

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

WIRELESS ADAPTOR FOR OXY

MODEL NUMBER: OXY-004

FCC ID: EW4-OXYWA

REPORT NUMBER: 05I3336-1

ISSUE DATE: APRIL 25, 2005

Prepared for

MITSUMI ELECTRIC CO., LTD. 1601, SAKAI ATSUGI KANAGAWA 243-8533, JAPAN

Prepared by

COMPLIANCE ENGINEERING SERVICES, INC. d.b.a.

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD,

MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

EUT: WIRELESS ADPATER FOR GAMEBOY ADVANCED FCC ID: EW4-OXYWA **Revision History** Rev. Revisions Revised By

REPORT NO: 05I3336-1

DATE: APRIL 25, 2005

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	<i>5.2</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	<i>7</i>
	<i>5.3</i> .	SOFTWARE	7
	<i>5.4</i> .	WORST-CASE CONFIGURATION AND MODE	7
	5.5.	DESCRIPTION OF TEST SETUP	8
6.	TE	ST AND MEASUREMENT EQUIPMENT	10
7.	AP	PLICABLE LIMITS AND TEST RESULTS	11
	7.1.	99% BANDWIDTH	11
	7.2.	DUTY CYCLE	14
	<i>7.3</i> .	RADIATED EMISSIONS	
	7.3.		
	7.3.		
	7.3. 7.3		
Q	,	THE PHOTOS	24

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MITSUMI ELECTRIC CO., LTD

1601, SAKAI

ATSUGI, KANAGAWA 243-8533, JAPAN

EUT DESCRIPTION: WIRELESS ADAPTER FOR OXY

MODEL: OXY-004

SERIAL NUMBER: 20 & 25

DATE TESTED: APRIL 15 – APRIL 19, 2005

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART C NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

YAN ZHENG EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

DAVID GARCIA EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

DATE: APRIL 25, 2005

FCC ID: EW4-OXYWA

Page 4 of 40

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: APRIL 25, 2005

FCC ID: EW4-OXYWA

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a wireless transceiver adapter.

The radio module is manufactured by Mitsumi Electric Co., Ltd.

The EUT description was changed after testing commenced. All data in this report is applicable to the EUT description documented in Section 1 above.

EUT Type	WIRELESS ADAPTOR FOR OXY
Chassis Type	Plastic
Frequency Range	2426.248MHz and 2456.576MHz
Number of Channels	2
Channel Spacing	30.328MHz
Type of Modulation	ASK
Duty Cycle of Transmitter	10.8%
Antenna Type	Invert C
Antenna Gain	-0.1 dBi
No of External Connectors and Types	One, 8 pin plug
Power requirement	3.3 VDC

5.2. **DESCRIPTION OF AVAILABLE ANTENNAS**

The radio utilizes the invert C antenna with a maximum gain of -0.1 dBi.

5.3. **SOFTWARE**

The test utility software used during testing was ComTest3, ver.11, 19c.

5.4. **WORST-CASE CONFIGURATION AND MODE**

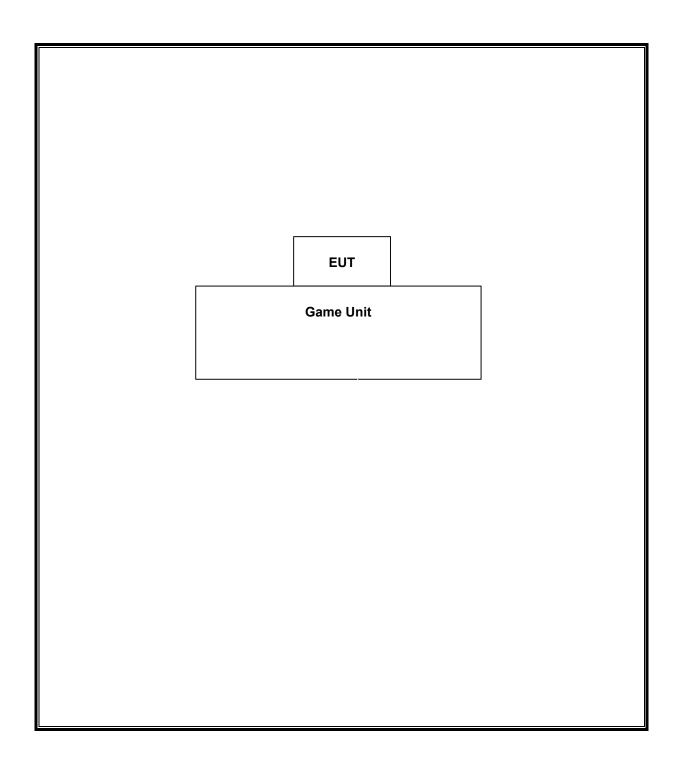
The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2426.248 MHz.

All emissions tests were made at both channels with X, Y, Z positions.

DATE: APRIL 25, 2005

FCC ID: EW4-OXYWA

5.5. DESCRIPTION OF TEST SETUP


SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST									
Description Manufacturer Model Serial Number FCC									
Game Unit	Nintendo	Gameboy Advanced	1521	DoC					
Memory Card	Nintendo	n/a	195	n/a					

TEST SETUP

The EUT is a wireless adapter for Nintendo Gameboy Advanced. The EUT is directly connected to the game unit. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	Serial Number	Cal Due					
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	US42070220	1/1/2006					
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	9/29/2006					
RF Filter Section	HP	85420E	3705A00256	3/29/2006					
Antenna, Bilog 30MHz ~ 2Ghz	Sunol Sciences	JB1	A121003	9/22/2005					
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	6/12/2005					
Preamplifier, 1 ~ 26 GHz	Miteq	NSP2600-44	646456	8/17/2005					
4.0 GHz High Pass Filter	MicroTronics	HPM13351	2708	CNR					

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 99% BANDWIDTH

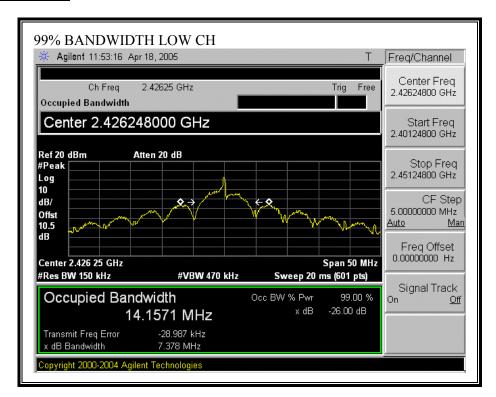
LIMIT

None: for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


No non-compliance noted:

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2426.248	14.1571
High	2456.576	13.4101

DATE: APRIL 25, 2005

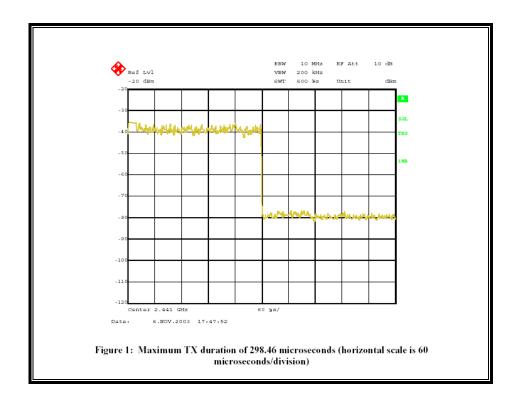
FCC ID: EW4-OXYWA

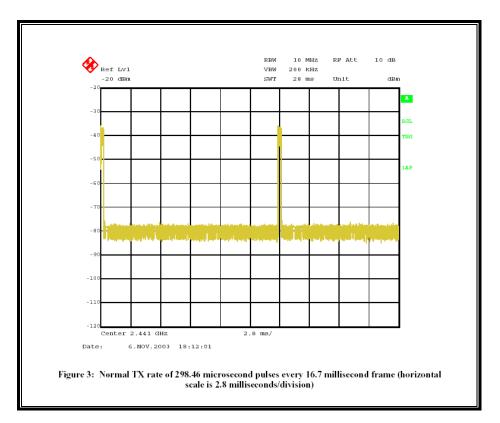
99% BANDWIDTH

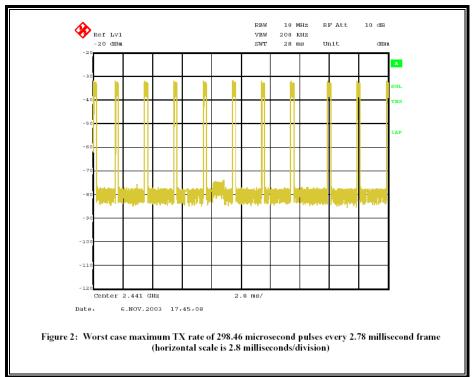
7.2. DUTY CYCLE

LIMIT

None, for reporting purposes only and a correction factor will apply to average readings.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The sweep time is coupled and the span is set to 0Hz. The RBW & VBW is set to usual and enough to capture a good plot.


RESULTS

No non-compliance noted:

One Master Frame=2.78mS
Master Frame is repeated continuously.
Max Tx bits in a Master Frame= 179bitsx8=1432bits
Transmit duration (data rate = 4.798MHz) = 1/4.798MHz x 1432bits=298.46uS
298.46uS/2780uS=0.1073 = 10.7%

Page 15 of 40

7.3. RADIATED EMISSIONS

7.3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

The field strengths shall not exceed the following:

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)	
902 - 928 MHz	50	500	
2400 - 2483.5 MHz	50	500	
5725 - 5875 MHz	50	500	
24.0 - 24.25 GHz	250	2500	

Field strength limits are specified at a distance of 3 meters.

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			·

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

DATE: APRIL 25, 2005 FCC ID: EW4-OXYWA

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode. The X, Y, and Z positions shall be tested and the worst case reported.

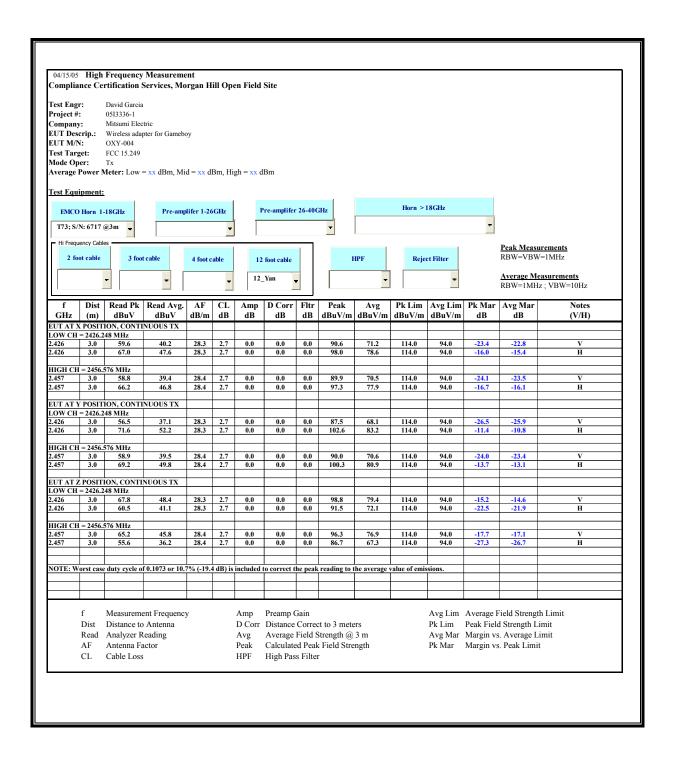
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

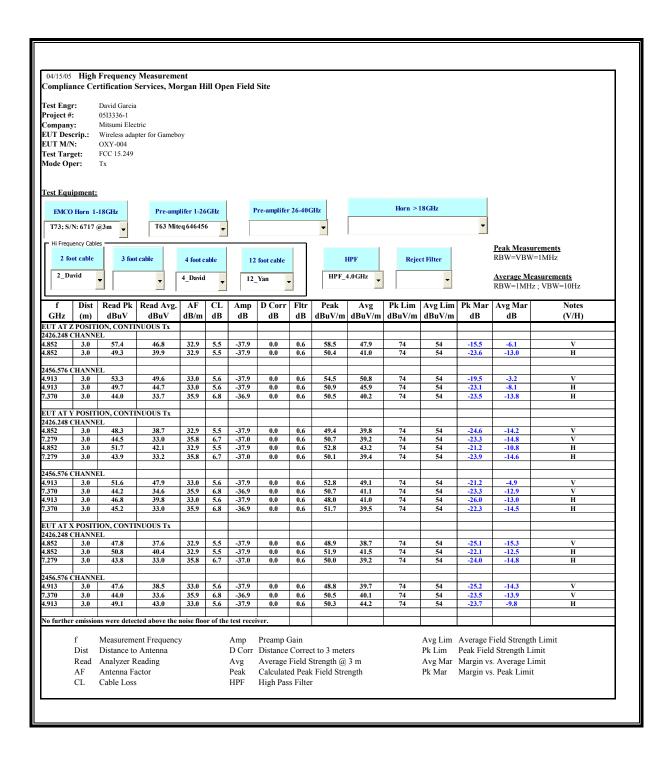
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

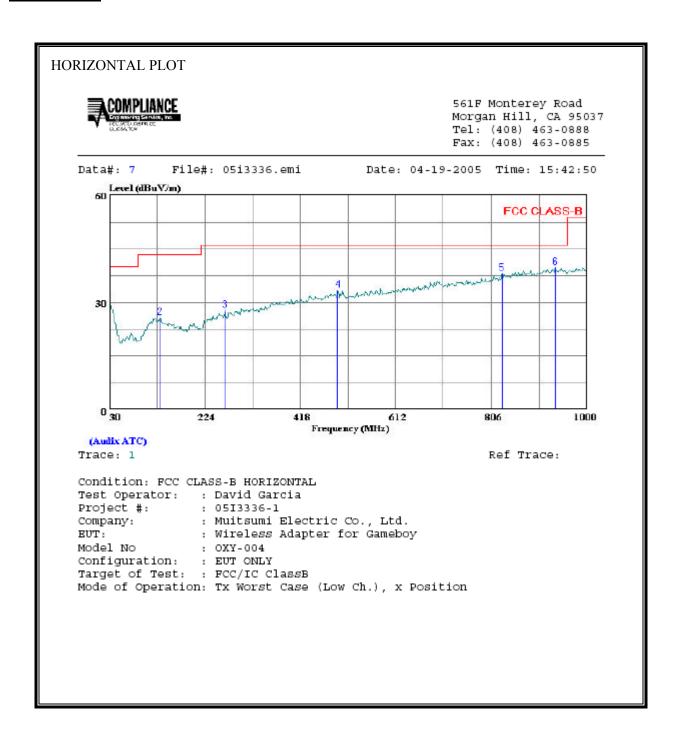

RESULTS

No non-compliance noted:

NOTE: Worst Case Duty Cycle of 0.1073 or 10.7% (-19.4dB) is included to correct the peak reading to the average value of emissions.


7.3.2. FUNDAMENTAL MEASUREMENT

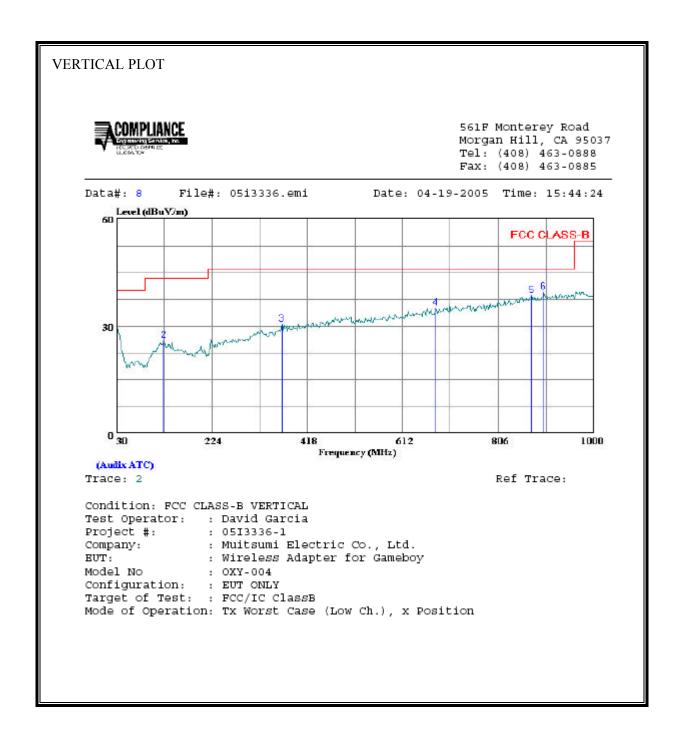
FUNDAMENTAL MEASUREMENT @ X, Y, & Z POSITIONS:


7.3.3. TRANSMITTER EMISSION ABOVE 1GHz

HARMONICS AND SPURIOUS EMISSIONS @ X, Y, & Z POSITIONS:

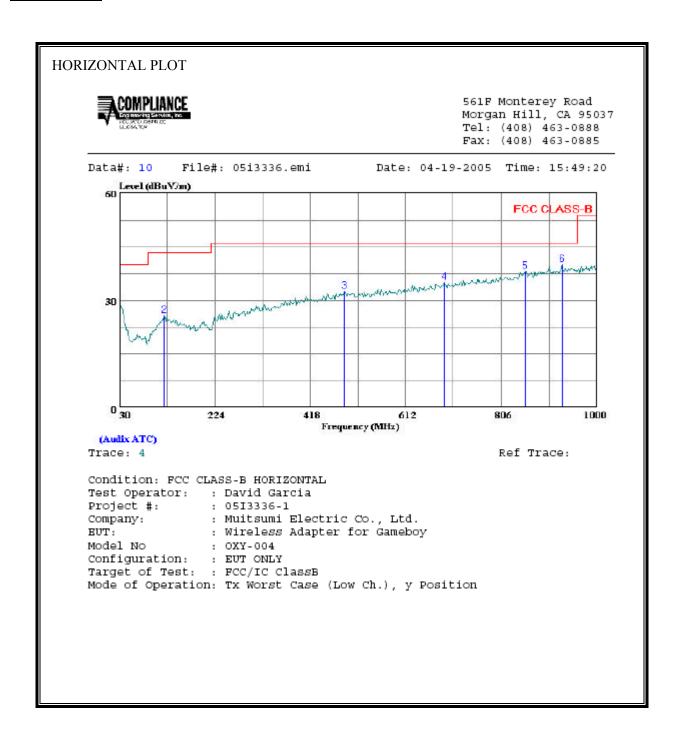
7.3.4. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, X POSITION, HORIZONTAL)

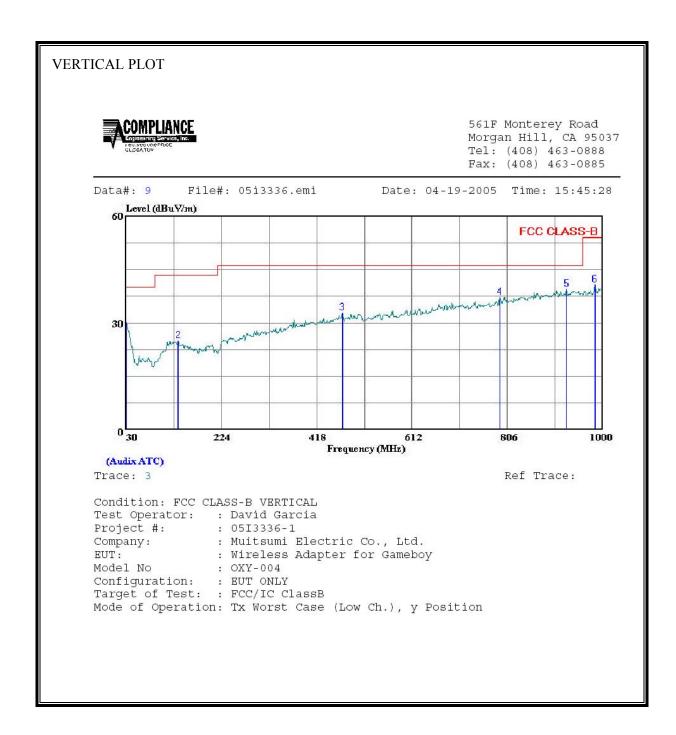


DATE: APRIL 25, 2005

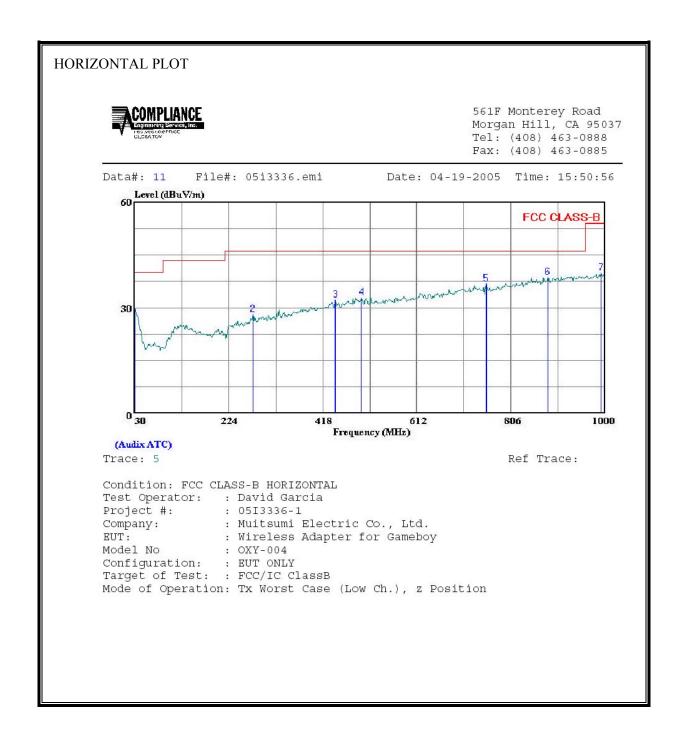
FCC ID: EW4-OXYWA


HORIZON	VTAL DATA	Read		Level	Limit Line	Over Limit	
	MHz	dBuV	dB	dBuV/m	dBu√/m	dB	
1 2 3 4 5 6	31.940 133.790 264.740 494.630 827.340	9.46 10.69 13.42 13.30 13.31	19.94 15.02 14.39 20.14 24.92	29.40 25.71 27.81 33.44 38.23	40.00 43.50 46.00 46.00 46.00	-10.60 -17.79 -18.19 -12.56 -7.77	Peak Peak Peak Peak

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, X POSITION, VERTICAL)

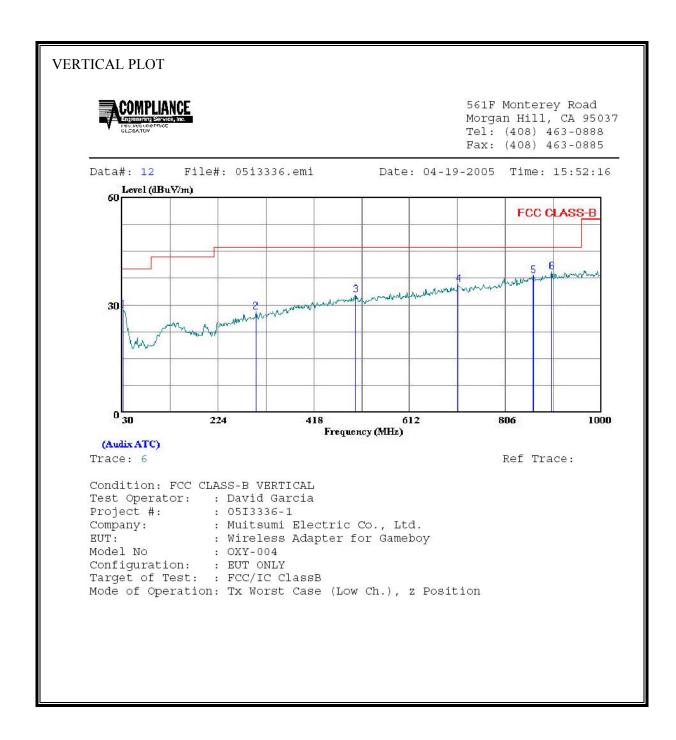

ERTICAL	DATA							
_			Factor		Line		Remark	
	MHZ	dBuV	dВ	dBuV/m	dBu√/m	đВ		
1 2 3	126.030 366.590	10.67 13.12	15.25 17.31	25.92 30.43	46.00	-17.58 -15.57	Peak Peak	
4 5	678.930 872.930							
6	897.180							

<u>SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, Y POSITION, HORIZONTAL)</u>


HORIZONTAL DATA Read Limit Over Freq Level Factor Level Line Limit Remark MHZ dBuV dB dBuV/m dBuV/m dB 31.940 8.52 19.94 28.46 40.00 -11.54 Peak 121.180 10.64 15.16 25.80 43.50 -17.70 Peak 2 487.840 12.59 20.00 32.59 46.00 -13.41 Peak 3 691.540 12.04 22.96 35.00 46.00 -11.00 Peak 853.530 13.00 25.30 38.30 46.00 -7.70 Peak 929.190 13.77 26.25 40.02 46.00 -5.98 Peak

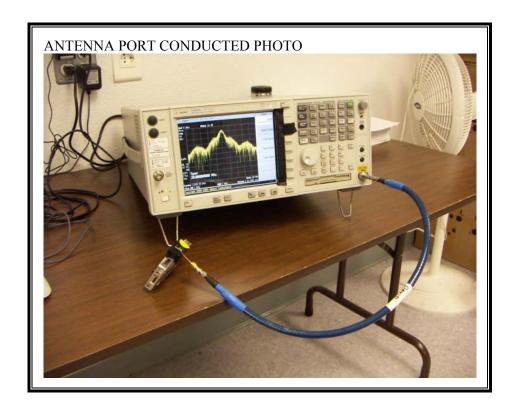
<u>SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, Y POSITION, VERTICAL)</u>

VERTICAL DATA Read Limit Over Freq Level Factor Level Line Limit Remark dBuV dB dBuV/m dBuV/m 30.000 9.58 20.45 30.03 40.00 -9.97 Peak 1 2 135.730 9.86 14.96 24.82 43.50 -18.68 Peak 3 470.380 13.25 19.65 32.90 46.00 -13.10 Peak 4 790.480 12.79 24.43 37.22 46.00 -8.78 Peak 5 926.280 13.32 26.23 39.55 46.00 -6.45 Peak 984.480 14.02 26.78 40.80 54.00 -13.20 Peak 6


<u>SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, Z POSITION, HORIZONTAL)</u>

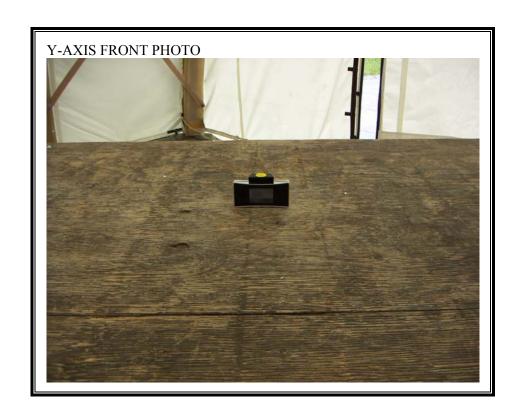
HORIZONTAL DATA

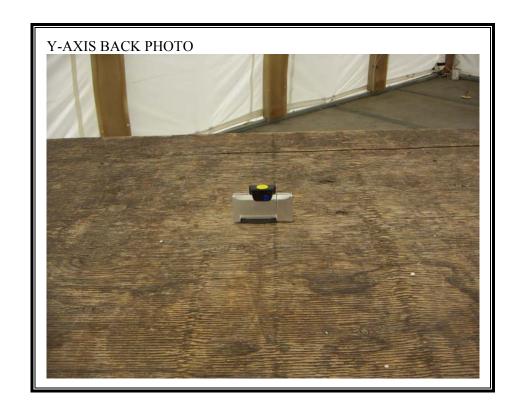
		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHZ	——dBuV	dB	$\overline{\rm dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	
1	30.000	9.20	20.45	29.65	40.00	-10.35	Peak
2	274.440	13.21	14.76	27.97	46.00	-18.03	Peak
3	444.190	13.17	19.04	32.21	46.00	-13.79	Peak
4	497.540	12.69	20.19	32.88	46.00	-13.12	Peak
5	754.590	12.79	23.90	36.69	46.00	-9.31	Peak
6	882.630	12.85	25.73	38.58	46.00	-7.42	Peak
7	992.240	12.98	26.93	39.91	54.00	-14.09	Peak

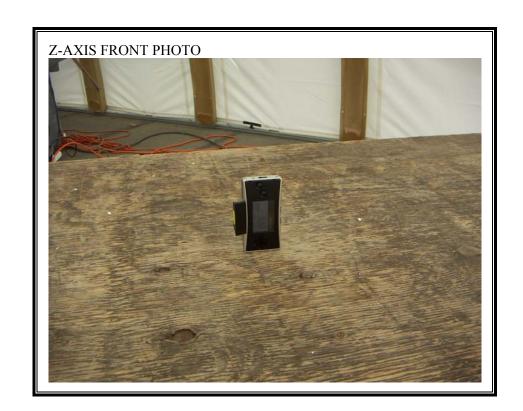

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, Z POSITION, VERTICAL)

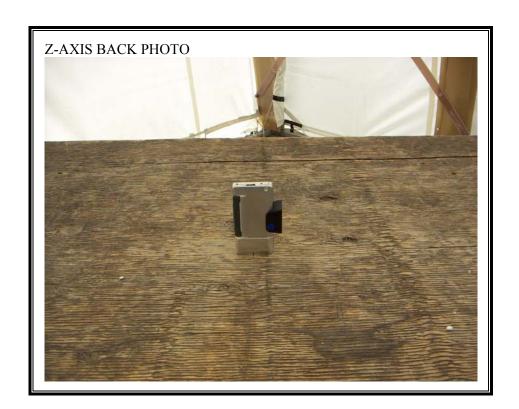
VERTICAL DATA Read Limit Over Freq Level Factor Level Line Limit Remark MHz dBuV dB dBuV/m dBuV/m dΒ 1 31.940 8.76 19.94 28.70 40.00 -11.30 Peak 2 300.630 12.45 15.67 28.12 46.00 -17.88 Peak 502.390 12.57 20.24 32.81 46.00 -13.19 Peak 4 710.940 12.37 23.26 35.63 46.00 -10.37 Peak 5 863.230 12.86 25.42 38.28 46.00 -7.72 Peak 900.090 13.37 25.88 39.25 46.00 -6.75 Peak

8. SETUP PHOTOS


ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP




RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION



END OF REPORT