

FCC Test Report

Part 15 subpart C

Client Information:

Applicant:	Guangzhou Panyu Juda Car Audio Equipment Co., Ltd.				
Applicant add.:	Vtrek Dewei Industrial Garden, Shibei Industrial Road, Dashi Town, Panyu				
Applicant add	Borough, Guangzhou City ,Guangdong Province, China				

Product Information:

Product Name:	RUGGED SPEAKER SYSTEM	
Model No.:	NS-HMPS3018	
Brand Name:	INSIGNIA	
FCC ID:	ESX-HMPS3018	
Standards:	CFR 47 FCC PART 15 SUBPART C:2017 section 15.247	

Prepared By:

UL-CCIC Company Limited

Add. : Electronic Building, Parage Electronic Industrial Park, No. 8 Nanyun Er Road, Guangzhou Science Park, Guangzhou, 510663 China

Date of Receipt:	Mar. 20, 2017	Date of Test:	Mar. 21, 2017~April 22, 2017
Date of Issue:	April 24, 2017	Test Result:	Pass

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UL-CCIC Company Limited.

Danny Grang Reviewed by: -

Approved by: Richard Pi

1 Contents

	COVE	R PAGE	
1	CO	NTENTS	
2	TES	ST SUMMARY	
	2.1	COMPLIANCE WITH FCC PART 15 SUBPART C	
	2.2	TEST LOCATION	
	2.3	Measurement Uncertainty	5
3	TES	ST FACILITY	6
	3.1	DEVIATION FROM STANDARD	
	3.2	ABNORMALITIES FROM STANDARD CONDITIONS	
4	GEI	NERAL INFORMATION	
	4.1	GENERAL DESCRIPTION OF EUT	7
		DESCRIPTION OF TEST CONDITIONS	
	4.3	TEST PERIPHERAL LIST	
	4.4	EUT PERIPHERAL LIST	
5	EQ	UIPMENTS LIST FOR ALL TEST ITEMS	11
6	TES	ST RESULT	12
	6.1	ANTENNA REQUIREMENT	
	6.1.	1 Standard requirement	
	6.1.	2 EUT Antenna	
	6.2	CONDUCTION EMISSIONS MEASUREMENT	13
	6.2.	1 Applied procedures / Limit	
	6.2.		
	6.2.		
	6.2.		
		RADIATED EMISSIONS MEASUREMENT.	
	6.3.		
	6.3.	•	
	6.3. 6.3.		
	6.3.		
		BANDWIDTH TEST	
	6.4.		
	6.4.		
	6.4.		

	6.4.4	Test setup	
	6.4.5	Test results	
	6.5 Pea	AK POWER DENSITY	
	6.5.1	Applied procedures / Limit	
	6.5.2	Test procedure	
	6.5.3	Deviation from standard	
	6.5.4	Test results	
	6.6 MAX	XIMUM PEAK OUTPUT POWER	
	6.6.1	Applied procedures / Limit	
	6.6.2	Test procedure	
	6.6.3	Deviation from standard	
	6.6.4	Test setup	
	6.6.5	Test results	
	6.7 BAN	ND EDGE	
	6.7.1	Applied procedures / Limit	
	6.7.2	Test procedure	
	6.7.3	Deviation from standard	
	6.7.4	Test setup	
	6.7.5	Test results	
	6.8 Coi	NDUCTED SPURIOUS EMISSIONS	
	6.8.1	Applied procedures / Limit	
	6.8.2	Test procedure	
	6.8.3	Deviation from standard	
	6.8.4	Test setup	
	6.8.5	Test results	
7	РНОТС	OGRAPHS	
	7.1 Rai	DIATED EMISSION TEST SETUP	
	7.2 Coi	NDUCTED EMISSIONS TEST SETUP	
	7.3 EU	T CONSTRUCTIONAL DETAILS	

2 Test Summary

2.1 Compliance with FCC Part 15 subpart C

Test	Test Requirement	Standard Paragraph	Result			
Antenna Requirement	FCC Part 15 C:2017	Section 15.247(c)	PASS			
Conduction Emissions	FCC Part 15 C:2017	Section 15.207(a)	PASS			
Radiated Emissions	FCC Part 15 C:2017	Section 15.247(d)	PASS			
Occupied Bandwidth	FCC Part 15 C:2017	Section 15.247(a)(2)	PASS			
Peak power density	FCC Part 15 C:2017	Section 15.247(e)	PASS			
Maximum Peak Output Power	FCC Part 15 C:2017	Section 15.247(b)(1)	PASS			
Band edge	FCC Part 15 C:2017	Section 15.247(d)	PASS			
Conducted Spurious Emissions	FCC Part 15 C:2017	Section 15.247(d)	PASS			
Note:						
(1) Reference to the	(1) Reference to the KDB 558074 D01 DTS Guidance v04 and ANSI C63.10:2013.					
(2) The pouduct sup	(2) The pouduct support for Bluetooth basic rate / EDR and low energy connections					

(2) The pouduct support for Bluetooth basic rate / EDR and low energy connections Bluetooth 4.0Dual-mode, this report is low energy connection test mode, for basic rate / EDR connection please refers to the report number 4787901494-1.

2.2 Test Location

All tests were performed at:

Dongguan Yaxu (AiT) Technology Limited No.22, Jinqianling Third Street, Jitigang, Huangjiang,Dongguan, Guangdong, China Tel.: +86.769.82020499 Fax.: +86.769.82020495

2.3 Measurement Uncertainty

All measurements involve certain levels of uncertainties, the maximum value of the uncertainty as below:

No.	Item	Uncertainty
1	Conducted Emission Test	1.20dB
2	Radiated Emission Test	3.30dB
3	RF power,conducted	0.16dB
4	RF power density,conducted	0.24dB
5	Spurious emissions,conducted	0.21dB
6	All emissions,radiated(<1G)	4.68dB
7	All emissions,radiated(>1G)	4.89dB

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

.CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2005 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on Apr. 18, 2013

.FCC- Registration No: 248337

The 3m Semi-Anechoic Chamber, 3m/10m Open Area Test Site and Shielding Room of Dongguan Yaxu (AiT) Technology Limited have been registered by Federal Communications Commission (FCC) on Aug.29, 2014.

.Industry Canada(IC)-Registration No: IC6819A-1

The 3m Semi-Anechoic Chamber and 3m/10m Open Area Test Site of Dongguan Yaxu (AiT) Technology Limited have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing on Oct. 12, 2014.

3.1 Deviation from standard

None

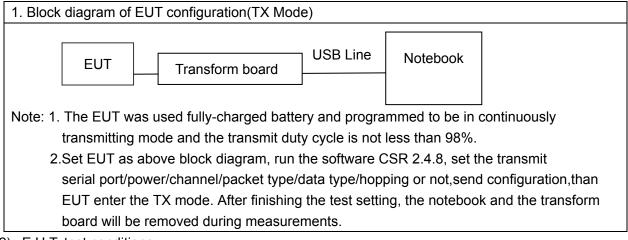
3.2 Abnormalities from standard conditions

None

4 General Information

4.1 General Description of EUT

Manufacturer:	Guangzhou Panyu Juda Car Audio Equipment Co., Ltd.			
Manufacturer Address:Vtrek Dewei Industrial Garden, Shibei Industrial Road, Dashi Town, Panyu BoGuangzhou City ,Guangdong Province, China				
EUT Name:	RUGGED SPEAKER SYSTEM			
Model No:	NS-HMPS3018			
Brand Name:	INSIGNIA			
Operation frequency:	2402 MHz to 2480 MHz			
NUMBER OF CHANNEL:	40			
Modulation Technology:	GFSK			
Bluetooth version:	BT4.0 Dual-mode (BLE)			
Antenna Type:	PCB Antenna			
Antenna Gain:	maximum 0 dBi			
H/W No.:	VER:B			
S/W No.:	00			
Serial No:	N/A			
Power Supply Range:	100-240V~ 50/60Hz 30W			
Power Supply:	AC 100-240V 50/60Hz or DC 12 from battery			
Power Cord:	1.5 m AC cable			
Output power (max) :	2.03dBm			
Note:	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.			



	Description of Channel:					
Channel	Frequency (MHz)	Channel	Frequency (MHz)			
00	2402	20	2442			
01	2404	21	2444			
02	2406	22	2446			
03	2408	23	2448			
04	2410	24	2450			
05	2412	25	2452			
06	2414	26	2454			
07	2416	27	2456			
08 2418		28	2458			
09 2420		29	2460			
10	2422	30	2462			
11	2424	31	2464			
12	2426	32	2466			
13	2428	33	2468			
14	2430	34	2470			
15	2432	35	2472			
16	2434	36	2474			
17	2436	37	2476			
18	2438	38	2478			
19	2440	39	2480			

4.2 Description of Test conditions

(1) EUT was tested in normal configuration (Please See following Block diagram)

(2) E.U.T. test conditions:

15.31(e): For intentional radiators, measurements of the variation of the input power or the adiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

(3) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. If required reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over	Number of	Location in
which device operates	frequencies	the range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
Mara than 10 Miliz	2	1 near top, 1 near middle and
More than 10 MHz	3	1 near bottom

(4) Frequency range of radiated measurements:

According to the 15.33, the test range will be up to the tenth harmonic of the highest fundamental frequency.

4.3 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	signal cable
1	Laptop	ASUS	N/A	X401A	X16-96072	N/A	N/A
2	Adapter (laptop)	ASUS	N/A	EXA070 3YH	N/A	1.8m/unshielded /detachable	N/A
3	USB line	N/A	N/A	N/A	N/A	N/A	1.2m/unshielded /detachable
4	Transform board	N/A	N/A	N/A	N/A	N/A	N/A

4.4 EUT Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	signal cable
1	AC line	N/A	N/A	N/A	N/A	N/A	1.5m/ detachable

5 Equipments List for All Test Items

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date		
1	SIGNAL ANALYZER	R&S	FSV40	101470	2016.06.29	2017.06.28		
2	EMI Measuring Receiver	R&S	ESR	101660	2016.06.29	2017.06.28		
3	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2016.06.29	2017.06.28		
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2016.06.29	2017.06.28		
5	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2016.06.29	2017.06.28		
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2016.06.29	2017.06.28		
7	SHF-EHF Horn	SCHWARZBECK	BBHA9170	BBHA9170367	2016.06.29	2017.06.28		
8	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.29	2017.06.28		
9	EMI Test Receiver	R&S	ESCI	100124	2016.06.29	2017.06.28		
10	LISN	Kyoritsu	KNW-242	8-837-4	2016.06.29	2017.06.28		
11	LISN	Kyoritsu	KNW-407	8-1789-3	2016.06.29	2017.06.28		
12	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.29	2017.06.28		
13	Loop Antenna	ETS	6512	00165355	2016.06.29	2017.06.28		
14	Radiated Cable 1# (30MHz-1GHz)	FUJIKURA	5D-2W	01	2016.12.25	2017.12.24		
15	Radiated Cable 2# (1GHz -25GHz)	FUJIKURA	10D2W	02	2016.12.25	2017.12.24		
16	Conducted Cable 1#(9KHz-30MHz)	FUJIKURA	1D-2W	01	2016.12.25	2017.12.24		
17	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	N/A		
Note:	Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.							

6 Test Result

6.1 Antenna Requirement

6.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

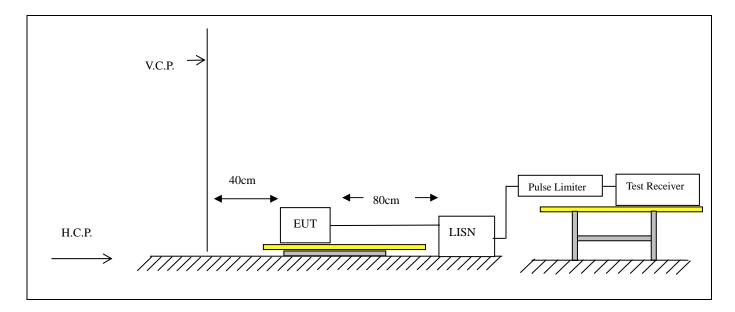
15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

6.1.2 EUT Antenna

The antenna is layout on PCB in the EUT and no consideration of replacement. Antenna gain is maximum 0 dBi from 2.4GHz to 2.5GHz.

6.2 Conduction Emissions Measurement

6.2.1 Applied procedures / Limit

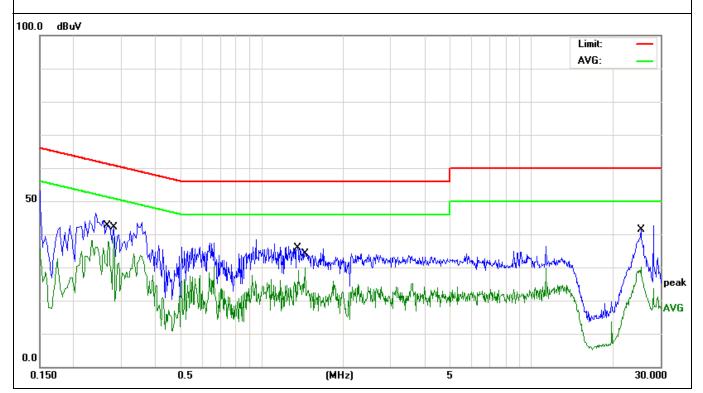

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Note: Decreases with the logarithm of the frequency.

6.2.2 Test procedure

EUT was placed upon a wooden test table 0.1m above the horizontal metal reference plane and 0.4m from the vertical ground plane, and it was connected to an AMN. The closest distance between the boundary of the EUT and the surface of the AMN is 0.8m. All peripherals were connected to another AMN, and placed at a distance of 10cm from each other. A receiver was connected to the RF output port of the AMN. Both average and quasi-peak value were detected.

6.2.3 Test setup

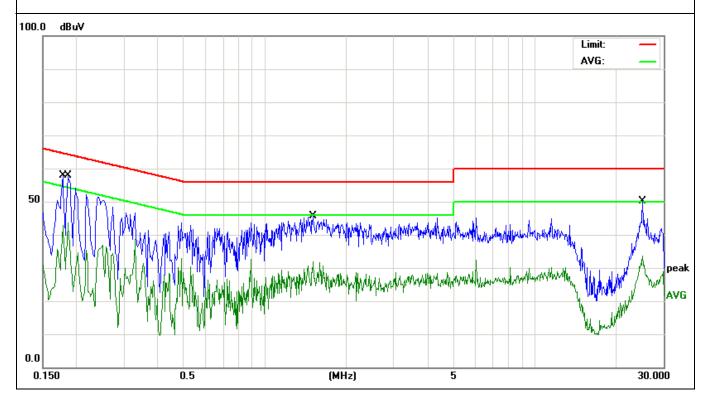

6.2.4 Test results

EUT:	RUGGED SPEAKER SYSTEM	Model Name. :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Date :	2017-04-20
Test Mode:	RF Link mode	Phase :	Line
Test Voltage :	AC 120V/60Hz		

Frequency (MHz)	Meter Reading (dBµV)	Factor(dB)	Emission Level (dBµV)	Limits (dBµV)	Margin (dB)	Detector
0.2700	31.51	10.83	42.34	61.12	-18.78	Quasi-Peak
0.2819	28.20	10.73	38.93	50.76	-11.83	Average
1.3540	26.05	9.92	35.97	56.00	-20.03	Quasi-Peak
1.4460	20.01	9.93	29.94	46.00	-16.06	Average
25.4020	39.21	2.23	41.44	60.00	-18.56	Quasi-Peak
25.4020	27.97	2.23	30.20	50.00	-19.80	Average

Remark:

1. Factor = Insertion Loss + Cable Loss + Pulse limit.



EUT:	RUGGED SPEAKER SYSTEM	Model Name. :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Date :	2017-04-20
Test Mode:	RF Link mode	Phase :	Neutral
Test Voltage :	AC 120V/60Hz		

Frequency (MHz)	Meter Reading (dBµV)	Factor(dB)	Emission Level (dBµV)	Limits (dBµV)	Margin (dB)	Detector
0.1780	46.57	11.41	57.98	64.57	-6.59	Quasi-Peak
0.1860	32.30	11.31	43.61	54.21	-10.60	Average
1.5060	35.57	9.93	45.50	56.00	-10.50	Quasi-Peak
1.5060	22.07	9.93	32.00	46.00	-14.00	Average
25.0940	47.89	2.22	50.11	60.00	-9.89	Quasi-Peak
25.0940	31.49	2.22	33.71	50.00	-16.29	Average

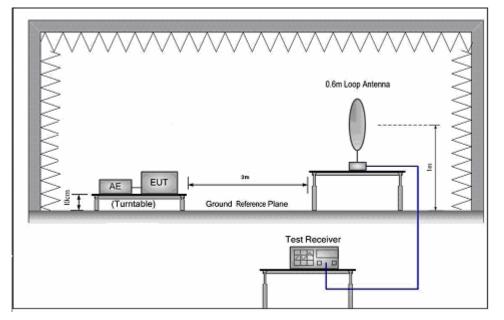
Remark:

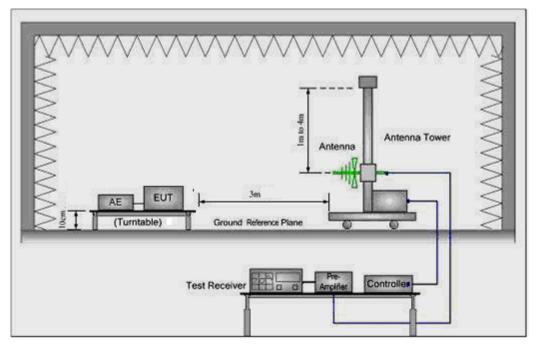
1. Factor = Insertion Loss + Cable Loss + Pulse limit.

6.3 Radiated Emissions Measurement

6.3.1 Applied procedures / Limit

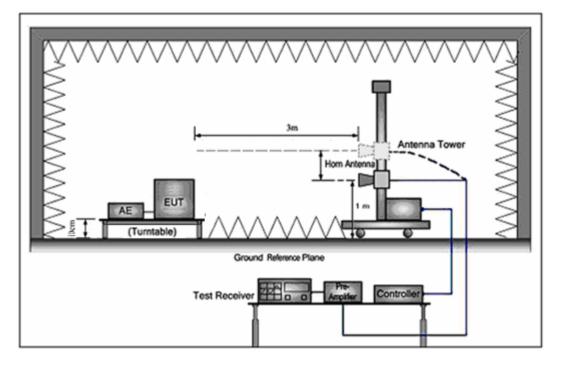
15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


Execution of Emission (MHz)	Field Strer	ngth	Measurement
Frequency of Emission (MHz)	μV/m	dBµV/m	Distance (meters)
0.009-0.49	2400/F(kHz)		300
0.49-1.705	24000/F(kHz)		30
1.705-30	30		30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3


6.3.2 Test setup

Test Configuration:

1) 9 kHz to 30 MHz emissions:



2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 25 GHz emissions:

6.3.3 Test procedure

- a. The EUT was placed on the top of a wooden table 0.1 meters (for measurement at frequency below 1GHz) and a wooden table 0.1 meters (for measurement at frequency above 1GHz) above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter, for the test frequency of above 1GHz, horn antenna opening in the test would have been facing the EUT when rise or fall) and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The resolution bandwidth and video bandwidth of the test receiver was 1MHz and 1MHz for Peak detection at frequency above 1GHz.
- g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
- h. Repeat above procedures until all frequencies measured was complete.

For measurement at frequency above 1GHz

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

In 18GHz to 25GHz, The EUT was checked by Horn ANT. But the test result at least have 20dB margin.The EUT was tested in Chamber Site.

6.3.4 Test Result

Radiated Emissions Test Data Below 30MHz

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018		
Temperature:	25 ℃	Test Data	2017-04-20		
Pressure:	1005 hPa	Relative Humidity:	60%		
Test Mode :	TX(1Mbps worst case)	Test Voltage :	DC 12 from battery		
Measurement Distance	3 m Frenqucy Range 9KHz to 30MHz				
RBW/VBW	9KHz~150KHz/RB 200Hz for QP, 150KHz~30MHz/RB 9KHz for QP				

No emission found between lowest internal used/generated frequencies to 30MHz.

Radiated Emissions Test Data Below 1GHz

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018		
Temperature:	25 ℃	Test Data	2017-04-20		
Pressure:	1010 hPa	Relative Humidity:	60%		
Test Mode :	TX (1Mbps) CH00 (worst case)	Test Voltage :	DC 12 from battery		
Measurement Distance	3 m Frenqucy Range 30MHz to 1GHz				
RBW/VBW	100KHz / 300KHz for spectrum, RBW=120KHz for receiver.				

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector Type
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	
	(dBuV)	(dB)	(dBuV/m)			
47.8260	30.84	-14.23	16.61	40.00	-23.39	QUASIPEAK
66.0341	37.08	-17.73	19.35	40.00	-20.65	QUASIPEAK
180.6487	36.16	-12.00	24.16	43.50	-19.34	QUASIPEAK
316.5889	34.25	-8.94	25.31	46.00	-20.69	QUASIPEAK
425.0280	37.64	-6.60	31.04	46.00	-14.96	QUASIPEAK
593.0497	40.15	-2.08	38.07	46.00	-7.93	QUASIPEAK

(b) Antenna polarization: vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector Type
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	
	(dBuV)	(dB)	(dBuV/m)			
53.5052	44.36	-19.72	24.64	40.00	-15.36	QUASIPEAK
103.8055	37.56	-13.65	23.91	43.50	-19.59	QUASIPEAK
180.6488	46.31	-15.27	31.04	43.50	-12.46	QUASIPEAK
271.3246	50.15	-12.38	37.77	46.00	-8.23	QUASIPEAK
383.9318	41.93	-7.45	34.48	46.00	-11.52	QUASIPEAK
672.8444	39.40	-0.83	38.57	46.00	-7.43	QUASIPEAK

Note:

Measurement Level = Reading Level + Factor

Factor= Ant Factor + Cable Loss - Pre-amplifier

Radiated Emissions Test Data Above 1GHz

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018		
Temperature:	25 ℃	Test Data	2017-04-20		
Pressure:	1010 hPa	Relative Humidity:	60%		
Test Mode :	TX(1Mbps)	Test Voltage :	DC 12 from battery		
Measurement Distance	3 m	Frenqucy Range	1GHz to 25GHz		
RBW/VBW	Spurious emission: 1MHz/1MHz for Peak, 1MHz/10Hz for Average.				
	non-restricted band: 100KHz/300KHz for Peak.				

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	55.35	5.06	60.41	74.00	-13.59	PEAK
4804.000	42.32	5.06	47.38	54.00	-6.62	AVERAGE
7206.000	46.43	7.03	53.46	74.00	-20.54	PEAK
7206.000	33.87	7.03	40.90	54.00	-13.10	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4804.000	51.45	5.06	56.51	74.00	-17.49	PEAK
4804.000	42.52	5.06	47.58	54.00	-6.42	AVERAGE
7206.000	42.73	7.03	49.76	74.00	-24.24	PEAK
7206.000	34.72	7.03	41.75	54.00	-12.25	AVERAGE

Note:

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Factor= Ant Factor + Cable Loss - Pre-amplifier Low Channel 00: 2402 MHz Data rate: 1Mbps

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4880.000	54.78	5.14	59.92	74.00	-14.08	PEAK
4880.000	41.45	5.14	46.59	54.00	-7.41	AVERAGE
7320.000	43.00	7.52	50.52	74.00	-23.48	PEAK
7320.000	32.16	7.52	39.68	54.00	-14.32	AVERAGE

(a) Antenna polarization: Horizontal

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4880.000	55.18	5.14	60.32	74.00	-13.68	PEAK
4880.000	43.85	5.14	48.99	54.00	-5.01	AVERAGE
7320.000	43.11	7.52	50.63	74.00	-23.37	PEAK
7320.000	33.90	7.52	41.42	54.00	-12.58	AVERAGE

Note:

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Factor= Ant Factor + Cable Loss - Pre-amplifier Low Channel 19: 2440 MHz

Data rate: 1Mbps

(a) Antenna polarization: Horizontal

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	54.81	5.22	60.03	74.00	-13.97	PEAK
4960.000	41.85	5.22	47.07	54.00	-6.93	AVERAGE
7440.000	44.77	8.06	52.83	74.00	-21.17	PEAK
7440.000	31.86	8.06	39.92	54.00	-14.08	AVERAGE

(b) Antenna polarization: Vertical

Frequency	Reading	Correct	Measure	Limit	Margin	Detector
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Туре
	(dBuV)	(dB)	(dBuV/m)			
4960.000	55.01	5.22	60.23	74.00	-13.77	PEAK
4960.000	42.72	5.22	47.94	54.00	-6.06	AVERAGE
7440.000	44.46	8.06	52.52	74.00	-21.48	PEAK
7440.000	33.96	8.06	42.02	54.00	-11.98	AVERAGE

Note:

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Factor= Ant Factor + Cable Loss - Pre-amplifier Low Channel 39: 2480 MHz Data rate: 1Mbps

6.3.5 TEST RESULTS (Restricted Bands Requirements)

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018			
Temperature:	25 ℃	Test Data	2017-04-20			
Pressure:	1010 hPa	Relative Humidity:	60%			
Test Mode :	TX(1Mbps)	Test Voltage :	DC 12 from battery			
RBW/VBW	1MHz/1MHz for Peak, 1MHz/10Hz	1MHz/1MHz for Peak, 1MHz/10Hz for Average.				
	 The transmitter was setup to strength was measured at 2310- The transmitter was setup to strength was measured at 2483. The data of 2390MHz and 2483 	-2390 MHz. transmit at the hig 5-2500 MHz.	hest channel. Then the field			

Test	Ant.Pol.	Freq.	Rea	ding	Ant/CF	A	ct	Lir	nit
Mode	H/V	(MHz)	Peak	AV	CF(dB)	Peak	AV	Peak	AV
			(dBuv)	(dBuv)		(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/m)
	Н	2390.000	46.31	35.38	-5.79	40.52	29.59	74.00	54.00
TX Data rate	V	2390.000	46.72	35.48	-5.79	40.93	29.69	74.00	54.00
1Mbps	Н	2483.500	43.31	34.69	-4.98	38.33	29.71	74.00	54.00
	V	2483.500	44.17	34.24	-4.98	39.19	29.26	74.00	54.00

6.4 BANDWIDTH TEST

6.4.1 Applied procedures / Limit

15.247(a) (2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

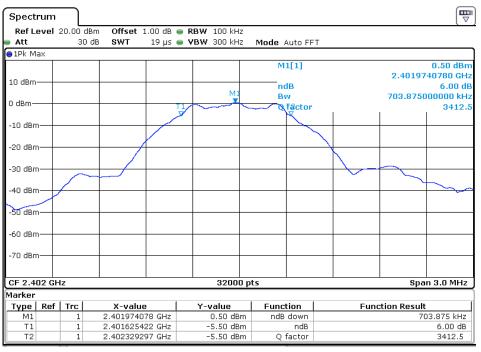
6.4.2 Test procedure

- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v04
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW= 100KHz, VBW≧3×RBW, Sweep time = Auto, Detector Function = Peak, centering on a hopping channel Trace = Max Hold.
- d. Mark the peak frequency and -6 dB points bandwidth.

6.4.3 Deviation from standard

No deviation.

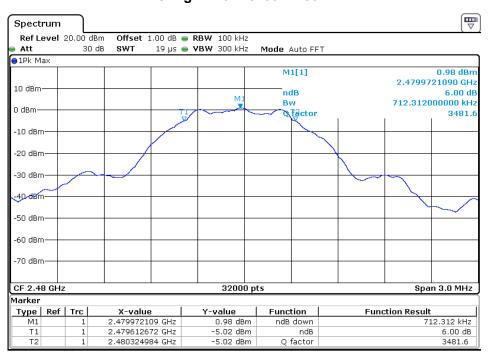
6.4.4 Test setup



6.4.5 Test results

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	53%
Pressure:	1010 hPa	Test Power :	DC 12 from battery
Test Mode :	TX(1Mbps)		

Test Mode	Test Channel	Frequency	6 dB Bandwidth	Limit
		(MHz)	(KHz)	(kHz)
	CH00	2402	703.875	≧500
Data rate 1Mbps	CH19	2440	704.250	≧500
	CH39	2480	712.312	≧500



(1Mbps) The Middle Channel 19: 2440 MHz

Spectru	m						
Ref Leve	el 20.00 d	Bm Offset 1.00 dB	🔵 RBW 100 kHz				
🗎 Att	30	dB SWT 19 μs	👄 VBW 300 kHz	Mode Auto FF	т		
⊖1Pk Max							
				M1[1]		2.43997	1.83 dBm 32340 GHz
10 dBm—			M1	ndB			6.00 dB
0 dBm						704.2500	00000 kHz 3464.6
-10 dBm—							
-20 dBm—							
-30 dBm—	\vdash						
-40 dBm-							
∽ -50 dBm—							\sim
-50 UBIII—							
-60 dBm—							
-70 dBm—							
CF 2.44 G	Hz	· · · · · ·	32000	ots	•	Spai	n 3.0 MHz
Marker							
Type R	ef Trc	X-value	Y-value	Function	Fund	ction Result	
M1	1	2.439973234 GHz	1.83 dBm	ndB down		7	04.25 kHz
T1	1	2.439613703 GHz	-4.17 dBm	ndB			6.00 dB
T2	1	2.440317953 GHz	-4.17 dBm	Q factor			3464.6

(1Mbps) The High Channel 39: 2480MHz

6.5 Peak Power Density

6.5.1 Applied procedures / Limit

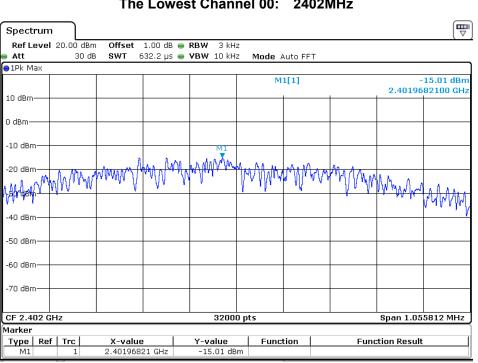
15.247(a) (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

6.5.2 Test procedure

- a. The testing follows Measurement procedure 10.2 Method PKPSD of FCC KDB publication No. 558074 D01 DTS Meas. Guidance v04
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as center frequency to channel center frequency, span=1.5 times the bandwith, detector = peak 3kHz≤RBW≤100kHz, VBW≥3×RBW kHz, Sweep time=Auto.
- d. Trace mode = max hold. Mark the peak.
- e. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.5.3 Deviation from standard

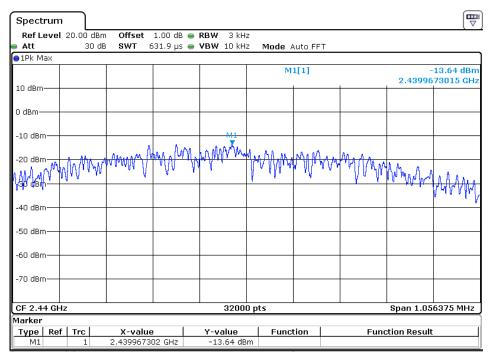
No deviation.

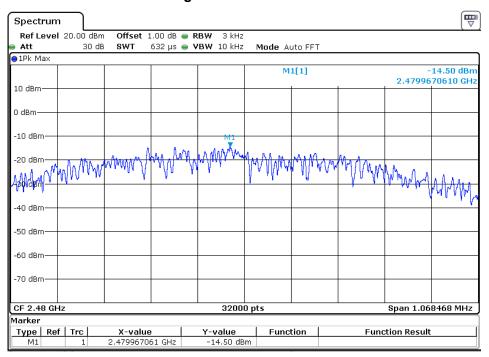


6.5.4 Test results

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018
Temperature:	24 ℃	Relative Humidity:	53%
Pressure:	1010 hPa	Test Power :	DC 12 from battery
Test Mode :	TX(1Mbps)		

Test Mode	Channel frenqucy (MHz)	Power Density PSD 3kHz (dBm/3kHz)	Limit (dBm/3kHz)	Result
тх	2402	-15.01	8	Pass
(1Mbps)	2440	-13.64	8	Pass
(Twipps)	2480	-14.50	8	Pass


Note: The cable loss is 1.0dB


PSD 3kHz (1Mbps) The Lowest Channel 00: 2402MHz

PSD 3kHz (1Mbps) The Middle Channel 19: 2440MHz

PSD 3kHz (1Mbps) The High Channel 39: 2480MHz

6.6 Maximum Peak Output Power

6.6.1 Applied procedures / Limit

15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

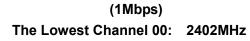
6.6.2 Test procedure

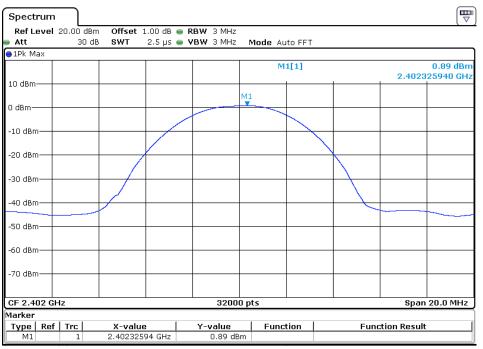
- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v04
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- ^{C.} Spectrum Setting: RBW≥Bandwidth, VBW≥3×RBW, Sweep time = Auto, Span≥3×RBW,
- d Detector = peak. Trace mode = max hold.
- e. Use peak marker function to determine the peak amplitude level.

6.6.3 Deviation from standard

No deviation.

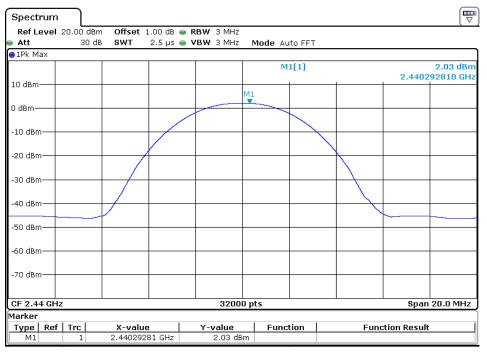
6.6.4 Test setup




6.6.5 Test results

EUT:	RUGGED SPEAKER SYSTEM	Model Name :	NS-HMPS3018
Temperature:	26 ℃	Relative Humidity:	60%
Pressure:	1010 hPa	Test Voltage :	DC 12 from battery
Test Mode :	TX (1Mbps)		
Note: N/A			

Test Mode	Frequency	Peak Output Power (dBm)	Limit (dBm)	Result
	2402 MHz	0.89	30	Pass
Data rate 1Mbps	2440 MHz	2.03	30	Pass
	2480 MHz	1.25	30	Pass


Note: The cable loss is 1.0dB

(1Mbps) The Middle Channel 19: 2440MHz

(1Mbps) The High Channel 39: 2480MHz

Spectrum							ĺ	♥
Ref Level 20			L.OO dB 👄 F					<u> </u>
Att 🛛	30 dB	SWT	2.5 µs 😑 \	BW 3 MHz I	Mode Auto FFT	•		
●1Pk Max			1					
					M1[1]		1.25 d 2.479671560 (
10 dBm								
0 dBm				M1				
-10 dBm								
-20 dBm								
-30 dBm						\rightarrow		
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.48 GHz				32000 p	ts		Span 20.0 Mi	Hz
Marker								
Type Ref M1	Trc	2.479671		Y-value 1.25 dBm	Function	Fund	ction Result	_

6.7 Band edge

6.7.1 Applied procedures / Limit

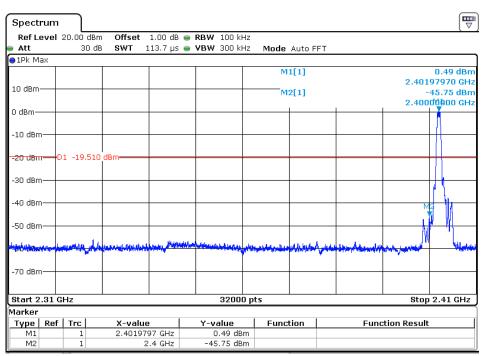
15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

6.7.2 Test procedure

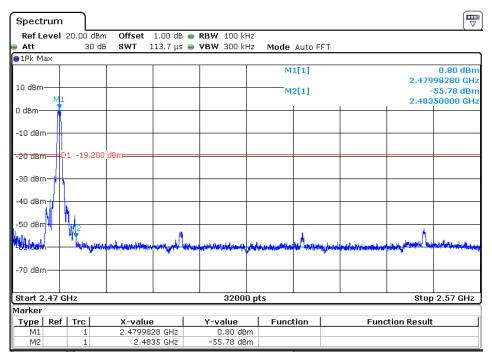
- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v04
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW≧300kHz, Sweep time=Auto, Detector Function=Peak.
- d. The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB. The Upper Edges attenuated more than 20dB.

6.7.3 Deviation from standard


No deviation.

6.7.4 Test setup



6.7.5 Test results

6.8 Conducted Spurious Emissions

6.8.1 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

6.8.2 Test procedure

- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v04
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW=300kHz, Sweep time=Auto, Detector Function=Peak, sweep points ≥ investigated frequency range/RBW.

6.8.3 Deviation from standard

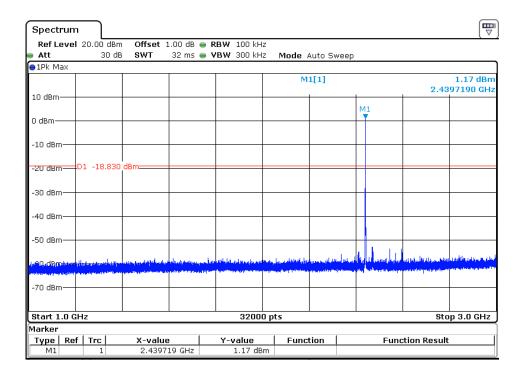
No deviation.

6.8.4 Test setup

6.8.5 Test results

Spectru	n]								
Ref Leve	el 20.00 dBr 30 d			RBW 100 kHz /BW 300 kHz					
1Pk Max	30 u	5 5 WI	1.1 ms 🔲 🕯	76W 300 KH2	: Mode i	Auto FFT			
					M	1[1]			-56.56 dBn
10 dBm							1	798	3.0730 MH
D dBm——									
-10 dBm—									
-10 UBIII									
-20 dBm	D1 -19.560) dBm							
-30 dBm—									
-40 dBm—									
-50 dBm—							M		
60 dDm						tales a		ale a cancerta	har and the train
	יינויזי קון קיימוויי. יינויזי קון קיימוויי	and all and the second states	an a	n allah ki pana katalah Kalimber	ang mangang mengerakkan di se	li dun di na anti-pris Il dun di na anti-pris	a internet and the second s	a service and the service of the ser	trading a different
-70 dBm	and the second sec	alteriore differente	and a state of the state of the state of the	and a state of the second second	a huma a ra tha	and some on other		10.13	i de la composición de
Start 30.0) MHz	1	1	32000) pts	1	1	Sto) pp 1.0 GHz
1arker									
Type Ro M1	ef Trc	X-value	9 ////////////////////////////////////	<u>Y-value</u> -56,56 dBr	Func	tion	Fund	tion Result	t

Spectrum Offset 1.00 dB ■ RBW 100 kHz SWT 32 ms ■ VBW 300 kHz Ref Level 20.00 dBm 30 dB Mode Auto Sweep Att 😑 1Pk Max 0.44 dBm 2.4019690 GHz M1[1] 10 dBm-0 dBm--10 dBm-D1 -19.560 -20 dBm dBm -30 dBm -40 dBm--50 dBmht -70 dBm-Start 1.0 GHz 32000 pts Stop 3.0 GHz Marker Type Ref Trc X-value 2.401969 GHz **Y-value** 0.44 dBm Function Result Function M1 1


Spectrum				
RefLevel 20.00 dBm Att 30 dB	Offset 1.00 dB	BW 100 kHz BW 300 kHz Mode A	uto Sweep	
●1Pk Max			I	
		M1	[1]	-51.37 dBn 10.644220 GH
10 dBm				
0 dBm				
-10 dBm				
-20 dBm D1 -19.560 (dBm			
-30 dBm				
-40 dBm				
-50 dBm			M1	
Land, Marshill Mills and Marshill and	Annual states in the states of	Relayed and a press of a second large the second data	and a loss of the second s	Language at large staff ^{the} r
Depending of the state of the providence of a	and a second	and the state of the	a the second	and the second secon
-70 dBm				
Start 3.0 GHz		32000 pts		Stop 13.0 GHz
Marker		•		
Type Ref Trc	X-value 10.64422 GHz	Y-value Functi	ion Function R	esult

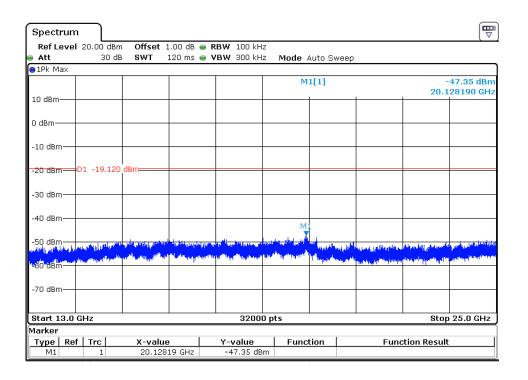
Spectrum			
RefLevel 20.00 dBm Att 30 dB	Offset 1.00 dB RBW SWT 120 ms VBW		X
■ Att 30 0B	SWT 120 ms 👄 VBW	/ 300 kHz Mode Auto Sweep	
		M1[1]	-47.83 dBn 20.104940 GH:
10 dBm			
0 dBm			
-10 dBm			
-20 dBm	Bm		
-30 dBm			
-40 dBm		M1	
-50 dBm	A state of the second stat		Least of the second state of the state of the second state of the
=60 jiBm	Alexandra and a second second and a second secon		an the second
-70 dBm			
Start 13.0 GHz		32000 pts	Stop 25.0 GHz
Marker Type Ref Trc M1 1		-value Function 47.83 dBm	Function Result

The Middle Channel 19(1Mbps): 2440MHz

Spectrun	Γ								
Ref Leve	I 20.00 dBm	Offset :	L.OO dB 😑 I	RBW 100 kH:	z				
🕨 Att	30 dB	SWT	1.1 ms 😑 '	VBW 300 kH:	Z Mode	Auto FFT			
⊖1Pk Max									
					М	1[1]			-56.71 dBm 1.3200 MHz
10 dBm						I		81	1.3200 MHZ
0 dBm									
-10 dBm—									
-20 dBm	D1 -18.830	dBm=							
20 00									
-30 dBm									
-40 dBm									+
-50 dBm							١	11	
60. 6 8m							diff the market store but	الاربية المراجع	
and a second second	nd beri nen finskriven. I	and the colors	n han a mhaitheann a	tata Malak, animatika (a ne a contrata a mili. Na dendra da contrata de	a nede por ner den de Lande anderskandelse se	and Incentioner and	der and and	the of a part of the part of the
-70 dBm	and the state of the second	par		an an aileiteiteiteiteite			1		
Start 30.0	MHz		1	32000) pts	I	1	Ste	op 1.0 GHz
Marker									<u> </u>
	f Trc	X-value	-	Y-value	Func	tion	Fund	tion Result	t l
M1	1	811.3	32 MHz	-56.71 dB	m				

Spectrun	τ								
Ref Leve	1 20.00 dBm	Offset 1	00 dB 😑 R	. BW 100 kH	z				
🗕 Att	30 dB	SWT	100 ms 👄 V	' BW 300 kH	z Mode /	Auto Sweep			
😑 1Pk Max									
					M	1[1]			52.08 dBm
10 dBm						1		9.2	35160 GHz
TO UBIII-									
0 dBm									
-10 dBm									
-10 UBIII									
-20 dBm	D1 -18.830	dBm							
-20 uBIII	.01 10.000	dom							
00 d0									
-30 dBm									
10 10-									
-40 dBm—									
-50 dBm						M1			
-50 UBIII		. u alu	المناسبية والمسالية	ي ا ي ا	ala	Internet and the		Lance on the	مدرر ومأكل الفرطير ورو
بقظاء أداء بلاستيابيت	and a second	tylu, bir da tu	and the second	and the second		and a sheat was a		data a ser a s	a materia data ana
المالية محيول محيول م	phintspropagate	an she an ta	and the second	hand with a star	and the product of the second second	Maga () Majasa) penja	ovhiller or somethics	aller of decision of	11 1 1 M
-70 dBm									
-70 uBIII									
Start 3.0 G	Hz			3200	D pts			Stop	13.0 GHz
Marker									
Type Re		X-value		Y-value	Func	tion	Fund	tion Result	
M1	1	9,235	16 GHz	-52.08 dB	m				

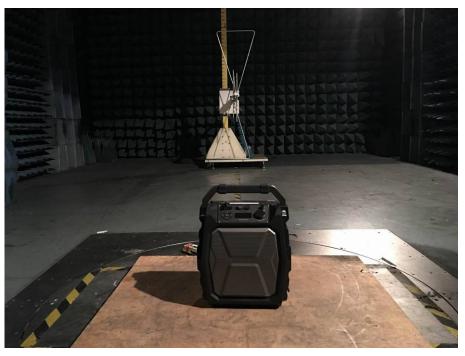
Spectrum	The second secon
Ref Level 20.00 dBm Offset 1.00 dB 🖷 RBW 100 kHz Att 30 dB SWT 120 ms 🖷 VBW 300 kHz Mode Auto Sweep	
1Pk Max	
M1[1] -48.15 d 20.114310 C	
10 dBm	-
0 dBm	
-10 dBm	
-2U dBm D1 -18.830 dBm	
-30 dBm	
-40 dBm M1	
	r le
	din.
-70 dBm	
Start 13.0 GHz 32000 pts Stop 25.0 GH	۰z
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 20.11431 GHz -48.15 dBm	

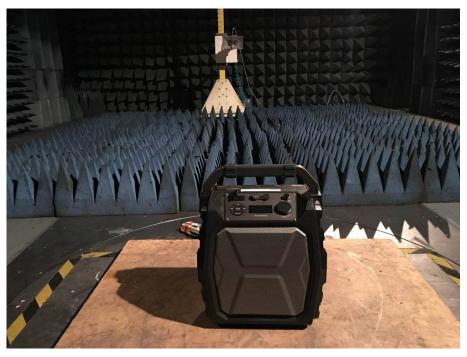

Spectrum									
Ref Level	20.00 dBm	Offset 1	00 dB 😑 R	BW 100 kH	Z				
🗕 Att	30 dB	SWT	1.1 ms 😑 🎙	′BW 300 kH	z Mode /	Auto FFT	-		
⊖1Pk Max]
					М	1[1]			57.16 dBm 5700 MHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm[01 -19.120	dBm							
-30 dBm									
-40 dBm									
-50 dBm									
-60, HBm		and the latent	nen et at taken e	t data takaba		isi she sife ta t	iden and the opposite of the		the state of the s
-70 dBm	alphierardeal	A LINE THAT AND A DAMAGE	dolaring lipport	a biling particulities	patens and apple	apoliteration	and the processing of the	alling to paper the	patients begin ^{the} to and so that
Start 30.0 M	MHz			3200	D pts			Sto	p 1.0 GHz
Marker									
Type Ref	1 Trc	X-value 876.3	87 MHz	Y-value -57.16 dB	Func m	tion	Func	tion Result	
		2.010							

The High Channel 39(1Mbps): 2480MHz

Spectrum					
RefLevel 20.00 dBm Att 30 dB		● RB₩ 100 kHz ● VB₩ 300 kHz	Mode Auto Sv	veep	
●1Pk Max					
			M1[1]		0.88 dBm 2.4799690 GHz
10 dBm					
0 dBm				M1	
-10 dBm					
-20 dBm-D1 -19.120	dBm				
-30 dBm					
-40 dBm					
-50 dBm					
ษติพิเฮ่Rญ สอง เราสองประเม	Records to all the second betw	tool markets and state	u luidhe ban linn ban	hilila yan <mark>alagaad</mark>	والمراجعة والمراجعة والمروب ومحمد والمراجع
-70 dBm	an and a second set of second s				
Start 1.0 GHz		32000 p	ts		Stop 3.0 GHz
Marker Type Ref Trc	Y uslue	Y-value	Function	Fund	tion Result
TypeRefTrcM11	X-value 2.479969 GHz	0.88 dBm	Function	Func	

Spectrun	n									
Ref Leve	1 20.00 dBm	Offset 1	.00 dB 😑 F	RBW 100 kH	z					
🗕 Att	30 dB	SWT 1	100 ms 😑 \	/BW 300 kH	z Mode	Auto Sweep)			
⊖1Pk Max										
					М	1[1]	-50.87 dBm 12.604530 GHz			
10 dBm										
0 dBm										
-10 dBm—										
-20 dBm	D1 -19.120	dBm								
-30 dBm—										
-40 dBm—									M1	
-50 dBm—	HAD ALLING SHOULD	and the state of the state of the	el _{eso} nenhielle	The Johnson all	alah tu anta a sala		All Looks Martin	. Information of the second	والمرافقة والمحاول	
ang pikelan dari berdi	addullaat _{Dabbaa} t	n terres de la constant d'Allandia. La constant de la cons	and the second se	Ibaidi Andupathi	diferration and	din <mark>anan dinanan di</mark>	(1) (Alan in the second se	and the second secon	and the second secon	
-70 dBm—										
Start 3.0 GHz 32000 pts								Stop	13.0 GHz	
Marker										
	f Trc	Trc X-value		Y-value	Func	Function		Function Result		
M1	M1 1 12.60453 GHz -50.87 dBm									




7 Photographs

7.1 Radiated Emission Test Setup

Below 1G

Above 1G

Report No.: 4787901494-2 Issued Date: 2017-04-24

7.2 Conducted Emissions Test Setup

Report No.: 4787901494-2 Issued Date: 2017-04-24

7.3 EUT Constructional Details

Please refer to report 4787901494-1.

End of report