

大衆電腦股份有限公司 FIRST INTERNATIONAL COMPUTER, INC.

台北市敦化北路201號之24 台塑大樓後棟6樓 6F., FORMOSA PLASTICS REAR BUILDING 201, TUNG HWA N. ROAD, TAIPEI, TAIWAN TEL: (02)717-4500 (代表集) TELEX:23056

FAX: (02)712-0231

First Internation Computer Inc.

Notebook Computer

Model:Ruby 2.0 / DESIGNote 56XXXX /
DESIGNote 6 / 56XXXX / Legend 66 / StepNote SR /
friend V / Soliton / Soleil / AL300 Pentium II Model /
AL300 Pentium Model / CN600xxxyyyyzzz / ActionBook

FCC ID: EUNDESIGNOTE56

Application No. : 993013F

Application Date: Mar. 16, 1999

Test Report Application for Certification Class II Permissive Change On Behalf Of

First International Computer Inc.
Notebook Computer

Model:Ruby 2.0 / DESIGNote 56XXXX /
DESIGNote 6 / 56XXXX / Legend 66 / StepNote SR /
friend V / Soliton / Soleil / AL300 Pentium II Model /
AL300 Pentium Model / CN600xxxyyyyzzz / ActionBook

FCC ID: EUNDESIGNOTE56

Prepared For:

First International Computer Inc. 6F., Formosa Plastics Rear Bldg 201, Tung-Hwa N. Road, Taipei, Taiwan, R.O.C.

Report By: Global EMC Standard Tech. Corp.
No.3 Pau-Tou-Tsuo Valley, Chia-Pau
Tsuen, Lin Kou Hsiang, Taipei County,

Taiwan, R.O.C.

Tel: (02) 2603-5321 Fax: (02) 2603-5325

Test results given in this report only relate to the specimen(s) tested, calibrated or measured. This report shall not be reproduced other than in full without the written consent of Gestek.

1 5 24 Pay 1

TABLE OF CONTENTS

	Description	Page
1.	Test Report Certification	
2.	General Information	4
2.1	Production Description	4
2.2	Results	4
2.3	Tested System Details	
2.4	Test Methodology	9
2.5	Test Facility	9
3.	Conducted Emission Test	10
3.1	Test Equipments	10
3.2	Block Diagram of Test Setup	1U
3.3	Conducted Emission Limit	
3.4	FLIT Configuration on Measurement	11
3.5	FLIT Exercise Software	12
3.6	Conducted Emission Data	12
4.	Radiation Emission Test	14
4.1	Test Equipment	14
4.2	Test Setup	13
4.3	Radiated Emission Limit	10
4.4	FUT Configuration	10
4.5	Operating Condition of EUT	1 /
4.6	Radiated Emission Data	
5.	Photographs	20
5.1	Test Photographs	20
۲.	EUT Detail Photographs	22
7.	EMI Reduction Method During Compliance Testing	32
	ndix A	33
Appen	cuit (Block) Diagram	33
Circ	pendix B	32
App	CID	34
FCC	C ID	

GTK99-FODE

1. Test Report Certification

Applicant : First International Computer Inc.

Manufacturer : First International Computer Inc.

EUT Description: Notebook Computer

(A) Model No.

: Ruby 2.0

(B) Serial No.

: N/A

(C) Power

: 110V/60Hz

(D) Rating DC-O/P

: 20V

MEASUREMENT PROCEDURE / STANDARD USED:

E CFR 47, Part 15 Radio Frequency Device Subpart B Unintentional Radiators Class B: 1996

□ CISPR 22

Limits and methods of measurement of radio disturbance characteristics of

information technology equipment: 1993

ANSI C63.4

Methods of Measurements of Radio-Noise Emissions from Low-Voltage

Electrical and Electronic Equipment in the range of 9kHz to 40GHz. :1992

THE MEASUREMENT SHOWN IN THE ATTACHMENT WERE MADE IN ACCORDANCE WITH THE PROCEDURES INDICATED, AND THE MAXIMUM ENERGY EMITTED BY THE EQUIPMENT WAS FOUND TO BE WITHIN THE ABOVE LIMITS APPLICABLE.

Sample Received Date

Feb. 02, 1999

Final Test Date

Feb. 23, 1999

Documented by

Joan Chein

Test Engineer:

Approve & Authorized Signer:

JACK HUANG

RAYMOND CHANG

This test data shown below is traceable to National or international standard such as NIST/USA, etc.
The laboratory's NVLAP accreditation in no way constitutes or implies product certification, approval, or endosement by NVLAP or the United States government.

2. General Information

2.1 Production Description

Description

Notebook Computer

Model Number

Ruby 2.0

Serial Number

: N/A

Condition

Prototype

Applicant

First International Computer Inc.

Address

6F., Formosa Plastics Rear Bldg 201, Tung-Hwa N. Road,

Taipei, Taiwan, R.O.C.

Manufacturer

First International Computer Inc.

Address

6F., Formosa Plastics Rear Bldg 201, Tung-Hwa N. Road,

Taipei, Taiwan, R.O.C.

CPU

Dixon 333MHz, Dixon 366MHz, Celeron 300MHz, Celeron 333MHz,

Clock: 66/66/66/66MHz

Power Cord

: 1.8m, Non-shielded

2.2 Results:

2.2.1 The EUT(s) met the FCC Part 15 Class B requirements.

The Worst Emission data was found as following,

	Worst Emission Frequency (MHz)	Emission Level	Limit	Height of Antenna, Angel of Turntable
Conduction Mode 1	26.72551	44.1 dBuV Line 2	48.00 dBuV	N/A
Radiation Mode 1	60.085	32.94[dB(uV/m)], Horiontal	40.00 [dB(uV/m)]	3.1 M, 166°

2.2.2 Test Mode:

Original application Test Mode: (GesTek#991055F)

5-Applement Chances

Mode	1		
1.	CPU Module	Dixon	333MHz
2.	Panel 14.1" TFT	LG	LP141X5-A
3.	4.3GB HDD	Fujitsu	MHF2043AT
4.	FDD 3.5"	NEC	FD-1238T-018
5.	DVD 4X	Toshiba	SD-C2202
6.	Battery	Panasonic	Ni-MH 3800mAh
7.	AC Adaptor	Lite-On	PA-1480-19
8.	Fax/Modem	Askey	

New application Test Mode: (GesTek#993013F)

1.	CPU Module	Celeron	333MHz, Clock:66MHz.
2.	Panel 12.1" TFT	Sanyo	TM121SV-02L01
3.	4.3GB HDD	Fujitsu	MHF2043AT
4.	FDD 3.5"	NEC	FD-1238T-018
5	CD ROM 24X	Toshiba	XM-1902B
6.	Battery	Panasonic	Ni-MH 3800mAh
7.	AC Adaptor	Lite-On	PA-1480-19
8.	Fax/Modem	Askey	
9.	Resolution: 1024 x 7	68, H-Sync:48KF	Iz, V-Sync:75Hz.

Note:

- 1. The EUT is a Notebook Computer use celeron CPU that speed Can up 333MHz, Clock: 66MHz.
- 2. This Notebook computer was apply for class II permissive change because it add CPU (Celeron 333MHz) and the LCD panel take sanyo instead of LG, as well as CD-ROM has change to XM-1902B(Model number). and all the components listed at section 2.3 were investigated. During the performance of the testing, peripherals were connected to all available ports. The data shown in this test report reflects the worst-case data for each frequency/video resolution.

3. Model Name Designation for Ruby 2.0 as following.

OEM	EMC	Win Logo
LEO	DESIGNote 56XXXX	DESIGNote 5600, DESIGNote 6800
FIC	56XXXX	5600
Generic	56XXXX	5600
INCA	Legend 66	Legend 66
Everex	StepNote SR	StepNote SR
Hyun Ju	friend V	friend V
Elonex	Soliton	Soliton
Legen	Soleil	Soleil
Mitsubishi	AL300 Pentium II Model	
	AL300 Pentium Model	
DAEWOO	CN600xxxyyyyzzz	
UMAX	ActionBook	

2.3 Tested System Details

The FCC IDs/Types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

No.	Category	Manufacturer	Model No.
1.	CPU	Celeron 333MHz, Clock:66MHz.	
2.	LCD	Sanyo, 12.1" TFT	TM121SV-02L01
3.	HDD	Fujitsu 4.3GB	MHF2043AT
4.	FDD	NEC 3.5"	FD-1238T-018
5.	CD ROM 24X	Toshiba	XM-1902B
6.	AC Adaptor	Lite-On	PA-1480-19
7.	Battery	Panasonic	Ni-MH 3800mAh
8.	Fax/Modem	Askey	

☑ Monitor M01-012

Model Number : SyncMaster 700p Serial Number : H3MH903257V

Manufacturer : SAMSUNG FCC ID : A3LCGH760 BCIQ No. : 3872A230

Data Cable : Shielded, Undetachable, 1.5m Power Cord : Non-Shielded, Detachable, 1.8m GESTEK Lab.

FCC ID:EUNDESIGNOTE56

Report #: 993013F

NO 3, Pau-Tou-Tsuo Valley, Chia-Pau Tsuen, Lin Kou Hsiang, Taipei County, Taiwan, R.O.C. Tel:886-2-2603-5321 Fax:886-2-2603-5325

ĭ Keyboard K01-030

Model Number : KB-5923

Serial Number : 7L10500809

FCC ID : E8HKB-5923

Manufacturer : TATUNG

BCIQ No. : 3862A177

Data Cable : Sheiled, Undetachable, 2.0 m

Purchase Date : 8/6/1998

➤ Printer P01-011

Model Number : C2642A(DJ-400)

Serial Number :MY7951C4J5

FCC ID :B94C2642X

Manufacturer :HP

Data Cable : Shielded, Detachable, 1.5m

Adaptor & Power Cord : AC 110V, 60Hz To DC 30V

:Non-Shielded, Detachable, 1.8m

⋈ Modem M03-003

Model Number :1414

Serial Number :960011400

FCC ID :IFAXDM1414

Manufacturer : ACEEX

Adaptor, Power Cord : Non-Shielded, Detachable, 1.5m

Data Cable : Non-Shielded, Detachable, 1.8m

 \boxtimes Microphone M04-011 ~ 018

Model Number :M02

Serial Number : N/A

FCC ID : N/A

Manufacturer :GALAXY

Data Cable : Non-Shielded, Undetachable, 1.2m

Day 7 of 24

GESTEK Lab. FCC ID:EUNDESIGNOTE56 Report #: 993013F

NO 3, Pau-Tou-Tsuo Valley, Chia-Pau Tsuen, Lin Kou Hsiang, Taipei County, Taiwan, R.O.C. Tel:886-2-2603-5321 Fax:886-2-2603-5325

☑ Cassette Player R02-010 ~014

Model Number :HS-GS162

Serial Number :LYJ1084567

FCC ID : N/A

Manufacturer :AIWA CO., LTD

Power Cord :N/A (Battery)

⋈ Mouse M02-042 (USB)

Model Number : M-UB48

Serial Number :LZB81900215

FCC ID :DZL211137 Manufacturer :Logitech Inc..

Data Cable : Shielded, Undetachable, 1.5m

BCIQ ID : 4872A001

ĭ Headset&Microphone E01-018~027

Model Number :SX-M1

Serial Number : N/A

Manufacturer :TOKYO

Power Cord :N/A

Data Cable : Non-Shielded, Undetachable, 1.8 m

Purchase Date :2/22/1999

2.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4-1992.

Radiated testing was performed at an antenna to EUT distance of 3 meters.

2.5 Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	22-26
Humidity (%RH)	25-75	50-60
Barometric pressure (mbar)	860-1060	950-1000

FCC Site Description: Aug. 10, 1995/Aug. 25, 1998 File on

Federal Communication Commission

FCC Engineering Laboratory

7435 Oakland Mills Road

Columbia, MD 21046

Reference 31040/SIT1300F2

NVLAP Lab Code : 200085-0

United Stated Department of commerce

National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

Name of firm : Global EMC Standard Tech. Corp.

Site location : No. 3 Pau-Tou Valley, Chia-Pau Tsuen, Lin Kou

Hsiang, Taipei County, Taiwan, R.O.C.

3. Conducted Emission Test

3.1 Test Equipments

The following test equipments are used during the conducted power line tests:

Instrument	Manufacturer	Type /Serial No.	Last Calibration	Location	C.E.
Test Receiver	Rohde & Schwarz	ESHS 30 / 828109/010	Dec. 15, 1998	Shield Room#1	V
L.I.S.N.	Kyoritsu	KNW-407	Oct. 03, 1998	Shield Room#1	V
L.I.S.N.	Solar	8012-50-R24 / 90038	Jun. 02, 1998	Shield Room #1	
L.I.S.N.	Rohde & Schwarz	ESH3-Z5 / 840567/002	Oct. 02, 1998	Shield Room#1	٧
L.I.S.N.	Schwarzbeck	NNLK 8121/8121358	Jun. 02, 1998	Shield Room #1	
Pulse Limiter	Rohde & Schwarz	ESH3-Z2/357.8810.52	Nov. 01, 1998	Shield Room #1	٧
Shielded Room	GesTek	GTK-RF-S04	Sep. 17, 1998	Shield Room #1	٧
RF CABLE	GesTek	GTK-RF-C07	Sep. 17, 1998	Shield Room #1	٧
50 Ohm	GesTek	GTK-RF-T01	Oct. 03, 1998	Shield Room #1	V
Terminator					

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

3.2 Block Diagram of Test Setup

Note: This is a representive setup diagram for Table-top EUT. For Floor-standing EUT, the table will be removed with all others setup condition remain the same. 40cm EUT: Notebook Load P.C. Shielded Room Active LISN Non-conducted table 80cm LISN Metal Ground Plane Test Receiver Plotter/Printer Pulse Limiter Transformer/ Convertor Filter | Filter

3.3 Conducted Emission Limit

3.3.1 FCC Limits

Frequency	Maximum RF Line Voltage				
	Cla	ss A	Cla	ss B	
MHz	uV	dBuV	uV	dBuV	
0.45 - 1.705	1000	60.0	250	48.0	
1.705 - 30	3000	69.5	250	48.0	

Remarks: 1. RF Line Voltage (dBuV) = 20 log RF Line Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3.3.2 CISPR Limits

Frequency	Maximum RF Line Voltage dB(uV)					
	Clas	ss A	Clas	ss B		
MHz	QUASI-PEAK	AVERAGE	QUASI-PEAK	AVERAGE		
0.15 - 0.50	79 66		66-56	56-46		
0.50-5.0	73	60	56	46		
5.0 - 30	73	60	60	50		

Remarks: In the Above Table, the tighter limit applies at the band edges.

3.4 EUT Configuration on Measurement

The equipments which is listed 3.2 are installed on Conducted Power Line Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

The device under test, installed in a representative system as described in section 3.2, was placed on a non-conductive table whose total height equaled 80 CM. Powered from one LISN which signal output to receiver, and the other peripherials was powered from another LISN which signal output was terminated by 50Ω .

3.5 EUT Exercise Software

The EUT exercise program used during conducted testing was designed to exercise the EUT in a manner similar to a typical use. The exercise sequence is listed as below:

- 3.5.1 Setup the EUT and simulators as shown on 3.2.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Boot the PC from Hard Disk and Enter to windows 98, exercise EMI.EXE test program to active all devices.
- 3.5.4 Play CD Disk audio in windows environment, read HDD and FDD data.
- 3.5.5 PC sent "H" Pattern to Both LCD Panel And Ext. Monitor.
- 3.5.6 PC sent "H" Pattern to Parallel (printer) port.
- 3.5.7 PC sent "H" Pattern to Serial port.
- 3.5.8 Repeat 3.5.4 to 3.5.7

3.6 Conducted Emission Data

The measurement range of conducted emission which is from 0.45 MHz to 30 MHz was investigated. All readings are quasi-peak and average values with a resolution Bandwidth of 9 KHz, unless otherwise noted. The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range for all the test modes. The two different lines were each measured separately, and the worst modes datas were reported on the following data pages. The final measurement equal to Receiver reading plus Correction factor if available. When LISN insertion loss bigger than 0.5dB then the receiver will add correction factor to reading level automatically.

The total uncertainty for this test is as follows:

The uncertainty is calculated in accordance with NAMAS document NIS 81, and is given as 2 standard deviations.

[•] Uncertainty in the field strength measured:

 $[\]leq \pm 2.0 \text{ dB}$

CONDUCTED EMISSION DATA

Date of Test : Feb. 02, 1999 Temperature : $19.6 \,^{\circ}\text{C}$

EUT : Notebook PC Humidity : 61 %

Test Mode : Mode 1 Display Pattern : H Pattern

FREQUENCY		LIMIT			
	LIN	E 1	LIN	IE 2	
MHz	dBuV	uV	dBuV	uV	uV
0.47797	28.2	25.70	25.1	17.99	250
2.32292	25.7	19.28	27.8	24.55	250
3.54860	30.5	33.50	33.1	45.19	250
5.39364	30.6	33.88	26.3	20.65	250
22.79957	40.6	107.15	40.7	108.39	250
**26.72551	42.8	138.04	44.1	160.32	250

Remarks: 1. All readings are Quasi-peak.

2. "**" means that this data is the worse case emission level.

3. Deviations from the specifications: None.

4. Final measurement = (Receiver reading) + (Correction factor if available)

Attached 2 individual pages of peak scan curve data sheets.

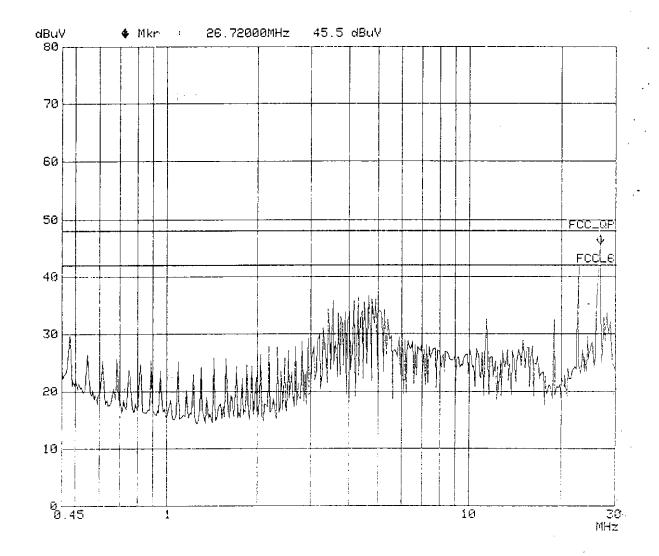
ROHDE & SCHWARZ ESHS 30

GesTek, PowerLine Conducted Emission

EUT: NOTEBOOK P.C.

Manuf: Op Cond: FIC MODE 2

Operator:


JACK HUANG

Test Spec: Comment: FCC CLASS B

Line l M/N:Ruby 2.0

Date:

02. Feb 99 19:56

12, 1

ROHDE & SCHWARZ ESHS 30

GesTek, PowerLine Conducted Emission

EUT:

NOTEBOOK P.C.

Manuf:

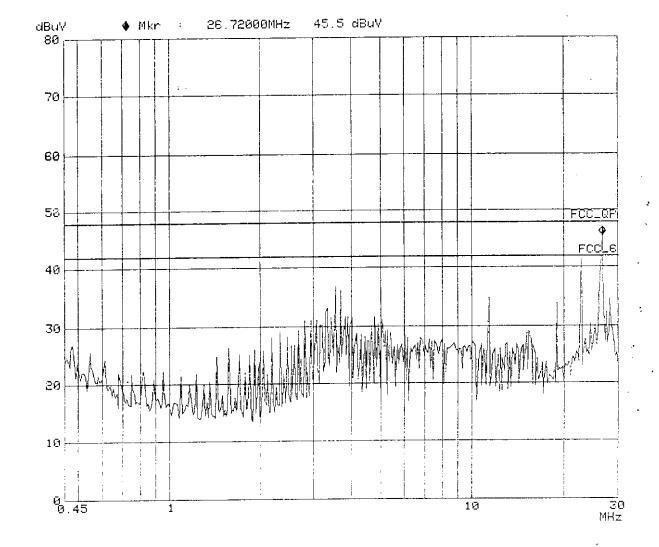
FIC

Op Cond:

MODE 2

Operator: Test Spec:

JACK HUANG FCC CLASS B


Comment:

Line 2

M/N:Ruby 2.0

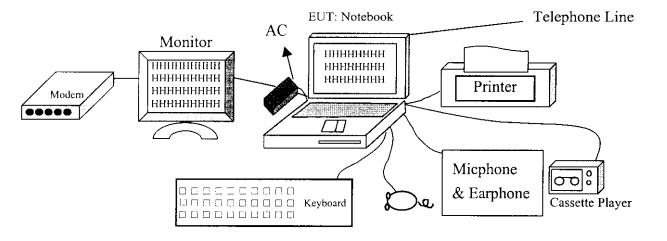
Date:

02. Feb 99 19:46

4. Radiation Emission Test

4.1 Test Equipment

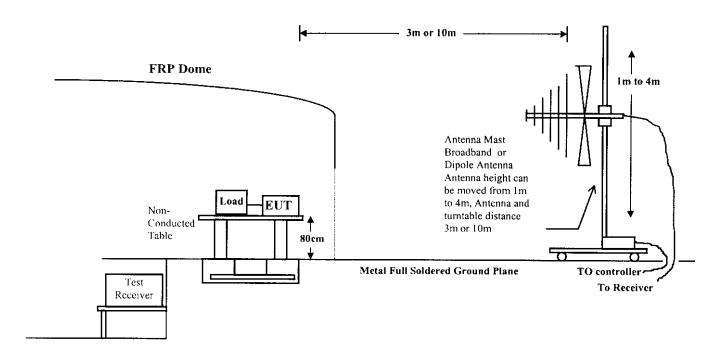
The following test equipments are used during the radiated emission measures:


Radiated test was performed on : ☐ Site #1 🗵 Site #2

Instrument	Manufacturer	Type /Serial No.	Last Cal.	Site #1	Site #2
Test Receiver	Rohde & Schwarz	ESVS 10 / 842122/001	Dec. 16,1998	V	
Spectrum Analyzer	НР	8594E / 3543A02689	N/A	V	
Pre-Amplifier	НР	8447D / 2944A08272	N/A	V	
Test Receiver	Rohde & Schwarz	ESCS 30/825022/003	Jul. 20,1998		V
Spectrum Analyzer	НР	8591E/3543A05040	N/A		V
Pre Amplifier	НР	8447D/2944A08273	N/A		V
BILOG ANTENNA	Chase	CBL6112B/2417	May. 16,1998	V	
BILOG ANTENNA	Chase	CBL6112B/2416	May. 16,1998		V
Pre Amplifier	НР	8347A/3307A01401	N/A	V	٧
Dipole Antenna	Schwarzbeck	VHAP/736,,737	May.19,1998	V	V
Dipole Antenna	Schwarzbeck	UHAP/719,,720	May.19,1998	V	V
Open Site	GesTek	GTK-RF-S01	Jul. 22, 1998	~	
Open Site	GesTek	GTK-RF-S02	Jul. 03, 1998		V
RF Cable	GesTek	GTK-RF-C01	May. 16,1998	V	
RF Cable	GesTek	GTK-RF-C02	May. 16,1998	~	
RF Cable	GesTek	GTK-RF-C03	May. 16,1998		V
RF Cable	GesTek	GTK-RF-C04	May. 16,1998		V
Test Program Software	GesTek	GTK-RF-P01	N/A	V	
Test Program Software	GesTek	GTK-RF-P02	N/A		V

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

4.2 Test Setup


4.2.1 Block Diagram of Connections between EUT and simulators

4.2.2 Open Test Site Setup Diagram

Note: This is a representive setup diagram for Table-top EUT.

For Floor-standing EUT, the table will be removed with all others setup condition remain the same.

4.3.1 FCC Class B Limits at 3m

4.3 Radiated Emission Limit

Frequency	Distance	Field S	Strength	
MHz	Meter	uV/M	dBuV/M	
30 - 88	3	100	40.0	
88 - 216	3	150	43.5	
216 -960	3	200	46.0	
960 - 2000	3	500	54.0	

1.3.2 CISPR Class B Limits at 10m

Frequency	Distance	Field Strength
MHz	Meter	dB(uV/M)
30 - 230	10	30
230 - 1000	10	37

Remark:

- 1. The tighter limit shall apply at the edge between two frequency bands.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4 EUT Configuration

The equipments which is listed 2.3 are installed on Radiated Emission Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

The device under test, installed in a representative system as described in section 4.2.2, was placed on a non-conductive table whose total height equaled 80 CM. This table can be rotated 360 degree. The measurement antenna was mounted to a non-conductive mast capable of moving the antenna vertically. Antenna height was varied from 1 meter to 4 meters and the system under test was rotated from 0 degree through 360 degrees relative to the antenna position and polarization (Horizontal and Vertical). Also the I/O cable position was investigated to find the maximum emission condition.

4.5 Operating Condition of EUT

Same as Conducted Power Line Test which is listed in 3.5.

4.6 Radiated Emission Data

Radiated emission were investigated over the frequency range of 30 MHz to 2 GHz. All readings below 1GHz are quasi-peak values with a resolution Bandwidth of 120 KHz, unless otherwise noted. From 1-2GHz was investigated use both peak and average detector use bandwith 1MHz. The initial step in collecting radiated emission data is a spectrum analyzer peak scan of the measurement range for all the test modes. Then the worst modes reading was measured use a test receiver and reported in the following data pages.

The total uncertainty for this test is as follows:

- Uncertainty in the field strength measured (3m antenna distance): $< \pm 4.0 \text{ dB}$
- Uncertainty in the field strength measured (10m antenna distance): < ± 4.0 dB

The uncertainty is calculated in accordance with NAMAS document NIS 81, and is given as 2 standard deviations.

Radiated Emission Data

Date of Test: 02-23,1999 Tue Temperature: 20 deg/C EUT: NOTEBOOK P.C. Humidity: 60 %RH Working Cond.: Mode 1 Display Pattern: H Pattern

Frequency		Cable Loss	Antenna Factor	Reading Level Horizontal	Emission Level Horizontal		Limit
	[MHz]	[dB]	[dB/m]	[dB(uV)]	[dB(uV/m)]	(uV/m)	(uV/m)
	*60.085	1.20	5.90	25.84	32.94	44.36	100
	86.015	1.40	8.36	14.93	24.69	17.17	100
	120.260	1.50	12.72	12.54	26.76	21.77	150
	165.925	2.08	9.80	16.88	28.76	27.42	150
	200.430	2.20	10.20	18.00	30.40	33.11	150
	599.995	4.50	19.40	10.66	34.56	53.44	200
	749.990	5.40	20.40	7.80	33.60	47.86	200
	1094.625	6.72	22.71	9.68	39.11	90.23	500 PK
	1094.625	6.72	22.71	5.51	34.94	55.83	500 AV
	1805.395	8.35	26.64	10.82	45.81	195.21	500 PK
	1805.395	8.35	26.64	5.26	40.25	102.92	500 AV

Remarks: 1. All Readings below 1GHz are Quasi-Peak.

- 2." * ", means this data is worse case emission level.
- 3. Emission Level = Reading Level + Antenna Factor + Cable loss
- 4. Deviations from the specifications: None.

Radiated Emission Data

Date of Test :02-23,1999 Tue

Temperature :22 deg/C

EUT

:NOTEBOOK P.C.

Humidity

:60 %RH

Working Cond.: Mode 1

Display Pattern:H Pattern

Frequency	Cable	Antenna	Reading Level	Emission Level Vertical		Limit
	Loss	Factor	Vertical			
[MHz]	[dB]	[dB/m]	[dB(uV)]	[dB(uV/m)]	(uV/m)	(uV/m)
112.250	1.46	12.09	10.93	24.48	16.74	150
165.850	2.08	9.80	19.25	31.13	36.03	150
240.010	2.44	12.01	15.17	29.62	30.27	200
481.030	3.86	17.99	10.58	32.43	41.84	200
*561.540	4.26	19.00	15.63	38.89	88.03	200
574.985	4.35	19.14	11.39	34.87	55.41	200
724.988	5.24	20.19	8.43	33.86	49.31	200
1074.972	6.67	22.39	7.29	36.35	65.69	500 AV
1074.974	6.67	22.39	9.95	39.01	89.23	500 PK
1200.000	6.96	23.31	11.84	42.11	127.52	500 PK
1200.000	6.96	23.31	6.27	36.54	67.15	500 AV

Remarks: 1. All Readings below 1GHz are Quasi-Peak.

^{2.&}quot; * ", means this data is worse case emission level.

^{3.} Emission Level = Reading Level + Antenna Factor + Cable loss

^{4.} Deviations from the specifications: None.