| 5       9.0       -34.4       0.0       0.8       59.4       68.2       -8.8       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       44.9       54.0       -9.1       V       A         5       9.0       -34.3       0.0       0.8       58.1       74.0       -15.9       H       P         5       9.0       -34.3       0.0       0.8       58.1       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       54.5       74.0       -12.1       H       A         5       9.0       -34.3       0.0       0.8       62.3       74.0       -11.7       V       P         5       9.0       -34.3       0.0       0.8       50.0       54.0                                                                                                                                                                                                                                                                   | 15.780                                                                                                      | 3.0                                           | 24.8                         | 38.2                         |                                                          |                                                                               |                                                      |                                                      | - • • • • • • • • • • • • • • • • • • •                      |                                                              |                                                                   |                                 |           |                                      |
| 2       11.5       -32.2       0.0       0.7       57.3       74.0       -16.7       V       P         2       11.5       -32.2       0.0       0.7       44.9       54.0       -9.1       V       A         5       9.0       -34.3       0.0       0.8       58.1       74.0       -15.9       H       P         5       9.0       -34.3       0.0       0.8       46.7       54.0       -7.3       H       A         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       41.9       54.0       -12.1       H       A         5       9.0       -34.3       0.0       0.8       62.3       74.0       -11.7       V       P         5       9.0       -34.3       0.0       0.8       50.0       54.0       -4.0       V       A         9       11.5       -32.2       0.0       0.7       58.8       74.0                                                                                                                                                                                                                                                                   | 10.520                                                                                                      | 3.0                                           | 46.5                         | 37.5                         |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| 5         9.0         -34.3         0.0         0.8         58.1         74.0         -15.9         H         P           5         9.0         -34.3         0.0         0.8         58.1         74.0         -15.9         H         P           5         9.0         -34.3         0.0         0.8         46.7         54.0         -7.3         H         A           9         11.5         -32.2         0.0         0.7         54.5         74.0         -19.6         H         P           9         11.5         -32.2         0.0         0.7         41.9         54.0         -12.1         H         A           9         11.5         -32.2         0.0         0.8         62.3         74.0         -11.7         V         P           5         9.0         -34.3         0.0         0.8         50.0         54.0         -4.0         V         A           9         11.5         -32.2         0.0         0.7         58.8         74.0         -15.2         V         P                                                                                                                                                                                                                                                                                      | 15.780                                                                                                      | 3.0                                           | 39.1                         | 38.2                         | ••••••••••••••                                           | -32.2                                                                         | 0.0                                                  | 0.7                                                  | 57.3                                                         |                                                              |                                                                   |                                 |           |                                      |
| 5       9.0       -34.3       0.0       0.8       46.7       54.0       -7.3       H       A         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       41.9       54.0       -12.1       H       A         5       9.0       -34.3       0.0       0.8       62.3       74.0       -11.7       V       P         5       9.0       -34.3       0.0       0.8       50.0       54.0       -4.0       V       A         9       11.5       -32.2       0.0       0.7       58.8       74.0       -15.2       V       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.780                                                                                                      | 3.0                                           | 26.7                         | 38.2                         | 11.5                                                     | -32.2                                                                         | 0.0                                                  | 0.7                                                  | 44.9                                                         | 54.0                                                         | - <b>9.1</b>                                                      | V                               | A         |                                      |
| 5       9.0       -34.3       0.0       0.8       46.7       54.0       -7.3       H       A         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       54.5       74.0       -19.6       H       P         9       11.5       -32.2       0.0       0.7       41.9       54.0       -12.1       H       A         5       9.0       -34.3       0.0       0.8       62.3       74.0       -11.7       V       P         5       9.0       -34.3       0.0       0.8       50.0       54.0       -4.0       V       A         9       11.5       -32.2       0.0       0.7       58.8       74.0       -15.2       V       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5300MHz                                                                                                     |                                               |                              |                              |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| 0         11.5         -32.2         0.0         0.7         54.5         74.0         -19.6         H         P           0         11.5         -32.2         0.0         0.7         41.9         54.0         -12.1         H         A           5         9.0         -34.3         0.0         0.8         62.3         74.0         -11.7         V         P           5         9.0         -34.3         0.0         0.8         50.0         54.0         -4.0         V         A           9         11.5         -32.2         0.0         0.7         58.8         74.0         -15.2         V         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.600                                                                                                      | 3.0                                           | 45.1                         | 37.5                         |                                                          |                                                                               |                                                      |                                                      | ·                                                            |                                                              |                                                                   |                                 | ······    |                                      |
| 9         11.5         -32.2         0.0         0.7         41.9         54.0         -12.1         H         A           5         9.0         -34.3         0.0         0.8         62.3         74.0         -11.7         V         P           5         9.0         -34.3         0.0         0.8         50.0         54.0         -4.0         V         A           9         11.5         -32.2         0.0         0.7         58.8         74.0         -15.2         V         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.600                                                                                                      | 3.0                                           | 33.6                         | 37.5                         |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| 5         9.0         -34.3         0.0         0.8         62.3         74.0         -11.7         V         P           5         9.0         -34.3         0.0         0.8         50.0         54.0         -4.0         V         A           9         11.5         -32.2         0.0         0.7         58.8         74.0         -15.2         V         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.900                                                                                                      | 3.0                                           | 36.5                         | 37.9                         |                                                          |                                                                               |                                                      |                                                      | • • • • • • • • • • • • • • • • • • • •                      |                                                              |                                                                   |                                 |           |                                      |
| 5         9.0         -34.3         0.0         0.8         50.0         54.0         -4.0         V         A           9         11.5         -32.2         0.0         0.7         58.8         74.0         -15.2         V         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.900                                                                                                      | 3.0                                           | 24.0                         | 37.9                         |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| 9 11.5 -32.2 0.0 0.7 58.8 74.0 -15.2 V P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.600                                                                                                      | 3.0                                           | 49.2                         | 37.5                         |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             | · •                                           |                              | ¢                            |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             | •••                                           |                              | ¢                            |                                                          |                                                                               |                                                      |                                                      | · • • • • • • • • • • • • • • • • • • •                      |                                                              |                                                                   |                                 |           |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                               | - /                          | 57.3                         |                                                          |                                                                               | 0.0                                                  | v. /                                                 |                                                              |                                                              | -0.7                                                              | *                               |           |                                      |
| 5 9.1 -34.2 0.0 0.8 58.7 74.0 -15.3 H P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                               | 45.6                         | 37.6                         | 9.1                                                      | -34.2                                                                         | 0.0                                                  | 0.8                                                  | 58.7                                                         | 74.0                                                         | -15.3                                                             | Н                               | P         |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             | 3.0                                           | 33.4                         | 37.6                         |                                                          |                                                                               |                                                      |                                                      | - •                                                          |                                                              |                                                                   |                                 |           |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             | 3.0                                           | 37.8                         | 37.7                         | •••••••••••••••                                          |                                                                               |                                                      |                                                      | - •                                                          |                                                              |                                                                   |                                 |           |                                      |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             | 3.0                                           | 24.7                         | <b></b>                      | •••••••••••••                                            | -32.2                                                                         | 0.0                                                  | 0.7                                                  | 42.5                                                         | 54.0                                                         | -11.5                                                             | H                               | A         |                                      |
| ALIO - CANA - UIU - UII - UIU - UIU - II - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.640                                                                                                      | 3.0                                           | 48.4                         | 37.6                         | 9.1                                                      | -34.2                                                                         | 0.0                                                  | 0.8                                                  | 61.6                                                         | 74.0                                                         | -12.4                                                             | V                               | P         |                                      |
| φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.640                                                                                                      | 3.0                                           | 35.4                         | 37.6                         | 9.1                                                      | -34.2                                                                         | 0.0                                                  | 0.8                                                  | 48.5                                                         | 54.0                                                         | - <b>5.5</b>                                                      | V                               | A         |                                      |
| 5 9.1 -34.2 0.0 0.8 61.6 74.0 -12.4 V P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.960                                                                                                      | 3.0                                           | 42.5                         | 37.7                         | 11.5                                                     | -32.2                                                                         | 0.0                                                  | 0.7                                                  | 60.3                                                         | 74.0                                                         | -13.7                                                             | V                               | P         |                                      |
| 5         9.1         -34.2         0.0         0.8         61.6         74.0         -12.4         V         P           5         9.1         -34.2         0.0         0.8         48.5         54.0         -5.5         V         A           7         11.5         -32.2         0.0         0.7         60.3         74.0         -13.7         V         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.960                                                                                                      | 3.0                                           | 28.3                         | 37.7                         | 11.5                                                     | -32.2                                                                         | 0.0                                                  | 0.7                                                  | 46.1                                                         | 54.0                                                         | - <b>7.9</b>                                                      | V                               | A         |                                      |
| 5 9.1 -34.2 0.0 0.8 46.5 54.0 -7.5 H<br>7 11.5 -32.2 0.0 0.7 55.6 74.0 -18.4 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.600<br>15.900<br>15.900<br>5320MHz<br>10.640<br>10.640<br>15.960<br>15.960<br>10.640<br>10.640<br>15.960 | 3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 37.8<br>24.7<br>48.4<br>35.4 | 37.7<br>37.7<br>37.6<br>37.6 | 11.5<br>11.5<br>9.1<br>9.1<br>11.5<br>11.5<br>9.1<br>9.1 | -32.2<br>-32.2<br>-34.2<br>-34.2<br>-32.2<br>-32.2<br>-32.2<br>-34.2<br>-34.2 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.7<br>0.7<br>0.8<br>0.8<br>0.7<br>0.7<br>0.8<br>0.8 | 58.8<br>45.3<br>58.7<br>46.5<br>55.6<br>42.5<br>61.6<br>48.5 | 74.0<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0 | -15.2<br>-8.7<br>-15.3<br>-7.5<br>-18.4<br>-11.5<br>-12.4<br>-5.5 | V<br>V<br>H<br>H<br>H<br>V<br>V |           | P<br>A<br>P<br>A<br>P<br>A<br>P<br>A |
| ALL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 640                                                                                                         | 3.0                                           | 48.4                         | 37.6                         | 9.1                                                      | -34.2                                                                         | 0.0                                                  | 0.8                                                  | 61.6                                                         | 74.0                                                         | -12.4                                                             | V                               | P         |                                      |
| 5 9.1 -34.2 0.0 0.8 61.6 74.0 -12.4 V P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             | •••                                           | •                            | \$                           |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| 5 9.1 -34.2 0.0 0.8 61.6 74.0 -12.4 V P<br>5 9.1 -34.2 0.0 0.8 48.5 54.0 -5.5 V A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             | ·                                             |                              | <b>*</b>                     |                                                          |                                                                               |                                                      |                                                      |                                                              |                                                              |                                                                   |                                 |           |                                      |
| 5         9.1         -34.2         0.0         0.8         61.6         74.0         -12.4         V         P           5         9.1         -34.2         0.0         0.8         48.5         54.0         -5.5         V         A           7         11.5         -32.2         0.0         0.7         60.3         74.0         -13.7         V         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             | 0.0                                           | 40.0                         | 31.1                         | 11.0                                                     |                                                                               | 0.0                                                  | v./                                                  | 70.1                                                         | 04.0                                                         | -/12                                                              | •                               |           |                                      |


COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 257 of 344

# 8.2.6. 802.11n HT40 MODE IN THE UPPER 5.2 GHz BAND


#### DIPOLE ANTENNA - RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



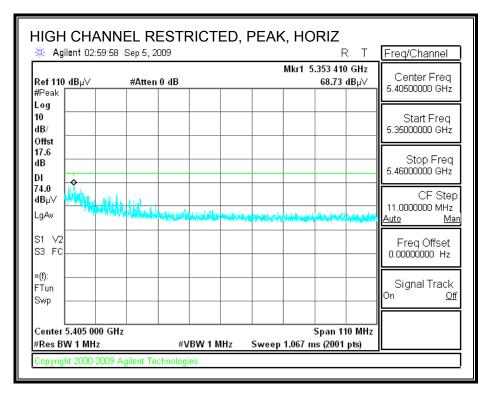


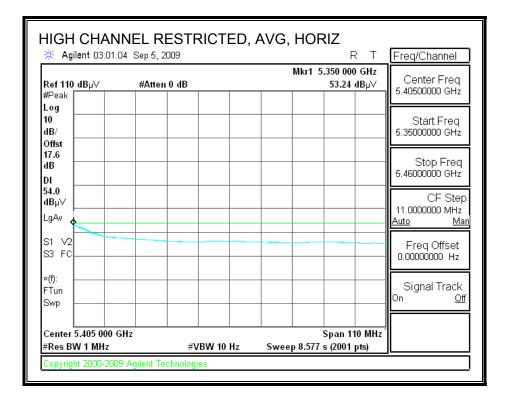

Page 258 of 344

#### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**





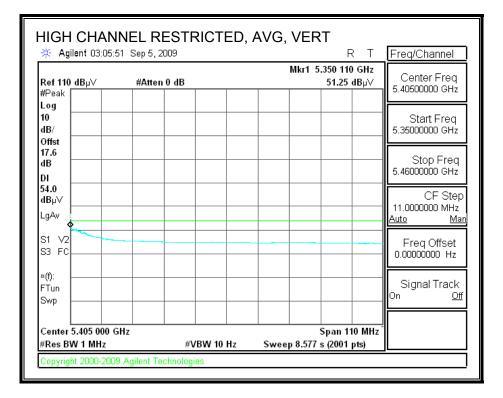

Page 259 of 344


| -                      |            | ification    |          |        |                |                                          |            |              |              |                |              |          |       |
|------------------------|------------|--------------|----------|--------|----------------|------------------------------------------|------------|--------------|--------------|----------------|--------------|----------|-------|
| est Engr               |            | Devin C      | -        |        |                |                                          |            |              |              |                |              |          |       |
| )ate:                  |            | 09/13/08     |          |        |                |                                          |            |              |              |                |              |          |       |
| roject #:              |            | 09J1278      | 4        |        |                |                                          |            |              |              |                |              |          |       |
| Company                |            | Mitsumi      |          |        |                |                                          |            |              |              |                |              |          |       |
|                        | -          | EUT(Dip      | ole ante | nna) 1 | vith Laj       | ptop                                     |            |              |              |                |              |          |       |
| fode Op                | er:        | Tx_HT40      |          |        |                |                                          |            |              |              |                |              |          |       |
|                        | f          | Measuren     |          |        | -              | Preamp Gain Average Field Strength Limit |            |              |              |                |              |          |       |
|                        | Dist       | Distance     |          |        |                | Distance                                 |            |              |              |                | eld Strength |          |       |
|                        | Read       | Analyzer     | -        |        | Avg            | _                                        |            | trength @    |              | -              | vs. Average  |          |       |
|                        | AF         | Antenna      |          |        | Peak           | Calculate                                | d Peak     | Field Stre   | ength        | Margin         | vs. Peak Lis | nit      |       |
|                        | CL         | Cable Los    | 15       |        | HPF            | High Pas                                 | s Filter   |              |              |                |              |          |       |
| f                      | Dist       | Read         | AF       | CL     | Amp            | D Corr                                   | Fltr       | Corr.        | Limit        | Margin         | Ant. Pol.    | Det.     | Notes |
| GHz                    | (m)        | dBuV         | dB/m     | dB     | dB             | dB                                       |            |              | dBuV/m       |                | V/H          | P/A/QP   |       |
| 270MHz                 |            |              |          |        |                |                                          |            |              |              |                |              | <u>-</u> |       |
| 0.540                  | 3.0        | 43.5         | 37.5     | 9.0    | -34.4          | 0.0                                      | 0.8        | 56.5         | 68.2         | -11.7          | H            | P        |       |
| 5.810                  | 3.0        | 37.2         |          |        | -32.2          | 0.0                                      | 0.7        | 55.4         | 74.0         | -18.6          | H            | P        |       |
| 5.810                  | 3.0        | 24.8         |          |        | -32.2          | 0.0                                      | 0.7        | 42.9         | 54.0         | -11.1          | H            | A        |       |
| 0.540                  | 3.0        | 42.6         | 37.5     | 9.0    | -34.4          | 0.0                                      | 0.8        | 55.6         | 68.2         | -12.7          | V            | P        |       |
| 5.810                  | 3.0        | 43.2         |          |        | -32.2          | 0.0                                      | 0.7        | 61.3         | 74.0         | -12.7          | V            | P        |       |
| 5.810                  | 3.0        | 29.6         | 38.2     | 11.5   | -32.2          | 0.0                                      | 0.7        | 47.7         | 54.0         | - <b>6.3</b>   | V            | A        |       |
| 310MHz                 |            | ļ            |          |        |                |                                          |            |              |              |                |              |          |       |
| 0.620                  | 3.0        | 40.8         | 37.5     | 9.1    | -34.3          | 0.0                                      | 0.8        | 53.9         | 74.0         | -20.1          | H            | P        |       |
| 0.620                  | 3.0        | 28.5         | 37.5     |        | -34.3          | 0.0                                      | 0.8        | 41.5         | 54.0         | -12.5          | H            | A        |       |
| 5.930                  | 3.0        | 35.1         | 37.8     |        | -32.2          | 0.0                                      | 0.7        | 53.0         | 74.0         | -21.0          | H            | P        |       |
| 5.930<br>0.620         | 3.0<br>3.0 | 22.2<br>42.4 | 37.8     |        | -32.2<br>-34.3 | 0.0<br>0.0                               | 0.7<br>0.8 | 40.1<br>55.5 | 54.0<br>74.0 | -13.9<br>-18.5 | H            | A<br>P   |       |
| 0.620                  | 3.0        | 29.4         | 37.5     |        | -34.3          | 0.0                                      | 0.8        | 42.5         | 74.0<br>54.0 | -10.5          | V<br>V       | A        |       |
| 5.930                  | 3.0        | 35.0         |          |        | -32.2          | 0.0                                      | 0.7        | 52.8         | 74.0         | -21.2          | v            | P        |       |
| 5.930                  | 3.0        | 23.0         |          |        | -32.2          | 0.0                                      | 0.7        | 40.8         | 54.0         | -13.2          | v            | Ā        |       |
|                        |            |              |          |        |                |                                          |            |              |              |                | ······       |          |       |
| Rev. 4.1.2<br>Note: No |            | missions     | were de  | tected | above t        | the system                               | m nois     | e floor.     |              |                |              |          |       |

Page 260 of 344

#### PIFA ANTENNA

#### **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**



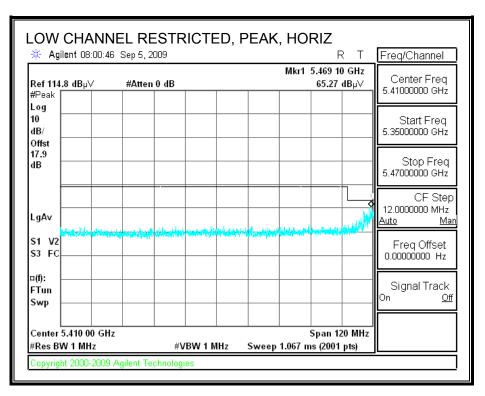


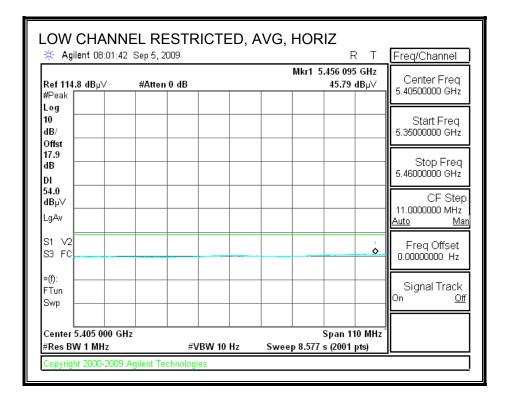

Page 261 of 344

#### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**

|                           |                      | NEL F<br>:37 Sep 5 |                      | RICTI                | ED, F                                    | PEAK           | , VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT <sub>F</sub>     | ? Т   | Freq/Channel                                 |
|---------------------------|----------------------|--------------------|----------------------|----------------------|------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|----------------------------------------------|
| Ref 110<br>#Peak          |                      |                    | en 0 dB              |                      |                                          |                | Mkr1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 5 GHz | Center Freq<br>5.40500000 GHz                |
| Log<br>10<br>dB/<br>Offst |                      |                    |                      |                      |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       | Start Freq<br>5.3500000 GHz                  |
| 17.6<br>dB<br>DI          | 1                    |                    |                      |                      |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       | Stop Freq<br>5.4600000 GHz                   |
| 74.0<br>dBµ∨<br>LgAv      |                      | Nalhalan baliak    | entre landerer farse | al piere travite (1) | an a | and the second | Andre for the state of the st | -                   |       | CF Step<br>11.0000000 MHz<br><u>Auto Man</u> |
| S1 V2<br>S3 FC            |                      |                    |                      |                      |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       | Freq Offset<br>0.00000000 Hz                 |
| ×(f):<br>FTun<br>Swp ∘    |                      |                    |                      |                      |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       | Signal Track<br><sup>On <u>Off</u></sup>     |
|                           | 5.405 000<br>N 1 MHz | GHz                | #V                   | BW 1 M               | IHz                                      | Sweep          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Span 11<br>is (2001 |       |                                              |
| Copyrigh                  | nt 2000-200          | 09 Agilent 1       | Technologi           | es                   |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       |                                              |

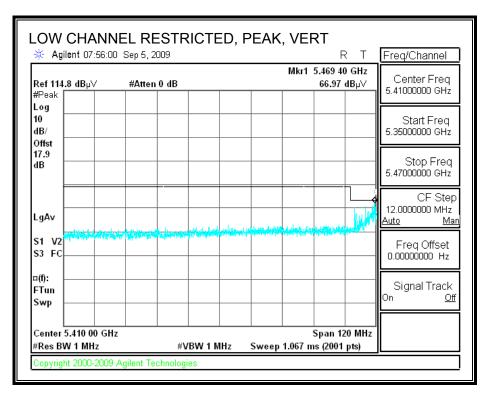


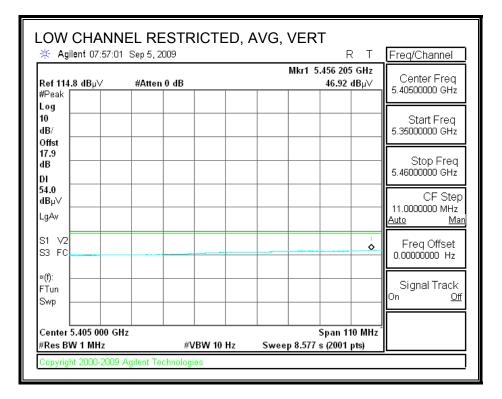

Page 262 of 344


| -                      |            | tification                    |         |        |                |            |            |              |              |                |              |        |       |
|------------------------|------------|-------------------------------|---------|--------|----------------|------------|------------|--------------|--------------|----------------|--------------|--------|-------|
| est Engr               |            | Devin C                       | _       |        |                |            |            |              |              |                |              |        |       |
| Date:                  |            | 09/09/08                      |         |        |                |            |            |              |              |                |              |        |       |
| Project #:             |            | 09J1278                       |         |        |                |            |            |              |              |                |              |        |       |
| Company                |            |                               | Mitsumi |        |                |            |            |              |              |                |              |        |       |
|                        |            | EUT(PIFA antenna) with Laptop |         |        |                |            |            |              |              |                |              |        |       |
| fode Op                |            | Tx_HT40                       |         |        |                |            |            |              |              |                |              |        |       |
|                        | f          | Measuren                      |         |        | -              | Preamp (   |            |              | gth Limit    |                |              |        |       |
|                        | Dist       | Distance                      |         |        |                | Distance   |            |              |              |                | ld Strength  |        |       |
| Read                   |            | Analyzer                      | -       |        | Avg            | Average    |            |              |              | -              | /s. Average  |        |       |
|                        | AF         | Antenna                       |         |        | Peak           | Calculate  |            |              | ength        | Margin v       | rs. Peak Lis | mit    |       |
|                        | CL         | Cable Los                     | 8       |        | HPF            | High Pas   | s Filter   |              |              |                |              |        |       |
| f                      | Dist       | Read                          | AF      | CL     | Amp            | D Corr     | Fltr       | Corr.        | Limit        | Margin         | Ant. Pol.    | Det.   | Notes |
| GHz                    | (m)        | dBuV                          | dB/m    | dB     | dB             | dB         |            |              | dBuV/m       | dB             | V/H          | P/A/QP |       |
| 270MHz                 |            |                               |         |        | _              |            |            |              |              |                |              |        |       |
| 0.540                  | 3.0        | 42.5                          | 37.5    | 9.0    | -34.4          | 0.0        | 0.8        | 55.4         | 68.2         | -12.8          | H            | Р      |       |
| 5.810                  | 3.0        | 36.7                          | 38.2    |        | -32.2          | 0.0        | 0.7        | 54.8         | 74.0         | -19.2          | H            | P      |       |
| 5.810                  | 3.0        | 23.5                          | 38.2    | 11.5   | -32.2          | 0.0        | 0.7        | 41.6         | 54.0         | -12.4          | H            | A      |       |
| 0.540                  | 3.0        | 43.3                          | 37.5    | 9.0    | -34.4          | 0.0        | 0.8        | 56.3         | 68.2         | -11.9          | V            | P      |       |
| 5.810                  | 3.0        | 37.5                          |         | 11.5   | -32.2          | 0.0        | 0.7        | 55.6         | 74.0         | - <b>18.4</b>  | V            | P      |       |
| 5.810                  | 3.0        | 24.6                          | 38.2    | 11.5   | -32.2          | 0.0        | 0.7        | 42.7         | 54.0         | -11.3          | V            | A      |       |
| 310MHz                 |            |                               |         |        |                | ļ          |            |              |              |                |              |        |       |
| 0.620                  | 3.0        | 43.6                          | 37.5    | 9.1    | -34.3          | 0.0        | 0.8        | 56.7         | 74.0         | -17.3          | H            | P      |       |
| 0.620                  | 3.0        | 30.7                          | 37.5    |        | -34.3          | 0.0        | 0.8        | 43.8         | 54.0         | -10.2          | H            | A      |       |
| 5.930<br>5.930         | 3.0<br>3.0 | 37.3<br>23.7                  | 37.8    |        | -32.2<br>-32.2 | 0.0<br>0.0 | 0.7<br>0.7 | 55.1<br>41.5 | 74.0<br>54.0 | -18.9<br>-12.5 | H<br>H       | P      |       |
| 0.620                  | 3.0        | 46.5                          | 37.5    | 9.1    | -34.3          | 0.0        | 0.8        | 59.6         | 74.0         | -14.4          | V            | A<br>P |       |
| 0.620                  | 3.0        | 32.9                          | 37.5    | 9.1    | -34.3          | 0.0        | 0.8        | 46.0         | 54.0         | -8.0           | v            | Ā      |       |
| 5.930                  | 3.0        | 38.8                          |         |        | -32.2          | 0.0        | 0.7        | 56.6         | 74.0         | -17.4          | v            | P      |       |
| 5.930                  | 3.0        | 25.5                          |         |        | -32.2          | 0.0        | 0.7        | 43.4         | 54.0         | -10.6          | V            | A      |       |
|                        |            |                               |         |        |                | ••••••     |            |              |              | •              |              |        |       |
| Rev. 4.1.2<br>Note: No |            | <u>missions</u>               | were de | tected | above (        | the system | m nois     | e floor.     |              |                |              |        |       |

Page 263 of 344

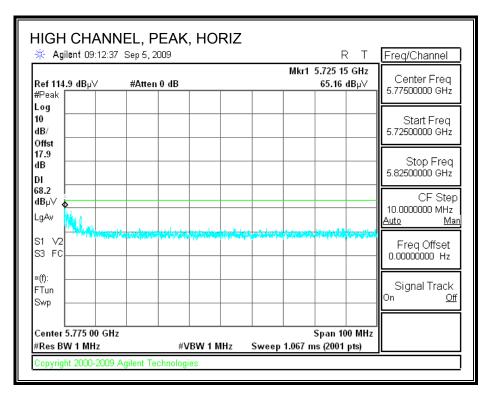
# 8.2.7. 802.11a DUAL CHAIN LEGACY MODE IN THE 5.6 GHz BAND

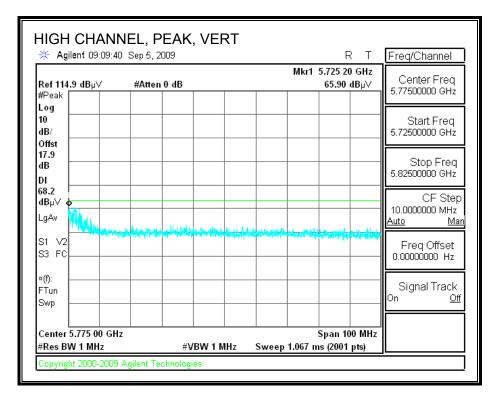

#### DIPOLE ANTENNA - RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)






Page 264 of 344


#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**



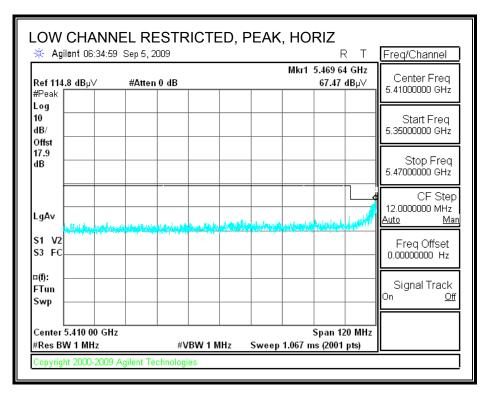


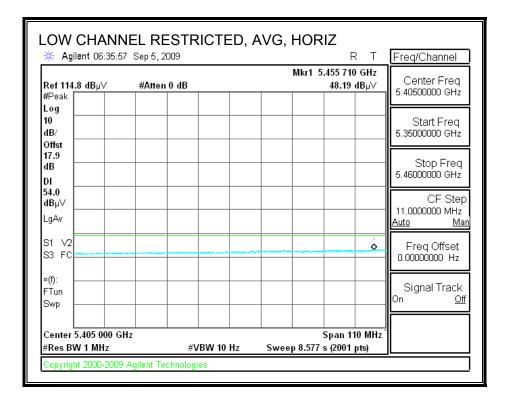

Page 265 of 344

#### AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



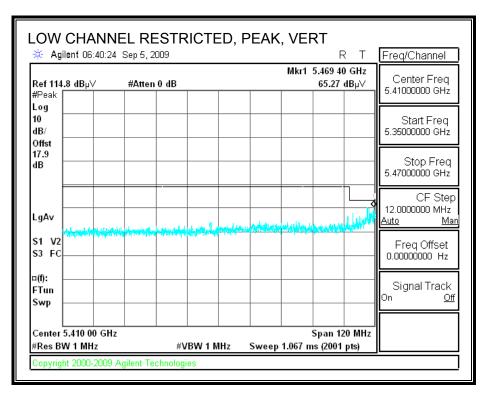


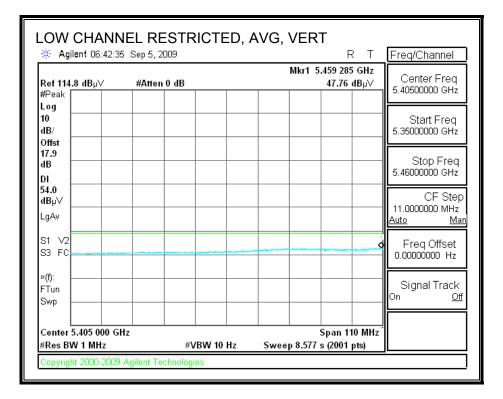

Page 266 of 344


| Fest Engr        |            | Devin C      | hang         |             |                |            |            |              |              |                    |             |           |       |
|------------------|------------|--------------|--------------|-------------|----------------|------------|------------|--------------|--------------|--------------------|-------------|-----------|-------|
| Date:            |            | 09/13/08     |              |             |                |            |            |              |              |                    |             |           |       |
| Project #        |            | 09J1278      | 4            |             |                |            |            |              |              |                    |             |           |       |
| Company          | 74         | Mitsumi      |              |             |                |            |            |              |              |                    |             |           |       |
| EUT Desc         | ription:   | EUT(Dip      |              |             |                |            |            |              |              |                    |             |           |       |
| Mode Op          | er:        | Tx_a mo      | de           |             |                |            |            |              |              |                    |             |           |       |
|                  | f          | Measuren     | nent Freq    | quency      | Amp            | Preamp (   | Gain       |              |              | Average            | Field Stren | gth Limit |       |
|                  | Dist       | Distance     | D Corr       | Distance    | Correc         | ct to 3 me | ters       | Peak Fie     | ld Strength  | Limit              |             |           |       |
| Read             |            | Analyzer     | Avg          | _           |                | trength @  |            | _            | s. Average   |                    |             |           |       |
|                  | AF         | Antenna      | Factor       |             | Peak           | Calculate  | d Peak     | Field Stre   | ength        | Margin v           | s. Peak Lis | nit       |       |
|                  | CL         | Cable Los    | 88           |             | HPF            | High Pas   |            |              |              |                    |             |           |       |
| f                | Dist       | Read         | AF           | CL          | Amp            | D Corr     | Fltr       | Corr.        | Limit        | Margin             | Ant. Pol.   | Det.      | Notes |
| GHz              | (m)        | dBuV         | dB/m         | dB          | dB             | dB         | dB         |              | dBuV/m       |                    | V/H         | P/A/QP    |       |
| 5500MHz          |            |              |              |             |                |            |            |              |              |                    |             |           |       |
| 1.000            | 3.0        | 43.8         | 37.7         | 9.2         | -33.8          | 0.0        | 0.7        | 57.7         | 74.0         | -16.3              | H           | P         |       |
| 11.000           | 3.0        | 31.3         | 37.7         | 9.2         | -33.8          | 0.0        | 0.7        | 45.2         | 54.0         | - <mark>8.8</mark> | H           | A         |       |
| 16.500           | 3.0        | 35.4         | 39.7         | 11.8        | -32.1          | 0.0        | 0.7        | 55.5         | 68.2         | -12.7              | H           | P         |       |
| 11.000           | 3.0        | 46.4         | 37.7         | 9.2         | -33.8          | 0.0        | 0.7        | 60.3         | 74.0         | -13.7              | V           | P         |       |
| 11.000           | 3.0        | 34.2         | 37.7         | 9.2         | -33.8          | 0.0        | 0.7        | 48.1         | 54.0         | - <b>5.9</b>       | V           | A         |       |
| 16.500           | 3.0        | 37.2         | 39.7         | 11.8        | -32.1          | 0.0        | 0.7        | 57.3         | 68.2         | -10.9              | V           | Р         |       |
| 5600MHz          |            |              |              |             |                |            |            |              |              |                    |             | _         |       |
| 11.200           | 3.0        | 45.2         | 37.9         | 9.3         | -33.5          | 0.0        | 0.7        | 59.6         | 74.0         | -14.4              | H           | P         |       |
| 11.200<br>16.800 | 3.0<br>3.0 | 33.7         | 37.9<br>40.9 | 9.3         | -33.5<br>-32.0 | 0.0        | 0.7        | 48.1<br>58.2 | 54.0<br>68.2 | -5.9<br>-10.0      | H           | A<br>P    |       |
| 11.200           | 3.0        | 36.7<br>46.5 | 40.9<br>37.9 | 12.0<br>9.3 | -32.0          | 0.0<br>0.0 | 0.7<br>0.7 | 58.2<br>60.9 | 68.2<br>74.0 | -10.0              | H<br>V      | P<br>P    |       |
| 11.200           | 3.0        | 35.5         | 37.9         | 9.3         | -33.5          | 0.0        | 0.7        | 49.9         | 54.0         | -4.1               | v           | A         |       |
| 16.800           | 3.0        | 37.0         | 40.9         | 12.0        | -32.0          | 0.0        | 0.7        | 58.5         | 68.2         | -9.7               | v           | P         |       |
| 5700MHz          |            |              |              |             |                |            |            |              |              |                    |             | -         |       |
| 11.400           | 3.0        | 36.8         | 38.0         | 9.4         | -33.2          | 0.0        | 0.7        | 51.8         | 74.0         | -22.2              | Н           | P         |       |
| 11.400           | 3.0        | 25.7         | 38.0         | 9.4         | -33.2          | 0.0        | 0.7        | 40.6         | 54.0         | - <b>13.4</b>      | H           | A         |       |
| 17.100           | 3.0        | 33.9         | 42.2         | 12.1        | -32.0          | 0.0        | 0.7        | 56.8         | 68.2         | -11.4              | H           | P         |       |
| 11.400           | 3.0        | 40.0         | 38.0         | 9.4         | -33.2          | 0.0        | 0.7        | 54.9         | 74.0         | - <b>19.1</b>      | V           | P         |       |
|                  | 3.0        | 26.9         | 38.0         | 9.4         | -33.2          | 0.0        | 0.7        | 41.8         | 54.0         | -12.2              | V           | A         |       |
| 11.400<br>17.100 | 3.0        | 33.3         | 42.2         | 12.1        | -32.0          | 0.0        | 0.7        | 56.2         | 68.2         | -12.0              | V           | P         |       |

Page 267 of 344

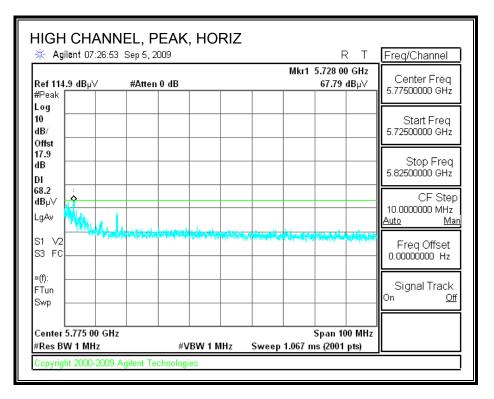
#### **PIFA ANTENNA**

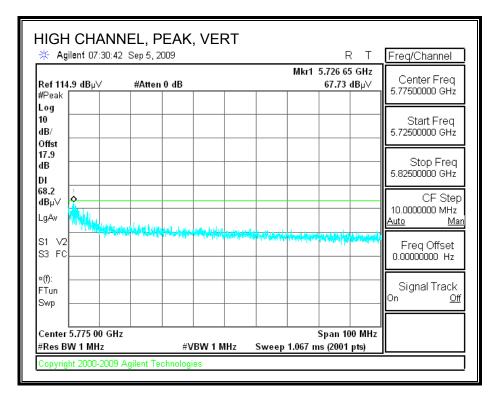

#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**






Page 268 of 344


#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**



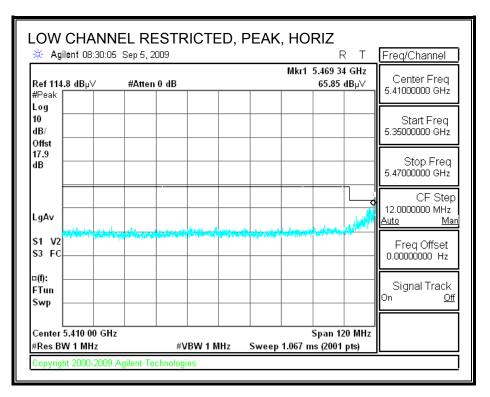


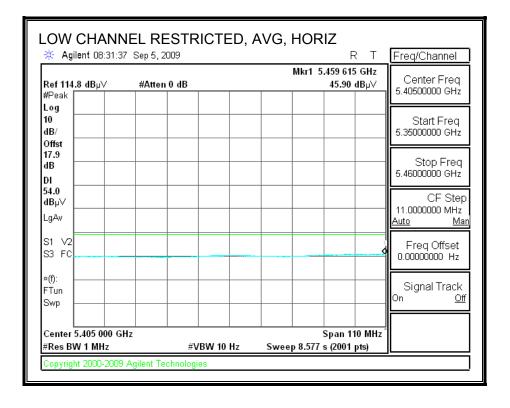

Page 269 of 344

#### AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



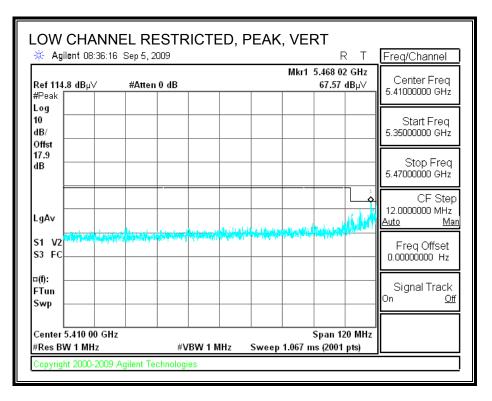


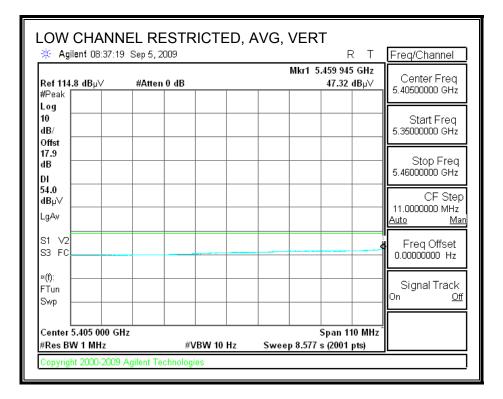

Page 270 of 344


| Test Engr        |            | Devin C      | hang                          |             |                |            |            |              |              |                |             |           |       |  |
|------------------|------------|--------------|-------------------------------|-------------|----------------|------------|------------|--------------|--------------|----------------|-------------|-----------|-------|--|
| Date:            |            | 09/13/08     | -                             |             |                |            |            |              |              |                |             |           |       |  |
| Project #        |            | 09J1278      | 4                             |             |                |            |            |              |              |                |             |           |       |  |
| Company          |            | Mitsumi      | i                             |             |                |            |            |              |              |                |             |           |       |  |
| EUT Desc         | ription:   | EUT(PIF.     | EUT(PIFA antenna) with Laptop |             |                |            |            |              |              |                |             |           |       |  |
| Mode Op          | er:        | Tx_a mo      | de                            |             |                |            |            |              |              |                |             |           |       |  |
|                  | f          | Measuren     | nent Freq                     | quency      | Amp            | Preamp (   | Gain       |              |              | Average        | Field Stren | gth Limit |       |  |
|                  | Dist       | Distance     |                               |             | D Corr         | Distance   | Correc     | et to 3 me   | ters         | Peak Fiel      | ld Strength | Limit     |       |  |
| Read             |            | Analyzer     | Avg                           | Average     | Field S        | trength @  | 3 m        | Margin v     | s. Average   | Limit          |             |           |       |  |
|                  | AF         | Antenna      | Factor                        |             | Peak           | Calculate  | d Peak     | Field Stre   | ength        | Margin v       | s. Peak Lis | nit       |       |  |
|                  | CL         | Cable Lo     | 88                            |             | HPF            | High Pas   | s Filter   | r            |              |                |             |           |       |  |
| f                | Dist       | Read         | AF                            | CL          | Amp            | D Corr     | Fltr       | Corr.        | Limit        | Mangin         | Ant. Pol.   | Det.      | Notes |  |
| GHz              | (m)        | dBuV         | dB/m                          | dB          | dB             | dB         | dB         |              | dBuV/m       |                | V/H         | P/A/QP    | Hotes |  |
| 5500MH2          |            |              |                               |             |                |            |            |              |              |                |             |           |       |  |
| 11.000           | 3.0        | 40.2         | 37.7                          | 9.2         | -33.8          | 0.0        | 0.7        | 54.1         | 74.0         | -19.9          | Н           | P         |       |  |
| 11.000           | 3.0        | 28.7         | 37.7                          | 9.2         | -33.8          | 0.0        | 0.7        | 42.7         | 54.0         | -11.3          | Н           | A         |       |  |
| 16.500           | 3.0        | 34.7         | 39.7                          | 11.8        | -32.1          | 0.0        | 0.7        | 54.8         | 68.2         | -13.4          | H           | P         |       |  |
| 11.000           | 3.0        | 45.6         | 37.7                          | 9.2         | -33.8          | 0.0        | 0.7        | 59.6         | 74.0         | -14.4          | V           | P         |       |  |
| 11.000           | 3.0        | 32.7         | 37.7                          | 9.2         | -33.8          | 0.0        | 0.7        | 46.7         | 54.0         | -7.3           | V           | A         |       |  |
| 16.500           | 3.0        | 37.9         | 39.7                          | 11.8        | -32.1          | 0.0        | 0.7        | 58.0         | 68.2         | -10.2          | V           | Р         |       |  |
| 5600MH2          |            |              |                               |             |                |            |            |              |              |                |             | _         |       |  |
| 11.200           | 3.0        | 45.6         | 37.9                          | 9.3         | -33.5          | 0.0        | 0.7        | 60.0<br>46.1 | 74.0         | -14.0          | H           | P         |       |  |
| 11.200<br>16.800 | 3.0<br>3.0 | 31.6<br>35.3 | 37.9<br>40.9                  | 9.3<br>12.0 | -33.5<br>-32.0 | 0.0<br>0.0 | 0.7<br>0.7 | 46.1         | 54.0<br>68.2 | -7.9<br>-11.4  | H<br>H      | A<br>P    |       |  |
| 11.200           | 3.0        | 44.7         | 37.9                          | 9.3         | -33.5          | 0.0        | 0.7        | 59.2         | 74.0         | -11.4<br>-14.8 | v           | P         |       |  |
| 11.200           | 3.0        | 32.9         | 37.9                          | 9.3         | -33.5          | 0.0        | 0.7        | 47.3         | 54.0         | -6.7           | v           | A         |       |  |
| 16.800           | 3.0        | 36.1         | 40.9                          | 12.0        | -32.0          | 0.0        | 0.7        | 57.6         | 68.2         | -10.6          | v           | P         |       |  |
| 5700MH2          |            |              |                               |             |                |            |            |              |              | 1              |             |           |       |  |
| 11.400           | 3.0        | 36.3         | 38.0                          | 9.4         | -33.2          | 0.0        | 0.7        | 51.2         | 74.0         | -22.8          | H           | P         |       |  |
| 11.400           | 3.0        | 24.8         | 38.0                          | 9.4         | -33.2          | 0.0        | 0.7        | 39.7         | 54.0         | -14.3          | H           | Α         |       |  |
| 17.100           | 3.0        | 33.9         | 42.2                          | 12.1        | -32.0          | 0.0        | 0.7        | 56.9         | 68.2         | -11.3          | H           | P         |       |  |
| 11.400           | 3.0        | 39.9         | 38.0                          | 9.4         | -33.2          | 0.0        | 0.7        | 54.8         | 74.0         | -19.2          | V           | P         |       |  |
|                  | 3.0        | 28.4         | 38.0                          | 9.4         | -33.2          | 0.0        | 0.7        | 43.3         | 54.0         | -10.7          | V           | A         |       |  |
| 11.400<br>17.100 | 3.0        | 33.6         | 42.2                          | 12.1        | -32.0          | 0.0        | 0.7        | 56.6         | 68.2         | - <b>11.6</b>  | V           | Р         |       |  |

Page 271 of 344

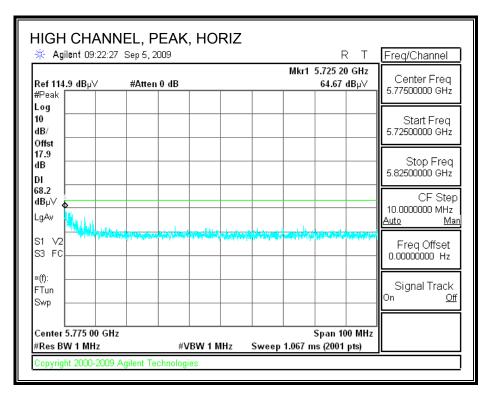
# 8.2.8. 802.11n HT20 MODE IN THE 5.6 GHz BAND

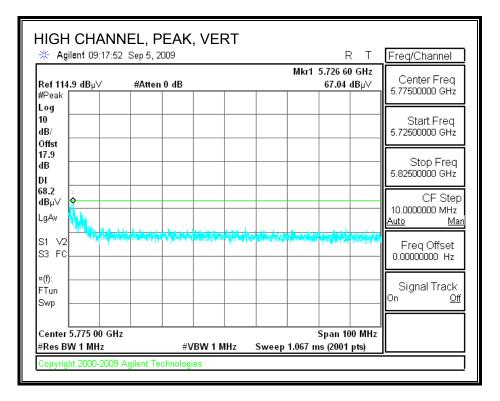

#### DIPOLE ANTENNA - RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)






Page 272 of 344


#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**





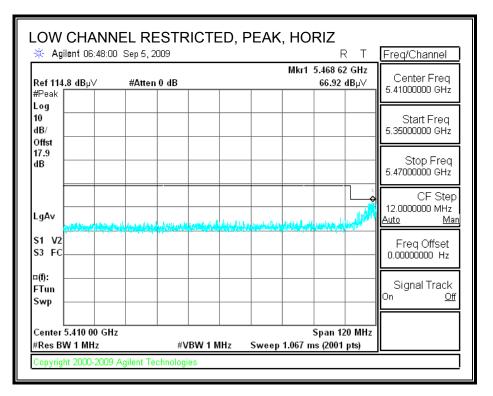

Page 273 of 344

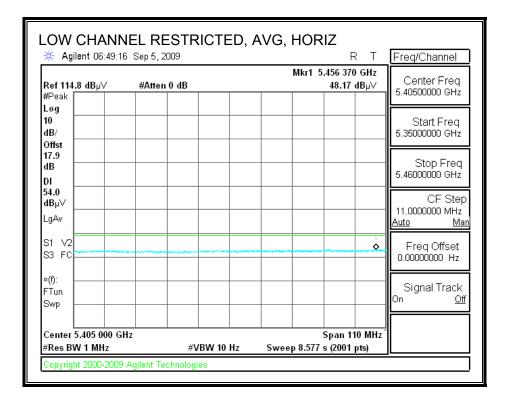
#### AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





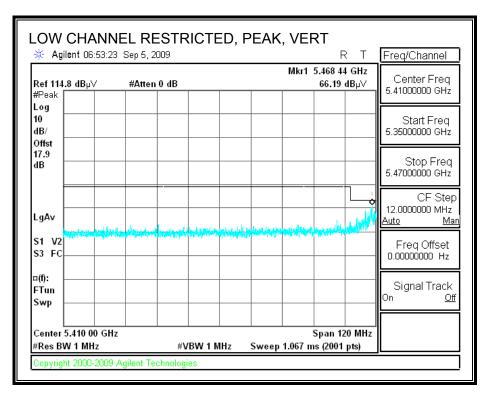
Page 274 of 344

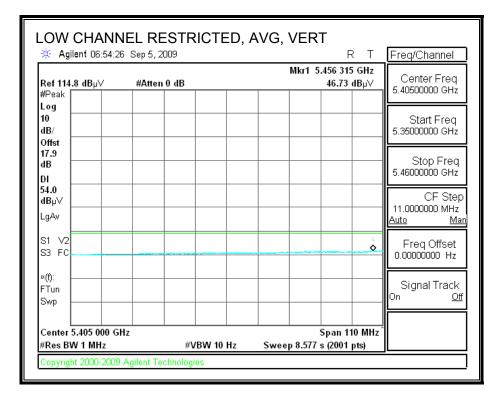

#### HARMONICS AND SPURIOUS EMISSIONS


| Test Engr        |            | Devin C      | hang         |            |                |            |            |              |                 |                |                  |                |       |
|------------------|------------|--------------|--------------|------------|----------------|------------|------------|--------------|-----------------|----------------|------------------|----------------|-------|
| Date:            |            | 09/13/08     | -            |            |                |            |            |              |                 |                |                  |                |       |
| Project #        | :          | 09J1278      | 4            |            |                |            |            |              |                 |                |                  |                |       |
| Company          | <b>7</b> : | Mitsumi      | i            |            |                |            |            |              |                 |                |                  |                |       |
| EUT Desc         | ription:   | EUT(Dip      | ole ante     | nna) 1     | with Lag       | ptop       |            |              |                 |                |                  |                |       |
| Mode Op          | er:        | Tx_HT20      | )            |            |                |            |            |              |                 |                |                  |                |       |
|                  | f          | Measuren     |              |            | -              | Preamp (   |            |              |                 | _              | Field Stren      | -              |       |
|                  | Dist       | Distance     |              |            |                | Distance   |            |              |                 |                | ld Strength      |                |       |
|                  | Read       | Analyzer     |              |            | Avg            | _          |            | trength @    |                 | _              | s. Average       |                |       |
|                  | AF         | Antenna      |              |            | Peak           |            |            | Field Stre   | ength           | Margin v       | s. Peak Lis      | mit            |       |
|                  | CL         | Cable Lo     | 55           |            | HPF            | High Pas   | s Filter   | r            |                 |                |                  |                |       |
| f                | Dist       | Read         | AF           | CL         |                | D Corr     | 171.       | Corr.        | <b>T</b> 1 1 1  | N              | A                | Det.           | Notes |
| GHz              | (m)        | dBuV         | dB/m         | dB         | Amp<br>dB      | dB         | Fltr<br>dB |              | Limit<br>dBuV/m |                | Ant. Pol.<br>V/H | Det.<br>P/A/QP | Notes |
| 5500MH2          |            | abuv         | ub/m         | <u>an</u>  | ab             | ab         | ab         | abuv/m       | abuv/m          |                | V/11             | ringr          |       |
| 11.000           | 3.0        | 39.1         | 37.7         | 9.2        | -33.8          | 0.0        | 0.7        | 53.0         | 74.0            | -21.0          | н                | Р              |       |
| 11.000           | 3.0        | 27.2         | 37.7         | 9.2        | -33.8          | 0.0        | 0.7        | 41.2         | 54.0            | -12.8          | H                | Ā              |       |
| 16.500           | 3.0        | 33.8         | 39.7         | 11.8       | -32.1          | 0.0        | 0.7        | 53.9         | 68.2            | -14.3          | H                | P              |       |
| 11.000           | 3.0        | 44.7         | 37.7         | 9.2        | -33.8          | 0.0        | 0.7        | 58.6         | 74.0            | -15.4          | V                | P              |       |
| 11.000           | 3.0        | 32.3         | 37.7         | 9.2        | -33.8          | 0.0        | 0.7        | 46.2         | 54.0            | - <b>7.8</b>   | V                | A              |       |
| 16.500           | 3.0        | 36.6         | 39.7         | 11.8       | -32.1          | 0.0        | 0.7        | 56.7         | 68.2            | -11.5          | V                | Р              |       |
| 5600MH2          |            |              |              |            |                |            |            |              |                 |                |                  | _              |       |
| 11.200<br>11.200 | 3.0<br>3.0 | 46.1<br>33.6 | 37.9         | 9.3<br>9.3 | -33.5<br>-33.5 | 0.0<br>0.0 | 0.7<br>0.7 | 60.5<br>48.1 | 74.0<br>54.0    | -13.5          | H<br>H           | P              |       |
| 16.800           | 3.0        | 36.5         | 37.9<br>40.9 | 9.5        | -33.5          | 0.0        | 0.7        | 40.1<br>58.1 | 54.0<br>68.2    | -5.9<br>-10.1  | H                | A<br>P         |       |
| 11.200           | 3.0        | 46.1         | 37.9         | 9.3        | -33.5          | 0.0        | 0.7        | 60.5         | 74.0            | -13.5          | v                | P              |       |
| 11.200           | 3.0        | 34.5         | 37.9         | 9.3        | -33.5          | 0.0        | 0.7        | 48.9         | 54.0            | -5.1           | V                | A              |       |
| 16.800           | 3.0        | 37.8         | 40.9         | 12.0       | -32.0          | 0.0        | 0.7        | 59.3         | 68.2            | - <b>8.9</b>   | V                | P              |       |
| 5700MH2          | 5          |              | ļ            |            |                |            |            | ļ            |                 |                |                  |                |       |
| 11.400           | 3.0        | 39.4         | 38.0         | 9.4        | -33.2          | 0.0        | 0.7        | 54.3         | 74.0            | - <b>19.7</b>  | H                | Р              |       |
| 11.400           | 3.0        | 27.0         | 38.0         | 9.4        | -33.2          | 0.0        | 0.7        | 42.0         | 54.0            | -12.0          | H                | A              |       |
| 17.100           | 3.0        | 33.1         | 42.2         | 12.1       | -32.0          | 0.0        | 0.7        | 56.1         | 68.2            | -12.1          | H<br>V           | P              |       |
| 11.400<br>11.400 | 3.0<br>3.0 | 38.7<br>26.7 | 38.0<br>38.0 | 9.4<br>9.4 | -33.2<br>-33.2 | 0.0        | 0.7<br>0.7 | 53.6<br>41.7 | 74.0<br>54.0    | -20.4<br>-12.3 | v                | P<br>A         |       |
| 17.100           | 3.0        | 33.3         | ·            | 12.1       | -32.0          | 0.0        | 0.7        | 56.3         | 68.2            | -11.9          | v                | P              |       |
|                  |            |              |              |            |                | 010        |            |              |                 |                | •                | •              |       |

Page 275 of 344

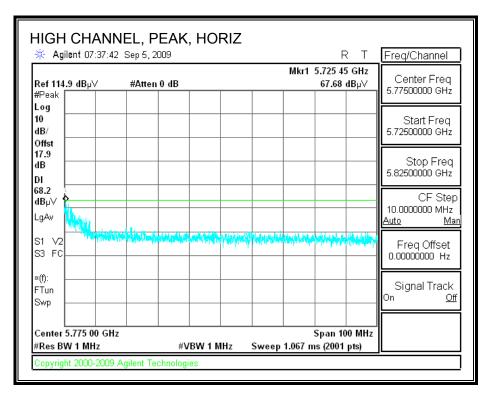
#### **PIFA ANTENNA**

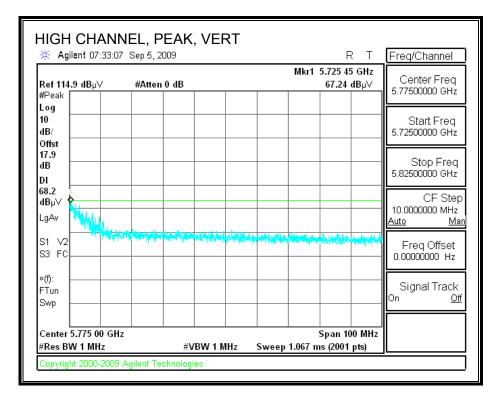

#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**






Page 276 of 344


#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**





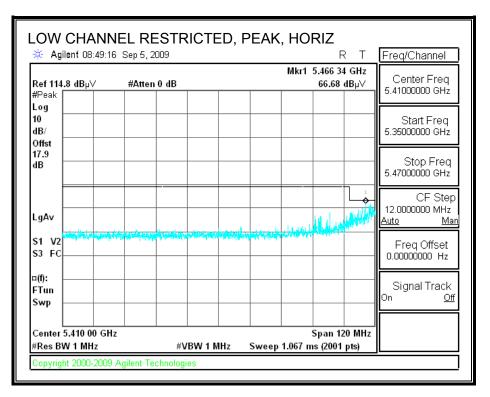

Page 277 of 344

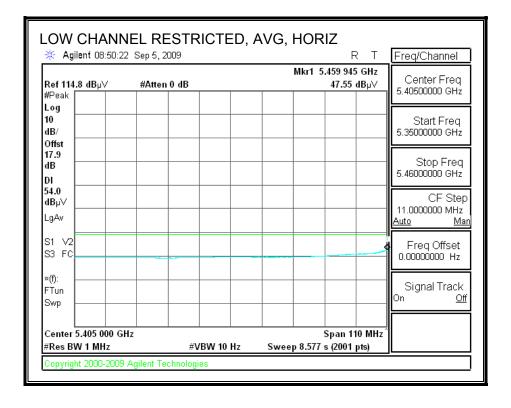
#### AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





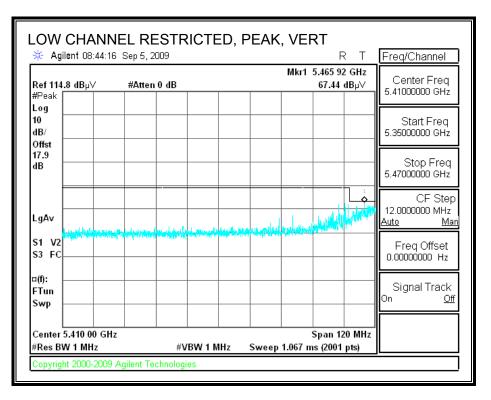
Page 278 of 344

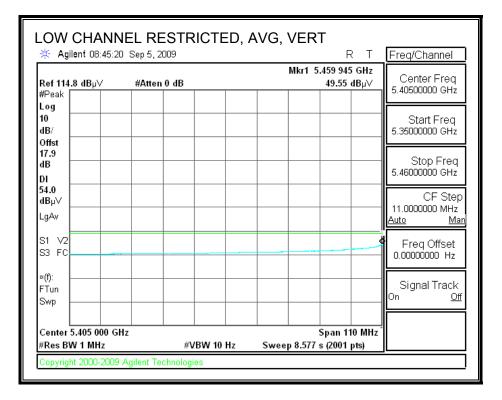

#### HARMONICS AND SPURIOUS EMISSIONS


| Test Engr        |            | Devin C      | hang         |            |                |              |            |              |                 |                    |                  |                |       |
|------------------|------------|--------------|--------------|------------|----------------|--------------|------------|--------------|-----------------|--------------------|------------------|----------------|-------|
| Date:            |            | 09/13/08     | -            |            |                |              |            |              |                 |                    |                  |                |       |
| Project #        | :          | 09J1278      | 4            |            |                |              |            |              |                 |                    |                  |                |       |
| Company          |            | Mitsumi      | i            |            |                |              |            |              |                 |                    |                  |                |       |
| EUT Desc         | ription:   | EUT(PIF.     | A anten      | na) wi     | ith Lapt       | ор           |            |              |                 |                    |                  |                |       |
| Mode Op          | er:        | Tx_HT20      | )            |            |                |              |            |              |                 |                    |                  |                |       |
|                  | f          | Measuren     | nent Free    | quency     | Amp            | Preamp (     | Gain       |              |                 | Average            | Field Stren      | gth Limit      |       |
|                  | Dist       | Distance     |              |            | D Corr         | Distance     |            |              |                 |                    | ld Strength      |                |       |
|                  | Read       | Analyzer     |              |            | Avg            | _            |            | trength @    |                 | _                  | s. Average       |                |       |
|                  | AF         | Antenna      |              |            | Peak           |              |            | Field Stre   | ength           | Margin v           | s. Peak Li       | mit            |       |
|                  | CL         | Cable Lo     | 55           |            | HPF            | High Pas     | s Filter   | r            |                 |                    |                  |                |       |
| f                | Dist       | Read         | AF           | CT         |                | D.C.         | 171.       | Corr.        | T 1 1           |                    | A                | D              | Notes |
| GHz              | (m)        | dBuV         | Ar<br>dB/m   | CL<br>dB   | Amp<br>dB      | D Corr<br>dB | Fltr<br>dB |              | Limit<br>dBuV/m |                    | Ant. Pol.<br>V/H | Det.<br>P/A/QP | Notes |
| 5500MH2          |            | abuv         | db/m         | <u>an</u>  | <u>an</u>      | <u>ab</u>    | w          | abuv/m       | abuv/m          | ab                 | V/11             | ringr          |       |
| 11.000           | 3.0        | 41.4         | 37.7         | 9.2        | -33.8          | 0.0          | 0.7        | 55.3         | 74.0            | -18.7              | н                | P              |       |
| 11.000           | 3.0        | 29.3         | 37.7         | 9.2        | -33.8          | 0.0          | 0.7        | 43.2         | 54.0            | -10.7              | H                | A              |       |
| 16.500           | 3.0        | 35.5         | 39.7         | 11.8       | -32.1          | 0.0          | 0.7        | 55.6         | 68.2            | -12.6              | H                | P              |       |
| 11.000           | 3.0        | 44.4         | 37.7         | 9.2        | -33.8          | 0.0          | 0.7        | 58.3         | 74.0            | -15.7              | V                | P              |       |
| 11.000           | 3.0        | 32.1         | 37.7         | 9.2        | -33.8          | 0.0          | 0.7        | 46.0         | 54.0            | - <mark>8.0</mark> | V                | A              |       |
| 16.500           | 3.0        | 36.9         | 39.7         | 11.8       | -32.1          | 0.0          | 0.7        | 57.0         | 68.2            | -11.2              | V                | Р              |       |
| 5600MH2          |            |              |              |            |                |              |            |              |                 |                    |                  | _              |       |
| 11.200<br>11.200 | 3.0<br>3.0 | 43.6<br>30.1 | 37.9         | 9.3<br>9.3 | -33.5<br>-33.5 | 0.0<br>0.0   | 0.7<br>0.7 | 58.0<br>44.5 | 74.0<br>54.0    | -16.0              | H<br>H           | P              |       |
| 16.800           | 3.0        | 35.4         | 37.9<br>40.9 | 9.5        | -33.5          | 0.0          | 0.7        | 57.0         | 54.0<br>68.2    | -9.5<br>-11.2      | H                | A<br>P         |       |
| 11.200           | 3.0        | 42.9         | 37.9         | 9.3        | -33.5          | 0.0          | 0.7        | 57.3         | 74.0            | -16.7              | v                | P              |       |
| 11.200           | 3.0        | 30.4         | 37.9         | 9.3        | -33.5          | 0.0          | 0.7        | 44.8         | 54.0            | -9.2               | V                | A              |       |
| 16.800           | 3.0        | 35.4         | 40.9         | 12.0       | -32.0          | 0.0          | 0.7        | 56.9         | 68.2            | -11.3              | V                | P              |       |
| 5700MH2          | 5          |              |              |            | (              | ļ            |            |              |                 | ĮĮ                 |                  |                |       |
| 11.400           | 3.0        | 36.3         | 38.0         | 9.4        | -33.2          | 0.0          | 0.7        | 51.2         | 74.0            | - <b>22.8</b>      | H                | Р              |       |
| 11.400           | 3.0        | 24.2         | 38.0         | 9.4        | -33.2          | 0.0          | 0.7        | 39.2         | 54.0            | -14.8              | H                | A              |       |
| 17.100           | 3.0        | 32.5         | 42.2         | 12.1       | -32.0          | 0.0          | 0.7        | 55.4         | 68.2            | -12.8              | H                | P              |       |
| 11.400<br>11.400 | 3.0        | 39.3<br>27.4 | 38.0<br>38.0 | 9.4<br>9.4 | -33.2<br>-33.2 | 0.0<br>0.0   | 0.7<br>0.7 | 54.2<br>42.3 | 74.0<br>54.0    | -19.8<br>-11.7     | v<br>v           | P<br>A         |       |
|                  | 3.0        | 33.3         | 42.2         | 12.1       | -32.0          | 0.0          | 0.7        | 56.2         | 68.2            | -11.7              | v                | P              |       |
| 17.100           |            |              |              |            |                |              | ~~~        |              |                 |                    | *                | •              |       |

Page 279 of 344

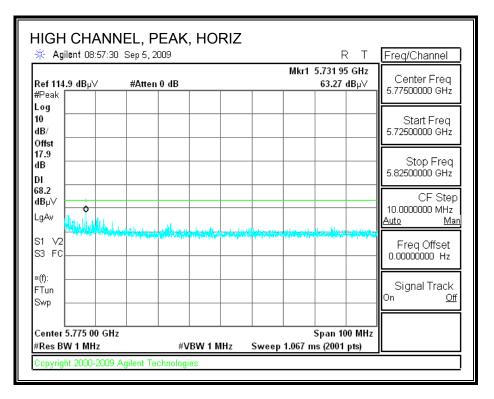
# 8.2.9. 802.11n HT40 MODE IN THE 5.6 GHz BAND

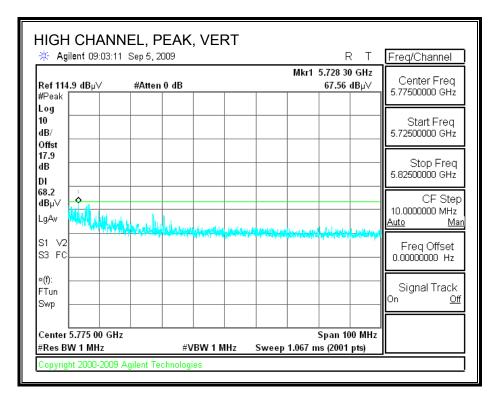

#### DIPOLE ANTENNA - RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)






Page 280 of 344


#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**





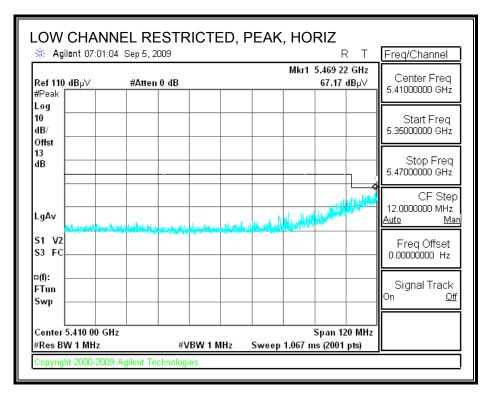

Page 281 of 344

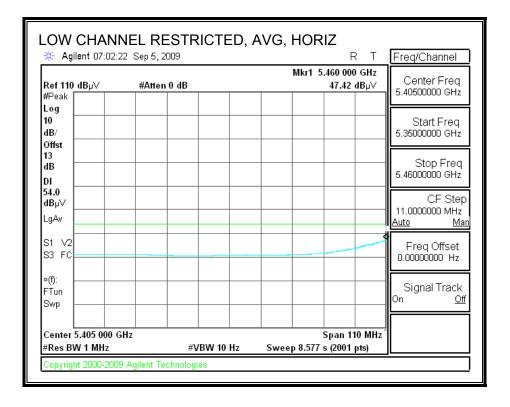
#### AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





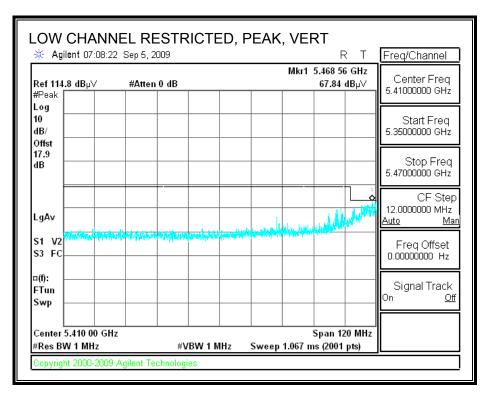
Page 282 of 344

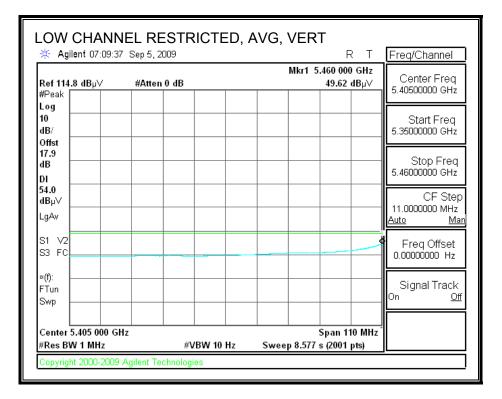

#### HARMONICS AND SPURIOUS EMISSIONS


| Test Engr          |            | Devin C      | <b>.</b>     |             |                |            |            |              |              |               |                  |                |       |
|--------------------|------------|--------------|--------------|-------------|----------------|------------|------------|--------------|--------------|---------------|------------------|----------------|-------|
| Test Engr<br>Date: | •          | 09/13/08     | -            |             |                |            |            |              |              |               |                  |                |       |
| Project #          |            | 09J1278      |              |             |                |            |            |              |              |               |                  |                |       |
| Company            |            | Mitsumi      |              |             |                |            |            |              |              |               |                  |                |       |
|                    |            | EUT(Dip      |              |             | rith I a       | nton       |            |              |              |               |                  |                |       |
| Mode Op            | -          | Tx HT40      |              | inna) (     | with La        | prop       |            |              |              |               |                  |                |       |
| atoue Op           | f.         | Measuren     |              | money       | Amo            | Preamp (   | Cain       |              |              | Average       | Field Stren      | eth Limit      |       |
|                    | Dist       | Distance     |              |             | -              | Distance   |            | t to 3 ma    | tors         | _             | ld Strength      | -              |       |
|                    | Read       | Analyzer     |              |             | Avg            |            |            | trength @    |              |               | s. Average       |                |       |
|                    | AF         | Antenna      |              |             | Peak           | _          |            | Field Stre   |              | _             | s. Peak Lis      |                |       |
|                    | CL         | Cable Los    |              |             | HPF            | High Pas   |            |              | mgtm         | iviaigii v    | o. I Car Lu      |                |       |
| f                  | Dist       | Read         | AF           | CL          | Amp            | D Corr     | Fltr       | Corr.        | Limit        | Manala        | Ant Dal          | Det.           | Notes |
| GHz                | (m)        | Kead<br>dBuV | dB/m         | dB          | Amp<br>dB      | dB         | dB         |              | dBuV/m       |               | Ant. Pol.<br>V/H | Det.<br>P/A/QP | notes |
| 5510MHz            |            |              |              |             |                |            |            |              |              |               |                  | -              |       |
| 11.020             | 3.0        | 44.6         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 58.6         | 74.0         | -15.4         | H                | Р              |       |
| 11.020             | 3.0        | 32.5         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 46.5         | 54.0         | -7.5          | H                | A              |       |
| 16.530             | 3.0        | 33.7         | 39.8         | 11.8        | -32.1          | 0.0        | 0.7        | 53.9         | 68.2         | -14.3         | H                | P              |       |
| 11.020             | 3.0        | 45.7         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 59.7         | 74.0         | -14.3         | V                | Р              |       |
| 11.020             | 3.0        | 34.2         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 48.2         | 54.0         | - <b>5.8</b>  | V                | A              |       |
| 16.530             | 3.0        | 38.3         | 39.8         | 11.8        | -32.1          | 0.0        | 0.7        | 58.6         | 68.2         | -9.7          | V                | Р              |       |
| 5590MHz            |            |              |              |             |                |            | ~ -        |              |              |               |                  | _              |       |
| 11.180<br>11.180   | 3.0        | 44.4<br>32.2 | 37.8<br>37.8 | 9.3         | -33.5          | 0.0<br>0.0 | 0.7        | 58.8<br>46.6 | 74.0         | -15.2         | H<br>H           | P              |       |
| 16.770             | 3.0<br>3.0 | 32.2         |              | 9.3<br>11.9 | -33.5<br>-32.1 | 0.0        | 0.7<br>0.7 | 40.0<br>57.5 | 54.0<br>68.2 | -7.4<br>-10.7 | н<br>Н           | A<br>P         |       |
| 11.180             | 3.0        | 41.8         | 37.8         | 9.3         | -33.5          | 0.0        | 0.7        | 56.2         | 74.0         | -10.7         | v                | P<br>P         |       |
| 11.180             | 3.0        | 28.4         | 37.8         | 9.3         | -33.5          | 0.0        | 0.7        | 42.8         | 54.0         | -11.2         | v                | Ā              |       |
| 16.770             | 3.0        | 36.4         | 40.8         | \$¢         | -32.1          | 0.0        | 0.7        | 57.7         | 68.2         | -10.5         | V                | P              |       |
| 5670MHz            |            |              |              |             |                |            |            |              |              | 1             |                  |                |       |
| 11.340             | 3.0        | 37.4         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 52.1         | 74.0         | -21.9         | H                | P              |       |
| 11.340             | 3.0        | 25.2         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 40.0         | 54.0         | <b>-14.0</b>  | H                | Α              |       |
| 17.010             | 3.0        | 34.0         | 41.8         | 12.1        | -32.0          | 0.0        | 0.7        | 56.6         | 68.2         | -11.6         | H                | Р              |       |
| 11.340             | 3.0        | 37.7         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 52.5         | 74.0         | -21.5         | V                | P              |       |
| 11.340<br>17.010   | 3.0        | 25.1         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 39.8         | 54.0         | -14.2         | <u>v</u>         | A              |       |
|                    | 3.0        | 33.9         | 41.8         | 12.1        | -32.0          | 0.0        | 0.7        | 56.4         | 68.2         | -11.8         | V                | P              |       |

Page 283 of 344

#### **PIFA ANTENNA**

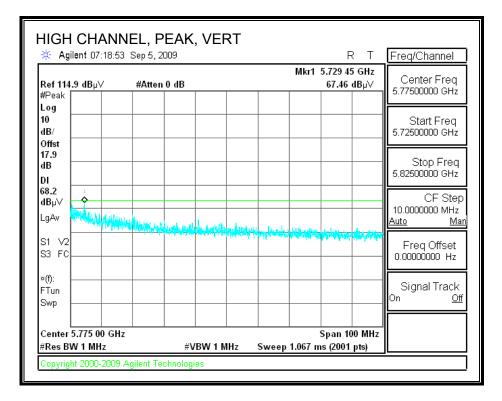

#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**






Page 284 of 344

#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**






Page 285 of 344

#### AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

| HIGH CHANNEL, P                      | -                      |                                                      |                |
|--------------------------------------|------------------------|------------------------------------------------------|----------------|
| 🔆 🔆 Agilent 07:15:24 Sep 5, 2        | 109                    | RT                                                   | Peak Search    |
| Ref 114.9 dBµ∨ #Atten<br>#Peak       | 0 dB                   | Mkr1 5.725 15 GHz<br>66.62 dBµ∨                      | Next Peak      |
| Log<br>10<br>dB/<br>Offst            |                        |                                                      | Next Pk Right  |
| 17.9<br>dB<br>DI                     |                        |                                                      | Next Pk Left   |
| 68.2<br>dBμ√<br>LgAv                 | kilikus kasus setula a | nite and the fact large spin being the               | Min Search     |
| S1 V2<br>S3 FC                       |                        | augu garra jurgan gara gara gara gara gara gara gara | Pk-Pk Search   |
| *(f):<br>FTun<br>Swp                 |                        |                                                      | Mkr © CF       |
| Center 5.775 00 GHz<br>#Res BW 1 MHz |                        | Span 100 MHz<br>eep 1.067 ms (2001 pts)              | More<br>1 of 2 |
| Copyright 2000-2009 Agilent Ter      | cnnologies             |                                                      |                |



Page 286 of 344

#### HARMONICS AND SPURIOUS EMISSIONS

| Test Engr         |            | Devin C      | hang         |             |                |            |            |              |              |               |             |        |       |
|-------------------|------------|--------------|--------------|-------------|----------------|------------|------------|--------------|--------------|---------------|-------------|--------|-------|
| Date:             |            | 09/13/08     |              |             |                |            |            |              |              |               |             |        |       |
| Project #         |            | 09J1278      | 4            |             |                |            |            |              |              |               |             |        |       |
| Company           | 7 <b>1</b> | Mitsumi      | i            |             |                |            |            |              |              |               |             |        |       |
| EUT Desc          | ription:   | EUT(PIF.     | A anten      | na) wi      | th Lapt        | op         |            |              |              |               |             |        |       |
| Mode Op           |            | Tx_HT40      |              |             |                |            |            |              |              |               |             |        |       |
|                   | f          | Measuren     |              | •           | •              | Preamp (   |            |              |              | _             | Field Stren | -      |       |
|                   | Dist       | Distance     |              |             |                | Distance   |            |              |              |               | ld Strength |        |       |
|                   | Read       | Analyzer     | -            |             | Avg            |            |            | trength @    |              |               | s. Average  |        |       |
|                   | AF         | Antenna      |              |             | Peak           |            |            | Field Stre   | ength        | Margin v      | s. Peak Li  | mit    |       |
|                   | CL         | Cable Los    | 15           |             | HPF            | High Pas   | s Filter   | r            |              |               |             |        |       |
| f                 | Dist       | Read         | AF           | CL          | Amp            | D Corr     | Fltr       | Corr.        | Limit        | Margin        | Ant. Pol.   | Det.   | Notes |
| GHz               | (m)        | dBuV         | dB/m         | dB          | dB             | dB         | dB         |              | dBuV/m       |               | V/H         | P/A/QP | notes |
| 5670MH2           |            |              |              |             |                |            |            |              |              |               |             |        |       |
| 11.340            | 3.0        | 36.4         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 51.2         | 74.0         | -22.8         | H           | Р      |       |
| 11.340            | 3.0        | 23.7         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 38.5         | 54.0         | -15.5         | H           | A      |       |
| 17.010            | 3.0        | 33.1         | 41.8         | 12.1        | -32.0          | 0.0        | 0.7        | 55.7         | 68.2         | - <b>12.5</b> | H           | P      |       |
| 11.340            | 3.0        | 38.5         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 53.3         | 74.0         | -20.7         | V           | Р      |       |
| 11.340            | 3.0        | 26.2         | 38.0         | 9.4         | -33.3          | 0.0        | 0.7        | 41.0         | 54.0         | -13.0         | <u>v</u>    | A      |       |
| 17.010            | 3.0        | 34.0         | 41.8         | 12.1        | -32.0          | 0.0        | 0.7        | 56.6         | 68.2         | - <b>11.6</b> | v           | P      |       |
| 5510MHz<br>11.020 | 3.0        | 39.2         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 53.1         | 74.0         | -20.9         | н           | P      |       |
| 11.020            | 3.0        | 26.4         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 40.4         | 54.0         | -13.6         | H           | A      |       |
| 16.530            | 3.0        | 33.9         |              | 11.8        | -32.1          | 0.0        | 0.7        | 54.2         | 68.2         | -14.0         | H           | P      |       |
| 11.020            | 3.0        | 42.0         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 56.0         | 74.0         | - <b>18.0</b> | V           | P      |       |
| 11.020            | 3.0        | 29.9         | 37.7         | 9.2         | -33.7          | 0.0        | 0.7        | 43.8         | 54.0         | -10.2         | V           | A      |       |
| 16.530            | 3.0        | 33.9         | 39.8         | 11.8        | -32.1          | 0.0        | 0.7        | 54.2         | 68.2         | -14.0         | V           | Р      |       |
| 5590MHz           |            |              |              |             |                |            |            |              |              |               |             | _      |       |
| 11.180<br>11.180  | 3.0<br>3.0 | 42.1<br>29.8 | 37.8<br>37.8 | 9.3<br>9.3  | -33.5<br>-33.5 | 0.0<br>0.0 | 0.7<br>0.7 | 56.5<br>44.2 | 74.0<br>54.0 | -17.5         | H<br>H      | P      |       |
| 16.770            | 3.0        | 29.8<br>33.6 |              | 9.3<br>11.9 | -33.5          | 0.0        | 0.7        | 44.2<br>55.0 | 54.0<br>68.2 | -9.8<br>-13.2 | H<br>H      | A<br>P |       |
| 11.180            | 3.0        | 42.5         | 37.8         | 9.3         | -33.5          | 0.0        | 0.7        | 56.9         | 74.0         | -17.1         | v           | P      |       |
| 11.180            | 3.0        | 30.2         | 37.8         | 9.3         | -33.5          | 0.0        | 0.7        | 44.6         | 54.0         | -9.4          | v           | Ā      |       |
|                   | 3.0        | 34.3         | 40.8         | 11.9        | -32.1          | 0.0        | 0.7        | 55.7         | 68.2         | -12.5         | V           | P      |       |
| 16.770            |            |              |              |             |                |            |            |              |              |               |             |        |       |

Page 287 of 344

# 8.3. RECEIVER ABOVE 1 GHz

# 8.3.1. 20 MHz BANDWIDTH IN THE 5.2 GHz BAND

DIPOLE ANTENNA

| Cest Engr:<br>Date:<br>Project #:<br>Company:<br>CUT Descripti |             | Devin C<br>09/04/08<br>09J1278<br>Mitsumi | -       |       |           |             |        |              |        |               |               |           |       |
|----------------------------------------------------------------|-------------|-------------------------------------------|---------|-------|-----------|-------------|--------|--------------|--------|---------------|---------------|-----------|-------|
| Date:<br>Project #:<br>Company:<br>EUT Descripti               |             | 09/04/08<br>09J1278                       | -       |       |           |             |        |              |        |               |               |           |       |
| Company:<br>CUT Descripti                                      |             |                                           | 4       |       |           |             |        |              |        |               |               |           |       |
| Company:<br>CUT Descripti                                      |             | Mitaumi                                   |         |       |           |             |        |              |        |               |               |           |       |
| UT Descripti                                                   |             |                                           |         |       |           |             |        |              |        |               |               |           |       |
| -                                                              | ion:        |                                           |         | nna)  | with La   | nton        |        |              |        |               |               |           |       |
| Mode Oper:                                                     |             | Rx BW=                                    |         |       |           |             |        |              |        |               |               |           |       |
| f                                                              |             | Measuren                                  |         |       | Amo       | Preamp (    | Gain   |              |        | Average       | Field Stren   | eth Limit |       |
| Di                                                             | st          | Distance                                  |         |       | -         | Distance    |        | nt to 3 me   | ters   | _             | ld Strength   | -         |       |
|                                                                | ad          | Analyzer                                  |         |       | Avg       |             |        | trength @    |        |               | vs. Average   |           |       |
| AF                                                             |             | Antenna                                   | _       |       | Peak      | -           |        | c Field Stre |        | _             | /s. Peak Lir  |           |       |
| CL                                                             |             | Cable Los                                 |         |       | HPF       | High Pas    |        |              |        | inargin V     | S. I Cak Lill |           |       |
| CL                                                             | -           | Cable LO                                  |         |       |           | 111511 1.43 | sinte  |              |        |               |               |           |       |
| f D                                                            | Dist        | Read                                      | AF      | CL    | Amp       | D Corr      | Fltr   | Corr.        | Limit  | Margin        | Ant. Pol.     | Det.      | Notes |
|                                                                | m)          | dBuV                                      | dB/m    |       | dB        | dB          | dB     | :            | dBuV/m |               | V/H           | P/A/QP    |       |
|                                                                | 3.0         | 57.6                                      | 25.2    |       |           |             | 0.0    | 49.6         | 74.0   | -24.4         | V             | Р         |       |
|                                                                | 3.0         | 44.1                                      | 25.2    | ¢     | -35.9     | 0.0         | 0.0    | 36.1         | 54.0   | -17.9         | v             | Ā         |       |
|                                                                | 3.0         | 59.4                                      | 26.4    | ¢     | -35.6     | 0.0         | 0.0    | 53.3         | 74.0   | -20.7         | v             | P         |       |
|                                                                | 3.0         | 43.4                                      | 26.4    | ¢     | -35.6     | 0.0         | 0.0    | 37.3         | 54.0   | -16.7         | V             | Ā         |       |
| L.994 3                                                        | 3.0         | 54.1                                      | 27.6    | 3.5   | -35.4     | 0.0         | 0.0    | 49.8         | 74.0   | -24.2         | V             | P         |       |
| 1.994 3                                                        | 3.0         | 37.3                                      | 27.6    | 3.5   | -35.4     | 0.0         | 0.0    | 33.0         | 54.0   | -21.0         | V             | A         |       |
| 1.330 3                                                        | 3.0         | 55.5                                      | 25.2    | 2.7   | -35.9     | 0.0         | 0.0    | 47.5         | 74.0   | -26.5         | H             | P         |       |
| 1.330 3                                                        | 3 <b>.0</b> | 42.2                                      | 25.2    |       | -35.9     | 0.0         | 0.0    | 34.2         | 54.0   | - <b>19.8</b> | H             | Α         |       |
|                                                                | 3.0         | 55.5                                      | 26.4    |       | -35.6     | 0.0         | 0.0    | 49.4         | 74.0   | -24.6         | H             | P         |       |
|                                                                | 3.0         | 40.2                                      | 26.4    | ¢     | -35.6     | 0.0         | 0.0    | 34.0         | 54.0   | -20.0         | H             | A         |       |
|                                                                | 3.0         | 49.3                                      | 27.6    | o     | ¢         | 0.0         | 0.0    | 44.9         | 74.0   | - <b>29.1</b> | H             | P         |       |
| 1.994 3                                                        | 3.0         | 34.0                                      | 27.6    | 3.5   | -35.4     | 0.0         | 0.0    | 29.7         | 54.0   | -24.3         | H             | A         |       |
|                                                                |             |                                           |         |       |           |             |        |              |        |               |               |           |       |
|                                                                |             |                                           |         |       |           |             |        |              |        |               |               |           |       |
| Rev. 4.1.2.7<br>Note: No oth                                   | er ei       | missions                                  | were de | tecte | l above 1 | he syster   | m noi: | se floor.    |        |               |               |           |       |

# 8.3.2. 20 MHz BANDWIDTH IN THE 5.2 GHz BAND

**PIFA ANTENNA** 

| -                             |            | Measuren<br>tification |              | s, Fre     | mont 5n        | n Chamb    | er         |              |              |                |             |           |       |
|-------------------------------|------------|------------------------|--------------|------------|----------------|------------|------------|--------------|--------------|----------------|-------------|-----------|-------|
| Test Engr                     |            | Devin C                | hang         |            |                |            |            |              |              |                |             |           |       |
| Date:                         |            | 09/04/08               | -            |            |                |            |            |              |              |                |             |           |       |
| Project #:                    |            | 09J1278                | 4            |            |                |            |            |              |              |                |             |           |       |
| Company                       |            | Mitsumi                | L            |            |                |            |            |              |              |                |             |           |       |
| EUT Desc                      | ription:   | EUT(PIF.               | A anten      | na) w      | ith Lapt       | ор         |            |              |              |                |             |           |       |
| Mode Op                       | er:        | Rx_BW=                 | =20MHz       |            |                |            |            |              |              |                |             |           |       |
|                               | f          | Measuren               | nent Freq    | pency      | Amp            | Preamp (   | Gain       |              |              | Average        | Field Stren | gth Limit |       |
|                               | Dist       | Distance               | to Anter     | ina        | D Corr         | Distance   | Correc     | et to 3 me   | eters        | Peak Fie       | ld Strength | Limit     |       |
|                               | Read       | Analyzer               | Reading      |            | Avg            | Average    | Field S    | trength @    | ) 3 m        | Margin v       | s. Average  | Limit     |       |
|                               | AF         | Antenna                | Factor       |            | Peak           | Calculate  | d Peak     | Field Str    | ength        | Margin v       | s. Peak Lis | nit       |       |
|                               | CL         | Cable Los              | 35           |            | HPF            | High Pas   | s Filter   | r            |              |                |             |           |       |
|                               |            |                        | -            |            |                |            |            |              | -            |                |             |           |       |
| f                             | Dist       | Read                   | AF           | CL         |                | D Corr     |            | :            | :            |                | Ant. Pol.   |           | Notes |
| GHz                           | (m)        | dBuV                   | dB/m         | dB         | dB             | dB         | dB         | •            | dBuV/m       |                | V/H         | P/A/QP    |       |
| 1.330                         | 3.0        | 57.6                   | 25.2         | 2.7        | -35.9          | 0.0        | 0.0        | 49.6         | 74.0         | -24.4          | V           | P         |       |
| 1.330                         | 3.0        | 44.0                   | 25.2         | 2.7        | -35.9          | 0.0        | 0.0        | 36.0         | 54.0         | -18.0          | V           | A         |       |
| 1.662                         | 3.0        | 59.0                   | 26.4         | 3.1        | -35.6          | 0.0        | 0.0        | 52.8         | 74.0         | -21.2          | V           | P         |       |
| 1.662<br>1.994                | 3.0<br>3.0 | 43.1<br>52.5           | 26.4<br>27.6 | 3.1<br>3.5 | -35.6<br>-35.4 | 0.0<br>0.0 | 0.0<br>0.0 | 36.9<br>48.1 | 54.0<br>74.0 | -17.1<br>-25.9 | V           | A         |       |
| 1.994<br>1.994                | 3.0        | 36.4                   | 27.6         | 3.5        | -35.4          | 0.0        | 0.0        | 32.0         | 74.0<br>54.0 | -23.9          | V<br>V      | P<br>A    |       |
| 1.330                         | 3.0        | 54.2                   | 25.2         | 2.7        | -35.9          | 0.0        | 0.0        | 46.2         | 74.0         | -27.8          | H           | P         |       |
| 1.330                         | 3.0        | 41.0                   | 25.2         | 2.7        | -35.9          | 0.0        | 0.0        | 33.0         | 54.0         | -21.0          | H           | Ā         |       |
| 1.662                         | 3.0        | 54.9                   | 26.4         | 3.1        | -35.6          | 0.0        | 0.0        | 48.8         | 74.0         | -25.2          | H           | P         |       |
| 1.662                         | 3.0        | 39.7                   | 26.4         | 3.1        | -35.6          | 0.0        | 0.0        | 33.5         | 54.0         | -20.5          | H           | A         |       |
| 1.994                         | 3.0        | 50.3                   | 27.6         | 3.5        | -35.4          | 0.0        | 0.0        | 46.0         | 74.0         | - <b>28.0</b>  | H           | P         |       |
| 1.994                         | 3.0        | 34.9                   | 27.6         | 3.5        | -35.4          | 0.0        | 0.0        | 30.5         | 54.0         | -23.5          | H           | A         |       |
|                               |            |                        |              |            |                | ļ          |            |              |              | ļ              |             |           |       |
| Rev. 4.1.2<br><u>Note: No</u> |            | missions               | were de      | tecte      | l above t      | the system | m noi:     | se floor.    |              |                |             |           |       |

Page 289 of 344

# 8.3.3. 40 MHz BANDWIDTH IN THE 5.2 GHz BAND

DIPOLE ANTENNA

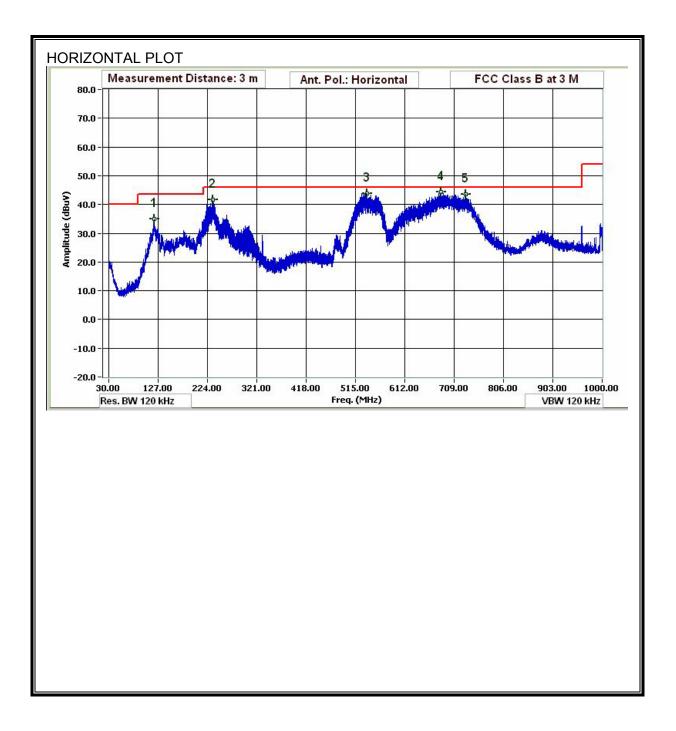
| est Engr               |            | Devin Cl             | -            |            |                |            |          |              |              |                |              |        |       |
|------------------------|------------|----------------------|--------------|------------|----------------|------------|----------|--------------|--------------|----------------|--------------|--------|-------|
| Date:                  |            | 09/04/08             |              |            |                |            |          |              |              |                |              |        |       |
| Project #:             |            | 09J1278              |              |            |                |            |          |              |              |                |              |        |       |
| Company                |            | Mitsumi              |              |            |                |            |          |              |              |                |              |        |       |
|                        |            | EUT(Dip              |              |            | with Laj       | ptop       |          |              |              |                |              |        |       |
| Mode Op                |            | Rx_BW=               |              |            |                |            |          |              |              |                | T: 110       | 4.1.1  |       |
|                        | f          | Measuren             |              |            |                | Preamp (   |          |              |              | _              | Field Stren  | -      |       |
|                        | Dist       | Distance             |              |            |                | Distance   |          |              |              |                | ld Strength  |        |       |
|                        | Read       | Analyzer             | _            |            | Avg            | _          |          | trength @    | -            | -              | s. Average   |        |       |
|                        | AF         | Antenna<br>Cable Los |              |            | Peak<br>HPF    |            |          | Field Str    | ength        | Margin V       | rs. Peak Lir | nit    |       |
|                        | CL         | Cable Los            | 5            |            | nrr            | High Pas   | s Filter | ſ            |              |                |              |        |       |
| f                      | Dist       | Read                 | AF           | CL         | Amp            | D Corr     | Fltr     | Corr.        | Limit        | Margin         | Ant. Pol.    | Det.   | Notes |
| GHz                    | (m)        | dBuV                 | dB/m         | dB         | dB             | dB         | dB       | dBuV/n       | dBuV/m       | dB             | V/H          | P/A/QP |       |
| 1.330                  | 3.0        | 58.6                 | 25.2         | 2.7        | -35.9          | 0.0        | 0.0      | 50.6         | 74.0         | -23.4          | V            | P      |       |
| 1.330                  | 3.0        | 44.1                 | 25.2         | 2.7        | -35.9          | 0.0        | 0.0      | 36.1         | 54.0         | - <b>17.9</b>  | V            | Α      |       |
| 1.662                  | 3.0        | 59.3                 | 26.4         | 3.1        | -35.6          | 0.0        | 0.0      | 53.2         | 74.0         | -20.8          | V            | P      |       |
| 1.662                  | 3.0        | 43.2                 | 26.4         | 3.1        | -35.6          | 0.0        | 0.0      | 37.1         | 54.0         | -16.9          | V            | A      |       |
| 1.994                  | 3.0        | 53.7                 | 27.6         | 3.5        | -35.4          | 0.0        | 0.0      | 49.4         | 74.0         | -24.6          | V            | P      |       |
| L.994                  | 3.0        | 37.1                 | 27.6         | 3.5        | -35.4          | 0.0        | 0.0      | 32.8         | 54.0         | -21.2          | V            | A      |       |
| 1.330<br>1.330         | 3.0<br>3.0 | 55.6<br>42.2         | 25.2<br>25.2 | 2.7        | -35.9<br>-35.9 | 0.0<br>0.0 | 0.0      | 47.6<br>34.2 | 74.0<br>54.0 | -26.4          | H<br>H       | P      |       |
| 1.550                  | 3.0        | 42.2<br>55.5         | 25.2         | 2.7<br>3.1 | -35.9          | 0.0        | 0.0      | 34.2<br>49.3 | 54.0<br>74.0 | -19.8<br>-24.7 | н<br>Н       | A<br>P |       |
| 1.662                  | 3.0        | 40.1                 | 26.4         | 3.1        | -35.6          | 0.0        | 0.0      | 33.9         | 74.0<br>54.0 | -24.7          | H            | A      |       |
| 1.994                  | 3.0        | 49.9                 | 27.6         | 3.5        | -35.4          | 0.0        | 0.0      | 45.5         | 74.0         | -28.5          | H            | P      |       |
| 1.994                  | 3.0        | 34.6                 | 27.6         | 3.5        | -35.4          | 0.0        | 0.0      | 30.2         | 54.0         | -23.8          | H            | Ā      |       |
|                        |            | •                    |              |            |                |            |          |              |              | -              |              |        |       |
| Rev. 4.1.2<br>Note: No |            | missions             | were de      | tected     | l above t      | the system | m noi:   | se floor.    |              |                |              |        |       |

Page 290 of 344

# 8.3.4. 40 MHz BANDWIDTH IN THE 5.2 GHz BAND

**PIFA ANTENNA** 

| Date: 09/04/08<br>Droject #: 09/12784<br>Company: Mitzumi<br>UT Description: EUT(PIFA antenna) with Laptop<br>Mode Oper: Rx_BW=40MHz<br>f Measurement Frequency Amp Preamp Gain Average Field Strength Limit<br>Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit<br>Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit<br>AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit<br>CL Cable Loss HPF High Pass Filter<br>T Dist Read AF CL Amp D Corr Fitr Corr. Limit Margin Ant. Pol. Det. Notes<br>GHz (m) dBuV dB/m dB dB dB dB dB dB dB v/H P/A/QP<br>1.330 3.0 57.7 25.2 2.7 35.9 0.0 0.0 49.7 74.0 -24.3 V P<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project #:       09J12784         Company:       Mitsumi         UTD Description:       EUT(PIFA antenna) with Laptop         Mode Oper:       Rx_BW=40MHz         f       Measurement Frequency Amp       Preamp Gain       Average Field Strength Limit         Dist       Distance to Antenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         Read       Analyzer Reading       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         AF       Antenna Factor       Peak       Calculated Peak Field Strength       Margin vs. Peak Limit         CL       Cable Loss       HPF       High Pass Filter       Vith       P/AQP         M330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       49.7       74.0       -24.3       V       P        330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       35.9       54.0       -18.1       V       A        662       3.0       59.2       2.6.4       3.1       -35.6       0.0       0.0       35.9       54.0       -18.1       V       A        662       3.0       53.3       25.2<                                                                                                                                                                                                                                                                                                                                               | roject #:<br>Company:<br>UT Descri<br>Íode Oper | i <b>ption:</b><br>r:<br>f<br>Dist | 09J12784<br>Mitsumi | 4         |        |          |           |          |            |       |               |             |           |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|---------------------|-----------|--------|----------|-----------|----------|------------|-------|---------------|-------------|-----------|-------|
| Company:         Mitsumi           UT Description:         EUT(PIFA antenna) with Laptop           Mode Oper:         Rx_BW=40MHz           f         Measurement Frequency Amp         Preamp Gain         Average Field Strength Limit           Dist         Distance to Antenna         D Corr         Distance Correct to 3 meters         Peak Field Strength Limit           Read         Analyzer Reading         Avg         Average Field Strength @ 3 m         Margin vs. Average Limit           AF         Antenna Factor         Peak         Calculated Peak Field Strength         Margin vs. Peak Limit           CL         Cable Loss         HPF         High Pass Filter         Margin vs. Peak Limit         Margin vs. Peak Limit           f         Dist         Read         AF         CL         Amp         D Corr         Fltr         Corr.         Limit         Margin vs. Peak Limit           dcf         Dist         Read         AF         CL         Amp         D Corr         Fltr         Corr.         Limit         Margin vs. Peak Limit           dcf         Dist         Read         AF         CL         Amp         D Corr         Fltr         Corr.         Limit         Margin vs. Peak Limit           dside         Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Company:         Mitzumi           UT Description:         EUT(PIFA antenna) with Laptop           Mode Oper:         Rx_BW=40MHz           f         Measurement Frequency Amp         Preamp Gain         Average Field Strength Limit           Dist         Distance to Antenna         D Corr         Distance Correct to 3 meters         Peak Field Strength Limit           Read         Analyzer Reading         Avg         Average Field Strength @ 3 m         Margin vs. Average Limit           AF         Antenna Factor         Peak         Calculated Peak Field Strength         Margin vs. Peak Limit           CL         Cable Loss         HPF         High Pass Filter         Margin vs. Peak Limit         Notes           f         Dist         Read         AF         CL         Amp         D Corr         Fltr         Corr.         Limit         Margin vs. Peak Limit           GHz         (m)         dBuV         dB         dB         dB         dB         dB         V/H         P/A/QP           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         45.0         -18.1         V         A           .662         3.0         53.3         27.6         3.5 <t< th=""><th>Company:<br/>UT Descri<br/>fode Oper</th><th>i<b>ption:</b><br/>r:<br/>f<br/>Dist</th><th>Mitsumi</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                             | Company:<br>UT Descri<br>fode Oper              | i <b>ption:</b><br>r:<br>f<br>Dist | Mitsumi             | -         |        |          |           |          |            |       |               |             |           |       |
| EUT Description:       EUT(PIFA antenna) with Laptop         Mode Oper:       Rx_BW=40MHz         f       Measurement Frequency Amp       Preamp Gain       Average Field Strength Limit         Dist       Distance to Antenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         Read       Analyzer Reading       Average Field Strength @ 3 m       Margin vs. Average Limit         AF       Antenna Factor       Peak       Calculated Peak Field Strength       Margin vs. Peak Limit       Det.       Notes         GHz       (m)       dBuV       dB       dV/m       P/M / QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EUT Description: EUT(PIFA antenna) with Laptop         Mode Oper:       Rx_BW=40MHz       Average Field Strength Limit         f       Measurement Frequency Amp       Preamp Gain       Average Field Strength Limit         Dist       Distance to Antenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         Read       Analyzer Reading       Avy       Average Field Strength @ 3 m       Margin vs. Average Limit         AF       Antenna Factor       Peak       Calculated Peak Field Strength       Margin vs. Peak Limit         CL       Cable Loss       HPF       High Pass Filter       Margin vs. Peak Limit       Notes         f       Dist       Read       AF       CL       Amp       D Corr       Fltr       Corr.       Limit       Margin vs. Peak Limit         1330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       49.7       74.0       -24.3       V       P         .330       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       49.7       74.0       -24.3       V       P         .330       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       43.9                                                                                                                                                                                                                                                                                                          | UT Descri<br>Iode Oper                          | i <b>ption:</b><br>r:<br>f<br>Dist |                     |           |        |          |           |          |            |       |               |             |           |       |
| Mode Oper:       Rx_BW=40MHz       Preamp Gain       Average Field Strength Limit         f       Measurement Frequency Amp<br>Distance to Antenna       D Corr       Distance Correct to 3 meters<br>Average Field Strength Q 3 m       Margin vs. Average Limit         AF       Analyzer Reading<br>AF       Avg       Average Field Strength Q 3 m       Margin vs. Average Limit         CL       Cable Loss       HPF       High Pass Filter       Margin vs. Peak Limit         f       Dist       Read       AF       CL       Amp       D Corr       Fltr       Corr.       Limit       Margin vs. Peak Limit         CL       Cable Loss       HPF       High Pass Filter       Margin vs. Peak       Notes       Notes         GHz       (m)       dBuV       dB/m       dB       dB       dB       dBuV/m       dB       V/H       P/A/QP         .330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       35.0       74.0       -24.3       V       P         .330       3.0       53.3       27.6       3.5       -0.0       0.0       37.0       54.0       -18.1       V       A         .662       3.0       43.1       -35.6       0.0       0.0       32.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mode Oper:       Rx_BW=40MHz       Preamp Gain       Average Field Strength Limit         f       Measurement Frequency Amp       Preamp Gain       Average Field Strength Limit         Dist       Distance to Antenna       D Corr       Distance Correct to 3 meters       Peak Field Strength Limit         Read       Analyzer Reading       Avg       Average Field Strength @ 3 m       Margin vs. Average Limit         AF       Antenna Factor       Peak       Calculated Peak Field Strength       Margin vs. Peak Limit         CL       Cable Loss       HPF       High Pass Filter       Margin vs. Peak Limit       Notes         f       Dist       Read       AF       CL       Amp       D Corr       Flt       Corr.       Limit       Margin vs. Peak Limit         GHz       (m)       dBuV       dB/m       dB       dB       dB       dBuV/m       dB       V/H       P/A/QP         .330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       35.0       74.0       -24.3       V       P         .330       3.0       53.3       27.6       3.5       -0.0       0.0       37.0       54.0       -17.0       V       A         .994       3.                                                                                                                                                                                                                                                                                                                   | íode Oper                                       | r:<br>f<br>Dist                    | EUT(PIFA            |           |        |          |           |          |            |       |               |             |           |       |
| f       Measurement Frequency Amp<br>Dist       Preamp Gain       Average Field Strength Limit         Dist       Distance to Antenna<br>Read       D Corr       Distance Correct to 3 meters<br>Arerage Field Strength @ 3 m       Margin vs. Average Limit         AF       Antenna Factor<br>CL       Peak       Field Strength       @ 3 m         Margin vs.       Average Field Strength       Margin vs. Average Limit       Margin vs. Average Limit         CL       Cable Loss       HPF       Peak       Calculated Peak Field Strength       Margin vs. Peak Limit         Margin vs.       Peak       MB       MB       MB       MB       MB       Margin vs. Peak       Notes         GHz       (m)       dBuV       dB       dB       dB       Corr       Limit       Margin vs. Peak       Notes         1.330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       35.9       54.0       -18.1       V       A         .662       3.0       59.2       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -18.1       V       A         .994       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       32.5       54.0 <th>f       Measurement Frequency Amp<br/>Dist       Preamp Gain       Average Field Strength Limit         Dist       Distance to Antenna<br/>Read       Analyzer Reading<br/>Ar       Average Field Strength @ 3 m<br/>Arenap Field Strength       Margin vs. Average Limit<br/>Margin vs. Average Limit         AF       Antenna Factor<br/>CL       Peak       Field Strength       Margin vs. Average Limit         Margin vs.       Average Field Strength       Margin vs. Average Limit       Margin vs. Average Limit         Margin vs.       BuV       dBuV       dB       dB       Clover       Filt       Corr.       Limit       Margin vs. Peak Limit         Margin vs.       Peak       GB       dB       dB       Corr       Fltr       Corr.       Limit       Margin vs. Peak Limit         Margin vs.       Peak       GB       dB       Corr       Fltr       Corr.       Limit       Margin vs.       Peak       Notes         642       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       37.0       54.0       -18.1       V       A         .662       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       37.0       54.0       -18.1       V       A         .994       3.0&lt;</th> <th></th> <th>f<br/>Dist</th> <th></th> <th>A anten:</th> <th>na) wi</th> <th>ith Lapt</th> <th>ор</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | f       Measurement Frequency Amp<br>Dist       Preamp Gain       Average Field Strength Limit         Dist       Distance to Antenna<br>Read       Analyzer Reading<br>Ar       Average Field Strength @ 3 m<br>Arenap Field Strength       Margin vs. Average Limit<br>Margin vs. Average Limit         AF       Antenna Factor<br>CL       Peak       Field Strength       Margin vs. Average Limit         Margin vs.       Average Field Strength       Margin vs. Average Limit       Margin vs. Average Limit         Margin vs.       BuV       dBuV       dB       dB       Clover       Filt       Corr.       Limit       Margin vs. Peak Limit         Margin vs.       Peak       GB       dB       dB       Corr       Fltr       Corr.       Limit       Margin vs. Peak Limit         Margin vs.       Peak       GB       dB       Corr       Fltr       Corr.       Limit       Margin vs.       Peak       Notes         642       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       37.0       54.0       -18.1       V       A         .662       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       37.0       54.0       -18.1       V       A         .994       3.0<                                                                                                                                                                                                                                                                       |                                                 | f<br>Dist                          |                     | A anten:  | na) wi | ith Lapt | ор        |          |            |       |               |             |           |       |
| Dist<br>Read         Distance to Antenna<br>Analyzer Reading<br>AF         D Corr<br>Antenna Factor<br>CL         D Corr<br>Peak         Distance Correct to 3 meters<br>Average Field Strength @ 3 m<br>Calculated Peak Field Strength         Peak Field Strength Limit<br>Margin vs. Average Limit<br>Margin vs. Average Limit           f         Dist<br>CL         Read<br>Calbe Loss         AF         CL         Amp<br>MB         D Corr<br>MB         Fltr<br>Calculated Peak Field Strength         Margin vs. Average Limit<br>Margin vs. Peak Limit           f         Dist<br>CHz         Read<br>(m)         AF         CL         Amp<br>MB         D Corr<br>MB         Fltr<br>MB         Corr.<br>MB         Limit<br>Margin vs. Peak Limit         Notes           330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         37.0         54.0         -18.1         V         A           .994         3.0         55.3         25.2         2.7         -35.9         0.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dist<br>Read<br>Aralyzer Reading<br>AF<br>CL         D Corr<br>Antenna Factor<br>CL         D Corr<br>Cable Loss         D Corr<br>Peak<br>HPF         Dist<br>Average Field Strength<br>(2) 3 m<br>Calculated Peak Field Strength         Peak Field Strength<br>Margin vs. Average Limit<br>Margin vs. Average Limit           f         Dist<br>CL         Read<br>Cable Loss         AF         CL         Amp<br>B         D Corr<br>B         Fltr<br>CB         Corr.<br>Corr.         Limit<br>Margin vs. Peak Limit         Det.<br>Peak         Notes           f         Dist<br>CHz         MaBu         MB         dB         dB         Corr.         Limit         Margin vs. Peak Limit         Notes           1330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         37.0         54.0         -18.1         V         A           .662         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         37.0         54.0         -18.1         V         A           .994         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.3 <td< th=""><th>1</th><th>Dist</th><th>Rx_BW=</th><th>40MHz</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<> | 1                                               | Dist                               | Rx_BW=              | 40MHz     |        |          |           |          |            |       |               |             |           |       |
| Read<br>AF<br>CL         Analyzer Reading<br>AF<br>Cable Loss         Avg<br>Antenna Factor<br>Cable Loss         Average Field Strength<br>(Calculated Peak Field Strength)<br>HPF         Margin vs. Average Limit<br>Margin vs. Peak Limit           f         Dist<br>CHz         Read<br>(m)         AF<br>dBW         CL         Amp<br>dB         D Corr<br>dB         Fltr<br>CB         Corr.<br>dB         Limit<br>Margin vs. Peak Limit         Notes           f         Dist<br>CHz         Read<br>dB/m         AF<br>dB         CL         Amp<br>dB         D Corr         Fltr<br>COR         Limit<br>dBuV/m         Margin vs. Peak Limit           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         45.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         35.9         54.0         -18.1         V         P           .994         3.0         55.3         25.7         -35.9         0.0         0.0         32.5         54.0         -21.5         V         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Read<br>AF<br>CL         Analyzer Reading<br>AF<br>Cable Loss         Avg<br>Antenna Factor<br>Cable Loss         Average Field Strength<br>(Calculated Peak Field Strength)<br>HPF         Margin vs. Average Limit<br>Margin vs. Peak Limit           f         Dist<br>CHz         Read<br>(m)         AF<br>dB/m         CL         Amp<br>dB         D Corr<br>dB         Fltr<br>CB         Corr.         Limit<br>Margin vs. Peak Limit         Det.         Notes           f         Dist<br>CHz         Read<br>dB/m         AF<br>dB         CL         Amp<br>dB         D Corr         Fltr<br>GB         Corr.         Limit<br>Margin vs. Peak Limit         Notes           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         45.9         54.0         -18.1         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -18.1         V         A           .994         3.0         55.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5                                                                                                                                                                          | 1                                               |                                    | Measurem            | ient Freq | uency  | Amp      | Preamp (  | Gain     |            |       | Average       | Field Stren | gth Limit |       |
| AF<br>CL       Antenna Factor<br>Cable Loss       Peak<br>HPF       Calculated Peak Field Strength<br>HBF       Margin vs. Peak Limit         f       Dist<br>CHz       Read<br>(m)       AF<br>dBuV       CL       Amp<br>dB       D Corr<br>dB       Fltr<br>dB       Corr.<br>dB       Limit<br>dB       Margin vs. Peak Limit         i       Dist<br>CHz       Read<br>(m)       AF<br>dB       CL<br>dB       Amp<br>dB       D Corr<br>dB       Fltr<br>dB       Corr.<br>dB       Limit<br>dB       Margin vs. Peak Limit         1.330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       49.7       74.0       -24.3       V       P         .330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       35.9       54.0       -18.1       V       A         .662       3.0       59.2       26.4       3.1       -35.6       0.0       0.0       35.0       74.0       -24.3       V       P         .994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       32.5       54.0       -17.0       V       A         .394       3.0       36.9       27.6       3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AF<br>CL       Antenna Factor<br>Cable Loss       Peak<br>HPF       Calculated Peak Field Strength<br>HBF       Margin vs. Peak Limit         f       Dist<br>CHz       Read<br>(m)       AF<br>dBuV       CL       Amp<br>dB       D Corr<br>dB       Fltr<br>dB       Corr.<br>dB       Limit<br>dB       Margin vs. Peak Limit         i       Dist<br>CHz       Read<br>(m)       AF<br>dB       CL<br>dB       Amp<br>dB       D Corr<br>dB       Fltr<br>dB       Corr.<br>dB       Limit<br>dB       Margin vs. Peak Limit         1.330       3.0       57.7       25.2       2.7       -35.9       0.0       0.0       49.7       74.0       -24.3       V       P         .330       3.0       43.9       25.2       2.7       -35.9       0.0       0.0       35.9       54.0       -18.1       V       A         .662       3.0       59.2       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -18.1       V       A         .994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       33.9       54.0       -21.5       V       A         .330       3.0       41.9       25.2       2.7                                                                                                                                                                                                                                                                                                                                                      |                                                 |                                    | Distance t          | to Anten  | ina    | D Corr   | Distance  | Correc   | et to 3 me | eters | Peak Fie      | ld Strength | Limit     |       |
| CL         Cable Loss         HPF         High Pass Filter           f         Dist<br>(m)         Read<br>(BuV)         AF         CL         Amp<br>(BB         D Corr<br>(BB         Fltr<br>(BB         Corr.<br>(BB         Limit<br>(BB         Margin<br>(BB         Ant. Pol.         Det.         Notes           330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -18.1         V         A           .062         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         35.3         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -26.7         H         P           .330         3.0         54.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL         Cable Loss         HPF         High Pass Filter           f         Dist<br>(m)         Read<br>(BuV)         AF         CL         Amp<br>(BB         D Corr<br>(BB         Fltr<br>(BB         Corr.<br>(BB         Limit<br>(BB         Margin<br>(BB         Ant. Pol.<br>(BB         Det.<br>(PA/QP         Notes           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .300         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -21.5         V         A           .330         3.0         <                                                                                                                                                                                                                                                                                              |                                                 | Read                               | Analyzer            | Reading   |        | Avg      | Average l | Field S  | trength @  | ) 3 m | Margin v      | s. Average  | Limit     |       |
| f         Dist         Read         AF         CL         Amp         D Corr         Fltr         Corr.         Limit         Margin         Ant. Pol.         Det.         Notes           GHz         (m)         dBuV         dB/m         dB         dB         dB         dB         uBuV/mg         dBuV/mg         dB         V/H         P/A/QP           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .300         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f         Dist         Read         AF         CL         Amp         D Corr         Fltr         Corr.         Limit         Margin         Ant. Pol.         Det.         Notes           GHz         (m)         dBuV         dB/m         dB         dB         dB         dB         dB         dB         dB         U/m         Margin         Ant. Pol.         Det.         Notes           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .300         3.0         55.3         25.2         2.7         -35.9         0.0                                                                                                                                                                                                                                                                                                                                                  |                                                 | AF                                 | Antenna I           | Factor    |        | Peak     | Calculate | d Peak   | Field Str  | ength | Margin v      | s. Peak Lis | mit       |       |
| CHz         (m)         dBuV         dB         dB         dB         dB         dB         dB         dB         uV/m         dB         V/H         P/A/QP           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           .662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHz         (m)         dBuV         dB         dB         dB         dB         dB         dB         dB         uVm         dB         V/H         P/A/QP           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           .662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1                                                                                                                                                                                                                                                                                                                                                          |                                                 | CL                                 | Cable Los           | is        |        | HPF      | High Pas  | s Filter | r          |       |               |             |           |       |
| CHz         (m)         dBuV         dB         dB         dB         dB         dB         dB         dB         uV/m         dB         V/H         P/A/QP           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           .662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHz         (m)         dBuV         dB         dB         dB         dB         dB         dB         dB         uVm         dB         V/H         P/A/QP           .330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           .330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           .662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1                                                                                                                                                                                                                                                                                                                                                          |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             | ;         |       |
| 1330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           1330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           1.662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           1.662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           1.994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1 <t< th=""><th>1330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           1330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           1.662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           1.662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           1.994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1         <t< th=""><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>Notes</th></t<></th></t<>                                                                                                                                                      | 1330         3.0         57.7         25.2         2.7         -35.9         0.0         0.0         49.7         74.0         -24.3         V         P           1330         3.0         43.9         25.2         2.7         -35.9         0.0         0.0         35.9         54.0         -18.1         V         A           1.662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           1.662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           1.994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>Notes</th></t<>                                                                                                                                                                                                     |                                                 |                                    |                     |           |        | •        |           |          |            |       |               | -           |           | Notes |
| 1.330       3.0       43.9       25.2       2.7       -35.9       0.0       0.0       35.9       54.0       -18.1       V       A         1.662       3.0       59.2       26.4       3.1       -35.6       0.0       0.0       53.0       74.0       -21.0       V       P         1.662       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -17.0       V       A         .994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       32.5       54.0       -21.5       V       A         .994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       47.3       74.0       -25.1       V       P         .3030       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P          .3030       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       48.1       74.0       -20.1       H       A         .662       3.0       54.3       26.4       3.1 <td< th=""><th>1.330       3.0       43.9       25.2       2.7       -35.9       0.0       0.0       35.9       54.0       -18.1       V       A         1.662       3.0       59.2       26.4       3.1       -35.6       0.0       0.0       53.0       74.0       -21.0       V       P         1.662       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -17.0       V       A         .994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         .994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         .3030       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         .330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       48.1       74.0       -25.9       H       P         .3662       3.0       54.3       26.4       3.1       -35.6</th><th></th><th>~ ~</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th><u> </u></th><th></th><th>-</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                        | 1.330       3.0       43.9       25.2       2.7       -35.9       0.0       0.0       35.9       54.0       -18.1       V       A         1.662       3.0       59.2       26.4       3.1       -35.6       0.0       0.0       53.0       74.0       -21.0       V       P         1.662       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -17.0       V       A         .994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         .994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         .3030       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         .330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       48.1       74.0       -25.9       H       P         .3662       3.0       54.3       26.4       3.1       -35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | ~ ~                                |                     |           |        |          |           |          |            |       | <u> </u>      |             | -         |       |
| .662       3.0       59.2       26.4       3.1       -35.6       0.0       0.0       53.0       74.0       -21.0       V       P         .662       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -17.0       V       A         .994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       37.0       54.0       -17.0       V       A         .994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         .994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -21.5       V       A         .330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       43.3       54.0       -20.1       H       A         .662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         .662       3.0       39.3       26.4       3.1       -35.6 <td< td=""><td>.662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           .662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -25.1         V         P           .994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -25.1         V         P           .994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1         H         A           .662         3.0         54.3         26.4         3.1         -35.6         0.0         0.0         33.1         54.0         -20.9         H</td><td></td><td></td><td>o</td><td></td><td>¢</td><td>¢</td><td>\$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                       | .662         3.0         59.2         26.4         3.1         -35.6         0.0         0.0         53.0         74.0         -21.0         V         P           .662         3.0         43.1         26.4         3.1         -35.6         0.0         0.0         37.0         54.0         -17.0         V         A           .994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -25.1         V         P           .994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -25.1         V         P           .994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           .330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         33.9         54.0         -20.1         H         A           .662         3.0         54.3         26.4         3.1         -35.6         0.0         0.0         33.1         54.0         -20.9         H                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                    | o                   |           | ¢      | ¢        | \$        |          |            |       |               |             |           |       |
| 1.662       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -17.0       V       A         1.994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         1.994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         1.994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       32.5       54.0       -21.5       V       A         1.330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         1.330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       48.1       74.0       -26.7       H       P         1.662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -28.1       H       P         1.662       3.0       39.3       26.4       3.1       -35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.662       3.0       43.1       26.4       3.1       -35.6       0.0       0.0       37.0       54.0       -17.0       V       A         1.994       3.0       53.3       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         1.994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       48.9       74.0       -25.1       V       P         1.994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       32.5       54.0       -21.5       V       A         1.330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         1.330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       48.1       74.0       -26.7       H       P         1.662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -28.9       H       P         1.662       3.0       50.2       27.6       3.5       -35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                                    | ¢                   |           | ¢      | ¢        |           |          |            |       | \$Q           |             |           |       |
| 1.994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -25.1         V         P           1.994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           1.330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         47.3         74.0         -26.7         H         P           .330         3.0         41.9         25.2         2.7         -35.9         0.0         0.0         47.3         74.0         -26.7         H         P           .330         3.0         41.9         25.2         2.7         -35.6         0.0         0.0         48.1         74.0         -20.1         H         A           .662         3.0         54.3         26.4         3.1         -35.6         0.0         0.0         48.1         74.0         -20.9         H         A           .994         3.0         50.2         27.6         3.5         -35.4         0.0         0.0         30.4         54.0         -23.6 <t< td=""><td>1.994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -25.1         V         P           1.994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           1.330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         47.3         74.0         -26.7         H         P           1.330         3.0         41.9         25.2         2.7         -35.9         0.0         0.0         47.3         74.0         -26.7         H         P           1.330         3.0         41.9         25.2         2.7         -35.6         0.0         0.0         48.1         74.0         -26.7         H         P           1.662         3.0         54.3         26.4         3.1         -35.6         0.0         0.0         48.1         74.0         -20.9         H         A           .994         3.0         50.2         27.6         3.5         -35.4         0.0         0.0         45.9         74.0         -28.1</td><td></td><td></td><td>¢</td><td></td><td>¢</td><td>¢</td><td>\$&lt;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                         | 1.994         3.0         53.3         27.6         3.5         -35.4         0.0         0.0         48.9         74.0         -25.1         V         P           1.994         3.0         36.9         27.6         3.5         -35.4         0.0         0.0         32.5         54.0         -21.5         V         A           1.330         3.0         55.3         25.2         2.7         -35.9         0.0         0.0         47.3         74.0         -26.7         H         P           1.330         3.0         41.9         25.2         2.7         -35.9         0.0         0.0         47.3         74.0         -26.7         H         P           1.330         3.0         41.9         25.2         2.7         -35.6         0.0         0.0         48.1         74.0         -26.7         H         P           1.662         3.0         54.3         26.4         3.1         -35.6         0.0         0.0         48.1         74.0         -20.9         H         A           .994         3.0         50.2         27.6         3.5         -35.4         0.0         0.0         45.9         74.0         -28.1                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                    | ¢                   |           | ¢      | ¢        | \$<       |          |            |       |               |             |           |       |
| 1994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       32.5       54.0       -21.5       V       A         1.330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         1.330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         1.330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       33.9       54.0       -20.1       H       A         .662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -20.9       H       A         .662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -20.9       H       A         .994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -28.1       H       P         .994       3.0       34.7       27.6       3.5       -35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1994       3.0       36.9       27.6       3.5       -35.4       0.0       0.0       32.5       54.0       -21.5       V       A         1.330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         1.330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         1.330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       33.9       54.0       -20.1       H       A         1.662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         1.662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A         .994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         .994       3.0       34.7       27.6       3.5       -35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                    | ¢                   |           | ¢      | ¢        | \$<       |          |            |       | \$Q           |             |           |       |
| .330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         .330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       33.9       54.0       -20.1       H       A         .662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         .662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A         .662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A         .994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         .994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         .994       3.0       34.7       27.6       3.5       -35.4 <td< td=""><td>.330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         .330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       33.9       54.0       -20.1       H       A         .662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         .662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         .662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A         .994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         .994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         .994       3.0       34.7       27.6       3.5       -35.4       <td< td=""><td></td><td></td><td>\$i</td><td></td><td>¢</td><td>¢</td><td>\$&lt;</td><td></td><td></td><td></td><td>\$Q</td><td></td><td></td><td></td></td<></td></td<>                                                                                                                                                                                                                                                                                                                                             | .330       3.0       55.3       25.2       2.7       -35.9       0.0       0.0       47.3       74.0       -26.7       H       P         .330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       33.9       54.0       -20.1       H       A         .662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         .662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         .662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A         .994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         .994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         .994       3.0       34.7       27.6       3.5       -35.4 <td< td=""><td></td><td></td><td>\$i</td><td></td><td>¢</td><td>¢</td><td>\$&lt;</td><td></td><td></td><td></td><td>\$Q</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                            |                                                 |                                    | \$i                 |           | ¢      | ¢        | \$<       |          |            |       | \$Q           |             |           |       |
| .330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       33.9       54.0       -20.1       H       A        662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P        662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       P        662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A        994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       45.9       74.0       -28.1       H       P        994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A        994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A        994       3.0       34.7       27.6       3.5       -35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .330       3.0       41.9       25.2       2.7       -35.9       0.0       0.0       33.9       54.0       -20.1       H       A        662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P        662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       P        662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A        994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       45.9       74.0       -28.1       H       P        994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A        994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A        994       3.0       34.7       27.6       3.5       -35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                    | \$i                 |           | \$     | ¢        | \$<       |          |            |       | \$Q           |             |           | ,     |
| 1.662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         1.662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A         1.994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       45.9       74.0       -28.1       H       P         1.994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         1.994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         1.994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.662       3.0       54.3       26.4       3.1       -35.6       0.0       0.0       48.1       74.0       -25.9       H       P         1.662       3.0       39.3       26.4       3.1       -35.6       0.0       0.0       33.1       54.0       -20.9       H       A         1.994       3.0       50.2       27.6       3.5       -35.4       0.0       0.0       45.9       74.0       -28.1       H       P         1.994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         1.994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A         1.994       3.0       34.7       27.6       3.5       -35.4       0.0       0.0       30.4       54.0       -23.6       H       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                    | \$                  |           |        |          | \$<       |          |            |       | Q             |             | ······    |       |
| .994         3.0         50.2         27.6         3.5         -35.4         0.0         0.0         45.9         74.0         -28.1         H         P           .994         3.0         34.7         27.6         3.5         -35.4         0.0         0.0         30.4         54.0         -23.6         H         A           .994         3.0         34.7         27.6         3.5         -35.4         0.0         0.0         30.4         54.0         -23.6         H         A           Rev. 4.1.2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.994         3.0         50.2         27.6         3.5         -35.4         0.0         0.0         45.9         74.0         -28.1         H         P           1.994         3.0         34.7         27.6         3.5         -35.4         0.0         0.0         30.4         54.0         -28.1         H         P           1.994         3.0         34.7         27.6         3.5         -35.4         0.0         0.0         30.4         54.0         -23.6         H         A           Rev. 4.1.2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .662                                            | 3.0                                | 54.3                | 26.4      |        | o        | 0.0       | 0.0      | 48.1       | 74.0  |               | H           |           |       |
| 1.994 3.0 34.7 27.6 3.5 -35.4 0.0 0.0 30.4 54.0 -23.6 H A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>1.994</u> 3.0 34.7 27.6 3.5 -35.4 0.0 0.0 30.4 54.0 -23.6 H A<br>Rev. 4.1.2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                    | o                   |           | ۵      | ¢        | \$<       |          |            |       | oo            |             | A         |       |
| Rev. 4.1.2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rev. 4.1.2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                    | \$                  |           | ۵      | ¢        | \$<       |          |            |       | oo            |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .994                                            | 3.0                                | 34.7                | 27.6      | 3.5    | -35.4    | 0.0       | 0.0      | 30.4       | 54.0  | - <b>23.6</b> | H           | A         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ev. 41.2.7                                      | 7                                  |                     |           |        |          |           |          | :          |       |               |             |           |       |
| tore, the other emissions were detected doore the system noise moor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tore, ito other emissions were deletted above the system noise noor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                    | niccione            | wara da   | tected | ahove    | he eveter | m noi    | e floor    |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1016:140.0                                      | uler e                             | 115510115           | were de   | rected | auovei   | me syster | n nor    | se 1100f.  |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                    |                     |           |        |          |           |          |            |       |               |             |           |       |


Page 291 of 344

REPORT NO: 09U12784-2 FCC ID: EW4DWMW034

# 8.4. WORST-CASE BELOW 1 GHz

#### **DIPOLE ANTENNA**

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 292 of 344

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

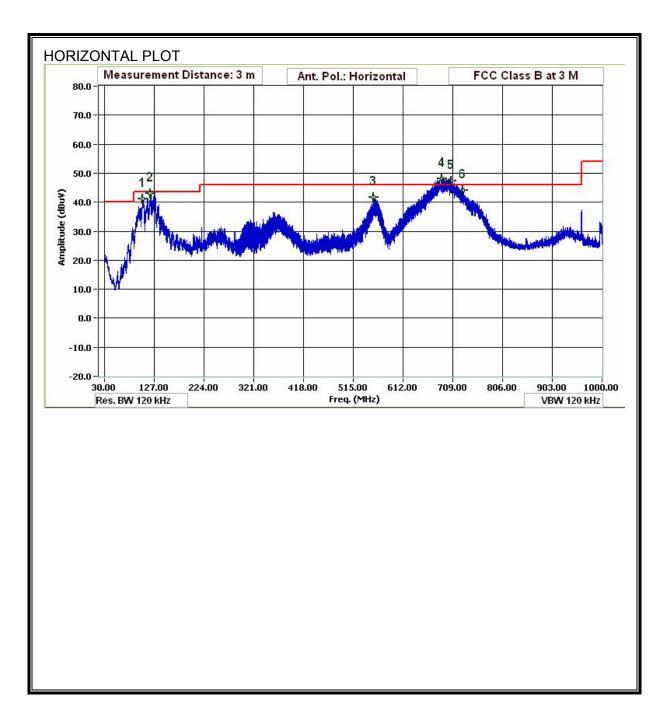


COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4701C 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 293 of 344

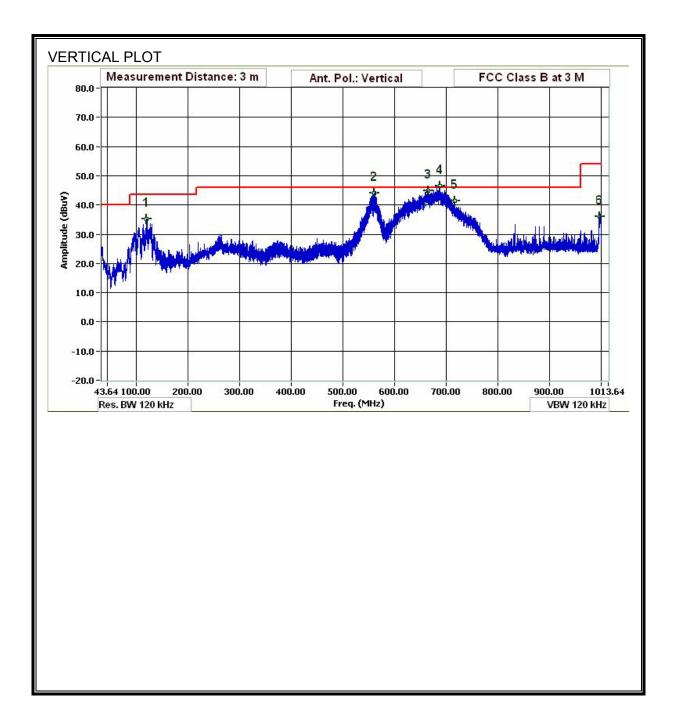
#### REPORT NO: 09U12784-2 FCC ID: EW4DWMW034

#### DATA


| Test Engr:<br>Date:<br>Project #:<br>Company:<br>EUT Descri<br>Mode Ope | ption:                          | Ekta Budi<br>09/20/08<br>09J12784<br>Mitsumi<br>EUT(Dipo<br>Tx mode |                              | .na)wi                   | th Lapto             | P                 |                   |                      |                      |                                         |             |              |       |
|-------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|------------------------------|--------------------------|----------------------|-------------------|-------------------|----------------------|----------------------|-----------------------------------------|-------------|--------------|-------|
| -                                                                       | f                               | Measureme                                                           |                              |                          | Amp                  | Preamp (          |                   |                      |                      | Margin                                  | Margin vs.  | Limit        |       |
|                                                                         | Dist                            | Distance to                                                         |                              | ıa                       |                      |                   |                   | to 3 meters          |                      |                                         |             |              |       |
|                                                                         | Read                            | Analyzer F                                                          | -                            |                          | Filter               | Filter Ins        |                   |                      |                      |                                         |             |              |       |
|                                                                         | AF                              | Antenna F                                                           |                              |                          | Corr.                | Calculate         |                   |                      |                      |                                         |             |              |       |
|                                                                         | CL                              | Cable Loss                                                          |                              |                          | Limit                | Field Stre        | ength Lir         | nit                  |                      |                                         |             |              |       |
| f                                                                       | Dist                            | Read                                                                | AF                           | CL                       | Атр                  | D Corr            | Filter            | Corr.                | Limit                | Margin                                  | Ant. Pol.   | Det.         | Notes |
| MHz                                                                     | (m)                             | dBuV                                                                | dB/m                         | dB                       | dB                   | dB                | dB                | dBuV/m               | dBuV/m               | dB                                      | V/H         | P/A/QP       |       |
| 120.004                                                                 | 3.0                             | 48.5                                                                | 13.6                         | 1.0                      | 28.3                 | 0.0               | 0.0               | 34.9                 | 43.5                 | - <b>8.6</b>                            | H           | Р            |       |
| 234.848                                                                 | 3.0                             | 56.8                                                                | 11.9                         | 1.3                      | 28.2                 | 0.0               | 0.0               | 41.8                 | 46.0                 | -4.2                                    | H           | P            |       |
|                                                                         |                                 |                                                                     | 17.4                         | 2.1                      | 27.7                 | 0.0               | 0.0               | 41.7                 | 46.0                 | -4.3                                    | H           | QP           |       |
| 537.021                                                                 | 3.0                             | 50.0                                                                |                              |                          |                      |                   |                   |                      |                      | -4.0                                    | TT          |              |       |
| 537.021<br>683.547                                                      | 3.0                             | 49.9                                                                | 19.4                         | 2.4                      | 27.2                 | 0.0               | 0.0               | 42.0                 | 46.0                 | • • • • • • • • • • • • • • • • • • • • | H           | QP           |       |
| 537.021                                                                 |                                 |                                                                     |                              |                          | 27.2<br>27.3         | 0.0<br>0.0        | 0.0<br>0.0        | 42.0<br>41.4         | 46.U<br>46.0         | -4.0<br>-4.6                            | п<br>Н      | QP<br>QP     |       |
| 537.021<br>683.547                                                      | 3.0                             | 49.9                                                                | 19.4                         | 2.4                      |                      |                   | 0.0               | 41.4                 |                      | -4.6                                    | H           | QP           |       |
| 537.021<br>683.547<br>731.309<br>120.004                                | 3.0<br>3.0                      | 49.9<br>46.1                                                        | 19.4<br>20.0                 | 2.4<br>2.5               | 27.3                 | 0.0               |                   | å                    | 46.0                 | • • • • • • • • • • • • • • • • • • • • |             | QP<br>P      |       |
| 537.021<br>683.547<br>731.309<br>120.004<br>234.608                     | 3.0<br>3.0<br>3.0               | 49.9<br>46.1<br>41.3                                                | 19.4<br>20.0<br>13.6         | 2.4<br>2.5<br>1.0        | 27.3<br>28.3         | 0.0<br>0.0        | 0.0<br>0.0        | 41.4<br>27.7         | 46.0<br>43.5         | -4.6<br>-15.8                           | H<br>V      | QP           |       |
| 537.021<br>683.547<br>731.309                                           | 3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 49.9<br>46.1<br>41.3<br>47.5                                        | 19.4<br>20.0<br>13.6<br>11.9 | 2.4<br>2.5<br>1.0<br>1.3 | 27.3<br>28.3<br>28.2 | 0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0 | 41.4<br>27.7<br>32.5 | 46.0<br>43.5<br>46.0 | -4.6<br>-15.8<br>-13.5                  | H<br>V<br>V | QP<br>P<br>P |       |

Page 294 of 344

REPORT NO: 09U12784-2 FCC ID: EW4DWMW034


#### **PIFA ANTENNA**

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 295 of 344

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)



COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4701C 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 296 of 344

#### REPORT NO: 09U12784-2 FCC ID: EW4DWMW034

#### DATA

| lest Engr:<br>Date:<br>Project #:<br>Company:<br>EUT Descriptic<br>Mode Oper: |            | Ekta Budi<br>09/20/08<br>09J12784 | Joynanti     |            |        |            |            |              |              |              |            |          |       |
|-------------------------------------------------------------------------------|------------|-----------------------------------|--------------|------------|--------|------------|------------|--------------|--------------|--------------|------------|----------|-------|
| Project #:<br>Company:<br>EUT Descriptic                                      |            |                                   |              |            |        |            |            |              |              |              |            |          |       |
| Company:<br>EUT Descriptio                                                    |            |                                   | L            |            |        |            |            |              |              |              |            |          |       |
| EUT Descriptio                                                                |            | Mitsumi                           |              |            |        |            |            |              |              |              |            |          |       |
| -                                                                             |            | EUT(PIFA                          | antenn       | a`) with   | Lanton |            |            |              |              |              |            |          |       |
|                                                                               |            | Tx mode                           |              | -,         |        |            |            |              |              |              |            |          |       |
| f                                                                             |            | Measurem                          | ent Fregu    | ency       | Amp    | Preamp (   | Gain       |              |              | Margin       | Margin vs. | Limit    |       |
| Di                                                                            | ist        | Distance to                       | o Antenn     | ia -       | D Corr | Distance   | Correct    | to 3 meters  |              | ÷            | -          |          |       |
| Re                                                                            | ead        | Analyzer H                        | Reading      |            | Filter | Filter Ins | ert Loss   |              |              |              |            |          |       |
| Al                                                                            | F          | Antenna F                         | 'actor       |            | Corr.  | Calculate  | d Field St | trength      |              |              |            |          |       |
| CI                                                                            | L          | Cable Loss                        | i            |            | Limit  | Field Stre | ngth Lin   | nit          |              |              |            |          |       |
|                                                                               |            |                                   |              |            |        |            |            |              |              |              |            |          |       |
|                                                                               | Dist       | Read                              | AF           | CL         | Amp    | D Corr     |            | Corr.        | Limit        |              | Ant. Pol.  | Det.     | Notes |
|                                                                               | (m)        | dBuV                              | dB/m         | dB         | dB     | dB         | dB         | dBuV/m       |              | dB           | V/H        | P/A/QP   |       |
| ·····                                                                         | 3.0        | 50.7                              | 10.6         | 0.9        | 28.3   | 0.0        | 0.0        | 34.0         | 43.5         | -9.5         | H          | QP       |       |
|                                                                               | 3.0        | 50.1                              | 13.6         | 1.0        | 28.3   | 0.0        | 0.0        | 36.5         | 43.5         | -7.0         | H          | QP       |       |
| ·····                                                                         | 3.0<br>3.0 | 49.5<br>48.3                      | 17.6<br>19.4 | 2.1<br>2.4 | 27.7   | 0.0<br>0.0 | 0.0<br>0.0 | 41.6<br>42.9 | 46.0<br>46.0 | -4.4<br>-3.1 | H<br>H     | EP<br>QP |       |
|                                                                               | 3.0        | 47.8                              | 19.4         | 2.5        | 27.2   | 0.0        | 0.0        | 42.7         | 46.0         | -3.1         | H          | QP       |       |
|                                                                               | 3.0        | 46.5                              | 20.0         | 2.5        | 27.3   | 0.0        | 0.0        | 41.7         | 46.0         | -4.3         | H          | QP<br>QP |       |
|                                                                               |            |                                   |              |            |        |            |            |              |              |              |            |          |       |
| 120.004                                                                       | 3.0        | 48.9                              | 13.6         | 1.0        | 28.3   | 0.0        | 0.0        | 35.3         | 43.5         | - <b>8.2</b> | V          | EP       |       |
| ·····                                                                         | 3.0        | 45.5                              | 17.7         | 2.2        | 27.6   | 0.0        | 0.0        | 37.8         | 46.0         | - <b>8.2</b> | V          | QP       |       |
|                                                                               | 3.0        | 47.1                              | 19.2         | 2.4        | 27.3   | 0.0        | 0.0        | 41.3         | 46.0         | -4.7         | V          | QP       |       |
|                                                                               | 3.0        | 48.1                              | 19.4         | 2.4        | 27.2   | 0.0        | 0.0        | 42.7         | 46.0         | - <b>3.3</b> | V          | QP       |       |
|                                                                               | 3.0        | 46.3                              | 19.8         | 2.5        | 27.2   | 0.0        | 0.0        | 41.4         | 46.0         | -4.6         | V          | EP       |       |
| 997.000                                                                       | 3.0        | 38.5                              | 22.4         | 3.0        | 27.9   | 0.0        | 0.0        | 36.0         | 46.0         | -10.0        | V          | EP       |       |
|                                                                               |            |                                   |              |            |        |            |            |              |              |              |            |          |       |
|                                                                               |            |                                   |              |            |        |            |            |              |              |              |            |          |       |
| Rev. 1.27.09                                                                  |            |                                   |              | <u> </u>   |        |            |            |              |              |              |            |          |       |

Page 297 of 344

# 9. AC POWER LINE CONDUCTED EMISSIONS

#### **LIMITS**

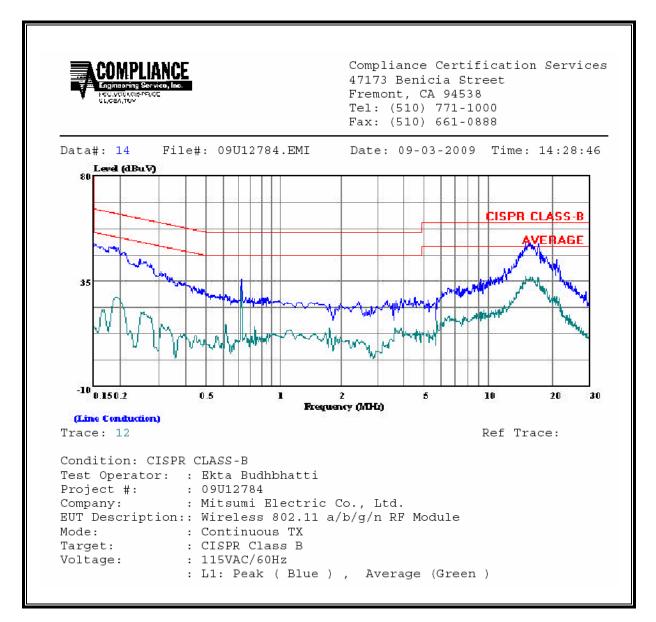
FCC §15.207 (a)

RSS-Gen 7.2.2

| Frequency of Emission (MHz) | Conducted I | Limit (dBuV) |
|-----------------------------|-------------|--------------|
|                             | Quasi-peak  | Average      |
| 0.15-0.5                    | 66 to 56    | 56 to 46 *   |
| 0.5-5                       | 56          | 46           |
| 5-30                        | 60          | 50           |

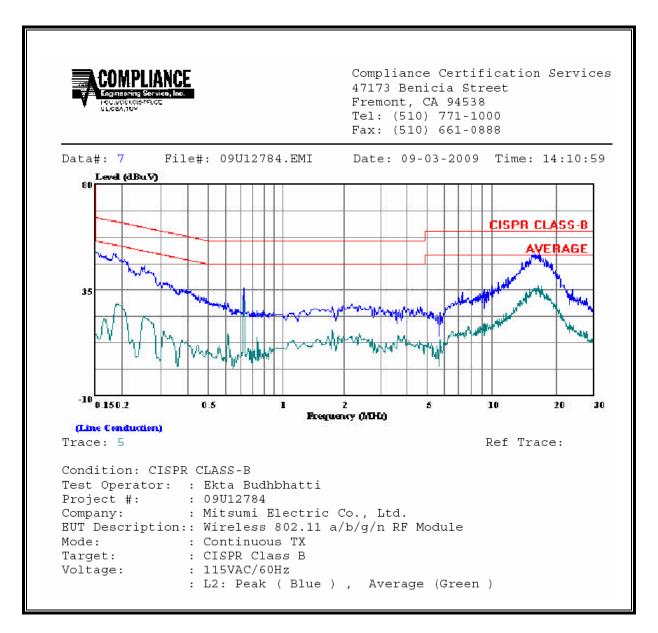
Decreases with the logarithm of the frequency.

#### TEST PROCEDURE


#### ANSI C63.4

#### RESULTS

#### **6 WORST EMISSIONS**


| CONDUCTED EMISSIONS DATA (115VAC 60Hz) |           |           |           |       |       |       |         |         |         |  |
|----------------------------------------|-----------|-----------|-----------|-------|-------|-------|---------|---------|---------|--|
| Freq.                                  | Reading   |           |           | Closs | Limit | EN_B  | Margin  |         | Remark  |  |
| (MHz)                                  | PK (dBuV) | QP (dBuV) | AV (dBuV) | (dB)  | QP    | AV    | QP (dB) | AV (dB) | L1 / L2 |  |
| 0.19                                   | 49.81     |           | 27.03     | 0.00  | 64.26 | 54.26 | -14.45  | -27.23  | L1      |  |
| 15.89                                  | 51.70     |           | 36.13     | 0.00  | 60.00 | 50.00 | -8.30   | -13.87  | L1      |  |
| 17.38                                  | 51.20     |           | 31.38     | 0.00  | 60.00 | 50.00 | -8.80   | -18.62  | L1      |  |
| 0.19                                   | 50.29     |           | 27.99     | 0.00  | 64.26 | 54.26 | -13.97  | -26.27  | L2      |  |
| 0.25                                   | 45.37     |           | 23.92     | 0.00  | 61.66 | 51.66 | -16.29  | -27.74  | L2      |  |
| 16.75                                  | 50.71     |           | 35.62     | 0.00  | 60.00 | 50.00 | -9.29   | -14.38  | L2      |  |
| 6 Worst I                              | Data      |           |           |       |       |       |         |         |         |  |

#### LINE 1 RESULTS



Page 299 of 344

#### LINE 2 RESULTS



Page 300 of 344

# **10. DYNAMIC FREQUENCY SELECTION**

# 10.1. OVERVIEW

# 10.1.1. LIMITS

#### INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

#### FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 301 of 344

# Table 1: Applicability of DFS requirements prior to use of a channel

| Requirement                     | Operatio | nal Mode                         |                               |  |  |  |
|---------------------------------|----------|----------------------------------|-------------------------------|--|--|--|
|                                 | Master   | Client (without radar detection) | Client (with radar detection) |  |  |  |
| Non-Occupancy Period            | Yes      | Not required                     | Yes                           |  |  |  |
| DFS Detection Threshold         | Yes      | Not required                     | Yes                           |  |  |  |
| Channel Availability Check Time | Yes      | Not required                     | Not required                  |  |  |  |
| Uniform Spreading               | Yes      | Not required                     | Not required                  |  |  |  |

# Table 2: Applicability of DFS requirements during normal operation

| Requirement                       | Operational Mode |                         |                      |  |  |
|-----------------------------------|------------------|-------------------------|----------------------|--|--|
|                                   | Master           | Client<br>(without DFS) | Client<br>(with DFS) |  |  |
| DFS Detection Threshold           | Yes              | Not required            | Yes                  |  |  |
| Channel Closing Transmission Time | Yes              | Yes                     | Yes                  |  |  |
| Channel Move Time                 | Yes              | Yes                     | Yes                  |  |  |

Page 302 of 344

# Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

| Maximum Transmit Power                                                                                                                                                                                                                                   | Value                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                          | (see note)                                                                    |
| ≥ 200 milliwatt                                                                                                                                                                                                                                          | -64 dBm                                                                       |
| < 200 milliwatt                                                                                                                                                                                                                                          | -62 dBm                                                                       |
| Note 1: This is the level at the input of the receiver ass<br>Note 2: Throughout these test procedures an addition<br>of the test transmission waveforms to account for varia<br>will ensure that the test signal is at or above the detect<br>response. | al 1 dB has been added to the amplitude ations in measurement equipment. This |

# Parameter Value Non-occupancy period 30 minutes Channel Availability Check Time 60 seconds Channel Move Time 10 seconds Channel Closing Transmission Time 200 milliseconds + approx. 60 milliseconds over remaining 10 second period 10 second

# Table 4: DFS Response requirement values

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

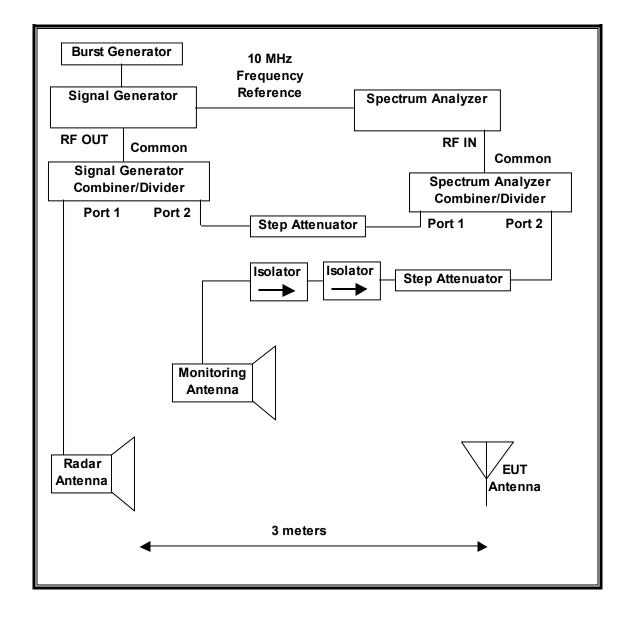
The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

#### Table 5 – Short Pulse Radar Test Waveforms

| Radar        | Pulse Width                     | PRI            | Pulses | Minimum       | Minimum |  |  |
|--------------|---------------------------------|----------------|--------|---------------|---------|--|--|
| Туре         | (Microseconds)                  | (Microseconds) |        | Percentage of | Trials  |  |  |
|              |                                 |                |        | Successful    |         |  |  |
|              |                                 |                |        | Detection     |         |  |  |
| 1            | 1                               | 1428           | 18     | 60%           | 30      |  |  |
| 2            | 1-5                             | 150-230        | 23-29  | 60%           | 30      |  |  |
| 3            | 6-10                            | 200-500        | 16-18  | 60%           | 30      |  |  |
| 4            | 11-20                           | 200-500        | 12-16  | 60%           | 30      |  |  |
| Aggregate (F | Aggregate (Radar Types 1-4) 80% |                |        |               |         |  |  |

#### Table 6 – Long Pulse Radar Test Signal

| Radar    | Bursts | Pulses | Pulse  | Chirp | PRI    | Minimum       | Minimum |
|----------|--------|--------|--------|-------|--------|---------------|---------|
| Waveform |        | per    | Width  | Width | (µsec) | Percentage    | Trials  |
|          |        | Burst  | (µsec) | (MHz) |        | of Successful |         |
|          |        |        |        |       |        | Detection     |         |
| 5        | 8-20   | 1-3    | 50-100 | 5-20  | 1000-  | 80%           | 30      |
|          |        |        |        |       | 2000   |               |         |


#### Table 7 – Frequency Hopping Radar Test Signal

| Radar<br>Waveform | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Burst<br>Length<br>(ms) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Minimum<br>Percentage of<br>Successful<br>Detection | Minimum<br>Trials |
|-------------------|--------------------------|---------------|-------------------------|----------------------|--------------------------|-----------------------------------------------------|-------------------|
| 6                 | 1                        | 333           | 300                     | 9                    | .333                     | 70%                                                 | 30                |

Page 304 of 344

# 10.1.2. TEST AND MEASUREMENT SYSTEM

#### RADIATED METHOD SYSTEM BLOCK DIAGRAM



Page 305 of 344

#### SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from  $F_L$  to  $F_H$  for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

#### SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

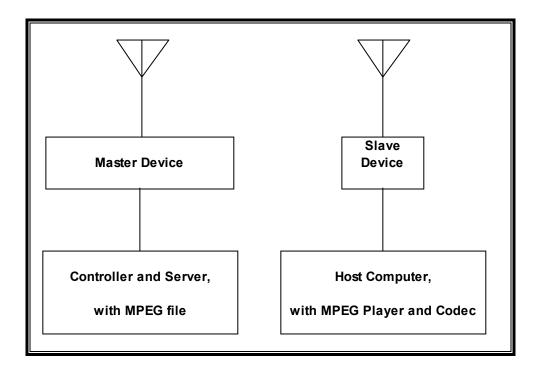
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 306 of 344

#### ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the distance between the units as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

#### TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

| TEST EQUIPMENT LIST                                  |              |        |        |          |  |  |  |  |
|------------------------------------------------------|--------------|--------|--------|----------|--|--|--|--|
| Description Manufacturer Model Serial Number Cal Due |              |        |        |          |  |  |  |  |
| Spectrum Analyzer, 44 GHz                            | Agilent / HP | E4446A | C01069 | 01/20/10 |  |  |  |  |
| Vector signal generator, 20GHz                       | Agilent / HP | E8267C | C01066 | 11/16/09 |  |  |  |  |

Page 307 of 344

#### 10.1.3. SETUP OF EUT

#### RADIATED METHOD EUT TEST SETUP



#### SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

| PERIPHERAL SUPPORT EQUIPMENT LIST        |                             |                       |                             |           |  |  |  |  |  |
|------------------------------------------|-----------------------------|-----------------------|-----------------------------|-----------|--|--|--|--|--|
| Description                              | Manufacturer                | Model                 | Serial Number               | FCC ID    |  |  |  |  |  |
| Wireless Access Point<br>(Master Device) | Cisco                       | AIR-AP1252AG-<br>A-K9 | FTX120690N2                 | LDK102061 |  |  |  |  |  |
| AC Adapter (AP)                          | Delta Electronics           | EADP-45BB B           | DTH112490BD                 | DoC       |  |  |  |  |  |
| Notebook PC (Host)                       | Dell                        | PP18L                 | 10657517255                 | DoC       |  |  |  |  |  |
| AC Adapter (Host PC)                     | Lite On<br>Technology Corp. | LA65SN0-00            | CN-ODF263-71615-<br>687-49E | DoC       |  |  |  |  |  |
| Notebook PC (Client)                     | HP                          | Presario F700         | CNF7458G3Q                  | DoC       |  |  |  |  |  |
| AC Adapter (Client PC)                   | Hipro Electronics           | PPP009H               | F3-07091411250E             | DoC       |  |  |  |  |  |

Page 308 of 344

## 10.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 24.44 dBm EIRP in the 5250-5350 MHz band and 24.28 dBm EIRP in the 5470-5725 MHz band.

The highest gain antenna assembly utilized with the EUT has a gain of 1.98 dBi in the 5250-5350 MHz band and 2.13 dBi in the 5470-5725 MHz band. The lowest gain antenna assembly utilized with the EUT has a gain of -8.62 dBi in the 5250-5350 MHz band and -7.76 dBi in the 5470-5725 MHz band.

Two antennas are utilized to meet the diversity and MIMO operational requirements.

The EUT uses two transmitter/receiver chains, each connected to a 50-ohm coaxial antenna port. All antenna ports are connected to antennas to perform radiated tests.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

The driver installed in the EUT when configured for a Linux Operating System is 2.6.15-CR-LSDK-2.0.0.107.

The driver installed in the EUT when configured for a Windows Operating System is 7.7.0.62 date code 09/09/2009.

## OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Cisco Access Point, FCC ID: LDK102061. The minimum antenna gain for the Master Device is 3.5 dBi.

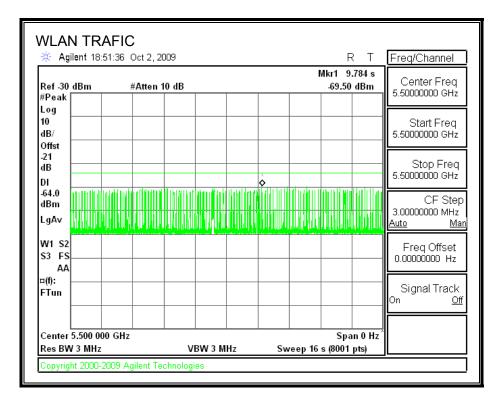
The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

Page 309 of 344

## 10.2. RESULTS FOR 20 MHz BANDWIDTH

## 10.2.1. TEST CHANNEL AND RADAR WAVEFORM


All tests were performed at a channel center frequency of 5500 MHz.

### PLOT OF RADAR WAVEFORM

| Agilent 15:11:                   |                                                                  |         |     |       | М        | Gr1 6.7 |                | Freq/Channel                              |
|----------------------------------|------------------------------------------------------------------|---------|-----|-------|----------|---------|----------------|-------------------------------------------|
| ef -30 dBm<br>'eak               | Atten 10                                                         | dB      |     |       |          | -63.99  | dBm            | Center Freq<br>5.50000000 GHz             |
| g                                |                                                                  |         |     |       |          |         |                | Start Freq<br>5.5000000 GHz               |
|                                  | 1                                                                |         |     |       |          |         |                | Stop Fred<br>5.5000000 GHz                |
| 1.0<br>Bm<br> Av                 |                                                                  |         |     |       |          |         |                | CF Ste<br>3.00000000 MH;<br><u>Auto M</u> |
| 1 62                             | aing ing a pasa kata a<br>ng maliti <mark>ng g</mark> ak ikata n |         |     |       |          |         |                | II                                        |
| ):<br>iun                        |                                                                  |         |     |       |          |         |                | Signal Tracl<br>On <u>C</u>               |
| enter 5.500 000 (<br>es BW 3 MHz | GHz                                                              | VBW 3 M | /H7 | Sweer | o 30.4 m | -       | n 0 Hz<br>nts) |                                           |

Page 310 of 344

## 10.2.2. WLAN TRAFFIC WITH LINUX OPERATING SYSTEM



Page 311 of 344

## 10.2.3. MOVE AND CLOSING TIME WITH LINUX OPERATING SYSTEM

## REPORTING NOTES

The reference marker is set at the end of last radar pulse.

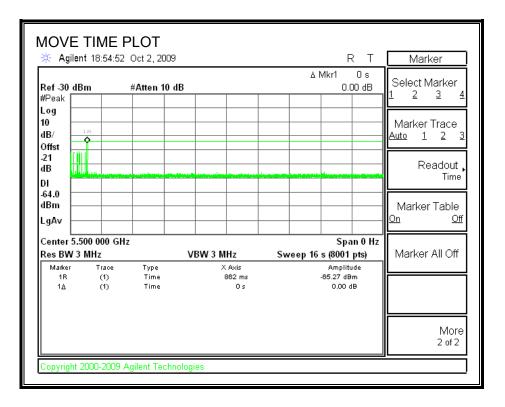
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) \* (dwell time per bin)

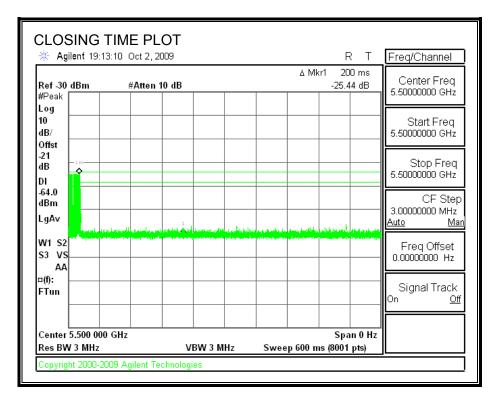
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


### **RESULTS**

| Agency   | Channel Move Time | Limit |
|----------|-------------------|-------|
|          | (sec)             | (sec) |
| FCC / IC | 0.000             | 10    |

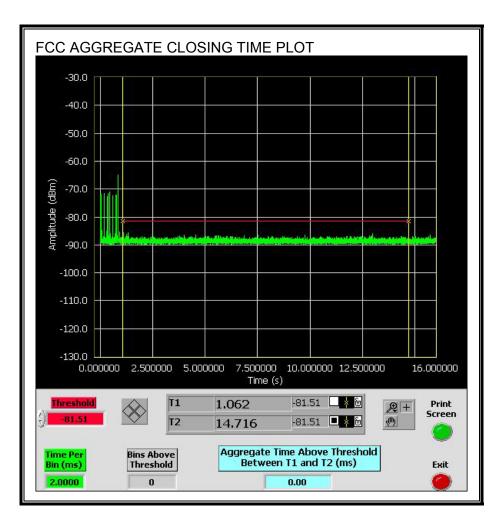
| Agency | Aggregate Channel Closing Transmission Time | Limit  |
|--------|---------------------------------------------|--------|
|        | (msec)                                      | (msec) |
| FCC    | 0.0                                         | 60     |
| IC     | 0.0                                         | 260    |


Page 312 of 344

## MOVE TIME

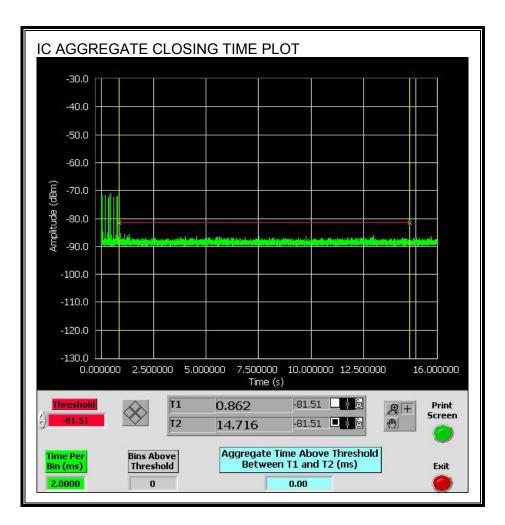


Page 313 of 344


### **CHANNEL CLOSING TIME**

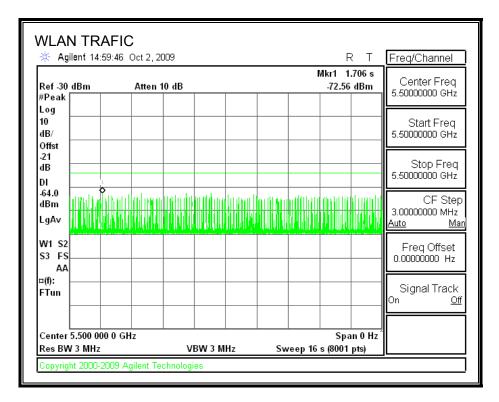


Page 314 of 344


## AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.




Page 315 of 344

Only intermittent transmissions are observed during the IC aggregate monitoring period.



Page 316 of 344

## 10.2.4. WLAN TRAFFIC WITH WINDOWS OPERATING SYSTEM



Page 317 of 344

# 10.2.5. MOVE AND CLOSING TIME WITH WINDOWS OPERATING SYSTEM

## **REPORTING NOTES**

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) \* (dwell time per bin)

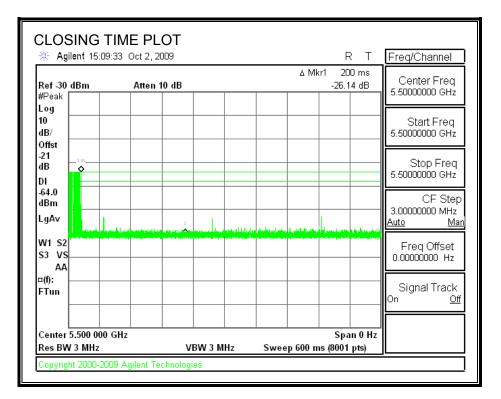
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

## **RESULTS**

| Agency   | Channel Move Time | Limit |
|----------|-------------------|-------|
|          | (sec)             | (sec) |
| FCC / IC | 0.532             | 10    |

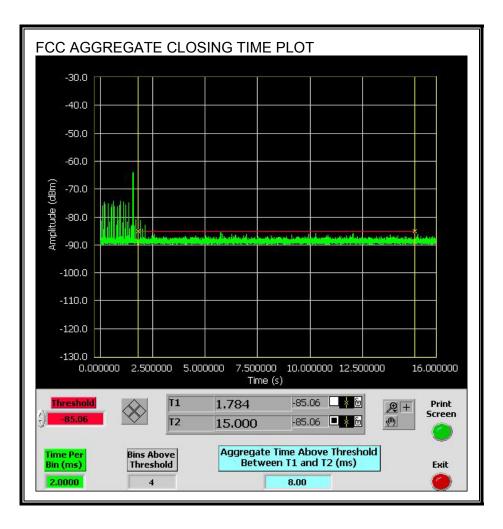
| Agency | Aggregate Channel Closing Transmission Time | Limit  |
|--------|---------------------------------------------|--------|
|        | (msec)                                      | (msec) |
| FCC    | 8.0                                         | 60     |
| IC     | 14.0                                        | 260    |


Page 318 of 344

## MOVE TIME

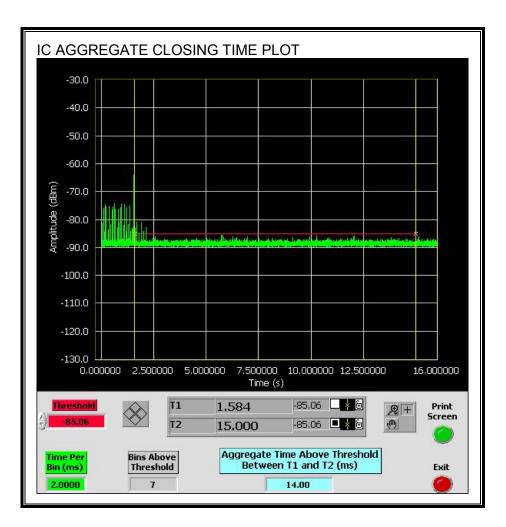
| Agilent 1                   | 5:01:09      | Atten 10 (   |                      |                  |      | ∆ Mkr1    | R T<br>532 ms<br>18.52 dB | Freq/Ch<br>Cente        |                          |
|-----------------------------|--------------|--------------|----------------------|------------------|------|-----------|---------------------------|-------------------------|--------------------------|
| #Peak                       |              | Allen ID (   |                      |                  |      |           |                           | 5.500000                | 00 GHż                   |
| Log<br>10<br>dB/<br>Offst   | 1R<br>•      |              |                      |                  |      |           |                           | Star<br>5.500000        | t Freq<br>00 GHz         |
| -21<br>dB<br>DI             |              |              | m dia dia management |                  |      |           |                           | Sto<br>5.500000         | p Freq<br>00 GHz         |
| -64.0<br>dBm<br>LgAv        |              |              |                      |                  |      |           |                           | 3.000000<br><u>Auto</u> | CF Step<br>00 MHz<br>Mai |
| Center 5.500<br>Res BW 3 MH | z            | z            | VBW 3 N              | IHz              | Swee | p 16 s (8 | • /                       |                         | Offset<br>100 Hz         |
| Marker<br>1B                | Trace<br>(1) | Type<br>Time |                      | (Axis<br>1.584 s |      |           | nplitude<br>27 dBm        |                         |                          |
| 1Δ                          | ő            | Time         |                      | 532 ms           |      |           | .52 dB                    | Signal<br>On            | l Track<br><u>Off</u>    |
|                             |              |              |                      |                  |      |           |                           |                         |                          |

Page 319 of 344


## **CHANNEL CLOSING TIME**



Page 320 of 344


## AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.



Page 321 of 344

Only intermittent transmissions are observed during the IC aggregate monitoring period.

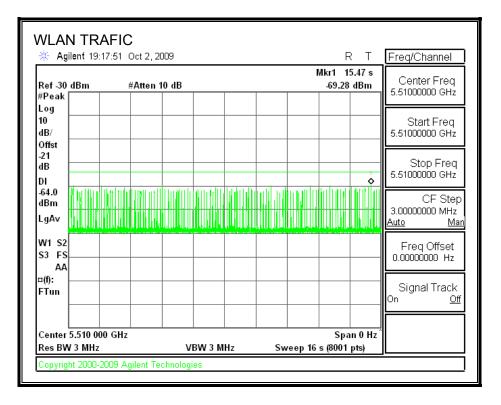


Page 322 of 344

## 10.3. RESULTS FOR 40 MHz BANDWIDTH

## 10.3.1. TEST CHANNEL AND RADAR WAVEFORM

All tests were performed at a channel center frequency of 5510 MHz.


#### PLOTS OF RADAR WAVEFORM

| Agilent 15:12                | .21 OCT 2, 2 | 009                                                    |     |       |        | F                 | • •            | Freq/Channel                              |
|------------------------------|--------------|--------------------------------------------------------|-----|-------|--------|-------------------|----------------|-------------------------------------------|
| f-30 dBm<br>eak              | Atten        | 10 dB                                                  |     |       | M      | cr1 995<br>-63.97 |                | Center Freq<br>5.51000000 GHz             |
| g                            |              |                                                        |     |       |        |                   |                | Start Freq<br>5.51000000 GH;              |
|                              |              |                                                        |     |       |        |                   |                | Stop Free<br>5.51000000 GH;               |
| l.0<br>im<br>Av              |              |                                                        |     |       |        |                   |                | CF Ste<br>3.00000000 MH;<br><u>Auto M</u> |
| 1 62                         |              | h in sei in sei i dinnikko<br>nyelen kolmalyeline in i |     |       |        |                   |                | Freq Offset<br>0.00000000 Hz              |
| ):<br>un                     |              |                                                        |     |       |        |                   |                | Signal Tracl<br>On <u>C</u>               |
| nter 5.510 000<br>s BW 3 MHz | GHz          | VBW 3                                                  | MHz | Sweet | 30.4 m |                   | n 0 Hz<br>nts) |                                           |

Page 323 of 344

## 10.3.2. WLAN TRAFFIC WITH LINUX OPERATING SYSTEM

## PLOT OF WLAN TRAFFIC



Page 324 of 344

## 10.3.3. MOVE AND CLOSING TIME WITH LINUX OPERATING SYSTEM

## REPORTING NOTES

The reference marker is set at the end of last radar pulse.

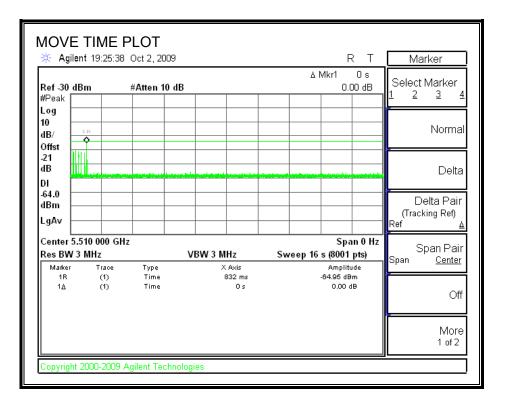
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) \* (dwell time per bin)

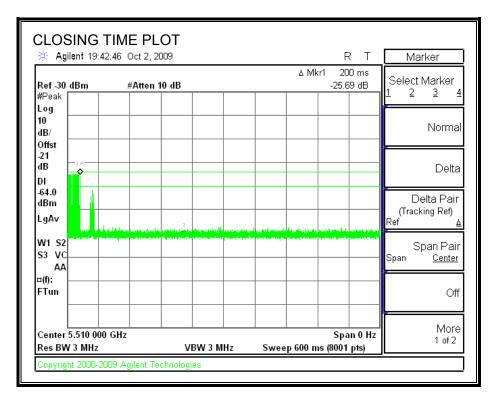
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


### **RESULTS**

| Agency   | Channel Move Time | Limit |
|----------|-------------------|-------|
|          | (sec)             | (sec) |
| FCC / IC | 0.000             | 10    |

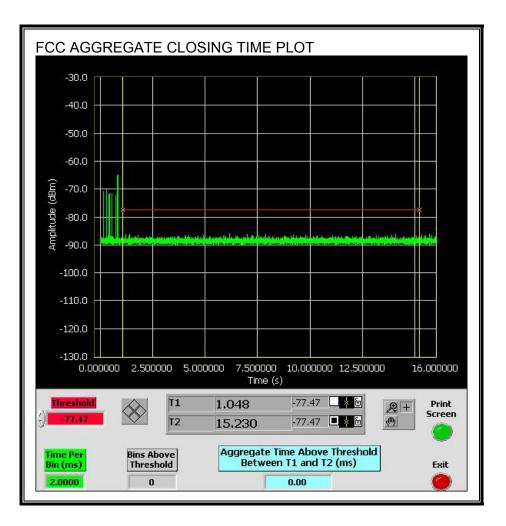
| Agency | Aggregate Channel Closing Transmission Time | Limit  |
|--------|---------------------------------------------|--------|
|        | (msec)                                      | (msec) |
| FCC    | 0.0                                         | 60     |
| IC     | 0.0                                         | 260    |


Page 325 of 344

## MOVE TIME

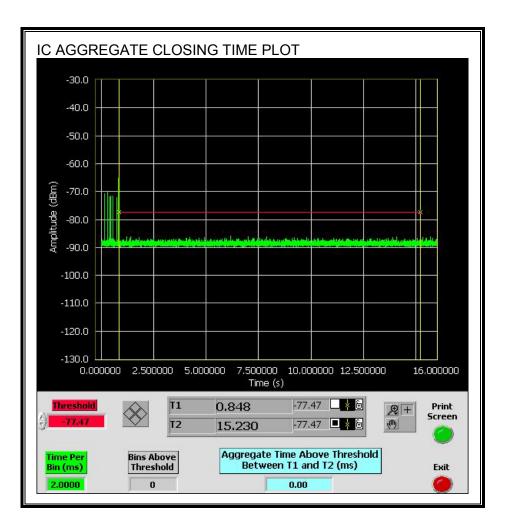


Page 326 of 344


## **CHANNEL CLOSING TIME**



Page 327 of 344


## AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.



Page 328 of 344

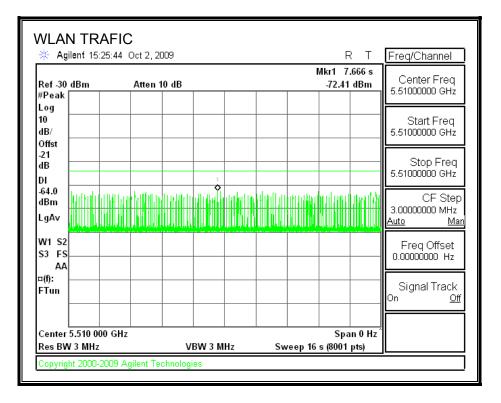
Only intermittent transmissions are observed during the IC aggregate monitoring period.



Page 329 of 344

## 10.3.4. NON-OCCUPANCY WITH LINUX OPERATING SYSTEM

## TEST RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

| Agilent 20:24:38                | Oct 2, 2009   |     |         |   | ₹Т              | Freq/Channel                             |
|---------------------------------|---------------|-----|---------|---|-----------------|------------------------------------------|
| ef-30 dBm                       | #Atten 10 dB  |     | Δ       |   | .8 ks<br>58 dB  | Center Fred<br>5.51000000 GH             |
| g                               |               |     |         |   |                 | Start Frec<br>5.51000000 GH:             |
| 1R                              |               |     |         |   |                 | Stop Free<br>5.51000000 GH:              |
| I.0<br>Im<br>Av                 |               |     |         |   | 1<br>\$         | CF Ste<br>3.00000000 MH<br><u>Auto M</u> |
| I S2<br>FS<br>AA                |               |     |         |   |                 | Freq Offset<br>0.00000000 Hz             |
| ):<br>un                        |               |     |         |   |                 | Signal Tracl<br>On <u>(</u>              |
| nter 5.510 000 GH<br>s BW 3 MHz | lz<br>VBW 3 I | MHz | Sweep 2 | - | an 0 Hz<br>pts) |                                          |

Page 330 of 344

## 10.3.5. WLAN TRAFFIC WITH WINDOWS OPERATING SYSTEM

## PLOT OF WLAN TRAFFIC



Page 331 of 344

# 10.3.6. MOVE AND CLOSING TIME WITH WINDOWS OPERATING SYSTEM

## **REPORTING NOTES**

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) \* (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

## **RESULTS**

| Agency   | Channel Move Time | Limit |
|----------|-------------------|-------|
|          | (sec)             | (sec) |
| FCC / IC | 0.035             | 10    |

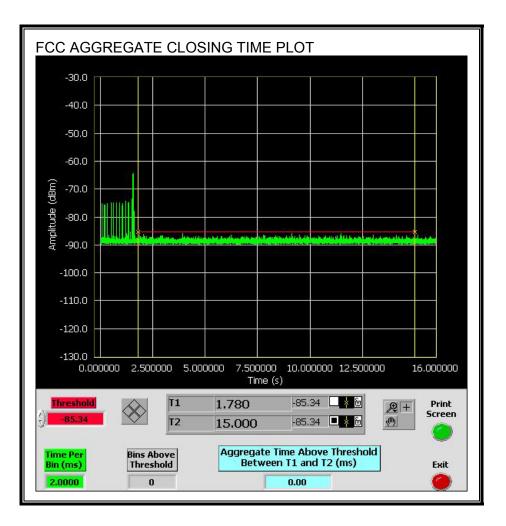
| Agency | Aggregate Channel Closing Transmission Time | Limit  |
|--------|---------------------------------------------|--------|
|        | (msec)                                      | (msec) |
| FCC    | 0.0                                         | 60     |
| IC     | 2.0                                         | 260    |

Page 332 of 344

## MOVE TIME

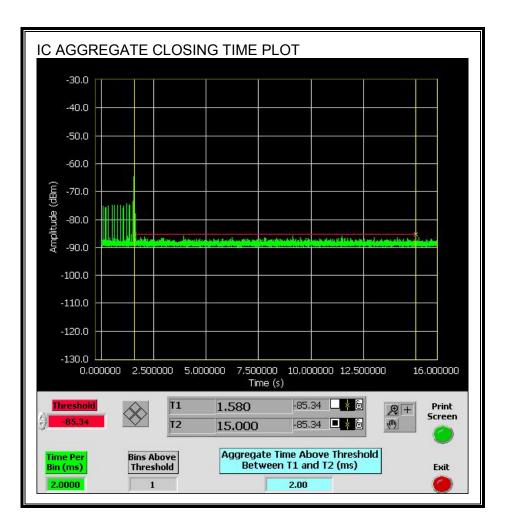
| 🔆 Agilent                            |            | Oct 2, 2009  |       |                 |      | ∆ Mkr1     | R T<br>36 ms                     | Freq/Channel                             |                   |
|--------------------------------------|------------|--------------|-------|-----------------|------|------------|----------------------------------|------------------------------------------|-------------------|
| Ref -30 dBm<br>#Peak                 | 1          | Atten 10 d   | IB    |                 |      |            | 13.26 dB                         | Center Free<br>5.51000000 GH             | 4<br>Z            |
| Log<br>10<br>dB/<br>Offst            |            |              |       |                 |      |            |                                  | Start Fred<br>5.51000000 GH              |                   |
| -21<br>dB<br>DI                      |            |              |       |                 |      |            |                                  | Stop Fre<br>5.51000000 GH                |                   |
| -64.0<br>dBm<br>LgAv                 |            |              |       |                 |      |            |                                  | CF Sta<br>3.00000000 MH<br><u>Auto M</u> |                   |
| Center 5.510<br>Res BW 3 M<br>Marker |            | Z<br>Type    | VBW 3 | MHz<br>X Axis   | Swee | p 16 s (80 | Span 0 Hz<br>)01 pts)<br>plitude | Freq Offse<br>0.00000000 H;              | t<br>z            |
| 1R<br>1 <u>∆</u>                     | (1)<br>(1) | Time<br>Time |       | 1.58 s<br>36 ms |      | -64.6      | 4 dBm<br>26 dB                   | Signal Trac<br>On <u>(</u>               | :k<br><u>Of</u> f |
|                                      |            |              |       |                 |      |            |                                  |                                          |                   |

Page 333 of 344


### **CHANNEL CLOSING TIME**



Page 334 of 344


## AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.



Page 335 of 344

Only intermittent transmissions are observed during the IC aggregate monitoring period.



Page 336 of 344

## 10.3.7. NON-OCCUPANCY WITH WINDOWS OPERATING SYSTEM

## TEST RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

| NON-OCCU<br>Agilent 16:40:         | PANCY PERIOD<br>45 Oct 2, 2009 | R T                                | Freq/Channel                                |
|------------------------------------|--------------------------------|------------------------------------|---------------------------------------------|
| Ref -30 dBm<br>#Peak               | Atten 10 dB                    | ∆ Mkr1 1.8 ks<br>-22.57 dB         | Center Freq<br>5.51000000 GHz               |
| Log<br>10<br>dB/<br>Offst          |                                |                                    | Start Freq<br>5.5100000 GHz                 |
| -21<br>dB<br>DI                    |                                |                                    | Stop Freq<br>5.5100000 GHz                  |
| -64.0 ₩<br>dBm<br>LgAv             |                                |                                    | CF Step<br>3.0000000 MHz<br><u>Auto Man</u> |
| W1 S2<br>S3 FS<br>AA               |                                |                                    | Freq Offset<br>0.00000000 Hz                |
| ¤(f):<br>FTun                      |                                |                                    | Signal Track<br>On <u>Off</u>               |
| Center 5.510 000 0<br>Res BW 3 MHz | GHz<br>VBW 3 MHz               | Span 0 Hz<br>Sweep 2 ks (8001 pts) |                                             |
| Copyright 2000-200                 | 9 Agilent Technologies         |                                    |                                             |

Page 337 of 344

#### 11. MAXIMUM PERMISSIBLE EXPOSURE

### **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

| TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)   |                                     |                                     |                                          |                             |  |  |  |  |
|---------------------------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------|--|--|--|--|
| Frequency range<br>(MHz)                                | Electric field<br>strength<br>(V/m) | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²)                | Averaging time<br>(minutes) |  |  |  |  |
| (A) Limits for Occupational/Controlled Exposures        |                                     |                                     |                                          |                             |  |  |  |  |
| 0.3-3.0<br>3.0-30<br>30-300<br>300-1500<br>1500-100,000 | 614<br>1842/f<br>61.4               | 1.63<br>4 <i>.89/</i> f<br>0.163    | *(100)<br>*(900/f²)<br>1.0<br>f/300<br>5 | 6<br>6<br>6<br>6            |  |  |  |  |
| (B) Limits for General Population/Uncontrolled Exposure |                                     |                                     |                                          |                             |  |  |  |  |
| 0.3–1.34<br>1.34–30                                     | 614<br>824 <i>/</i> f               | 1.63<br>2.19/f                      | *(100)<br>*(180/f²)                      | 30<br>30                    |  |  |  |  |

#### TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

| Frequency range<br>(MHz)           | Electric field<br>strength<br>(V/m) | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²) | Averaging time<br>(minutes) |  |
|------------------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------------------|--|
| 30–300<br>300–1500<br>1500–100,000 | 27.5                                | 0.073                               | 0.2<br>f/1500<br>1.0      | 30<br>30<br>30              |  |

f = frequency in MHz
\* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled exposure also aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

Page 338 of 344

## IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

## Table 5

| Exposure Limits for Persons Not Classed As RF and Microwave Ex- |
|-----------------------------------------------------------------|
| posed Workers (Including the General Public)                    |

| 1<br>Frequency<br>(MHz) | 2<br>Electric Field<br>Strength; rms<br>(V/m) | 3<br>Magnetic Field<br>Strength; rms<br>(A/m) | 4<br>Power<br>Density<br>(W/m <sup>2</sup> ) | 5<br>Averaging<br>Time<br>(min) |
|-------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------|
| 0.003–1                 | 280                                           | 2.19                                          |                                              | 6                               |
| 1–10                    | 280/f                                         | 2.19/ <i>f</i>                                |                                              | 6                               |
| 10–30                   | 28                                            | 2.19/ <i>f</i>                                |                                              | 6                               |
| 30–300                  | 28                                            | 0.073                                         | 2*                                           | 6                               |
| 300–1 500               | 1.585 <i>f</i> <sup>0.5</sup>                 | 0.0042f <sup>0.5</sup>                        | f/150                                        | 6                               |
| 1 500–15 000            | 61.4                                          | 0.163                                         | 10                                           | 6                               |
| 15 000–150 000          | 61.4                                          | 0.163                                         | 10                                           | 616 000 /f <sup>1.2</sup>       |
| 150 000–300 000         | 0.158 <i>f</i> <sup>0.5</sup>                 | 4.21 x 10 <sup>-4</sup> f <sup>0.5</sup>      | 6.67 x 10 <sup>-5</sup> f                    | 616 000 /f <sup>1.2</sup>       |

\* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- A power density of 10 W/m<sup>2</sup> is equivalent to 1 mW/cm<sup>2</sup>.
   A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 339 of 344

## EQUATIONS

Power density is given by:

S = EIRP / (4 \* Pi \* D^2)

where

S = Power density in W/m<sup>2</sup> EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

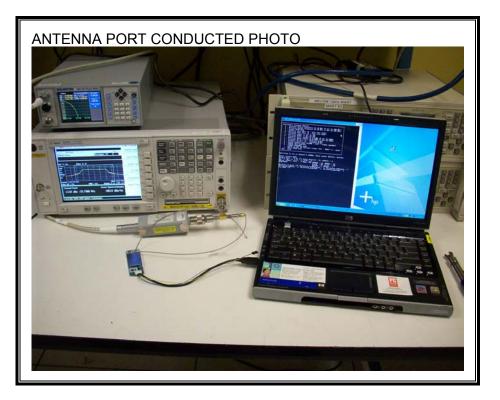
Power density in units of W/m<sup>2</sup> is converted to units of mWc/m<sup>2</sup> by dividing by 10.

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

## **LIMITS**

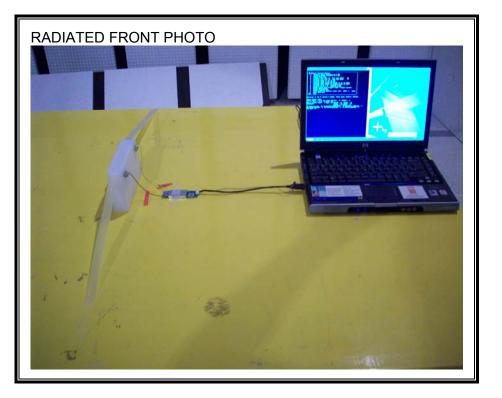
From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm<sup>2</sup>

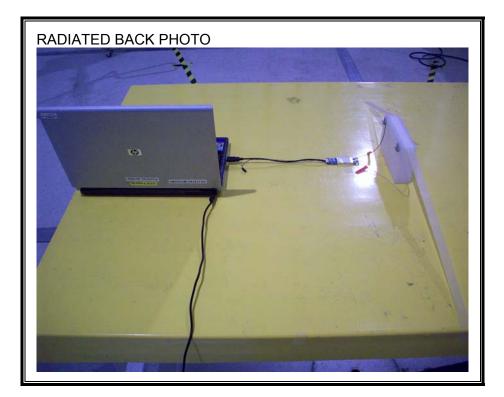
From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m<sup>2</sup>


## RESULTS

| Band        | Mode   | Separation | Output | Antenna | IC Power | FCC Power |
|-------------|--------|------------|--------|---------|----------|-----------|
|             |        | Distance   | Power  | Gain    | Density  | Density   |
|             |        | (m)        | (dBm)  | (dBi)   | (W/m^2)  | (mW/cm^2) |
| 5180 - 5240 | a mode | 0.20       | 13.87  | 4.96    | 0.15     | 0.015     |
| 5180 - 5240 | HT20   | 0.20       | 14.28  | 2.05    | 0.09     | 0.009     |
| 5190 - 5230 | HT40   | 0.20       | 16.95  | 2.05    | 0.16     | 0.016     |
| 5260 - 5320 | a mode | 0.20       | 19.48  | 4.96    | 0.55     | 0.055     |
| 5260 - 5320 | HT20   | 0.20       | 19.44  | 1.98    | 0.28     | 0.028     |
| 5270 - 5310 | HT40   | 0.20       | 19.08  | 1.98    | 0.25     | 0.025     |
| 5500 - 5700 | a mode | 0.20       | 19.28  | 5.00    | 0.53     | 0.053     |
| 5500 - 5700 | HT20   | 0.20       | 19.28  | 2.13    | 0.28     | 0.028     |
| 5510 - 5670 | HT40   | 0.20       | 18.79  | 2.13    | 0.25     | 0.025     |

Page 340 of 344


## **12. SETUP PHOTOS**


## ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP



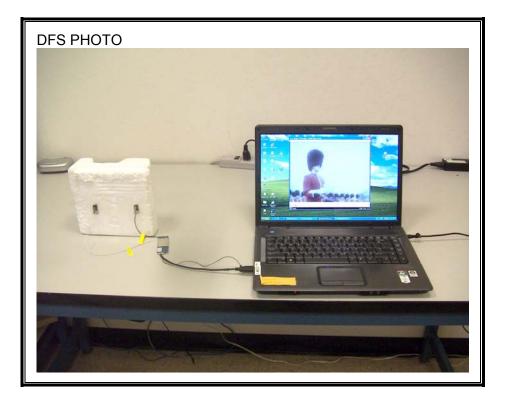
Page 341 of 344

## RADIATED RF MEASUREMENT SETUP





Page 342 of 344


#### POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP





Page 343 of 344

## **DYNAMIC FREQUENCY SELECTION**



## **END OF REPORT**

Page 344 of 344