APPLICATION FOR FCC CLASS B CERTIFICATION SCANNING RECEIVER

ALINCO, Inc. 438 Amapola Ave. Suite 130 Torrance, CA 90501

MODEL: DJ-195T FCC ID: EUGDJ-195T Serial Number: T000 490

March 22, 1999

This report concerns (check one): Original Grant: X	Class II Change:
Equipment Type: Scanning Receiver	
Deferred grant requested per 47 CFR 0.457 (d) (1) (ii)?	Yes: No: X
If yes, defer until:	
	Date
Company name agrees to notify the Commission by:	(date) of the intended
date of announcement of the product so that the grant car	n be issued on that date.
/D 14 D 1 D 4 1/ 2//0 37	NT 37
Transition Rules Request per 15.37? Yes:	No: X
If no, assumed Part 15, subpart B for unintentional radia	tors - the new 47 CFR
[10-1-90 Edition] provision	

REPORT PREPARED BY:

EMI Technician: K. Franck Schuppius Administrative Writer: Melissa Fleming

Rhein Tech Laboratories, Inc.

Document Number: 990152

 $No\ part\ of\ this\ report\ may\ be\ reproduced\ without\ the\ full\ written\ approval\ of\ Rhein\ Tech\ Laboratories,\ Inc.$

TABLE OF CONTENTS

1.0	GENERAL INFORMATION	1
1.1	PRODUCT DESCRIPTION	
1.2	RELATED SUBMITTAL(S)/GRANT(S)TEST SYSTEM DETAILS	
1.3	CONFIGURATION OF TESTED SYSTEM.	
1.5	TEST METHODOLOGY	
1.6	TEST FACILITY	
2.0	STATEMENT FROM THE MANUFACTURER IN SUPP	ORT OF FCC SECTION 15.1215
3.0	PRODUCT LABELING	ERROR! BOOKMARK NOT DEFINED.
4.0	SYSTEM TEST CONFIGURATION	6
4.1	JUSTIFICATION	6
4.2	EUT Exercise Software	7
4.3	SPECIAL ACCESSORIES	7
4.4	MODE OF OPERATION	7
4.5	CONFORMANCE STATEMENT	8
5.0	CONDUCTED MEASUREMENT PHOTOS	ERROR! BOOKMARK NOT DEFINED.
6.0	CONDUCTED EMISSION DATA	9
7.0	RADIATED MEASUREMENT PHOTOS	ERROR! BOOKMARK NOT DEFINED.
8.0	RADIATED EMISSION DATA	12
8.1	FIELD STRENGTH CALCULATION	13
9.0	PHOTOS OF TESTED EUT	ERROR! BOOKMARK NOT DEFINED.
	APPENDIX LISTING	
APPEI	NDIX A: SCHEMATICS/BLOCK DIAGRAM OF DJ-195T	
	NDIX B: EMISSIONS EQUIPMENT LIST	
	NDIX C: CONDUCTED AND RADIATED TEST METHODO	
APPE	NDIX D: USER'S MANUAL	ERROR! BOOKMARK NOT DEFINED.

i

FIGURE INDEX

FIGURE 1:	FCC ID AND DOC LABEL	. ERROR! BOOKMARK NOT DEFINED
FIGURE 2:	LOCATION OF LABELS ON EUT	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 3:	EUT WITHOUT COVER	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 4:	TOP OF EUT WITHOUT COVER	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 5:	FRONT OF EUT WITHOUT ANTENNA	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 6:	BACK OF EUT WITHOUT ANTENNA	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 7:	BOTTOM OF EUT WITHOUT ANTENNA BATTERY PACK	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 8:	TOP OF PCB	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 9:	BOTTOM OF PCB	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 10:	AC ADAPTOR	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 11:	EUT WHIP ANTENNA	. ERROR! BOOKMARK NOT DEFINED.
FIGURE 12:	SERVICE PORT CARLE	ERROR! BOOKMARK NOT DEFINED

TABLE INDEX

TABLE 1:	CHANNEL FREQUENCY	6
	CONDUCTED EMISSIONS: (135 MHz)	
TABLE 3:	CONDUCTED EMISSIONS: (154.5 MHz)	10
TABLE 4:	CONDUCTED EMISSIONS: (173.995 MHz)	11
TABLE 5:	RADIATED EMISSIONS: (135 MHz)	12
TABLE 6:	RADIATED EMISSIONS: 154.5 MHz.	12
TABLE 7:	RADIATED EMISSIONS: 173.995 MHz	12
TABLE 8:	EMISSIONS TEST FOUIPMENT	14

1.0 GENERAL INFORMATION

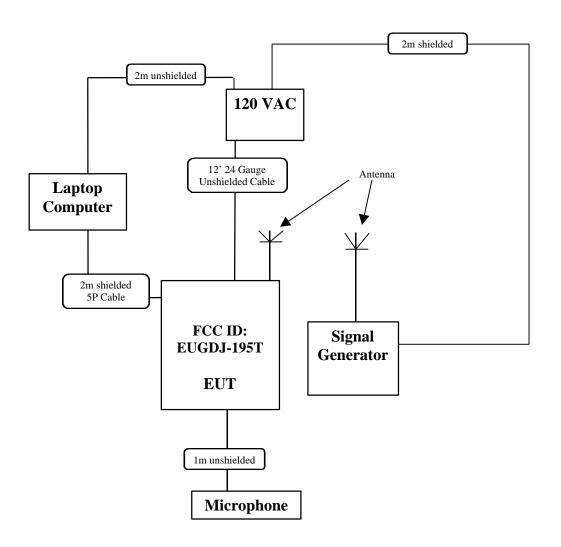
The following Application for FCC Type Certification of a Scanning Receiver is prepared on behalf of ALINCO, Inc. in accordance with Part 2, and Part 15, Subparts A and B of the Federal Communications Commissions rules and regulations. The Equipment Under Test (EUT) was the ALINCO, Inc., model number DJ-195T, FCC ID: EUGDJ-195T. Furthermore, a Class B DOC test and report for the digital portion of the EUT has been prepared and is on file. The test results reported in this document relate only to the item that was tested.

All measurements contained in this Application were conducted in accordance with ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Some accessories are used to increase sensitivity and prevent overloading of the measuring instrument. These are explained in the appendix of this report. Calibration checks are performed regularly on the instruments, and all accessories including the high pass filter, preamplifier and cables.

All radiated and conducted emissions measurement were performed manually at Rhein Tech, Incorporated. The radiated emissions measurements required by the rules were performed on the three meter, open field, test range maintained by Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. Complete description and site attenuation measurement data have been placed on file with the Federal Communications Commission. The power line conducted emission measurements were performed in a shielded enclosure also located at the Herndon, Virginia facility. The FCC accepts Rhein Tech Laboratories, Inc. as a facility available to do measurement work for others on a contractual basis.

1.2 RELATED SUBMITTAL(S)/GRANT(S)

N/A. This is an original submission for original submission for Certification.


1.3 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

EXTERNAL PERIPHERALS

PART MANUFACTURER		MODEL	SERIAL Number	FCC ID	CABLE DESCRIPTION	RTL Bar
			11011221		2200111 11011	CODE
MICROPHONE	TELEX	700358	N/A	N/A	SHIELDED I/O	009578
Nотевоок	INTERGRAPH	6200AD	N6UD723203406	SAMPLE		900825
COMPUTER	COMPUTER SYSTEMS					
SIGNAL GENERATOR	HEWLETT PACKARD	8660C	1947A02956	N/A	SHIELDED POWER	900059
VHF-FM	ALINCO	DJ-195T	T000490	EUG-DJ-195T		010395
TRANSCEIVER (EUT)						
ANTENNA	ALINCO	EAOO57	N/A	SAMPLE		010397
POWER SUPPLY	CAMBRIDGE	TEAD-48-121000UT	N/A	SAMPLE	Unshielded I/O	010394

1.4 CONFIGURATION OF TESTED SYSTEM

1.5 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 1992. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.6 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report dated June 24, 1996, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

2.0 STATEMENT FROM THE MANUFACTURER IN SUPPORT OF FCC SECTION 15.121

4.0 SYSTEM TEST CONFIGURATION

The EUT was configured for testing by connecting a monopole test antenna to a signal generator. The signal generator provided an indirect coupling of the transceivers input signal. One lower, middle and upper frequency within the band listed below were entered on the signal generator with the RF amplitude output set at $-60 \, \mathrm{dBm}$. The audio input port of EUT was connected to a microphone. An Alinco AC adaptor was connected to the DC power jack. The EUT was set in the AC charging unit during the test. The auxiliary service port was connected via a serial cable to the laptop computer's auxiliary serial port.

TABLE 1: CHANNEL FREQUENCY

RECEIVER BANDS	FREQUENCY (MHz)
76MHz to 174MHz	Lower 76 Middle 125 Upper 174
174MHz to 520MHz	Lower 174 Middle 347 Upper 520
520MHz to 824MHz	Lower 520 Middle 672 Upper 824
850MHz to 869MHz	Lower 850 Middle 859.5 Upper 869
895MHz to 1000MHz	Lower 895 Middle 947.5 Upper 1000

4.1 JUSTIFICATION

The EUT was tested as a scanning receiver per FCC rules and regulations. The FCC does not regulate the transmitter section of the Transceiver, since it is an Amateur transceiver and its operating frequency falls under the amateur band.

Alinco, Inc. Class B Digital Device Document Number: 990152

4.2 EXERCISING THE EUT

During testing the EUT and the generator were tuned to each of the frequencies listed below and the output level of the signal generator was set to allow for maximum signal strength reception on the EUT (from -60dBm to -70dBm depending on the tuned frequency under test). The frequency was entered by the keypad on the scanning receiver. When the scanning receiver was locked on to a signal radiating from the generator and its test antenna a busy sign was displayed on the scanning receiver's LCD display. The EUT was configured for testing to represent a worst case scenario. During testing the data was transferred between the EUT, receiver and the computer in order to determine worst case emissions. The channels representing each of the five bands that were scanned are as follows (MHz): 76, 125, 174, 347, 520, 672, 824, 850, 859.5, 869, 895, 947.5, and 1000.

4.3 SPECIAL ACCESSORIES

All interface cables used for compliance testing are unshielded except the auxiliary serial port that was shielded. ALINCO, Inc. provided the auxiliary serial port cable.

4.4 MODE OF OPERATION

All interface cables used for compliance testing are unshielded except the auxiliary serial port that was shielded. ALINCO, Inc. provided the auxiliary serial port cable.

Alinco, Inc. Class B Digital Device

4.5 CONFORMANCE STATEMENT

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made during testing to the equipment in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the ANSI C63.4 test methodology.

Signature: Date: March 29, 1999

Typed/Printed Name: Desmond A. Fraser Position: Quality Manager

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 20061-0.

(NVLAP Signatory)

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Alinco, Inc. Class B Digital Device Document Number: 990152

6.0 CONDUCTED EMISSION DATA

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. If the conducted emissions exceed the average limit with the instrument set to the quasi-peak mode, then measurements are made in the average mode.

The conducted test was performed with the EUT exercise program loaded, and the emissions were scanned between 450 kHz to 30 MHz on the NEUTRAL SIDE and HOT SIDE, herein referred to as L1 and L2, respectively. All five frequency bands were investigated and tested for conducted emissions. The EUT was exercised during testing in the 3 aforementioned modes. It was determined that the conducted emission profile within the frequency bands were the same, therefore only one conducted emission data is presented for each frequency band.

TABLE 2: CONDUCTED EMISSIONS: (135 MHz)

Neutral Side (L1)

EMISSION FREQUENCY (MHz)	TEST DETECTOR (1)	ANALYZER READING (dBuV)	SITE CORRECTION FACTOR (dBuV)	CORRECTED EMISSION LEVEL (dBuV)	FCC LIMIT (dBuV)	FCC MARGIN (dBuV)
0.453	Pk	33.7	0.5	34.2	48.0	-13.8
8.872	Pk	22.1	2.0	24.1	48.0	-23.9
21.716	Pk	30.4	3.0	33.4	48.0	-14.6
23.382	Pk	28.7	2.9	31.6	48.0	-16.4
24.829	Pk	23.3	3.2	26.5	48.0	-21.5
28.582	Pk	35.6	3.8	39.4	48.0	-8.6
Hot Side	(L2)					
0.568	Pk	36.7	0.5	37.2	48.0	-10.8
0.921	Pk	29.8	0.6	30.4	48.0	-17.6
2.418	Pk	17.4	1.0	18.4	48.0	-29.6
3.576	Pk	21.4	1.2	22.6	48.0	-25.4
7.970	Pk	26.5	2.0	28.5	48.0	-19.5
17.669	Pk	21.5	3.2	24.7	48.0	-23.3
24.590	Pk	27.2	3.0	30.2	48.0	-17.8

⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Signature: **D**ate: 3/22/99

Typed/Printed Name: K. Franck Schuppius

TABLE 3: CONDUCTED EMISSIONS: (154.5 MHz)

Neutral Side (L1)

EMISSION FREQUENCY (MHz)	TEST DETECTOR (1)	ANALYZER READING (dBuV)	SITE CORRECTION FACTOR (dBuV)	CORRECTED EMISSION LEVEL (dBuV)	FCC LIMIT (dBuV)	FCC MARGIN (dBuV)
1.041	Pk	23.5	0.7	24.2	48.0	-23.8
6.803	Pk	21.8	1.8	23.6	48.0	-24.4
9.303	Pk	21.4	2.0	23.4	48.0	-24.6
24.233 Pk		26.0	3.0	29.0	48.0	-19.0
25.183	Pk	28.3	3.2	31.5	48.0	-16.5
28.563	Pk	25.3	3.8	29.1	48.0	-18.9
Hot Side	(L2)					
0.686	Pk	37.6	0.5	38.1	48.0	-9.9
2.900	Pk	19.8	1.1	20.9	48.0	-27.1
4.831	Pk	24.0	1.5	25.5	48.0	-22.5
7.147	Pk	25.2	1.8	27.0	48.0	-21.0
11.302	Pk	22.4	2.1	24.5	48.0	-23.5
24.433	Pk	28.8	2.9	31.7	48.0	-16.3

⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Date: 3/22/99

Typed/Printed Name: K. Franck Schuppius

TABLE 4: CONDUCTED EMISSIONS: (173.995 MHz)

Neutral Side (L1)

EMISSION FREQUENCY (MHz)	TEST DETECTOR (1)	ANALYZER READING (dBuV)	SITE CORRECTION FACTOR (dBuV)	CORRECTED EMISSION LEVEL (dBuV)	FCC LIMIT (dBuV)	FCC MARGIN (dBuV)
0.627	Pk	26.7	0.5	27.2	48.0	-20.8
7.003	Pk	22.8	1.8	24.6	48.0	-23.4
8.310	Pk	22.3	1.9	24.2	48.0	-23.8
21.135 Pk		21.3	3.1	24.4	48.0	-23.6
24.290	Pk	27.9	3.1	31.0	48.0	-17.0
28.723	Pk	24.2	3.8	28.0	48.0	-20.0
Hot Side	e (L2)					
0.805	Pk	34.2	0.6	34.8	48.0	-13.2
7.255	Pk	24.9	1.9	26.8	48.0	-21.2
15.605	Pk	22.0	2.8	24.8	48.0	-23.2
24.145	Pk	29.4	2.9	32.3	48.0	-15.7
26.095	Pk	26.9	3.2	30.1	48.0	-17.9
28.945	Pk	27.6	3.7	31.3	48.0	-16.7

⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Date: 3/22/99

Typed/Printed Name: K. Franck Schuppius

8.0 RADIATED EMISSION DATA

The following data lists the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, plus the limit. Explanation of the Correction Factor is given in paragraph 8.1.

TABLE 5: RADIATED EMISSIONS: (135 MHz)

(Temperature: 44°F Degree, Humidity: 52%)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	FCC Limit (dBuV/m)	FCC Margin (dB)
113.300	Qp	V	180	1.0	38.5	-12.2	26.3	43.5	-17.2
226.655	Qp	V	225	1.0	37.0	-9.9	27.1	46.0	-18.9
339.955	Qp	V	180	1.0	35.0	-5.2	29.8	46.0	-16.2
419.240	Qp	V	270	1.0	30.6	-2.0	28.6	46.0	-17.4
453.255	Qp	V	45	1.0	34.4	-1.8	32.6	46.0	-13.4
566.500	Qp	Н	270	1.0	26.4	1.6	28.0	46.0	-18.0
679.855	Qp	V	0	1.0	30.3	4.0	34.3	46.0	-11.7

TABLE 6: RADIATED EMISSIONS: 154.5 MHZ

(Temperature: 44°F Degree, Humidity: 52%)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	FCC Limit (dBuV/m)	FCC Margin (dB)
36.895	Qp	V	270	1.0	37.3	-8.3	29.0	40.0	-11.0
132.800	Qp	V	180	1.0	37.2	-11.9	25.3	43.5	-18.2
184.095	Qp	Н	0	1.8	33.5	-12.4	21.1	43.5	-22.4
265.660	Qp	V	0	1.0	37.4	-7.3	30.1	46.0	-15.9
398.400	Qp	V	0	1.0	31.0	-3.6	27.4	46.0	-18.6
664.000	Qp	V	180	1.0	30.4	3.5	33.9	46.0	-12.1

TABLE 7: RADIATED EMISSIONS: 173.995 MHZ

(Temperature: 44°F Degree, Humidity: 52%)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	FCC Limit (dBuV/m)	FCC Margin (dB)
152.296	Qp	Н	25	1.8	43.7	-14.0	29.7	43.5	-13.8
304.590	Qp	V	145	1.0	28.1	-6.5	21.6	46.0	-24.4
456.931	Qp	V	45	1.0	34.0	-1.7	32.3	46.0	-13.7
609.227	Qp	V	0	1.0	30.3	3.2	33.5	46.0	-12.5
761.523	Qp	V	270	1.0	30.4	5.2	35.6	46.0	-10.4
913.819	Qp	V	0	1.0	30.4	8.6	39.0	46.0	-7.0

^{*}All readings are quasi-peak, unless stated otherwise. See Appendix B for Radiated Test Methodology.

Signature:______ **D**ate: February 19, 1999

Typed/Printed Name: K. Franck Schuppius

Alinco, Inc. Class B Digital Device Document Number: 990152

TEST PERSONNEL:

8.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FI(dBuV/m) = SAR(dBuV) + SCF(dB/m)$$

$$FI = Field\ Intensity$$

$$SAR = Spectrum\ Analyzer\ Reading$$

$$SCF = Site\ Correction\ Factor$$

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

$$SCF(dB/m) = -PG(dB) + AF(dB/m) + CL(dB)$$

 $SCF = Site Correction Factor$
 $PG = Pre-amplifier Gain$
 $AF = Antenna Factor$
 $CL = Cable Loss$

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(uV/m) = 10FI(dBuV/m)/20$$

For example, assume a signal at a frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

$$49.3 \text{ dBuV} - 11.5 \text{ dB} = 37.8 \text{ dBuV/m}$$

$$10^{37.8/20} = 10^{1.89} = 77.6 \text{ uV/m}$$

APPENDIX B: Emissions Equipment List

TABLE 8: EMISSIONS TEST EQUIPMENT

		MODEL	SERIAL	CAL.
DESCRIPTION	MANUFACTURER	NUMBER	NUMBER	LAB
Amplifier	HEWLETT PACKARD	11975A	2304A00348	TEST EQUITY
Amplifier (s/a 1)	RHEIN TECH	PR-1040	00001	RTL
AMPLIFIER (S/A 2)	RHEIN TECH	RTL2	900723	RTL
AMPLIFIER (S/A 3)	RHEIN TECH	8447F	2944A03783	RTL
AMPLIFIER (S/A 4)	RHEIN TECH	8447D	2727A05397	RTL
BICONICAL/LOG ANTENNA 1	ANTENNA RESEARCH	LPB-2520	1037	LIBERTY LABS
BICONICAL/LOG ANTENNA 2	ANTENNA RESEARCH	LPB-2520	1036	LIBERTY LABS
FIELD SITE SOURCE	EMCO	4610	9604-1313	RTL
FILTER (ROOM 1)	SOLAR	8130	947305	RTL
FILTER (ROOM 2)	SOLAR	8130	947306	RTL
HARMONIC MIXER 1	HEWLETT PACKARD	11970K	2332A00563	TELOGY
HARMONIC MIXER 2	HEWLETT PACKARD	11970A	2332A01199	TELOGY
HORN ANTENNA 1	EMCO	3160-10	9606-1033	EMCO
HORN ANTENNA 2	EMCO	3160-9	9605-1051	EMCO
Horn Antenna 3	EMCO	3160-7	9605-1054	EMCO
HORN ANTENNA 4	EMCO	3160-8	9605-1044	EMCO
HORN ANTENNA 5	EMCO	3160-03	9508-1024	EMCO
LISN (ROOM 1/L1)	SOLAR	7225-1	900727	ACUCAL
LISN (ROOM 1/L2)	SOLAR	7225-1	900726	ACUCAL
LISN (ROOM 2/L1)	SOLAR	7225-1	900078	ACUCAL
LISN (ROOM 2/L2)	SOLAR	7225-1	900077	ACUCAL
Pre-Amplifier	HEWLETT PACKARD	8449B OPT	3008A00505	TELOGY
QUASI-PEAK ADAPTER (S/A 1)	HEWLETT PACKARD	85650A	3145A01599	ACUCAL
QUASI-PEAK ADAPTER (S/A 2)	HEWLETT PACKARD	85650A	2811A01276	ACUCAL
QUASI-PEAK ADAPTER (S/A 3)	HEWLETT PACKARD	85650A	2521A00473	ACUCAL
QUASI-PEAK ADAPTER (S/A 4)	HEWLETT PACKARD	85650A	2521A01032	ACUCAL
RF Preselector (S/A 1)	HEWLETT PACKARD	85685A	3146A01309	ACUCAL
SIGNAL GENERATOR (HP)	HEWLETT PACKARD	8660C	1947A02956	ACUCAL
SIGNAL GENERATOR	WAVETEK	3510B	4952044	ACUCAL
(Wavetek)				
SPECTRUM ANALYZER 1	HEWLETT PACKARD	8566B	3138A07771	ACUCAL
SPECTRUM ANALYZER 2	HEWLETT PACKARD	8567A	2841A00614	ACUCAL
SPECTRUM ANALYZER 4	HEWLETT PACKARD	8567A	2727A00535	ACUCAL
TUNABLE DIPOLE	EMCO	3121	274	LIBERTY LABS
Antenna	ATM	WR08	08443-6	ATM
Mixer	OLESON	M08HW	F80814-1	OLESON
Mixer	OLESON	M05HW	G80814-1	OLESON
DIPLEXER	OLESON	M05HW	G80814-1	OLESON
Mixer	HEWLETT PACKARD	11970U	2332A01110	ACUCAL
Mixer	HEWLETT PACKARD	11970V	2521A00512	TELOGY
Mixer	HEWLETT PACKARD	11970W	2521A00710	TELOGY
Antenna	ATM	WR15	15-443-6	ATM
Antenna	ATM	WR10	10-443-6	ATM
Antenna	ATM	WR05	05-443-6	ATM
SWEEP GENERATOR	HEWLETT PACKARD	83752A	3610A00866	HEWLETT PACKARD

APPENDIX C: Conducted and Radiated Test Methodology

CONDUCTED EMISSIONS MEASUREMENTS

The power line conducted emission measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50 ohm / 50 microhenry Line Impedance Stabilization Network (LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 400 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 400 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. No video filter less than 10 times the resolution bandwidth was used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from (150/450) kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in this report.

RADIATED EMISSIONS MEASUREMENTS

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one meter and three meter distances, in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane. The spectrum was examined from 30 MHz to 1000 MHz using a Hewlett Packard 8566B spectrum analyzer, a Hewlett Packard 85650A quasi-peak adapter, and EMCO log periodic and biconical antenna. In order to gain sensitivity, a New Circuits ZHL-4240W preamplifier was connected in series between the antenna and the input of the spectrum analyzer.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations. The spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. No video filter less than 10 times the resolution bandwidth was used. When any clock exceeds 108 MHz, the EUT was tested between 1 to 2 Gigahertz in peak mode with the resolution bandwidth set at 1 MHz as stated in ANSI C63.4. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.

Alinco, Inc. Class B Digital Device