
www.openmoko.com

1

O p e n M o k o

N e o 1 9 7 3 u s e r m a n u a l

www.openmoko.com

2

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device,

pursuant to Part 15 of the FCC Rules. These limits are designed to providereasonable

protection against harmful interference in a residential installation. Thisequipment generates,

uses and can radiate radio frequency energy and, if not installed and used in accordance with

the instructions, may cause harmful interference to radio communications. However, there is

no guarantee that interference will not occur in a particular installation. If this equipment does

cause harmful interference to radio or television reception, which can be determined by turning

the equipment off and on, the user is encouraged to try to correct the interference by one of the

following measures:

 Reorient or relocate the receiving antenna

 Increase the separation between the equipment and receiver

 Connect the equipment into an outlet on a circuit different from

that to which the receiver is connected

 Consult the dealer or an experienced radio/TV technician for help

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two

conditions: (1) This device may not cause harmful interference, and (2) this device must

accept any interference received, including interference that may cause undesired operation.

FCC Caution: Any changes or modifications not expressly approved by the party

responsible for compliance could void the user’s authority to operate this equipment.

IMPORTANT NOTE:

FCC Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled

environment. End users must follow the specific operating instructions for satisfying RF

exposure compliance.

For body worn operation, this phone has been tested and meets the FCC RF exposure

guidelines for use with an accessory that contains no metal and the positions the handset a

minimum of 1.5 cm from body. Use of other enhancement may not ensure compliance with

FCC RF exposure guidelines.

www.openmoko.com

3

Chapter 1 Free Your Neo1973

OpenMoko is an Open Source project to create the world's first free mobile

phone operating system. The OpenMoko project is a community that

anyone can join, and help to design their ideal phone. The Neo1973 from

FIC is the first of many phones that OpenMoko will run on.

The long term goal of OpenMoko is that phone software will no longer be

tied to one phone. You can buy any compatible phone, and install any

software over the whole range of phones. If you upgrade your phone, you

don't lose the software. Bugs fixed on one phone are fixed on all.

Please join us in collaborating on the OpenMoko project through any of the

project resources including the OpenMoko wiki. Please see the wiki editing

help page for information on making contributions to this wiki. A core team

of developers funded by FIC, Inc. leads the project.

1-1 Neo1973 package list

All the following information could be found at www.openmoko.org Please

go to the web site for most updated information.

A Neo1973 standard package including:

 a. 100 to 220 v adaptor plug

 b. USB Charger

 c. USB charger cable

 d. USB A to mini B cable

 e. Stylus

 f. Earphone

www.openmoko.com

4

 g. Battery

 h. SD-Card

1-2 Neo1973 GTA01 Specification

Name Neo1973

Size 120.7 x 62 x 18.5 mm

Weight 135 g

Screen 2.8" 480x640 at 285 ppi, maybe multi-touch later

Flash 128/256 MB

CPU Samsung s3c2442 SoC @ 400 MHz (Source)

SDRAM 128MB

GSM GSM, GPRS 2.5G (Not EDGE), Bluetooth 2.0 EDR, WiFi 812.11 b/g

GPS u-blox GPS

System OpenMoko Linux (Source code available)

Application Basic u-boot included. Software can be created by normal users.

www.openmoko.com

5

Sound Playback and recording, including playback of audio files via GSM and

recording/playback of voice calls. 2x1 watt stereo speaker comment

on performance, 2.5 mm jack

USB Standard USB 1.1 (unpowered), with a Mini-B receptor (can be

connected via adapter to both host and client devices)

Battery replaceable 1200 mAh battery charged via USB and AKII charger

1-3 Enter Neo 1973 U-Boot menu

Please insert the battery into the Neo1973 battery slot, then press Aux key

and power key the same time. Then you could enter following u-boot

menu.

www.openmoko.com

6

After enter u-boot menu, you could use [Aux] key to select the item, and

[Power] key for confirm. There should be 5 items by default:

1. Boot: Direct boot

2. Set console to USB: Could use Linux terminal software (like minicom

to connect Neo1973)

3. Set console to Serial: Re-Direct terminal output to Neo1973 debug

port serial interface.

4. Power off: Power of Neo1973

5. Factory reset: Reset parameter into factory default value.

If your Neo1973 already had kernel image or rootfs installed, once you

select the boot, system will boot. If your Neo1973 doesn’t contain any

kernel image, you will need to use devirginator or DFU-Util to install

system and root file system.

If you using the minicon or other terminal software like hyperterminal,

please using following settings to connect terminal:

Speed: 115200, N ,8, 1

Hardware flow control: Off

1-4 Install OpenMoko Kernel image by using DFU

1-4-1 Purpose

dfu-util is a program that implements the Host (PC) side of the USB DFU

(Universal Serial Bus Device Firmware Upgrade) protocol.

www.openmoko.com

7

In the OpenMoko project, we use this program to communicate with our

specially enhanced u-boot boot loader, which implements the DFU device

side.

Using dfu-util and your Neo1973, you can Link* transfer and flash

partitions to NAND Flash, such as

 The Linux kernel

 The root file system partition

 The splash screen partition

 The u-boot environment

Last, but not least: The u-boot bootloader itself.

transfer anything into Neo1973 RAM

this can be used for fast development cycles of low-level code such as

kernels without flashing them

read out the current NAND partitions

this is an easy and efficient way of doing full backups of your phone

1-4-2 Source Code

dfu-util can be found at http://svn.openmoko.org/trunk/src/host/dfu-util/

Binary packages will be made available as part of the regular OpenMoko

builds

1-4-3 help manu

dfu-util - (C) 2007 by OpenMoko Inc.

www.openmoko.com

8

This program is Free Software and has ABSOLUTELY NO WARRANTY

Usage: dfu-ut i l [opt ions] . . .
 -h --help Pr int this help message
 -V --version Pr int the version number
 - l - - l ist List the current ly attached DFU
capable USB devices
 -d --device vendor:product Specify Vendor/Product ID of DFU
device
 -c --cfg conf ig_nr Specify the Conf igurat ion of DFU
device
 - i - - int f int f_nr Specify the DFU Interface number
 -a --al t al t_nr Specify the Altset ing of the DFU
Interface
 - t --t ransfer-s ize Specify the number of bytes per USB
Transfer
 -U --upload f i le Read f i rmware from device into <f i le>
 -D --download f i le Wri te f i rmware from <f i le> into device
 -R --reset Issue USB Reset signal l ing once
we're f inished

1-4-4 List function

Using the --list option, you can list the available DFU capable devices, their

configuration, interface and altsettings. Below is an example for a current

Neo1973 phone in u-boot Runtime Mode

./dfu-ut i l -- l is t
dfu-ut i l - (C) 2007 by OpenMoko Inc.
This program is Free Software and has ABSOLUTELY NO WARRANTY

Found DFU Runtime: [0x1457:0x5119] devnum=0, cfg=0, intf=2, alt=0,

name="USB Device Firmware Upgrade"

Below is an example for a current Neo1973 phone in u-boot DFU Mode

./dfu-ut i l -- l is t
dfu-ut i l - (C) 2007 by OpenMoko Inc.
This program is Free Software and has ABSOLUTELY NO WARRANTY

Found DFU: [0x1457:0x5119] devnum=16, cfg=0, int f=0, al t=0,

name="RAM 0x32000000"
Found DFU: [0x1457:0x5119] devnum=16, cfg=0, int f=0, al t=1,

name="u-boot"

www.openmoko.com

9

Found DFU: [0x1457:0x5119] devnum=16, cfg=0, int f=0, al t=2,
name="u-boot_env"
Found DFU: [0x1457:0x5119] devnum=16, cfg=0, int f=0, al t=3,
name="kernel"
Found DFU: [0x1457:0x5119] devnum=16, cfg=0, int f=0, al t=4,
name="splash"
Found DFU: [0x1457:0x5119] devnum=16, cfg=0, int f=0, al t=5,
name="rootfs"

This shows you six interfaces, all in configuration 0 and interface 0, with

altsetting 0...4. The name is currently not yet defined, but will be added to

one of the upcoming u-boot releases. The mapping on the Neo1973 is as

follows:

0: RAM
1: 'u-boot ' part i t ion
2: 'u-boot_env' part i t ion
3: 'kernel ' part i t ion
4: 'splash' part i t ion
5: ' rootfs ' part i t ion

1-4-5 device function

You can specify the USB Vendor and Product ID of the device you want to

program:

dfu-util --device 0x1457:0x5119

If you only have one standards-compliant DFU device attached to your PC,

this is optional. However, as soon as you have multiple DFU devices,

dfu-util will detect this and abort, asking you to specify which device it

shall use.

1-4-6 transfer-size

Specifies the size of each individual USB transfer. If you don't use it, the

maximum possible size for your combination of host operating system and

USB device is chosen (for optimal performance).

1-4-7 download

www.openmoko.com

10

download the given file into the device.

1-4-8 upload

upload from the DFU device into the given file[name].

 NOTE: Upload support is current ly broken

Phrasebook

There's no full-fledged manual yet. Instead, some examples:

Flashing the kernel
dfu-ut i l -a 3 -R -D /path/to/uImage

Flashing the boot loader
dfu-ut i l -a 1 -R -D /path/to/u-boot.bin
Copying a kernel into RAM
dfu-ut i l -a 0 -R -D /path/to/uImage

Once this has f in ished, the kernel wi l l be avai lable at the default load
address of 0x32000000 in Neo1973 RAM.

www.openmoko.com

11

Chapter 2 Applications

2-1 Overview

This page describes the set of applications being developed by the core set

of OpenMoko developers. This is what is intended to be eventually released

on the stock firmware of OpenMoko phones (Neo1973 and successors). If

the community develops an application of suitable usefulness and quality,

it may also be included on stock firmware. Community applications may be

found on the Wish List and on projects.openmoko.org

Although OpenMoko is designed for smartphones that use a stylus, it

would be foolish to expect people to only operate their handsets with

stylus. For this reason, some core phone-related applications will be

developed with finger (as opposed to stylus navigation) in mind.

 NOTE: Appl icat ions l isted on this page are l ist ing in order of pr ior i ty and
by phase. 0th phase is for the developers preview release in March, 1st
phase is for late March. 2nd phase is September.. . when we are ready

for mass market appeal.

www.openmoko.com

12

2-1-1 General Principles

All modifications are saved instantenously, there should never be a save

command.

Make sure users can't make interface operation errors, or that the effects

are easily reversible, instead of just notifying them of the potential

consequences of their actions.

When you open a document you should be returned to the place where you

were working when you last closed or save it (this is our concept of

sessions).

Label buttons with adjectives, which describe the state of the object

affected

Designers should seek an efficient monotonous solution to gain benefits,

including ease of learning, simplicity of implementation, minimization of

documentation, and lowered maintenance costs.

Whenever you find yourself specifying an error message, please stop; then

redesign the interface so that the condition that generated the error

message doesn't arise.

If the user gets no utility from a process, there is no reason to tell them

that it is happening.

Provide unlimited levels of Undo and Redo whenever possible.

Consider adding a Trash or Deleted Items area that has everything the

user has deleted. The user’s data is the most important priority. Let’s

make it hard for them to lose anything and easy to recover it.

www.openmoko.com

13

 NOTE: Innovat ion usual ly happens at the bottom. What we need to do is
provide consistent ways to develop and deploy appl iat ions.

2-2 OpenMoko Dialer

2-2-1 Overview

This article defines the Dialer Application, an application designed for the

OpenMoko platform. The Dialer Application handles all call and SMS

related interactions. This is a Native Finger-Based application.

2-2-2 Use Cases

Here are some possible use cases:

I want to be able to dial a number

I want to be able to quickly redial a number

I want to be able to adjust the volume of both the speaker and microphone

while in call

www.openmoko.com

14

2-2-3 Dial Mode

1) Application Title -- Title of this application.

2) Icon / Photo -- Photo of contact (if available) will be displayed if number

can be autocompleted.

3) Phone Number -- Phone number is displayed. Larger font is used for first

line. After reaching end of first line the entire font size should decrease to

allow for two full lines.

4) Autocompleted Tail -- Automatically complete the tail of phone numbers

from existing contacts (when matched). This uses the Auto-complete

widget.

5) Keypad -- Standard dialing keypad. The '*' key, when pressed quickly,

cycles through this list: {*, +, p, w}.

6) Possible Autocompletions -- A list of contacts that can be autcompleted.

This list is only as long as the visible screen area permits. (Usually 4-5

contacts). These are buttons that, when pressed, will autocomplete the

www.openmoko.com

15

current number string.

7) Delete -- Deletes the last entered digit.

8) History -- Goes to the History mode.

9) Dial -- Dials the entered number string.

 NOTE: I f a PIN is required to access the SIM card, the "Phone number" (3)
display wi l l change to enter a PIN. "History" (8) wi l l gray-out and "Dial" (9)
wi l l change to "OK."

2-2-3 Incoming Call Mode

1) Call Icon -- Icon representing call type.

2) Icon / Photo -- Photo of contact (if available) will be displayed.

3) Answer -- Answer the incoming call.

4) Title -- Title of this window.

5) Reject -- Rejects call. Returns to last application.

www.openmoko.com

16

6) Caller ID Title -- If contact is stored in the handset, the name will be

displayed (Steve in this case). Otherwise display Unknown. Below displays

the phone number of the other party.

2-2-3 In Call Mode

1) Call Icon -- Icon representing call type.

2) Icon / Photo -- Photo of contact (if available) will be displayed.

3) Volume control -- Adjust the speaker volume level. While adjusting 5)

will display percentage (%) level information

4) Control Button -- This mode only has volume control. Tapping will do

nothing.

5) Speaker Phone -- Turns on the speaker phone mode

6) Application Title -- Title of this application.

www.openmoko.com

17

7) DTMF -- Changes to Dial Mode for DTMF support.

8) Hang-up -- Disconnects the current phone call. Returns to Dial Mode.

9) EMPTY -- Nothing for now. (Can be toggle of dictation)

10) Caller ID Title -- If contact is stored in the handset, the name will be

displayed (Steve in this case). Otherwise display Unknown. Below displays

the phone number of the other party.

11) Talk Time -- Displays call talk time.

2-2-4 Outgoing Call Mode

1) Call Icon -- Icon representing call type.

2) Icon / Photo -- Photo of contact (if available) will be displayed.

3) Speaker -- Turn on speaker phone mode

www.openmoko.com

18

4) Title -- Title of this window.

5) Cancel -- Cancels call. Returns to last application.

6) Caller ID Title -- If contact is stored in the handset, the name will be

displayed (Steve in this case). Otherwise display Unknown. Below displays

the phone number of the other party.

2-2-5 Connection Error Mode

1) Call Icon -- Icon representing call type.

2) Icon / Photo -- Photo of contact (if available) will be displayed.

3) Redial -- Redials the last number.

4) Error Title -- Title of this error.

5) Cancel -- Cancels call. Returns to last application..

6) Caller ID Title -- If contact is stored in the handset, the name will be

displayed (Steve in this case). Otherwise display Unknown. Below

displays the phone number of the other party.

www.openmoko.com

19

2-2-6 Call History Mode

1) Caller ID Title -- If contact is stored in the handset, the name will be

displayed. Otherwise display number. An icon will represent the type

(incoming, outgoing, missed) of call.

2) List Scroll -- Scrolls through the call history list. While scrolling, 3) will

display the current / total item information (for example 2/8).

3) Control Button -- Tapping will change between the following modes:

{Call History Mode, Close and returns to Dialer}.

www.openmoko.com

20

4) Call -- Call the current selected number. Grayed-out if number is

unknown.

5) Application Title -- Title of this application.

6) SMS -- Send a message to this number. This will open the Messages

application with a new (SMS) message.

7) Delete -- Removes this number from the call history list.

8) More Items -- Tap to reveal the next list of items. The second list has the

following items: { Save, All Calls, Missed Called, Dialled Calls, Received

Calls, Back}

9) List counter -- Displays the current list entry / total list entries.

10) Current List Entry -- The current list entry. The position of the highlight

is fixed. Only the text moves up/down with scrolling. User can tap a list

item to have this move to center. Also, scrolling effect should ease in.

11) More Items Counter -- Displays the current set / total sets of More

Items.

 NOTE: The cal l l ist s l ides behind the scrol l ing widget. The scrol l ing
widget and horizontal bar are 80% transparent.

2-3 OpenMoko Main menu

2-3-1 Overview

This article defines the Main Menu Application, an application designed for

the OpenMoko platform. The Main Menu application provides both a

finger-friendly and a stylus-driven interface to lauch all installed

applications.

Here are some possible use cases:

I want to be able to launch an application

www.openmoko.com

21

I want to rearrange applications in the menu

Activated by pressing the auxilary key. This is the base layout:

1) Section Name -- The name of the current section.

2) List scrolling -- Will scroll through the list of icons. While scrolling, 3)

will show how many items exist in this list.

3) Control Button -- Tapping cycles through the following controls {Scroll

List Control, Back}. Currently at Scroll List Control. The List is broken up

into sections of applications.

www.openmoko.com

22

4) History Applications -- Are the last 3 applications launched.

5) Item / Total -- Displays the current selected item number along side the

number of items.

6) Sections or Applications -- Tapping on a section will lead to subgroups

of applications. Tapping on an application will launch that application.

www.openmoko.com

23

Neo1973 emulation

This target will (obviously) run original OpenMoko rootfs images, but then

it should also be able to run the original u-boot and kernel images, the

same ones that a real Neo1973 uses. Among other differences you will

notice between this approach and the Integrator/CP target is you also get

correct screen resolution, some (fake) battery readings, and other

goodness. Currently missing parts of the emulator are: AGPS and

Bluetooth - these things will still be worked on, as well as general usability.

Even with these things missing, QEMU should provide substantial help in

debugging kernel and u-boot issues to developers.

What QEMU can *not* be used for, and probably no other emulator can, is

speed measures and getting the general feel of OpenMoko performance.

Code running in qemu runs with the maximum speed your host computer

can provide with an overhead of translating target code to host code, and

this overhead is not uniform across different instructions. This means that

even if your virtual Neo reports near 100 BogoMIPS (which is the speed of

a real Neo), different actions performed in the emulator will not run with

the same speed. On most PCs you will notice the real Neo running faster

than a virtuel one.

What hardware is supported

Rough status for each of the components that need emulation, following

the outline of Neo1973 Hardware page.

Hardware Status Usage notes

S3C2410A Processor

ARM920T core Works Already in mainline QEMU.

www.openmoko.com

24

Basic guts Work

This includes GPIO interface, DMA, Interrupt

Controller, Timers, NAND controller, MMC/SD

host, I2C and IIS interfaces, Memory & Clock &

Power management controllers, RAM.

Serial ports Works

Use the "-serial" switch (maybe be specified

multiple times) to tell QEMU where serial

input/output should go to. GSM module will be

connected on UART0.

RTC Works

On start QEMU will load it with current time/date -

the Neo1973 kernel doesn't use it for time/date

source currently.

SPI Works
The guest kernel can drive it using either the SPI

interface or raw GPIO bitbanging.

LCD Works

The virtual LCD will display contents in QEMU

window unless "-nographic" is specified on

command line.

ADC Works

Mouse events in QEMU window generate what

would be touchscreen events on a Neo1973 and

are passed to the guest OS through the on-chip

ADC.

OHCI USB Works

This part is in mainline QEMU. Use the "-usb"

switch to enable the controller and "usb_add" in

QEMU monitor to attach new virtual or physical

USB devices.

Slave USB Works

Linux's dummy HCD in conjunction with gadget

filesystem API is used to make the virtual Neo

appear as a real one connected to the host

computer. See Setting up USB connection below.

(Experimental)

www.openmoko.com

25

Watchdog Works

This is one of the less important on-chip

peripherals in S3C2410. It is however used by

Linux for rebooting the board.

I2C bus peripherals

PCF50606 Works

(Aka PMU) Fakes the battery charge level (set at

88%), POWER button, etc. Also contains an RTC,

also unused by Linux.

LM4857 Works

WM8753L Works

The CODEC is also connect to the CPU's IIS port.

Basic audio functionality is supported - see QEMU

documentation on getting audio input/output from

the emulator. Volume control has no effects.

Other peripherals

NAND Flash Works

However, some pieces are not confirmed to be

completely compatible with the real hardware

because of lack thereof. Use "-mtdblock

flashimagefilenamehere" switch to point QEMU to

your flash image. The file should be at least

69206016 bytes big.

JBT6K74-AS(PI) Works (Aka LCM) Wired to the SPI channel 1

Buttons Work
Enter is the AUX button, Space is the POWER

button. Wired to on-chip GPIO and PCF50606.

www.openmoko.com

26

SD card Works

This part is already in mainline QEMU. Use the "-sd

cardimagegoeshere" switch to point QEMU to the

card image. The regular QEMU monitor commands

for removable media can also be used. The card

works, however the on-chip host controller gave

block length errors on heavy I/O despite working

as described in specification. I suspect the kernel

driver. DMA operation is not tested.

Bluetooth Works

A generic Bluetooth HCI (just like the BlueCore4

chip) is connected to internal USB hub (just like

the Delta DBFM dongle). Currently qemu emulates

no other bluetooth devices, so the dongle behaves

as if there was no BT-enabled slaves around, being

the only device on the piconet, i.e. is not really

useful. Likely a Bluetooth keyboard will be

emulated. A physical Bluetooth dongle can also be

attached to the emulator (see USB documentation

in QEMU).

GSM Works

A fake modem is connected to UART0

understanding a (currently quite limited) subset of

AT commands. Ultimately it should support as

much functionality as possible (basic AT command

set, fake GPRS connections, dialing and SMS

send/receive). This way all parts of the phone

subsystem (CALYPSO, TWL3014, TRF6151) will

not have to be emulated. There is a possibility to

wire a real GSM modem to QEMU's serial port, or

the phonesim modem simulator from the Qtopia

project (use the --enable-phonesim switch

to ./configure) as well as the atinterface modem

emulator, also from Qtopia.

www.openmoko.com

27

AGPS To Do

There are obvious difficulties emulating the chip,

but hopefully it can be made to present the guest

OS with some fixed coordinates later when more is

known about the chip. Again a real chip could be

connected to QEMU's serial port.

Current development is aiming for GTA01Bv4 compatibility; earlier

revisions can also be emulated if needed. The differences between the

hardware revisions currently only manifest themselves in GPIO wiring.

Hardware emulation is implemented in a clean-room manner using official

specifications where possible.

[edit]

How to get it running

[edit]

Using MokoMakefile

This is arguably the easiest way of building qemu-neo1973 since you won't

need to deal with the compiling and flashing processes yourself. See

MokoMakefile for details. (Installation instructions)

If you *just* build QEMU and use the official images by typing "make

qemu" only (as opposed to setting up monotone and openembedded and

building an entire new image for yourself with MokoMakefile), then the

build takes less time than the manual instructions below (since it's all done

automatically).

Manual setup

To obtain the latest source code for the emulator, you will want to do

something like the following:

$ svn checkout https://svn.openmoko.org/trunk/src/host/qemu-neo1973

$ cd qemu-neo1973

Now, we're going to configure and build the emulator (Note

www.openmoko.com

28

Requirements below):

$./configure --target-list=arm-softmmu # GCC 3.x will be required, see

--cc=

$ make

See other available options for the configure script by appending "--help".

Now you should have a working emulator under the name

"arm-softmmu/qemu-system-arm". To run OpenMoko you will also need to

somehow install OpenMoko on your virtual phone, which is totally clean of

any software at this moment. There are several block devices to choose

from, the best option is probably to do exactly what the Neo1973

manufacturer does before it ships the device to the final user. This process

is described in Bootloader, Kernel, NAND bad blocks and Devirginator but

you don't need to know all the details. Two scripts are provided to generate

a firmware for your phone, as realistic as possible. First run

$ openmoko/download.sh

which will look up the list of latest available OpenMoko snapshot builds

from buildhost.openmoko.org and choose the most recent u-boot, Kernel,

and root filesystem images, and download the images (unless they are

already found in the openmoko/ directory). These binaries will be used by

the flash.sh script. First make sure you have the netpbm package installed

for some graphics conversion utilities. On Ubuntu this can be done by:

sudo apt-get install netpbm

Then run:

$ openmoko/flash.sh

which runs the emulator, loads u-boot into it and then uses u-boot's

capability to program the Flash memory to install all the necessary parts of

the system into the virtual Flash. It will also set up all the bootloading

process including a boot menu (ENTER is [AUX] and SPACE is [POWER]),

splash, u-boot environment and some default kernel parameters. If

everything goes OK, the script should print a command which you can use

to start using the emulator.

www.openmoko.com

29

QEMU has *tons* of commandline switches and things that can be

configured. You can look them up in QEMU user docs. You will probably

want to use the "-snapshot" switch, among other ones. Saving and

restoring emulation state at any point (unrelated to "-snapshot") should

work as per QEMU user docs too. In addition the monitor commands "help"

and "info" are of great help. The monitor usually sits in second virtual

console, thus ctrl-alt-2 and ctrl-alt-1 switch to monitor and back.

Pre-built binaries

Win32 binaries shipped with firmware can be downloaded from

openmoko-emulator-win32-bin-20070625.zip (or a mirror here). Tested

on MS Windows XP and Vista Business.

Requirements

This QEMU tree has only been tested on GNU/Linux. To get graphical (not

counting VNC) and/or audio output from the emulator you will need either

SDL or Cocoa installed on your computer. To enable audio, see the

available switches to the ./configure script.

The scripts that sit in openmoko/ require lynx, wget, python, netpbm and

most GNU base utilities installed in standard locations. The netpbm

package contains tools necessary for bootsplash image conversion.

All of the build-time and run-time requirements listed in QEMU

documentation apply. This includes zlib, etc. On distributions that use

binary packages, remember that you need the packages ending in -dev or

-devel.

QEMU and GNU debugger

QEMU lets you debug operating system kernels and bootloaders like you

debug all other programs. To do this you will need a debugger that

speaks the GDB remote debugging protocol - GDB is the obvious choice.

www.openmoko.com

30

Some cross toolchains come with GDB already set up. Otherwise building

cross-GDB yourself is quick and easy (compared to building binutils and

cross-gcc).

To debug u-boot, load the file "u-boot" into gdb (not "u-boot.bin") that is

produced by "make" when building u-boot. To debug a Linux kernel, load

the file "vmlinux" from the main source directory into gdb. These files are

in ELF format and contain all the symbol information and are not stripped

of debugging data until you run "strip" on them, unlike "u-boot.bin" and

"Image"/"zImage"/"uImage". Next, tell QEMU to enable the gdbserver by

appending the "-s" switch or issuing "gdbserver" in the monitor. Use the

command

(gdb) target remote localhost:1234

to make a connection to the emulator. From there you should be able to

use all the usual GDB commands, including stepping instructions, setting

breakpoints, watchpoints, inspecting stack, variables, registers and more.

If gdb is running in the same directory from which it grabbed the ELF

executable, the "edit" command should work so you can jump right to the

source line which is executing.

Simple network connection with pppd

One simple way to get a network connection from the emulated Neo is via

an emulated serial port and pppd. Add -serial vc -serial pty to the QEMU

command line, and QEMU prints a device name on a line like "char device

redirected to /dev/pts/12".

On the Neo side, open a terminal and run the command "pppd nodetach

debug /dev/ttySAC1".

On the host computer side, open a root terminal and run the command

"pppd nodetach debug 192.168.68.1:192.168.68.2 noauth /dev/pts/12",

substituting the actual device name from above.

Now on the host computer side, you should be able to "ping 192.168.68.2"

and "ssh root@192.168.68.2".

www.openmoko.com

31

Setting up USB connection

It is possible (although not very straight forward, probably about the

complexity of tun-tap networking) to connect the virtual, emulated

Neo1973 to the Linux PC on which the emulator is running, and work with

it as if a real Neo1973 was plugged into the computer's USB port, but no

twiddling with cables is needed. If you're testing your applications on the

Neo, it may be worth setting up this kind of connection because it lets you

enable normal networking between the PC and the phone and ssh into it

(which is much more comfortable than typing commands into the

OpenMoko's terminal emulator via on-screen keyboard). Here's what you

will need in order to get this working:

A Linux host with a 2.6 series kernel. The following drivers compiled-in or

in modules: dummy_hcd, gadgetfs, usbnet, cdc_ether. A detailed guide to

building the necessary modules is available (primarily Ubuntu focused).

Generic instructions follow.

Note that you need root access to perform most actions described here.

Here's how to enable the drivers in menuconfig.

Find and enable Device Drivers -> USB support -> USB Gadget Support ->

Support for USB Gadgets

Find Device Drivers -> USB support -> USB Gadget Support -> USB

Peripheral Controller and set it to Dummy HCD (DEVELOPMENT)

Find and enable Device Drivers -> USB support -> USB Gadget Support ->

Gadget Filesystem (EXPERIMENTAL) (this one is good to have as a module)

Find and enable Device Drivers -> USB support -> USB Network Adapters

-> Multi-purpose USB Networking Framework

Find and enable Device Drivers -> USB support -> USB Network Adapters

-> Multi-purpose USB Networking Framework -> CDC Ethernet support

(smart devices such as cable modems)

These last two drivers are the same drivers that you need to work with a

real Neo over USB network. After you've built the drivers, make sure

that the copy of kernel headers in /usr/include/linux is up to date. In

www.openmoko.com

32

particular the file /usr/include/linux/usb_gadgetfs.h needs to be present

and if your distribution came with headers older than 2.6.18 or so, then

you need tell the package manager to update them, or you can do that

manually with

 # cp -a /usr/src/linux/include/linux/* /usr/include/linux/

(assuming that your kernel sources are in /usr/src/linux). It is important

that this is done before building qemu because the build system checks if

these headers are functional and in case they aren't found it will disable

the USB Slave functionality. Run "grep CONFIG_GADGETFS config-host.h"

in qemu build directory to make sure that the detection succeeded. If it

didn't, correct your linux headers and reconfigure qemu.

After building qemu and before running it, make sure that the modules are

loaded into the kernel. I found it useful to load gadgetfs with the following

command:

 # modprobe gadgetfs default_uid=1000 # assuming my User ID is 1000

and added the following line to my /etc/fstab:

gadget /dev/gadget gadgetfs noauto,user,group

0 0

Make sure that the mountpoint /dev/gadget exists:

 # mkdir -p /dev/gadget

After that the rest of the procedure can be performed from your regular

user account. Mounting gadgetfs is done with:

 $ mount /dev/gadget

The "default_uid" parameter changes the ownership on all files under

/dev/gadget to your own and since the files there are created and

destroyed dynamically, there's no easy way to have that performed by

udev. Now running qemu as you usually do but appending "-usb

-usbgadget" (in the current version of the MokoMakefile this is not

included) should enable the USB Slave functionality. The qemu monitor

commands "info usbslave" and "usb_add gadget" will be useful. The

www.openmoko.com

33

former instruction asks the OS running under the emulator (OpenMoko) to

describe its slave features (that's what lsusb does after a Neo1973 is

connected to a PC). You can see the available USB configurations in this

command's output. Since gadgetfs allows only one configuration, we will

need to choose the desired configuration - most device have only one such

configuration, in which case you can use just "usb_add gadget" to connect

to host; CDC ethernet devices however usually include a second

configuration for RNDIS networking (i.e. Ms Windows compatibility) and so

does OpenMoko when using the g_ether driver. Hence, to get this right,

wait for OpenMoko to fully boot up and execute the following in QEMU

monitor:

QEMU 0.9.0 monitor - type 'help' for more information

(qemu) info usbslave

USB2.2 device 1457:5122:

Manufacturer: Linux 2.6.20.7-moko8/s3c2410_udc

Product: RNDIS/Ethernet Gadget

Configuration 0: RNDIS

Configuration 1: CDC Ethernet

(qemu)

(qemu) usb_add gadget:1

If qemu gives "couldn't add device gadget:1", double-check that it was

built against gadgetfs - the file config-host.h must contain the line

"#define CONFIG_GADGETFS 1".

The "1" in "usb_add gadget:N" is the number of the USB configuration that

we want to use. If everything went correctly - you can check that in dmesg

- you should now have a new network interface called usb0 on the PC,

through which you can talk to the OpenMoko running in QEMU:

 $ dmesg | tail

<6>gadgetfs: bound to dummy_udc driver

<7>hub 3-0:1.0: debounce: port 1: total 100ms stable 100ms status

0x101

<6>usb 3-1: new high speed USB device using dummy_hcd and address 3

<6>gadgetfs: connected

<7>usb 3-1: default language 0x0409

<7>usb 3-1: new device strings: Mfr=1, Product=2, SerialNumber=0

www.openmoko.com

34

<6>usb 3-1: Product: RNDIS/Ethernet Gadget

<6>usb 3-1: Manufacturer: Linux 2.6.20.7-moko8/s3c2410_udc

<6>usb 3-1: configuration #1 chosen from 1 choice

<7>usb 3-1: adding 3-1:1.0 (config #1, interface 0)

<7>usb 3-1:1.0: uevent

<7>cdc_ether 3-1:1.0: usb_probe_interface - got id

<7>cdc_ether 3-1:1.0: status ep3in, 16 bytes period 14

<7>usb 3-1: adding 3-1:1.1 (config #1, interface 1)

<7>usb 3-1:1.1: uevent

 $ su -

Password:

 # tail /var/log/everything/current

May 8 19:25:32 [kernel] gadgetfs: connected

May 8 19:25:32 [kernel] gadgetfs: disconnected

May 8 19:25:32 [kernel] gadgetfs: configuration #1

May 8 19:25:32 [kernel] usb0: register 'cdc_ether' at usb-dummy_hcd-1,

CDC Ethernet Device, 52:e7:eb:76:0a:d0

 # lsusb -vvv

Bus 003 Device 003: ID 1457:5122

Device Descriptor:

 bLength 18

 bDescriptorType 1

 bcdUSB 2.00

 bDeviceClass 2 Communications

 bDeviceSubClass 0

 bDeviceProtocol 0

 bMaxPacketSize0 64

 idVendor 0x1457

 idProduct 0x5122

 bcdDevice 2.12

 iManufacturer 1 Linux 2.6.20.7-moko8/s3c2410_udc

 iProduct 2 RNDIS/Ethernet Gadget

 iSerial 0

 bNumConfigurations 1

 Configuration Descriptor:

 bLength 9

 bDescriptorType 2

 wTotalLength 80

www.openmoko.com

35

 bNumInterfaces 2

 bConfigurationValue 1

 iConfiguration 7 CDC Ethernet

 bmAttributes 0xc0

 Self Powered

 MaxPower 0mA

 Interface Descriptor:

 bLength 9

 bDescriptorType 4

 bInterfaceNumber 0

 bAlternateSetting 0

 bNumEndpoints 1

 bInterfaceClass 2 Communications

 bInterfaceSubClass 6 Ethernet Networking

 bInterfaceProtocol 0

 iInterface 5 CDC Communications Control

 CDC Header:

 bcdCDC 1.10

 CDC Union:

 bMasterInterface 0

 bSlaveInterface 1

 CDC Ethernet:

 iMacAddress 3 52E7EB760AD0

 bmEthernetStatistics 0x00000000

 wMaxSegmentSize 1514

 wNumberMCFilters 0x0000

 bNumberPowerFilters 0

 Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

 bEndpointAddress 0x83 EP 3 IN

 bmAttributes 3

 Transfer Type Interrupt

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x0010 1x 16 bytes

 bInterval 14

 Interface Descriptor:

www.openmoko.com

36

 bLength 9

 bDescriptorType 4

 bInterfaceNumber 1

 bAlternateSetting 0

 bNumEndpoints 0

 bInterfaceClass 10 Data

 bInterfaceSubClass 0 Unused

 bInterfaceProtocol 0

 iInterface 0

 Interface Descriptor:

 bLength 9

 bDescriptorType 4

 bInterfaceNumber 1

 bAlternateSetting 1

 bNumEndpoints 2

 bInterfaceClass 10 Data

 bInterfaceSubClass 0 Unused

 bInterfaceProtocol 0

 iInterface 4 Ethernet Data

 Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

 bEndpointAddress 0x81 EP 1 IN

 bmAttributes 2

 Transfer Type Bulk

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x0040 1x 64 bytes

 bInterval 0

 Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

 bEndpointAddress 0x02 EP 2 OUT

 bmAttributes 2

 Transfer Type Bulk

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x0040 1x 64 bytes

www.openmoko.com

37

 bInterval 0

Device Qualifier (for other device speed):

 bLength 10

 bDescriptorType 6

 bcdUSB 2.00

 bDeviceClass 2 Communications

 bDeviceSubClass 0

 bDeviceProtocol 0

 bMaxPacketSize0 64

 bNumConfigurations 1

 # ifconfig usb0 inet 192.168.0.200 netmask 255.255.255.0

 # exit

 $ ssh root@192.168.0.202

The authenticity of host '192.168.0.202 (192.168.0.202)' can't be

established.

RSA key fingerprint is

de:21:87:93:52:1c:6b:c7:69:29:6c:af:66:50:02:02.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.202' (RSA) to the list of known

hosts.

root@192.168.0.202's password:

root@fic-gta01:~$ uname -a

Linux fic-gta01 2.6.20.7-moko8 #1 PREEMPT Wed Apr 25 11:13:52 UTC

2007 armv4tl unknown

[edit]

Connecting to the serial port/Communicating with u-boot

If you add the option -serial telnet:localhost:1200,server to QEMU will

create a telnet server on port 1200 that you can connect to as the serial

port.

This will allow you to experiment with u-boot configuration without risking

to brick the real device.

Please note that QEMU will wait for you to connect to the telnet server at

port 1200 before starting the emulation.

(use the command telnet localhost 1200 to establish the connection)

www.openmoko.com

38

