

FCC Test Report

Part 15 subpart C

Client Information:

Applicant:	Guangzhou Panyu Juda Car Audio Equipment Co., Ltd.				
Applicant add.:	Vtrek Dewei Industrial Garden, Shibei Industrial Road, Dashi Town, Panyu				
Applicant aud	Borough, Guangzhou City ,Guangdong Province, China				

Product Information:

Product Name:	RUGGED SPEAKER SYSTEM
Model No.:	NS-HMPS3018
Brand Name:	INSIGNIA
FCC ID:	ESX-HMPS3018
Standards:	CFR 47 FCC PART 15 SUBPART C:2017 section 15.247

Prepared By:

UL-CCIC Company Limited

Add. : Electronic Building, Parage Electronic Industrial Park, No. 8 Nanyun Er Road, Guangzhou Science Park, Guangzhou, 510663 China

Date of Receipt:	Mar. 20, 2017	Date of Test:	Mar. 21, 2017~April 22, 2017
Date of Issue:	April 24, 2017	Test Result:	Pass

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UL-CCIC Company Limited.

Donny Brany **Reviewed by:**

Approved by: Richard pr

1 Contents

	COVEF	RPAGE	
1	CON	ITENTS	2
2	TES	T SUMMARY	4
	2.1	COMPLIANCE WITH FCC PART 15 SUBPART C	4
	2.2	TEST LOCATION	4
	2.3	MEASUREMENT UNCERTAINTY	5
3	TES	T FACILITY	6
	3.1	DEVIATION FROM STANDARD	6
٨			
4			
	4.4	EUT PERIPHERAL LIST	10
5	EQL	JIPMENTS LIST FOR ALL TEST ITEMS	11
6	2 TEST SUMMARY		12
	6.1	ANTENNA REQUIREMENT	12
	6.1.1	1 Standard requirement	12
	6.1.2	2 EUT Antenna	12
	6.2	CONDUCTION EMISSIONS MEASUREMENT	13
	6.2.7	1 Applied procedures / Limit	13
	6.2.2	2 Test procedure	13
	6.2.3	3 Test setup	13
	6.2.4	4 Test results	14
	6.3	RADIATED EMISSIONS MEASUREMENT	16
	6.3.	1 Applied procedures / Limit	16
	6.3.2	2 Test setup	16
	6.3.3	3 Test procedure	18
	6.3.4	1 Test Result	19
	6.3.	5 TEST RESULTS (Restricted Bands Requirements)	27
	6.4	BANDWIDTH TEST	28
		•	
			29
U		Jompany Limited Page 2 of 90	

6.5	CAI	RRIER FREQUENCIES SEPARATED	
6.	5.1	Applied procedures / Limit	
6.	5.2	Test procedure	
6.	5.3	Deviation from standard	
6.	5.4	Test setup	
6.	5.5	Test results	
6.6	Ho	PPING CHANNEL NUMBER	
6.	6.1	Applied procedures / Limit	
6.	6.2	Test procedure	
6.	6.3	Deviation from standard	
6.	6.4	Test setup	
6.	6.5	Test result	
6.7	Dw	ELL TIME	
6.	7.1	Applied procedures / Limit	
6.	7.2	Test procedure	
6.	7.3	Deviation from standard	
6.	7.4	Test setup	
6.	7.5	Test result	
6.8	MA	XIMUM PEAK OUTPUT POWER	
6.	8.1	Applied procedures / Limit	
6.	8.2	Test procedure	
6.	8.3	Deviation from standard	
6.	8.4	Test setup	
6.	8.5	Test results	
6.9	BAN	ND EDGE	
6.	9.1	Applied procedures / Limit	
6.	9.2	Test procedure	
6.	9.3	Deviation from standard	
6.	9.4	Test setup	
6.	9.5	Test results	
6.10	Co	NDUCTED SPURIOUS EMISSIONS	
6.	10.1	Applied procedures / Limit	
6.	10.2	Test procedure	
6.	10.3	Deviation from standard	
6.	10.4	Test setup	
6.	10.5	Test results	
7 PI	нотс	OGRAPHS	
7.1	RAI	DIATED EMISSION TEST SETUP	
7.2	Co	NDUCTED EMISSIONS TEST SETUP	
7.3	EU	T CONSTRUCTIONAL DETAILS	

2 Test Summary

2.1 Compliance with FCC Part 15 subpart C

Test	Test Requirement	Standard Paragraph	Result			
Antenna Requirement	FCC Part 15 C:2017	Section 15.247(c)	PASS			
Conduction Emissions	FCC Part 15 C:2017	Section 15.207(a)	PASS			
Radiated Emissions	FCC Part 15 C:2017	Section 15.247(d)	PASS			
Carrier Frequencies Separated	FCC Part 15 C:2017	Section 15.247(a)(1)	PASS			
Hopping Channel Number	FCC Part 15 C:2017	Section 15.247(a)(1) (iii)	PASS			
Dwell Time	FCC Part 15 C:2017	Section 15.247(a)(1) (iii)	PASS			
Maximum Peak Output Power	FCC Part 15 C:2017	Section 15.247(b)	PASS			
Band edge	FCC Part 15 C:2017	Section 15.247(d)	PASS			
Conducted Spurious Emissions	FCC Part 15 C:2017	Section 15.247(d)	PASS			
Note:						
(1)Reference to the	(1)Reference to the FCC Public Notice ANSI C63.10:2013.					
Bluetooth 4.0 D	 (2)The product support for Bluetooth basic rate / EDR and low energy connections Bluetooth 4.0 Dual-mode, this report is basic rate / EDR connection test mode, for low energy connection please refers to the report number 4787901494-2. 					

2.2 Test Location

All tests were performed at:

Dongguan Yaxu (AiT) Technology Limited No.22, Jinqianling Third Street, Jitigang, Huangjiang,Dongguan, Guangdong, China Tel.: +86.769.82020499 Fax.: +86.769.82020495

2.3 Measurement Uncertainty

All measurements involve certain levels of uncertainties, the maximum value of the uncertainty as below:

No.	Item	Uncertainty
1	Conducted Emission Test	1.20dB
2	Radiated Emission Test	3.30dB
3	RF power,conducted	0.16dB
4	RF power density, conducted	0.24dB
5	Spurious emissions, conducted	0.21dB
6	All emissions,radiated(<1G)	4.68dB
7	All emissions,radiated(>1G)	4.89dB

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

.CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2005 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on Apr. 18, 2013

.FCC- Registration No: 248337

The 3m Semi-Anechoic Chamber, 3m/10m Open Area Test Site and Shielding Room of Dongguan Yaxu (AiT) Technology Limited have been registered by Federal Communications Commission (FCC) on Aug.29, 2014.

.Industry Canada(IC)-Registration No: IC6819A-1

The 3m Semi-Anechoic Chamber and 3m/10m Open Area Test Site of Dongguan Yaxu (AiT) Technology Limited have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing on Oct. 12, 2014.

3.1 Deviation from standard

None

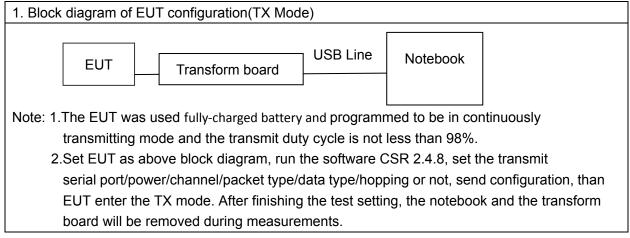
3.2 Abnormalities from standard conditions

None

4 General Information

4.1 General Description of EUT

Manufacturer:	Guangzhou Panyu Juda Car Audio Equipment Co., Ltd.				
Manufacturer Address:	Vtrek Dewei Industrial Garden, Shibei Industrial Road, Dashi Town, Panyu Borough, Guangzhou City ,Guangdong Province, China				
EUT Name:	RUGGED SPEAKER SYSTEM				
Model No:	NS-HMPS3018				
Brand Name:	INSIGNIA				
Serial No:	N/A				
Operation frequency:	2402 MHz to 2480 MHz				
NUMBER OF CHANNEL:	79				
Modulation Technology:	GFSK, π/4-DQPSK, 8DPSK(1/2/3Mbps)				
Bluetooth version:	BT4.0 Dual-mode(BR+EDR)				
H/W No.:	VER:B				
S/W No.:	00				
Antenna Type:	PCB antenna				
Antenna Gain:	Maximum 0 dBi				
Power Supply Range:	100-240V~ 50/60Hz 30W				
Power Supply:	DC 12V from battery				
Power Cord:	1.5 m AC cable				
	1Mbps: 1.25dBm				
Output power (max) :	2Mbps: -0.83dBm				
	3Mbps: -0.95dBm				
Note:					
1.	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.				



		Descriptior	n of Channel:		
Channel Frequency (MHz)		Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	42 2444 69		2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

4.2 Description of Test conditions

(1) EUT was tested in normal configuration (Please See following Block diagram)

(2) E.U.T. test conditions:

15.31(e): For intentional radiators, measurements of the variation of the input power or the adiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

(3) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. If required reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over	Number of	Location in
which device operates	frequencies	the range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
Mara than 40 Mile	2	1 near top, 1 near middle and
More than 10 MHz	3	1 near bottom

(4) Frequency range of radiated measurements:

According to the 15.33, the test range will be up to the tenth harmonic of the highest fundamental frequency.

(5) Pre-test the EUT in all transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet and conducted to determine the worst-case mode, only the worst-case results(1Mbps/3Mbps) are recorded in this report.

4.3 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	signal cable
1	Laptop	ASUS	N/A	X401A	X16-96072	N/A	N/A
2	Adapter (laptop)	ASUS I N/A I I N/A I		1.8m/unshielded /detachable	N/A		
3	USB line	N/A	N/A	N/A	N/A	N/A	1.2m/unshielded /detachable
4	Transform board	N/A	N/A	N/A	N/A	N/A	N/A

4.4 EUT Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	signal cable
1	AC line	N/A	N/A	N/A	N/A	N/A	1.5m/ detachable

5 Equipments List for All Test Items

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	SIGNAL ANALYZER	R&S	FSV40	101470	2016.06.29	2017.06.28
2	EMI Measuring Receiver	R&S	ESR	101660	2016.06.29	2017.06.28
3	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2016.06.29	2017.06.28
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2016.06.29	2017.06.28
5	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2016.06.29	2017.06.28
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2016.06.29	2017.06.28
7	SHF-EHF Horn	SCHWARZBECK	BBHA9170	BBHA9170367	2016.06.29	2017.06.28
8	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.29	2017.06.28
9	EMI Test Receiver	R&S	ESCI	100124	2016.06.29	2017.06.28
10	LISN	Kyoritsu	KNW-242	8-837-4	2016.06.29	2017.06.28
11	LISN	Kyoritsu	KNW-407	8-1789-3	2016.06.29	2017.06.28
12	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.29	2017.06.28
13	Loop Antenna	ETS	6512	00165355	2016.06.29	2017.06.28
14	Radiated Cable 1# (30MHz-1GHz)	FUJIKURA	5D-2W	01	2016.12.25	2017.12.24
15	Radiated Cable 2# (1GHz -25GHz)	FUJIKURA	10D2W	02	2016.12.25	2017.12.24
16	Conducted Cable 1#(9KHz-30MHz)	FUJIKURA	1D-2W	01	2016.12.25	2017.12.24
17	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	N/A
Note:	The SMA antenna connector is listed in the e		he PCB board in orde	r to perform cond	ucted tests and t	his SMA antenna

6 Test Result

6.1 Antenna Requirement

6.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

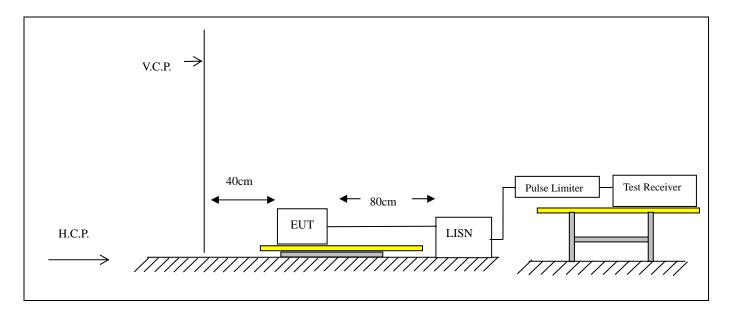
15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

6.1.2 EUT Antenna

The antenna is layout on PCB in the EUT and no consideration of replacement. Antenna gain is maximum 0dBi from 2.4GHz to 2.5GHz.

6.2 Conduction Emissions Measurement

6.2.1 Applied procedures / Limit

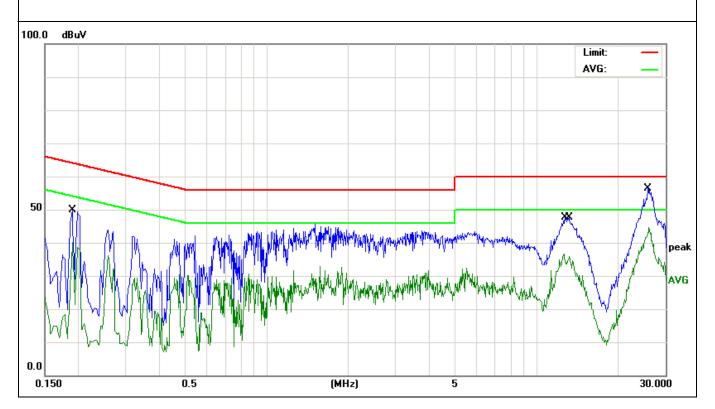

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Note: Decreases with the logarithm of the frequency.

6.2.2 Test procedure

EUT was placed upon a wooden test table 0.1m above the horizontal metal reference plane and 0.4m from the vertical ground plane, and it was connected to an AMN. The closest distance between the boundary of the EUT and the surface of the AMN is 0.8m. All peripherals were connected to another AMN, and placed at a distance of 10cm from each other. A receiver was connected to the RF output port of the AMN. Both average and quasi-peak value were detected.

6.2.3 Test setup

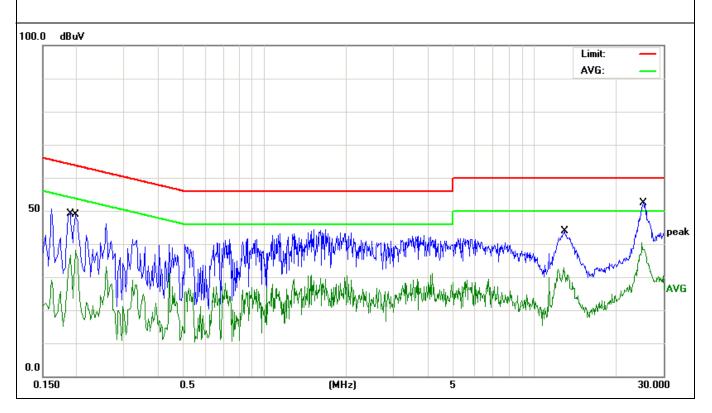


6.2.4 Test results

EUT:	RUGGED SPEAKER SYSTEM	Model Name. :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Date :	2017-03-28
Test Mode:	RF Link mode	Phase :	Line
Test Voltage :	AC 120V/60Hz		

Frequency (MHz)	Meter Reading (dBµV)	Factor(dB)	Emission Level (dBµV)	Limits (dBµV)	Margin (dB)	Detector
0.1900	38.54	11.26	49.80	64.03	-14.23	Quasi-Peak
0.1900	28.93	11.26	40.19	54.03	-13.84	Average
13.1820	46.33	1.36	47.69	60.00	-12.31	Quasi-Peak
12.6459	35.34	1.34	36.68	50.00	-13.32	Average
25.8580	54.24	2.14	56.38	60.00	-3.62	Quasi-Peak
26.1220	42.40	2.13	44.53	50.00	-5.47	Average

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.



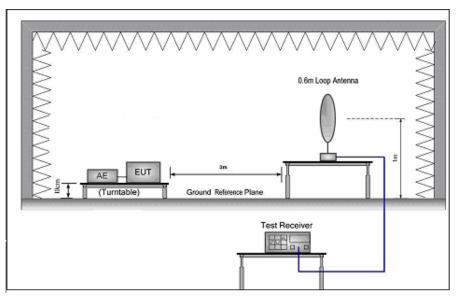
EUT:	RUGGED SPEAKER SYSTEM	Model Name. :	NS-HMPS3018
Temperature:	26 °C	Relative Humidity:	54%
Pressure:	1010hPa	Test Date :	2017-03-28
Test Mode:	RF Link mode	Phase :	Neutral
Test Voltage :	AC 120V/60Hz		

Frequency (MHz)	Meter Reading (dBµV)	Factor(dB)	Emission Level (dBµV)	Limits (dBµV)	Margin (dB)	Detector
0.1900	37.80	11.26	49.06	64.03	-14.97	Quasi-Peak
0.1980	26.84	11.16	38.00	53.69	-15.69	Average
12.8540	42.64	1.35	43.99	60.00	-16.01	Quasi-Peak
12.7860	31.58	1.35	32.93	50.00	-17.07	Average
25.2580	50.18	2.13	52.31	60.00	-7.69	Quasi-Peak
25.0260	38.16	2.12	40.28	50.00	-9.72	Average

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.

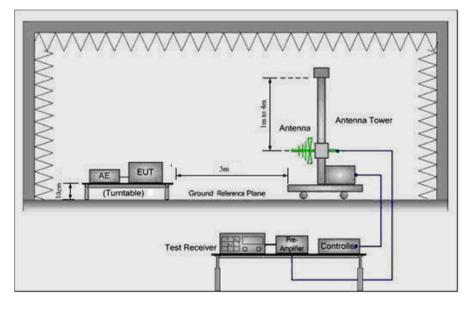
6.3 Radiated Emissions Measurement

6.3.1 Applied procedures / Limit

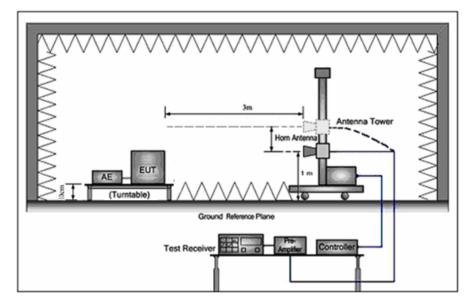

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

	Field Stre	ngth	Measurement
Frequency of Emission (MHz)	μV/m	dBµV/m	Distance (meters)
0.009-0.49	2400/F(kHz)		300
0.49-1.705	24000/F(kHz)		30
1.705-30	30		30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

6.3.2 Test setup


Test Configuration:

1) 9 kHz to 30 MHz emissions:



2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 25 GHz emissions:

6.3.3 Test procedure

- a. The EUT was placed on the top of a wooden table 0.1 meters (for measurement at frequency below 1GHz) and a wooden table 0.1 meters (for measurement at frequency above 1GHz) above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter, for the test frequency of above 1GHz, horn antenna opening in the test would have been facing the EUT when rise or fall) and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The resolution bandwidth and video bandwidth of the test receiver was 1MHz and 1MHz for Peak detection at frequency above 1GHz.
- g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
- h. Repeat above procedures until all frequencies measured was complete.

For measurement at frequency above 1GHz

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

In 18GHz to 25GHz, The EUT was checked by Horn ANT. But the test result at least have 20dB margin.The EUT was tested in Chamber Site.

6.3.4 Test Result

Radiated Emissions Test Data Below 30MHz

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018		
Temperature:	25 ℃	Test Data	2017-03-28		
Pressure:	1005 hPa	Relative Humidity:	60%		
Test Mode :	ТХ	Test Voltage :	DC 12V from battery		
Measurement Distance	3 m Frenqucy Range 9KHz to 30MHz				
RBW/VBW	9KHz~150KHz/RB 200Hz for QP, 150KHz~30MHz/RB 9KHz for QP				

No emission found between lowest internal used/generated frequencies to 30MHz.

Radiated Emissions Test Data Below 1GHz

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018		
Temperature:	25 ℃	Test Data	2017-03-28		
Pressure:	1010 hPa	Relative Humidity:	60%		
Test Mode :	TX (1Mbps) CH00 (worst case)	Test Voltage :	DC 12V from battery		
Measurement Distance	3 m Frenqucy Range 30MHz to 1GHz				
RBW/VBW	100KHz / 300KHz for spectrum, RBW=120KHz for receiver.				

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector Type
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	
	(dBuV)	(dB)	(dBuV/m)			
129.4677	38.91	-14.95	23.96	43.50	-19.54	QUASIPEAK
180.6488	36.75	-12.00	24.75	43.50	-18.75	QUASIPEAK
271.3246	45.47	-12.38	33.09	46.00	-12.91	QUASIPEAK
423.5403	37.48	-6.61	30.87	46.00	-15.13	QUASIPEAK
593.0497	42.00	-2.08	39.92	46.00	-6.08	QUASIPEAK
661.1505	37.30	-1.26	36.04	46.00	-9.96	QUASIPEAK

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector Type
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	
	(dBuV)	(dB)	(dBuV/m)			
33.7986	40.49	-16.96	23.53	40.00	-16.47	QUASIPEAK
123.6985	47.81	-15.09	32.72	43.50	-10.78	QUASIPEAK
180.6488	44.64	-15.27	29.37	43.50	-14.13	QUASIPEAK
277.0935	50.46	-11.66	38.80	46.00	-7.20	QUASIPEAK
423.5403	41.69	-6.61	35.08	46.00	-10.92	QUASIPEAK
593.0497	37.39	-1.77	35.62	46.00	-10.38	QUASIPEAK

Note:

Measurement Level = Reading Level + Factor Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Radiated Emissions Test Data Above 1GHz

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018		
Temperature:	25 ℃	Test Data	2017-03-28		
Pressure:	1010 hPa	Relative Humidity:	60%		
Test Mode :	1Mbps	Test Voltage :	DC 12V from battery		
Measurement Distance	3 m Frenqucy Range 1GHz to 25GHz				
RBW/VBW	1MHz/1MHz for Peak, 1MHz/10Hz for Average.				

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	51.52	5.06	56.58	74.00	-17.42	PEAK
4804.000	39.86	5.06	44.92	54.00	-9.08	AVERAGE
7206.000	42.18	7.03	49.21	74.00	-24.79	PEAK
7206.000	31.79	7.03	38.82	54.00	-15.18	AVERAGE
9608.000	42.02	10.63	52.65	74.00	-21.35	PEAK
9608.000	32.42	10.63	43.05	54.00	-10.95	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	54.38	5.06	59.44	74.00	-14.56	PEAK
4804.000	43.43	5.06	48.49	54.00	-5.51	AVERAGE
7206.000	43.84	7.03	50.87	74.00	-23.13	PEAK
7206.000	31.24	7.03	38.27	54.00	-15.73	AVERAGE
9608.000	42.74	10.63	53.37	74.00	-20.63	PEAK
9608.000	35.35	10.63	45.98	54.00	-8.02	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier Lowest channel: 2402 MHz Data rate: 1Mbps

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4882.000	50.44	5.14	55.58	74.00	-18.42	PEAK
4882.000	39.93	5.14	45.07	54.00	-8.93	AVERAGE
7323.000	43.28	7.54	50.82	74.00	-23.18	PEAK
7323.000	34.86	7.54	42.40	54.00	-11.60	AVERAGE
9764.000	42.08	11.39	53.47	74.00	-20.53	PEAK
9764.000	31.85	11.39	43.24	54.00	-10.76	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4882.000	53.88	5.14	59.02	74.00	-14.98	PEAK
4882.000	42.33	5.14	47.47	54.00	-6.53	AVERAGE
7323.000	44.06	7.54	51.60	74.00	-22.40	PEAK
7323.000	33.18	7.54	40.72	54.00	-13.28	AVERAGE
9764.000	42.25	11.39	53.64	74.00	-20.36	PEAK
9764.000	33.77	11.39	45.16	54.00	-8.84	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Middle Channel: 2441 MHz

Data rate: 1Mbps

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	52.71	5.22	57.93	74.00	-16.07	PEAK
4960.000	41.86	5.22	47.08	54.00	-6.92	AVERAGE
7440.000	44.89	8.06	52.95	74.00	-21.05	PEAK
7440.000	34.76	8.06	42.82	54.00	-11.18	AVERAGE
9920.000	41.83	12.10	53.93	74.00	-20.07	PEAK
9920.000	30.95	12.10	43.05	54.00	-10.95	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	54.82	5.22	60.04	74.00	-13.96	PEAK
4960.000	43.38	5.22	48.60	54.00	-5.40	AVERAGE
7440.000	44.96	8.06	53.02	74.00	-20.98	PEAK
7440.000	34.38	8.06	42.44	54.00	-11.56	AVERAGE
9920.000	41.68	12.10	53.78	74.00	-20.22	PEAK
9920.000	32.01	12.10	44.11	54.00	-9.89	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier Highest Channel: 2480 MHz Data rate: 1Mbps

		i	·			
EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018			
Temperature:	25 ℃	Test Data	2017-03-28			
Pressure:	1010 hPa	Relative Humidity:	60%			
Test Mode :	3Mbps	Test Voltage :	DC 12V from battery			
Measurement Distance	3 m Frenqucy Range 1GHz to 25GHz					
RBW/VBW	1MHz/1MHz for Peak, 1MHz/10Hz for Average.					

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	49.30	5.06	54.36	74.00	-19.64	PEAK
4804.000	39.74	5.06	44.80	54.00	-9.20	AVERAGE
7206.000	42.99	7.03	50.02	74.00	-23.98	PEAK
7206.000	31.20	7.03	38.23	54.00	-15.77	AVERAGE
9608.000	41.45	10.63	52.08	74.00	-21.92	PEAK
9608.000	30.96	10.63	41.59	54.00	-12.41	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	52.68	5.06	57.74	74.00	-16.26	PEAK
4804.000	41.71	5.06	46.77	54.00	-7.23	AVERAGE
7206.000	42.94	7.03	49.97	74.00	-24.03	PEAK
7206.000	32.90	7.03	39.93	54.00	-14.07	AVERAGE
9608.000	42.88	10.63	53.51	74.00	-20.49	PEAK
9608.000	31.29	10.63	41.92	54.00	-12.08	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier Lowest Channel: 2402 MHz Data rate: 3Mbps

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4882.000	50.19	5.14	55.33	74.00	-18.67	PEAK
4882.000	40.48	5.14	45.62	54.00	-8.38	AVERAGE
7323.000	44.86	7.54	52.40	74.00	-21.60	PEAK
7323.000	33.79	7.54	41.33	54.00	-12.67	AVERAGE
9764.000	42.06	11.39	53.45	74.00	-20.55	PEAK
9764.000	30.98	11.39	42.37	54.00	-11.63	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4882.000	52.21	5.14	57.35	74.00	-16.65	PEAK
4882.000	41.53	5.14	46.67	54.00	-7.33	AVERAGE
7323.000	44.53	7.54	52.07	74.00	-21.93	PEAK
7323.000	33.63	7.54	41.17	54.00	-12.83	AVERAGE
9764.000	42.37	11.39	53.76	74.00	-20.24	PEAK
9764.000	31.28	11.39	42.67	54.00	-11.33	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier Middle Channel: 2441 MHz

Data rate: 3Mbps

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	48.53	5.22	53.75	74.00	-20.25	PEAK
4960.000	42.72	5.22	47.94	54.00	-6.06	AVERAGE
7440.000	45.02	8.06	53.08	74.00	-20.92	PEAK
7440.000	33.35	8.06	41.41	54.00	-12.59	AVERAGE
9920.000	42.18	12.10	54.28	74.00	-19.72	PEAK
9920.000	32.00	12.10	44.10	54.00	-9.90	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	51.48	5.22	56.70	74.00	-17.30	PEAK
4960.000	41.83	5.22	47.05	54.00	-6.95	AVERAGE
7440.000	45.97	8.06	54.03	74.00	-19.97	PEAK
7440.000	35.01	8.06	43.07	54.00	-10.93	AVERAGE
9920.000	41.74	12.10	53.84	74.00	-20.16	PEAK
9920.000	31.83	12.10	43.93	54.00	-10.07	AVERAGE

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Highest channel: 2480 MHz

Data rate: 3Mbps

6.3.5 TEST RESULTS (Restricted Bands Requirements)

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018
Temperature:	25 ℃	Test Data	2017-03-28
Pressure:	1010 hPa	Relative Humidity:	60%
Test Mode :	TX 1Mbps/3Mbps	Test Voltage :	DC 12V from battery
Note:	 The transmitter was setup to strength was measured at 23° The transmitter was setup to strength was measured at 248 The data of 2390MHz and 248 	10-2390 MHz. o transmit at the highe 33.5-2500 MHz.	est channel. Then the field

Test	Ant.Pol.	Freq.	Reading		Ant/CF	Act		Limit	
Mode	H/V	(MHz)	Peak (dBuv)	AV (dBuv)	CF(dB)	Peak (dBuv/m)	AV (dBuv/m)	Peak (dBuv/m)	AV (dBuv/m)
	V	2390.000	45.38	34.05	-5.79	39.59	28.26	74.00	54.00
Data rate	Н	2390.000	43.24	32.81	-5.79	37.45	27.02	74.00	54.00
1Mbps	V	2483.500	45.01	35.62	-4.98	40.03	30.64	74.00	54.00
	Н	2483.500	45.52	33.25	-4.98	40.54	28.27	74.00	54.00
	V	2390.000	45.37	34.96	-5.79	39.58	29.17	74.00	54.00
Data rate 3Mbps	Н	2390.000	44.32	33.88	-5.79	38.53	28.09	74.00	54.00
	V	2483.500	44.66	34.78	-4.98	39.68	29.80	74.00	54.00
	Н	2483.500	43.15	32.97	-4.98	38.17	27.99	74.00	54.00

Remark:

- (1) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode.
- (2) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (3) Corr.Factor = Antenna Factor + Cable Loss Pre-amplifier.

6.4 BANDWIDTH TEST

6.4.1 Applied procedures / Limit

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

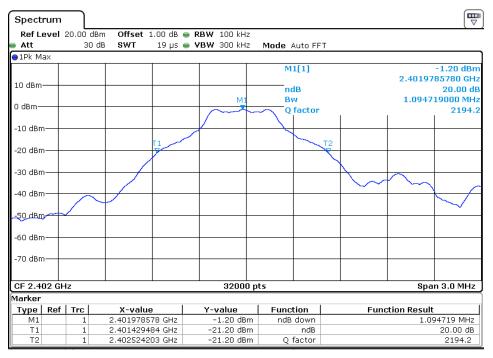
6.4.2 Test procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW, Sweep = auto, Detector function = peak Trace = max hold

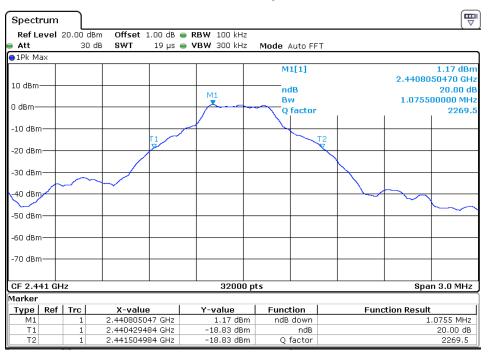
6.4.3 Deviation from standard

No deviation.

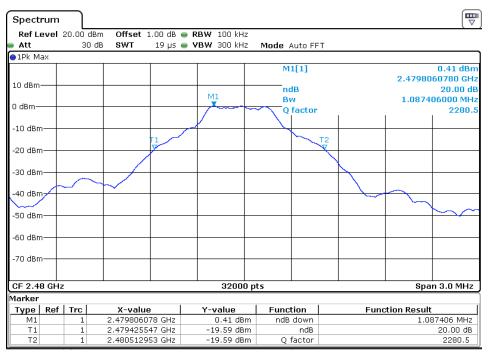
6.4.4 Test setup


6.4.5 Test results

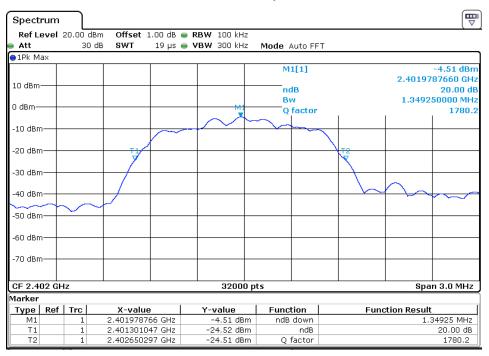
EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	53%
Pressure:	1010 hPa	Test Power :	DC 12V from battery
Test Mode :	TX 1Mbps/ 3Mbps		


Channel		Channel frenqucy (MHz)	20dB bandwidth (KHz)	Limit (KHz)	Conclusion
	Low	2402	1094.7	N/A	Pass
1Mbps	Middle	2441	1075.5	N/A	Pass
	High	2480	1087.4	N/A	Pass
	Low	2402	1349.2	N/A	Pass
2Mbps	Middle	2441	1349.2	N/A	Pass
	High	2480	1352.0	N/A	Pass
	Low	2402	1342.1	N/A	Pass
3Mbps	Middle	2441	1336.3	N/A	Pass
	High	2480	1342.6	N/A	Pass

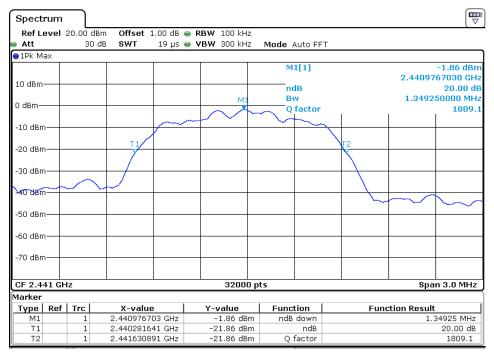
CH00-1Mbps



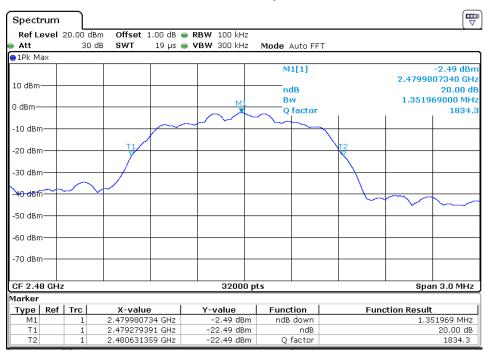
CH 39-1Mbps



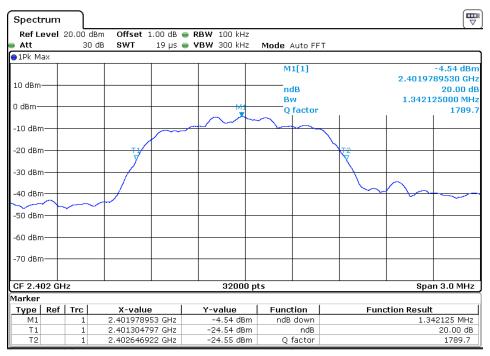
CH 78-1Mbps



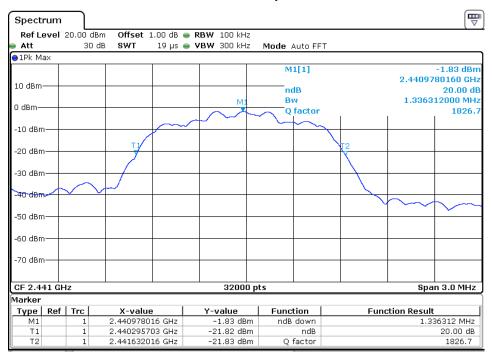
CH 00-2Mbps



CH 39-2Mbps



CH 78-2Mbps



CH 00-3Mbps

CH 39-3Mbps

CH 78-3Mbps

Spectru	n					
	el 20.00 dB		🖷 RBW 100 kHz			``````````````````````````````````````
Att	30 d	B SWT 19 µ։	: 👄 VBW 300 kHz	Mode Auto FR	T	
●1Pk Max						
				M1[1]		-2.42 dBm
10 40 m						2.4798087030 GHz
10 dBm				ndB		20.00 dB
			M1	Bw		1.342594000 MHz
0 dBm				Q factor		1847.0
-10 dBm—						
		T1			N _{T2}	
-20 dBm—						
-30 dBm—					<u>`</u>	
-40 d8m -	$\gamma \rightarrow$					
					~	
-50 dBm						
-60 dBm—						
00 00.00						
-70 dBm—						
, o ubiii						
CF 2.48 G	Hz		32000	pts		Span 3.0 MHz
Marker						
Type Re	ef Trc	X-value	Y-value	Function	l Fun	ction Result
M1	1	2.479808703 GHz				1.342594 MHz
T1	1	2.479295797 GHz	-22.42 dBm	n ndB		20.00 dB
T2	1	2.480638391 GHz				1847.0
16		2. 1000000391 GHz	22,72 UDII		1	1047.0

6.5 Carrier Frequencies Separated

6.5.1 Applied procedures / Limit

15.247(a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


6.5.2 Test procedure

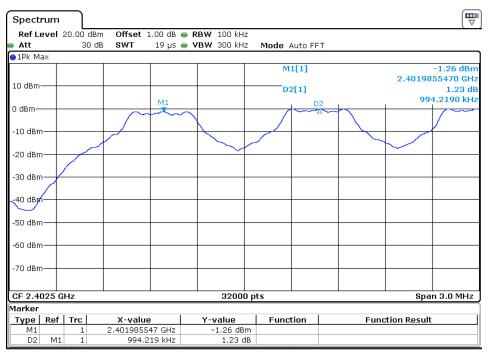
- (1) Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as Span = wide enough to capture the peaks of two adjacent channels, Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span, Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- (2) The EUT should be transmitting at its maximum data rate. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.
- (3) The above procedure shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range with modulated mode. also shall be performed at different modes of operation.

6.5.3 Deviation from standard

No deviation.

6.5.4 Test setup

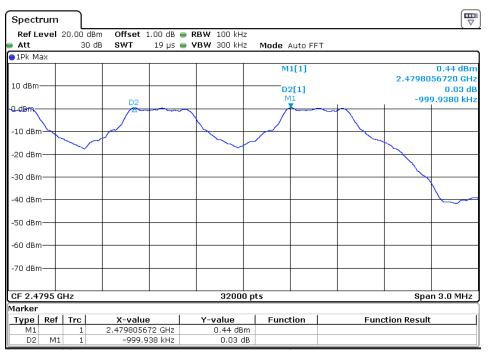
6.5.5 Test results


EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	53%
Pressure:	1010 hPa	Test Power :	DC 12V from battery
Test Mode :	TX 1Mbps/ 3Mbps		

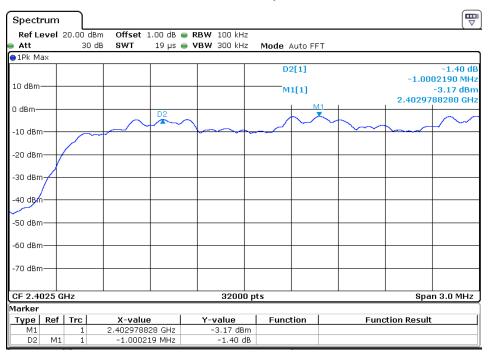
Cha	nnel	Channel frenqucy (MHz)	Channel Separation (MHz)	Conclusion
Low		2402	0.9942	Pass
1Mbps	Middle	2441	1.0004	Pass
	Highest	2480	0.9993	Pass
	Low	2402	1.0002	Pass
3Mbps	Middle	2441	1.0008	Pass
	Highest	2480	0.9979	Pass


Ch. Separation >2/3(20dB bandwidth)

CH 00-1Mbps

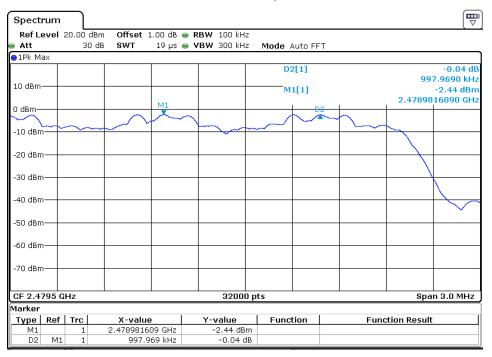


CH 39-1Mbps



CH 78-1Mbps

CH 00-3Mbps



CH 39-3Mbps

Spectr	um									
Ref Le Att	evel :	20.00 dBm 30 dB		_	RBW 100 kH VBW 300 kH		Auto FF	т		
😑 1Pk Ma	эх									
10 dBm-							1[1]		2.44180	-1.84 dBm 88590 GHz
			20				2[1] 41	1	-1.00	0.10 dB 08750 MHz
0 dBm—		~~~		\sim		~	\sim	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim
-10 dBm						_				
-20 dBm										
-30 dBm	-									
-40 dBm	+									
-50 dBm	+									
-60 dBm	+									
-70 dBm	+									
CF 2.44	+15 G	Hz			3200	0 pts			Spa	n 3.0 MHz
Marker						•				
	Ref	Trc	X-value	. 1	Y-value	Fund	tion	Fund	tion Result	1
M1		1	2.4418088		-1.84 dB					
D2	M1	1	-1.00087	75 MHz	0.10 (ЗВ	-			

CH 78-3Mbps

6.6 Hopping Channel Number

6.6.1 Applied procedures / Limit

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

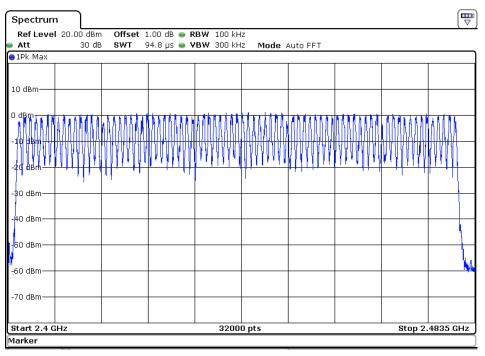
6.6.2 Test procedure

- (1) Connected the antenna port to the Spectrum Analyzer , set the Spectrum Analyzer as Span = the frequency band of operation, RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto Detector function = peak, Trace = max hold
- (2) The EUT should be have its hopping function enabled. Maxhold and record hopping channels It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

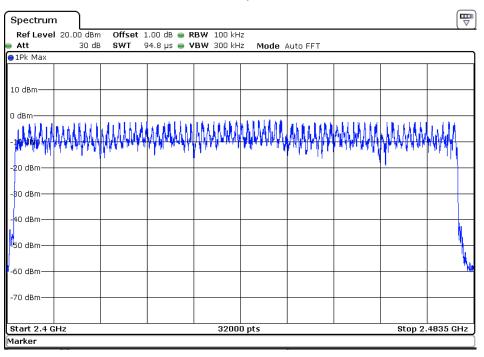
6.6.3 Deviation from standard

No deviation.

6.6.4 Test setup



6.6.5 Test result


Hopping Channel Number result							
Operating Mode: 1Mbps/ 3M	bps Mode	Test date:2017-03-28					
Result	Limi	t	Conclusion				
79	15		Pass				

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	53%
Pressure:	1010 hPa	Test Power :	DC 12V from battery
Test Mode :	TX 1Mbps/ 3Mbps		

3Mbps

1Mbps

6.7 Dwell time

6.7.1 Applied procedures / Limit

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.7.2 Test procedure

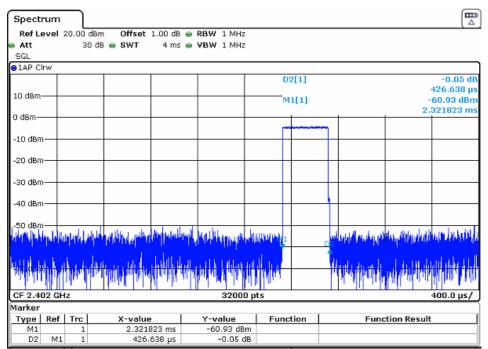
- (1) Place the EUT on the table in the chamber or connect the antenna port of the EUT to spectrum analyzer and set it in transmitting mode.
- (2) Set RBW of spectrum analyzer to 1MHz, VBW \geq RBW
- (3) Use a video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for DH5, DH3 and DH1 packet transmitting.
- (8) Measure the maximum time duration of one single pulse.
- (9) A Period Time = 79*0.4=31.6 S

DH1 Time Slot: Reading * (1600/2)*31.6/79 DH3 Time Slot: Reading * (1600/4)*31.6/79 DH5 Time Slot: Reading * (1600/6)*31.6/79

6.7.3 Deviation from standard

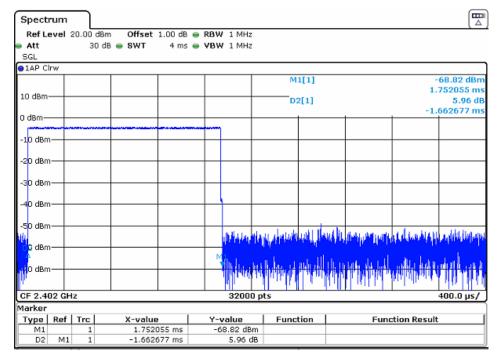
No deviation.

6.7.4 Test setup

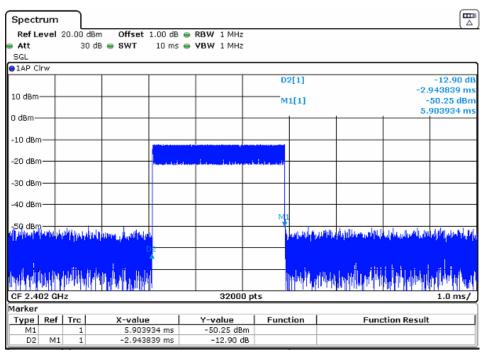


6.7.5 Test result

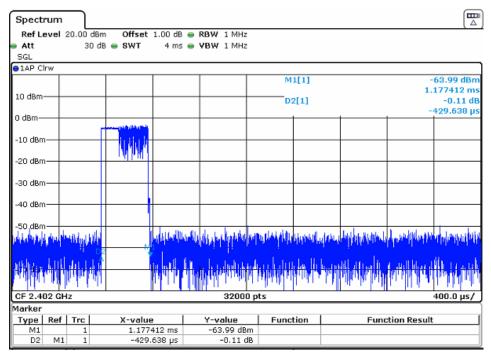
EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018			
Temperature:	26 ℃	Relative Humidity:	53%			
Pressure:	1010 hPa	I010 hPa Test Power : DC 12V from battery				
Test Mode : CH00-DH1/DH3/DH5 (1Mbps Mode)						


Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (ms)	Limits (s)
DH1	2402 MHz	0.426	136.32	0.4000
DH3	2402 MHz	1.752	280.32	0.4000
DH5	2402 MHz	2.943	313.92	0.4000

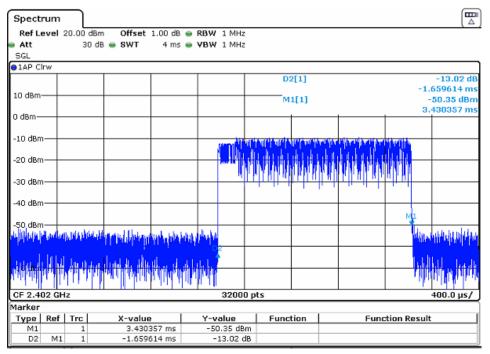
CH 00- DH1

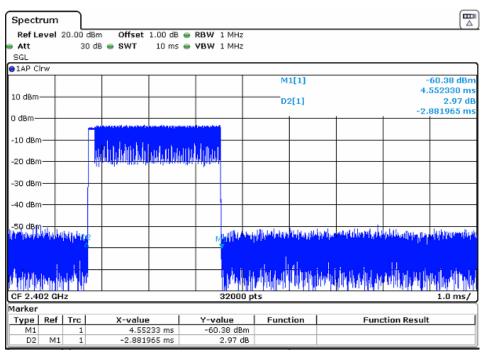


CH 00- DH3


CH 00- DH5

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018				
Temperature:	26 ℃	Relative Humidity:	53%				
Pressure:	1010 hPa	1010 hPa Test Power : DC 12V from battery					
Test Mode :	CH00-3DH1/3DH3/3DH5 (3Mbps Mode)						


Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (ms)	Limits (s)
3DH1	2402 MHz	0.429	137.28	0.4000
3DH3	2402 MHz	1.659	265.44	0.4000
3DH5	2402 MHz	2.881	307.3067	0.4000


CH 00- 3DH1

CH 00- 3DH3

CH 00- 3DH5

6.8 Maximum Peak Output Power

6.8.1 Applied procedures / Limit

15.247(a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

15.247(b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

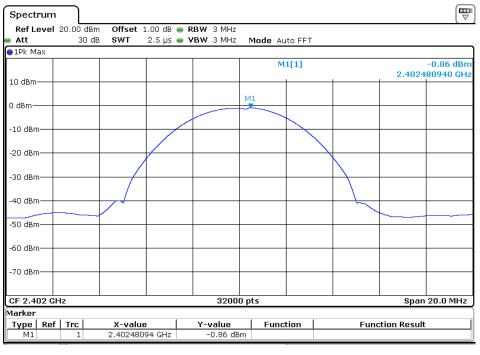
6.8.2 Test procedure

- (1) Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW ≥ RBW, Sweep = auto Detector function = peak, Trace = max hold
- (2) The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.
- (3) The above procedure shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range with modulated mode. Also shall be performed at different modes of operation.
- (4)

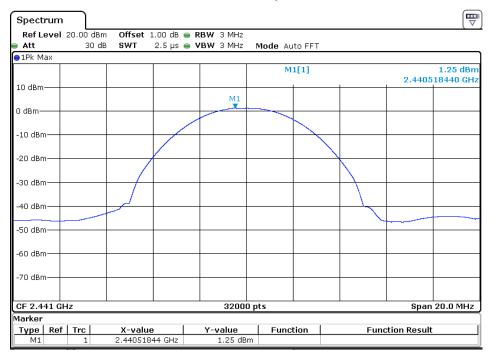
6.8.3 Deviation from standard

No deviation.

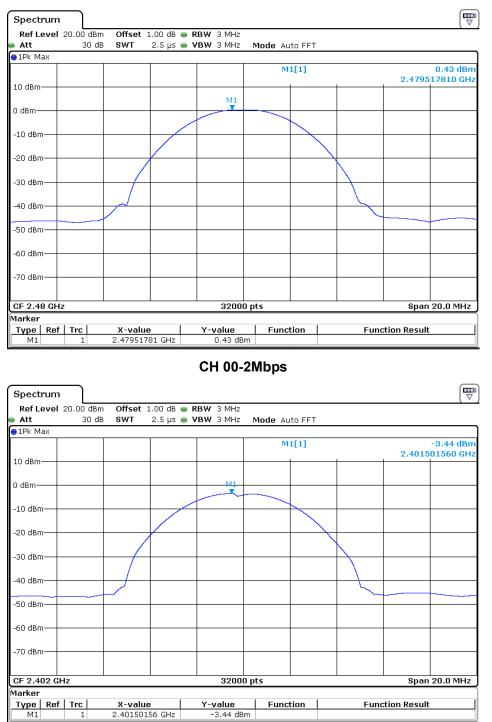
6.8.4 Test setup


6.8.5 Test results

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018						
Temperature:	26 ℃	Relative Humidity:	60%						
Pressure:	1010 hPa	Test Voltage :	DC 12V from battery						
Test Mode :	ТХ								
Note: All the data ra	Note: All the data rates have be tested and the worst-case as the table below.								

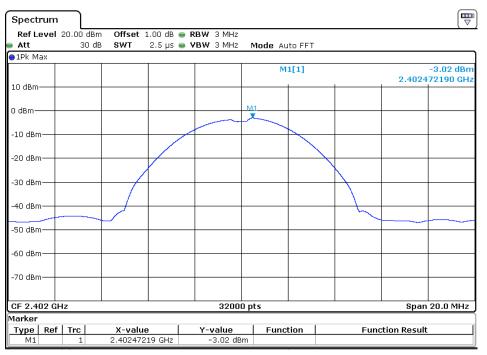

Test Mode	Frequency	Peak Output Power (dBm)	Limit (dBm)	Result
	2402 MHz	-0.86	21	Pass
Data rate 1Mbps	2441 MHz	1.25	21	Pass
	2480 MHz	0.43	21	Pass
	2402 MHz	-3.44	21	Pass
Data rate 1Mbps	2441 MHz	-0.83	21	Pass
	2480 MHz	-1.32	21	Pass
	2402 MHz	-3.02	21	Pass
Data rate 3Mbps	2441 MHz	-0.95	21	Pass
	2480 MHz	-1.04	21	Pass
Cable loss = 1.0 dBn	1			

CH 00-1Mbps

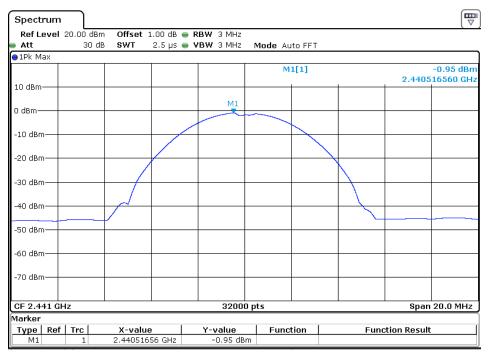


CH 39-1Mbps

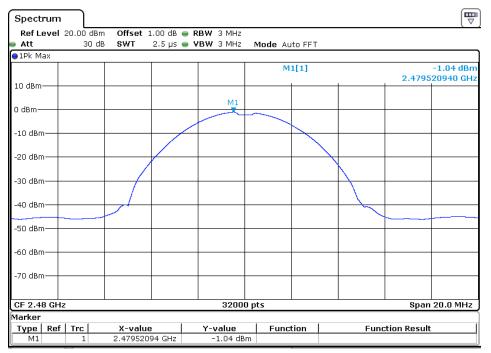
CH 78-1Mbps



CH 39-2Mbps



CH 00-3Mbps



CH 39-3Mbps

CH 78-3Mbps

6.9 Band edge

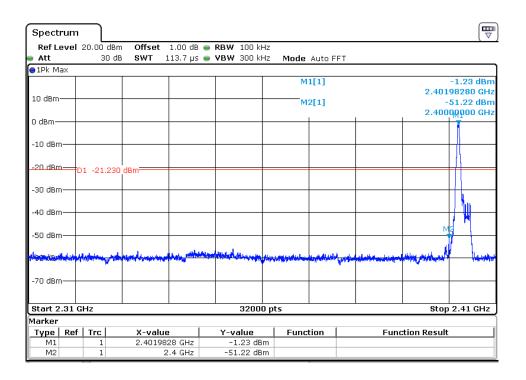
6.9.1 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

6.9.2 Test procedure

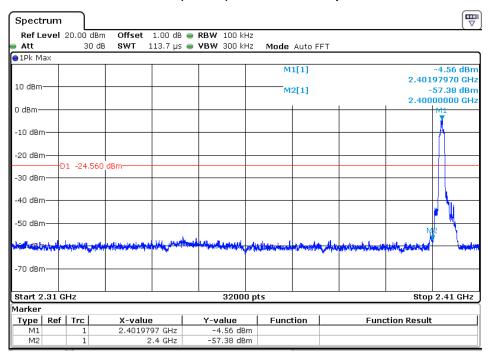
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

6.9.3 Deviation from standard

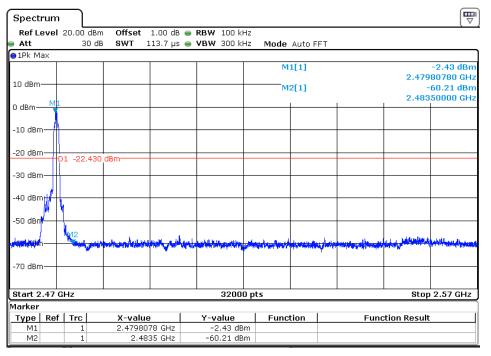

No deviation.

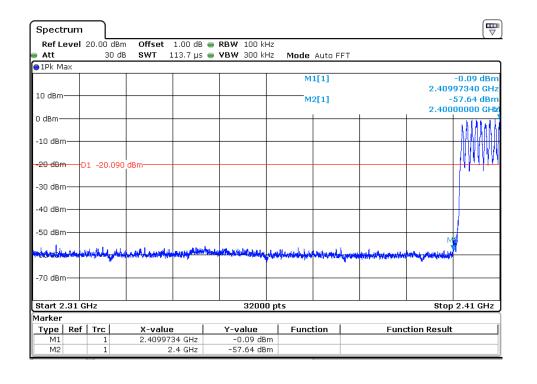
6.9.4 Test setup

6.9.5 Test results

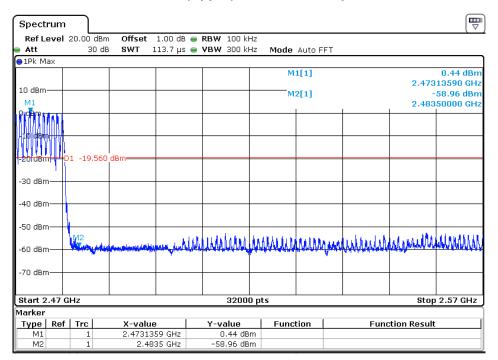


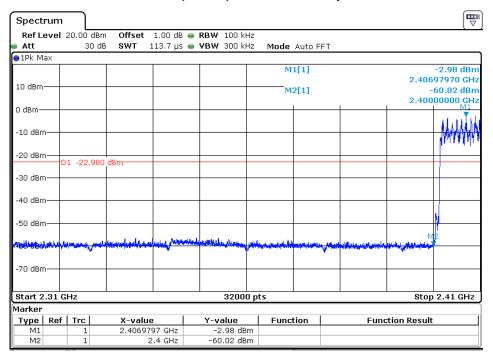
CH00 (Lower) Data rate 1Mbps


Spectrum									
Ref Level				🖷 RBW 100 kł					
Att 🛛	30 c	db SWT d	l13.7 μs	🔵 VBW 300 kł	lz Mode	Auto F	FT		
●1Pk Max									
					M	1[1]			0.40 dBm
10 dBm									80470 GH
					M	2[1]			60.48 dBn
0 dBm						1	1	2.483	50000 GH:
-10 dBm-									
-10 000									
-20 dBm	D1 -19.60								
-20 UBIII	DI -19.00								
-30 dBm									
-30 UBIII									
-40 dBm									
-40 0011									
-50 dBm	h								
-30 0811	1.								
	1/12	المريحة والمريحة والمراجع		Shine and the second	Sector Colores	بالنقاب بمرد	يروب والمتعلم	A STATE STATE	and the second second
and the second	a second second	and the second secon	and the second s	phillipping and a second	ha farsken der son	(end of the second	A second s	100 million 100	and the second
-70 dBm									
-70 dBm									
Start 2.47	GHz			3200) pts			Stop	2.57 GHz
Marker									
Type Ref	Trc	X-value	.	Y-value	Func	tion	Fun	ction Result	
M1	1	2.47980		0.40 dB					
M2	1	2.48	35 GHz	-60.48 dB	m				



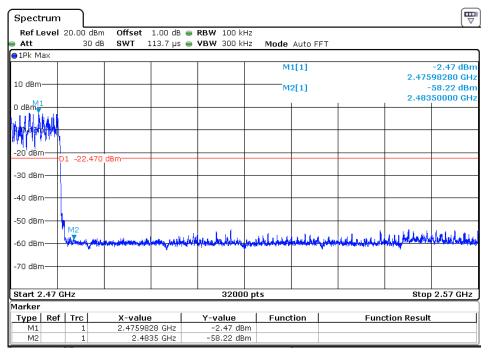
CH00 (Lower) Data rate 3Mbps





CH00 (Lower) Data rate 1Mbps

CH 78 (Upper) Data rate 1Mbps



CH00 (Lower) Data rate 3Mbps

6.10 Conducted Spurious Emissions

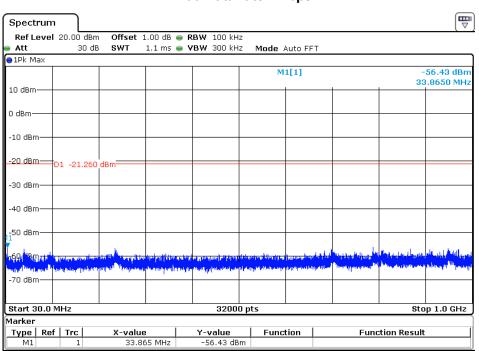
6.10.1 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

6.10.2 Test procedure

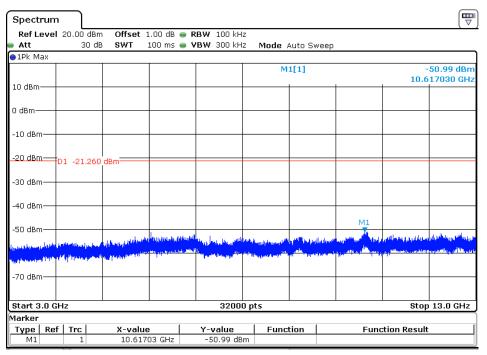
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold sweep points ≥ investigated frequency range/RBW.

6.10.3 Deviation from standard

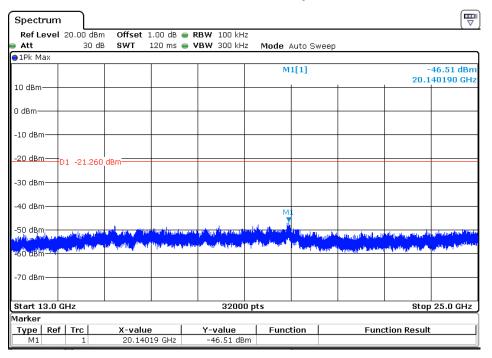

No deviation.

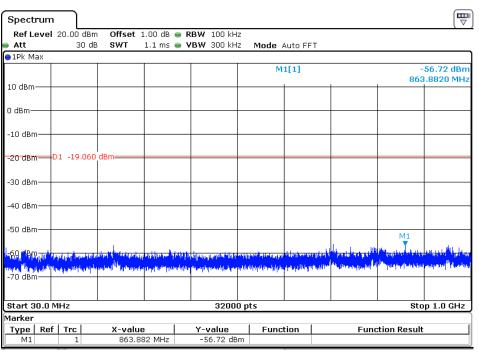
6.10.4 Test setup

6.10.5Test results


CH00 Data rate 1Mbps

CH00 Data rate 1Mbps

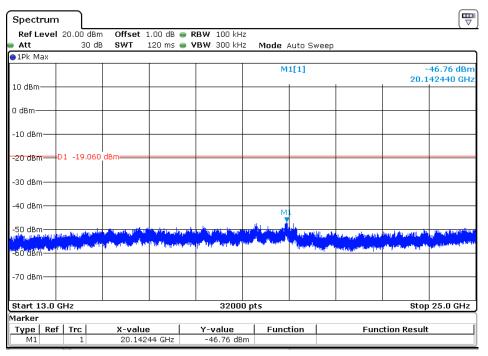

Spectrum								
Ref Level 20.00	dBm Offset 1.0	o db 👄 RBW	100 kHz					
	0 dB SWT 32	2 ms 👄 VBW	300 kHz	Mode Auto) Sweep			
⊖1Pk Max]
				M1[1]]			-1.26 dBm 18440 GHz
10 dBm								
0 dBm					м	1		
-10 dBm								
-20 dBm	260 dBm							
DI -21.	260 dBm							
-30 dBm								
-40 dBm								
-50 dBm								
		te alger a chi and a star	ىرى مەر اپىلىدىن	an ya Hatari ita bi pitanta	وراليا وروايان	, is no see full when		national and an and an
entering to grap and the strend grant of the	and a second statement of	the second provide states of the second s	and a part of the	and the state of t	used to see the	ann, contrationa,	gebilden kontra offen	and the second second second
-70 dBm								
Start 1.0 GHz			32000 pi	ts			Sto	p 3.0 GHz
Marker		1]
Type Ref Trc M1 1	X-value 2.401844		value 1.26 dBm	Function		Func	tion Result	


CH00 Data rate 1Mbps

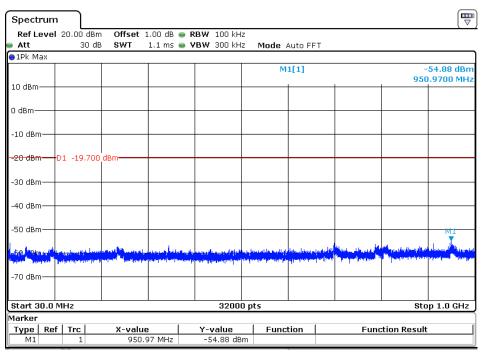
CH00 Data rate 1Mbps

CH39 Data rate 1Mbps

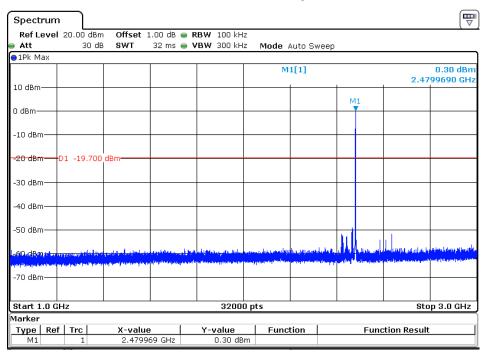
CH39 Data rate 1Mbps


Spectrum					
RefLevel 20.00 dB Att 30 d		● RBW 100 kHz ● VBW 300 kHz	Mode Auto Sv	veep	(
●1Pk Max			M1[1]		0.94 dBm 2.4409690 GHz
10 dBm				M1	
0 dBm					
-10 dBm					
-20 dBm-D1 -19.06	0 dBm				
-30 dBm					
-40 dBm					
-50 dBm					
60.dBm.hdl	an and the local sector of the		and the second		المراجع من من معامل من المراجع المراجع المراجع من
-70 dBm					
Start 1.0 GHz		32000 p	ts		Stop 3.0 GHz
Marker Type Ref Trc M1 1	X-value 2.440969 GHz	Y-value 0.94 dBm	Function	Func	tion Result

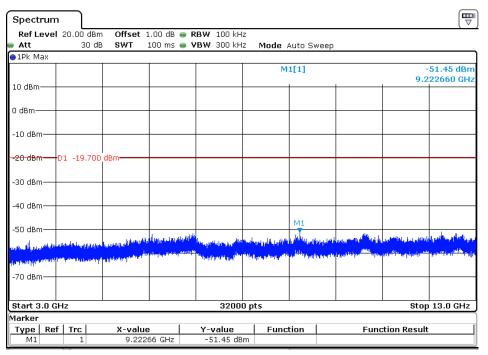
Spect	rum										
Ref L	evel	20.00 d	Bm Offset	1.00 dB 👄	RBW 100 kH:	z				('	
🛛 Att		30	dB SWT	100 ms 👄	VBW 300 kH:	2 Mode /	Auto Sv	veep			
⊜1Pk M	lax										
10.40						М	1[1]		-51.69 dBm 10.587340 GHz		
10 dBm											
0 dBm–											
-10 dBn	n										
-20 dBn	n D	1 -19.0	60 dBm								
-30 dBn	n										
-40 dBn	n										
-50 dBn	n							M1			
الأبرينية ورا		inductor) pr	and the second second	ىلىم يېزارك لىسرىم روك <mark>ا</mark> دىلىمەت مەرىپى مىلىكى	. atten internation .	and the weight	A Barris	hand hand had the state of the st	and a start of the second s	ىر بالاردى مەربىرى بىر بالاردى مەربىرى	
den septement	4-49pd	no-g ^h reatan	atel of the second second		I I A CONTRACTOR	a a state de trate a s		and a state of the			
-70 dBn	n										
Start 3	3.0 GH	Iz			32000) pts			Sto	p 13.0 GHz	
Marker											
Type M1	Ref	Trc 1	X-valu 10.587	e '34 GHz	<u>Y-value</u> -51.69 dBi		Function		Function Result		


CH39 Data rate 1Mbps

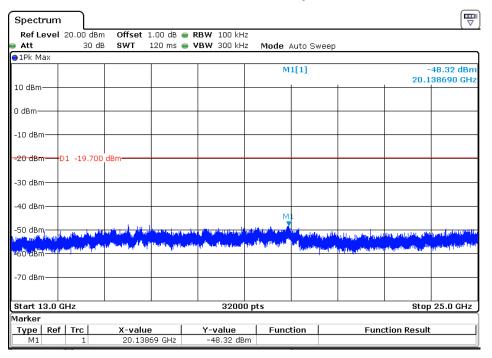
CH39 Data rate 1Mbps



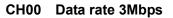
CH78 Data rate 1Mbps

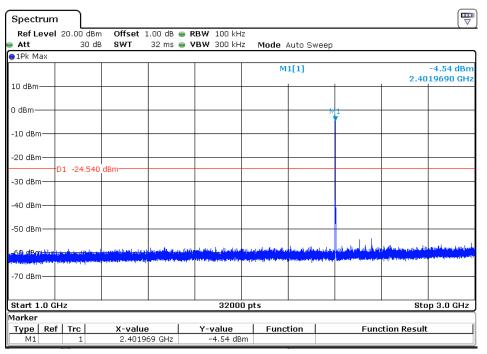


CH78 Data rate 1Mbps



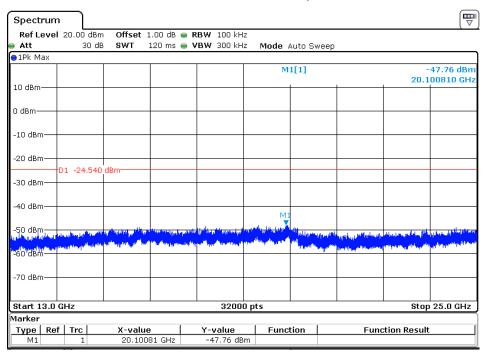
CH78 Data rate 1Mbps


CH78 Data rate 1Mbps

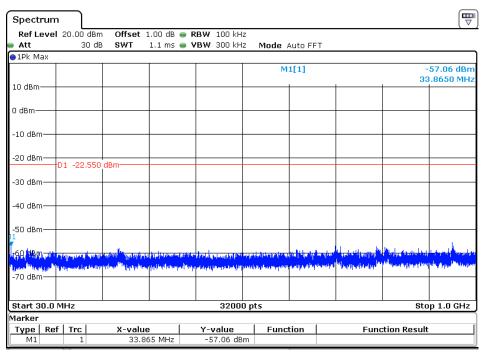


Specti	rum											
Ref Le	evel 2	20.00 d	Bm Offset	1.00 dB	RBW 100 k	Hz				(•		
Att 🛛		30	dB SWT	1.1 ms	🔵 VBW 300 k	Hz Mode	Auto FF	Т				
⊜1Pk Ma	ах											
						м	1[1]		-56.01 dBn 793.0410 MH			
10 dBm-	_								1			
0 dBm—												
-10 dBm	<u> </u>											
-20 dBm												
		1 -24.5	40 dBm									
-30 dBm	<u>ا</u> -۲											
-40 dBm	<u>ا</u> ــــ											
-50 dBm												
						N. 1	1		. Marile and the state of the	an na <mark>k</mark> i na s		
-60 ¹⁴⁸ 0	100	nin hadaali	ىرلىغى بى يەرىيا مى يەر	مورية لمستعقي ليري	منحد إملاقا لتربيطك رزهريا الم	مريدة بيرانيكي فلحطابه	, la cutation de la constante d	dellara ^{de} llara della d				
-70 dBm) 	d serve (d) es	and here a contraction	a alla contra la contra a d	n an a' a' an	an an an an Arlan an Anna an An		natur di mant tree		1.		
Start 3	0.0 M	Hz			320	00 pts			Sto	p 1.0 GHz		
Marker	- 1											
Type M1	Ref	Trc 1	X-value 793.041 MHz		<u> </u>		Function		Function Result			
IVII		1	793.0		50.01 0	om						

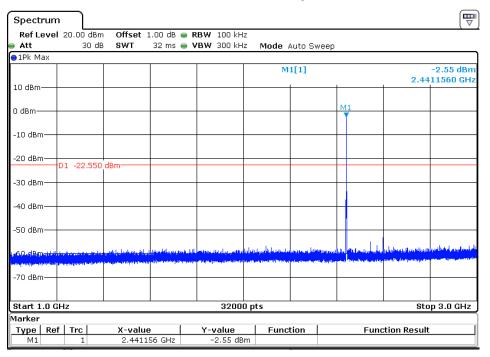
CH00 Data rate 3Mbps



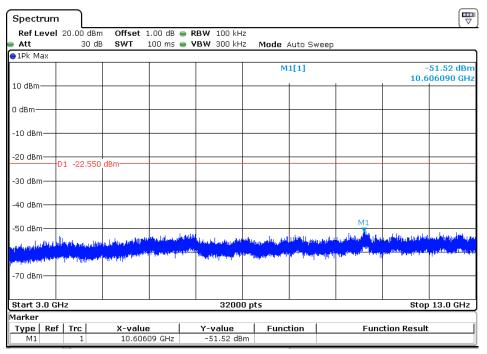
Spectrum	₩		
Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz			
Att 30 dB SWT 100 ms o VBW 300 kHz Mode Auto Sweep			
PIPK Max			
11.928590 (-51.35 dBm 11.928590 GHz		
10 dBm-			
0 dBm			
-10 dBm			
-20 dBm D1 -24.540_dBm D1 -24.540_			
-30 dBm			
-40 dBm			
And Parcel and San granded for the second			
-70 dBm			
Start 3.0 GHz 32000 pts Stop 13.0 Gl	Hz		
i i i i i i i i i i i i i i i i i i i	_		
Type Ref Trc X-value Y-value Function Function Result M1 1 11.92859 GHz -51.35 dBm -51.35 dBm <t< td=""><td></td></t<>			


CH00 Data rate 3Mbps

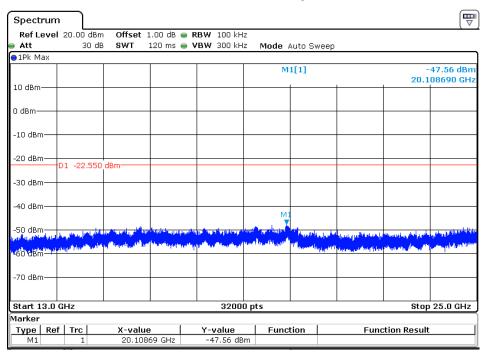
CH00 Data rate 3Mbps



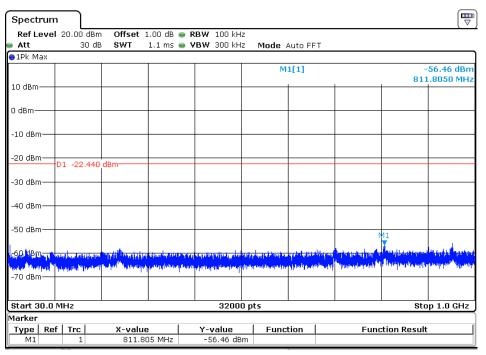
CH39 Data rate 3Mbps



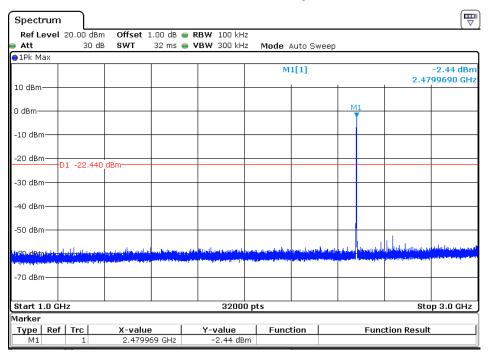
CH39 Data rate 3Mbps



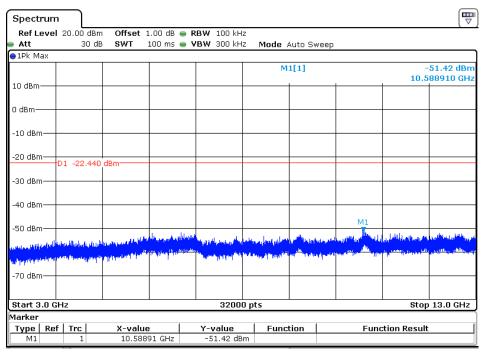
CH39 Data rate 3Mbps



CH39 Data rate 3Mbps



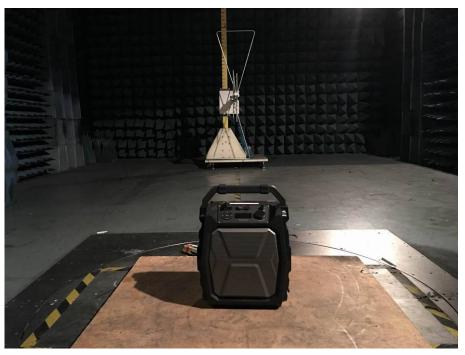
CH78 Data rate 3Mbps



CH78 Data rate 3Mbps

CH78 Data rate 3Mbps

CH78 Data rate 3Mbps



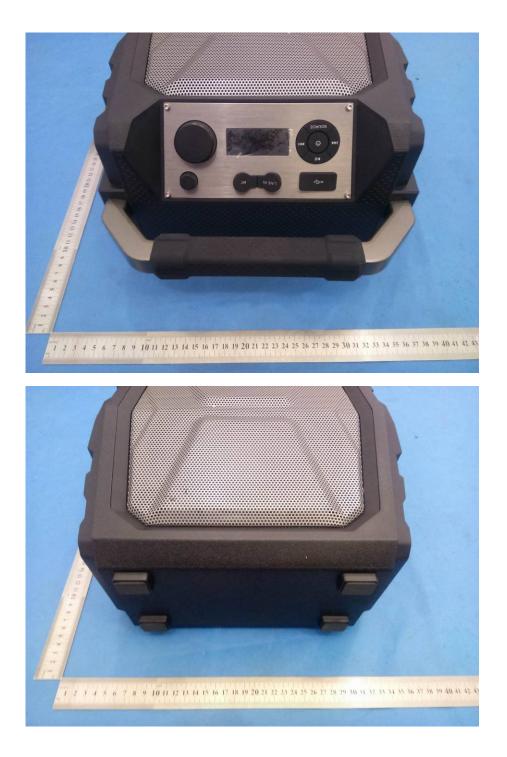
7 Photographs

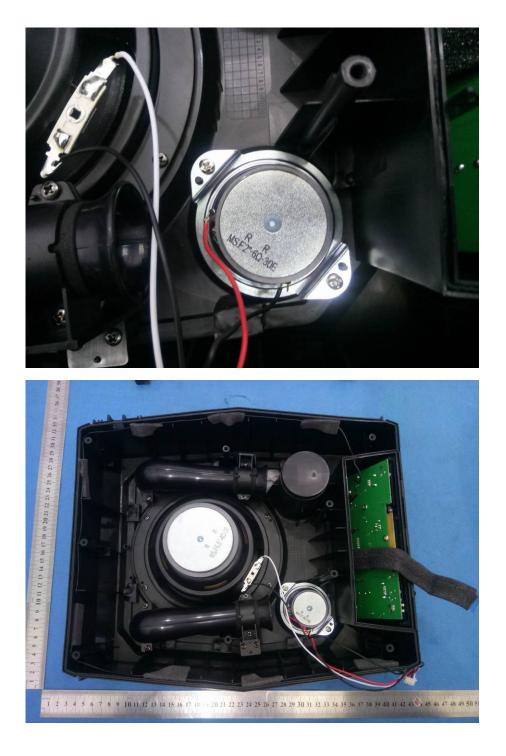
7.1 Radiated Emission Test Setup

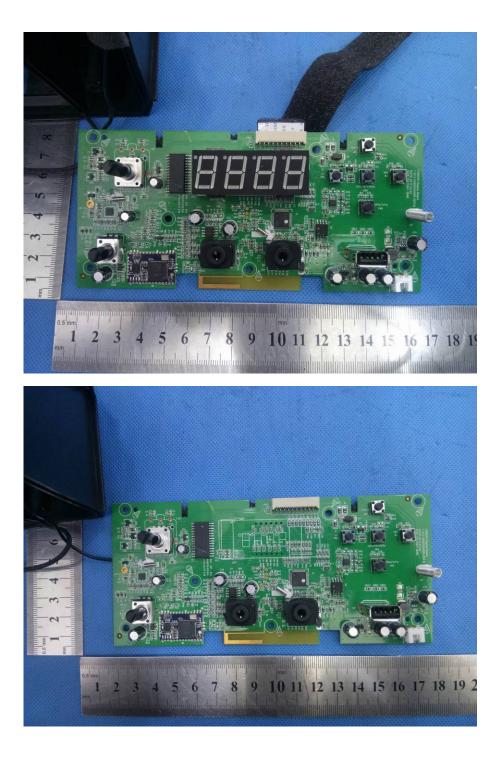
Below 1G

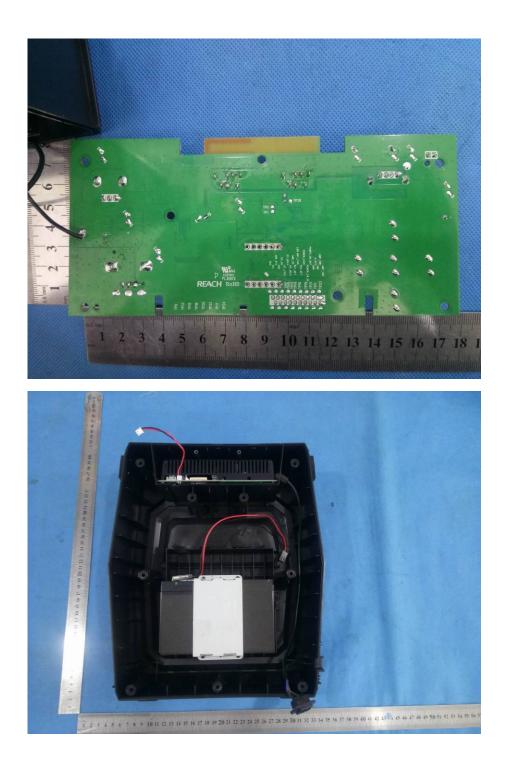
Above 1G

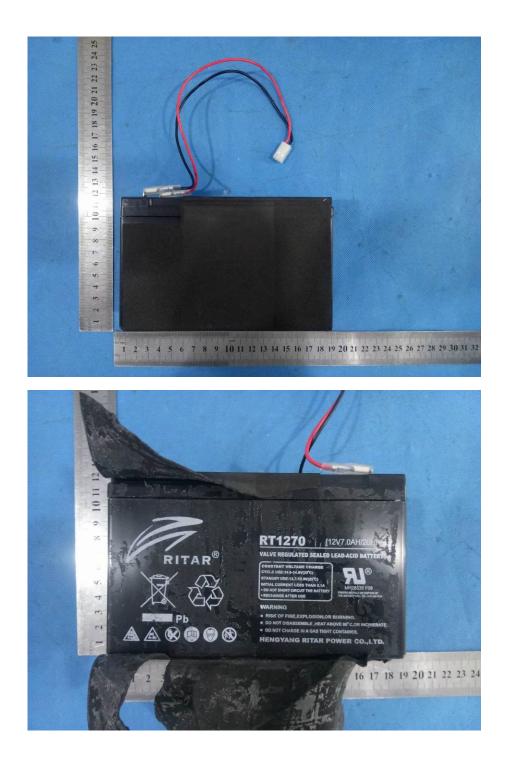
7.2 Conducted Emissions Test Setup

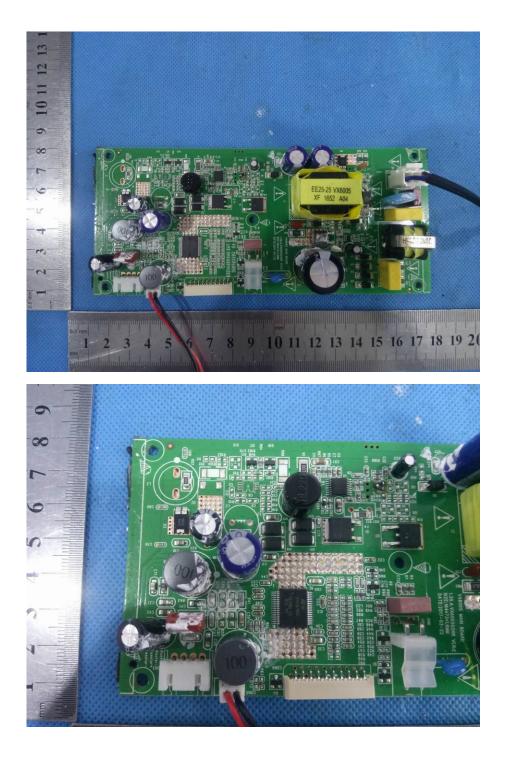

7.3 EUT Constructional Details

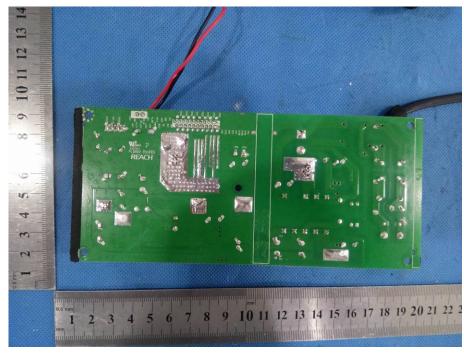












END OF REPORT