




# TABLE OF CONTENTS

|     |                                                                                     | Page  |
|-----|-------------------------------------------------------------------------------------|-------|
| 1.  | Client Information                                                                  | 3     |
| 2.  | Equipment under Test (EUT)                                                          | 3     |
| 3.  | Performed measurements and results                                                  | 4     |
| 4.  | §15.203 Antenna requirement                                                         | 5     |
| 5.  | §15.205 Restricted bands of operation                                               | 6     |
| 6.  | §15.207 Conducted limits                                                            | 7     |
| 7.  | §15.209 Radiated emission limits; general requirements                              | 12    |
| 8.  | §15.215 Additional provisions to the general radiated emission limitations          | 33    |
| 9.  | §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. | 34    |
|     | a) 20 dB bandwidth                                                                  | 34    |
|     | b) 99 % bandwidth                                                                   | 34    |
|     | <ul> <li>c) hopping channel carrier frequencies<br/>separation</li> </ul>           | 53    |
|     | d) hopping channel frequencies                                                      | 55    |
|     | e) Time of occupancy (dwell time)                                                   | 56    |
|     | f) Maximum peak conducted output power                                              | 60    |
|     | g) Conducted RF band edge emissions                                                 | 72    |
|     | h) Spurious emission                                                                | 76    |
| 10. | Conclusions                                                                         | 84    |
| 11. | Photos of sample                                                                    | 85    |
|     | Annex 1 (test reports)                                                              | 1 - 7 |

Location of test facility:

PKM electronic GmbH

Ohmstrasse 1

84160 Frontenhausen, Germany



## 1. CLIENT INFORMATION:

| Name:                             | Bosch Security Systems, Inc.                  |
|-----------------------------------|-----------------------------------------------|
| Address:                          | 130 Perinton Parkway, FAIRPORT, NY 14450, USA |
| Name of contact:                  | Mr. Peter Namisnak                            |
| Telephone:                        | 585 678 3462                                  |
| Fax:                              | 585 223 9180                                  |
| E-mail:                           | peter.namisnak@us.bosch.com                   |
| Authorized Representative Germany |                                               |
| Name                              | Bosch Communications Systems EVI Audio GmbH   |
| Address                           | Sachsenring 60, 94315 Straubing, Germany      |
| Name of contact:                  | Mr. Patrick Engl                              |
| Telephone:                        | + 49 (0) 9421 706 415                         |
| Fax:                              | + 49 (0) 9421 706 265                         |
| E-mail:                           | Patrick.Engl@de.bosch.com                     |

# 2. EQUIPMENT UNDER TEST (EUT):

| 2.1 Identification of the EUT |                                               |                                       |
|-------------------------------|-----------------------------------------------|---------------------------------------|
| Equipment:                    | Active Speaker                                |                                       |
| Model:                        | ZLX                                           | Brand: ELECTRO VOICE                  |
| Brand name:                   | ELECTRO VOICE                                 |                                       |
| Serial no.:                   | Version ZLX-12BT                              |                                       |
|                               | Sample 01: 09541438533457                     | 70006 / Sample 02: 095414385334570009 |
|                               | Version ZLX-15BT<br>Sample 01: 09541448533464 | 40005 / Sample 02: 095414485334640007 |
| Manufacturer:                 | Bosch Security Systems, Inc.                  |                                       |
|                               | 130 Perinton Parkway, FAIRI                   | PORT, NY 14450, USA                   |
| Country of origin:            | China                                         |                                       |
| Power rating:                 | 100 – 240 V ~, 50 – 60 Hz, 0                  | .8 – 0.5 A                            |

Highest frequency generated or used in the device or on which the device operates or tunes: 2480 MHz (Bluetooth)

2.2 Additional information about the EUT:

The ZLX is an active speaker with Bluetooth interface (Bluetooth Module BTM-630) operating as A2DP audio sink for music streaming with Basic Rate (GFSK with 1 MBit/s), EDR (PI/4-DQPSK with 2 MBit/s), EDR (8-DPSK with 3 MBit/s). The model ZLX was tested in the versions ZLX-12BT and ZLX-15BT which differs in design. The requested operation modes had been adjusted with CSR USB\_SPI\_TOOLS interface and CSR BLUE TEST3 software. FCC ID: ESVZLX

Tests are performed from June 11 2018 – March 11 2019

#### To duplicate parts of this test report needs the written confirmation of the test laboratory.

The test results relate only to the above mentioned test sample(s).



#### 3. Performed measurements and results

#### List of measurements

The list of measurements required in e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C, Intentional Radiators for the EUT is given below

#### Subclause:

| §15.203<br>§15.205<br>§15.207<br>§15.209<br>§15.215<br>§15.247 | Antenna requirement<br>Restricted bands of operation<br>Conducted limits<br>Radiated emission limits; general requirements<br>Additional provisions to the general radiated emission limitations<br>Operation within the bands 902-928 MHz, 2400-2483.5 MHz,<br>and 5725-5850 MHz |       |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 915.247                                                        | and 5725-5850 MHz                                                                                                                                                                                                                                                                 | $\ge$ |
| 0                                                              | Operation within the bands 902-928 MHz, 2400-2483.5 MHz,                                                                                                                                                                                                                          |       |

| test re<br>applica<br>yes | quirem<br>able<br>no | ents<br>fulfille<br>yes | d:<br>no |
|---------------------------|----------------------|-------------------------|----------|
|                           |                      | $\mathbb{X}$            |          |

All required / applicable tests according to the following standard(s) were performed.

e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C, Intentional Radiators



#### 4. Antenna requirement §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The used antenna is a PCB antenna which is inside the EUT's (Version ZLX-12BT, Version ZLX-15BT) and is not serviceable and can not be replaced by the user, so that the above mentioned requirements are fulfilled.



# 5. Restricted bands of operation §15.205

Only spurious emissions are permitted in any of the frequency bands listed below:

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| 0.495-0.505       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | above 38.6  |
| 13.36-13.41       |                     |               |             |

The EUT's (Version ZLX-12BT, Version ZLX-15BT) are operating on frequencies between 2.402 GHz and 2.480 GHz and therefor not in a restricted band.



#### 6. Conducted limits (AC power line conducted emission measurements) §15.207

#### Test site

Measurements of conducted emission from EUT was made in the shielded chamber (DC - 10GHz) located in the test facility.

#### Detector function selection and bandwidth

In conducted emissions measurement CISPR quasi-peak- and average-detector were used. The bandwidth of the detector of instrument is 9 kHz over the frequency range of 150 kHz to 30 MHz.

#### Frequency range to be scanned

For conducted emission measurements, the spectrum in the range of 150 kHz to 30 MHz was investigated.

## Test conditions and configuration of EUT

The EUT was configured and operated with a pink noise input signal and an output power of 12.5 % of max. output power on internal speaker, so as to find the maximum conducted emission generated from EUT. Additional the Bluetooth transmitter was set to continuous transmission (hopping), receiving and link mode (connected to Smartphone with data transfer) using Basic Rate (GFSK with 1 MBit/s), EDR (PI/4-DQPSK with 2 MBit/s), EDR (8-DPSK with 3 MBit/s). These operation modes represents the normal operation. The procedure according to ANSI C63.10:2013 clause 6.2 is used with these modes of operation of the EUT, with typical cable positions and with a typical system equipment configuration and arrangement are investigated. For each AC power current-carrying conductor, cable manipulation are performed within the range of likely configurations. The highest values measured are shown in the table below. The corresponding configuration is shown in the "Photo(s) of test setup".

During test the EUT was operated with rated Power (120 V $_{\sim}$ , 60 Hz), as specified by client/in the user manual of the EUT. The EUT was placed on a 80 cm high non metallic table. Measurements on neutral (N)- and live (L1)-wire had been performed.

As worst case the mode EDR (8-DPSK with 3 MBit/s) continuous transmission (hopping) was documented.

#### Applied standards

e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart B, § 15.207 (a) Conducted limits, ANSI C63.10:2013

#### **Tested versions:**

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005) Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

#### Requirements

| Frequency | Limits dBµV |         |  |  |
|-----------|-------------|---------|--|--|
| MHz       | Quasi-peak  | Average |  |  |
| 0.15–0.5  | 66–56 *     | 56-46 * |  |  |
| 0.5–5.0   | 56          | 46      |  |  |
| 5.0-30.0  | 60          | 50      |  |  |

\* Decreases with the logarithm of the frequency.



#### Measurements

The measurements for Version ZLX-12BT and ZLX-15BT had been performed on June 13, 2018.

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005).

The measurement data please find annex 1 pages 1 to 3. It was found that there is no difference of the AC power line conducted emission values between Bluetooth transmitting, receiving and Bluetooth off. As worst case the mode EDR (8-DPSK with 3 MBit/s) continuous transmission (hopping) was documented.

The six highest emissions for each port (L/N)/detector are as following:

| Frequency<br>[MHz] (1) | Reading of test receiver | Detector<br>(3) | Port<br>(4) | loss of cable<br>between LISN<br>and test receiver | LISN<br>correction<br>[dB] (6) | AC power line<br>conducted<br>emission | Limit<br>[dBµV] (8) | Result<br>(9) |
|------------------------|--------------------------|-----------------|-------------|----------------------------------------------------|--------------------------------|----------------------------------------|---------------------|---------------|
|                        | [dBµV] (2)               |                 |             | (dB) (5)                                           |                                | [dBµV] (7)                             |                     |               |
| 0.15                   | 45.9                     | QP              | Ν           | 0.1                                                | 0.1                            | 46.1                                   | 66.0                | PASS          |
| 0.20                   | 44.4                     | QP              | Ν           | 0.1                                                | 0.1                            | 44.6                                   | 63.6                | PASS          |
| 0.25                   | 42.2                     | QP              | Ν           | 0.1                                                | 0.1                            | 42.4                                   | 61.7                | PASS          |
| 0.30                   | 40.1                     | QP              | Ν           | 0.1                                                | 0.1                            | 40.3                                   | 60.2                | PASS          |
| 0.35                   | 38.7                     | QP              | Ν           | 0.1                                                | 0.1                            | 38.9                                   | 58.9                | PASS          |
| 0.65                   | 36.0                     | QP              | Ν           | 0.1                                                | 0.1                            | 36.2                                   | 56.0                | PASS          |
|                        |                          |                 |             |                                                    |                                |                                        |                     |               |
| 0.15                   | 40.8                     | AV              | Ν           | 0.1                                                | 0.1                            | 41.0                                   | 56.0                | PASS          |
| 0.20                   | 37.3                     | AV              | Ν           | 0.1                                                | 0.1                            | 37.5                                   | 53.6                | PASS          |
| 0.50                   | 27.2                     | AV              | Ν           | 0.1                                                | 0.1                            | 27.4                                   | 46.0                | PASS          |
| 0.55                   | 27.3                     | AV              | Ν           | 0.1                                                | 0.1                            | 27.5                                   | 46.0                | PASS          |
| 0.65                   | 27.2                     | AV              | Ν           | 0.1                                                | 0.1                            | 27.4                                   | 46.0                | PASS          |
| all other<br>values    |                          |                 |             |                                                    |                                |                                        |                     |               |
| <0.5                   | <36.0                    | AV              | Ν           | 0.1                                                | 0.1                            | <36.2                                  | 56.0 - 46.0         | PASS          |
| >0.5 - 30              | <30.0                    | AV              | Ν           | 0.3                                                | 0.4                            | <30.7                                  | 46.0, 50.0          | PASS          |
| all values             |                          |                 |             |                                                    |                                |                                        |                     |               |
| <0.5                   | <36.0                    | QP              | L1          | 0.1                                                | 0.1                            | <36.2                                  | 66.0 - 56.0         | PASS          |
| >0.5 - 30              | <30.0                    | QP              | L1          | 0.3                                                | 0.4                            | <30.7                                  | 56.0, 60.0          | PASS          |
| all values             |                          |                 |             |                                                    |                                |                                        |                     |               |
| <0.5                   | <36.0                    | AV              | L1          | 0.1                                                | 0.1                            | <36.2                                  | 56.0 - 46.0         | PASS          |
| >0.5 - 30              | <30.0                    | AV              | L1          | 0.3                                                | 0.4                            | <30.7                                  | 46.0, 50.0          | PASS          |

AC power line conducted emission  $[dB\mu V]$  (7) = Reading of test receiver  $[dB\mu V]$  (2) + loss of cable between Line impedance stabilisation network (LISN) and test receiver (dB) (5) + LISN correction [dB] (6)

(1) = test frequency

(4) = tested port Phase (live, L1) or Neutral (N)

(8) = limit according to § 15.107 (a) Class B Conducted limits

(9) = comparison between Limit [dB $\mu$ V] (8) and AC power line conducted emission [dB $\mu$ V] (7)

#### Results

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the conducted emission measurements.



Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

The measurement data please find annex 1 pages 4 to 7

The six highest emissions for each port (L/N)/detector are as following:

| Frequency<br>[MHz] (1) | Reading of<br>test<br>receiver<br>[dBµV] (2) | Detector<br>(3) | Port<br>(4) | loss of cable<br>between LISN<br>and test receiver<br>(dB) (5) | LISN<br>correction<br>[dB] (6) | AC power line<br>conducted<br>emission<br>[dBµV] (7) | Limit<br>[dBµV] (8) | Result<br>(9) |
|------------------------|----------------------------------------------|-----------------|-------------|----------------------------------------------------------------|--------------------------------|------------------------------------------------------|---------------------|---------------|
| 0.15                   | 46.1                                         | QP              | Ν           | 0.1                                                            | 0.1                            | 46.3                                                 | 66.0                | PASS          |
| 0.20                   | 44.5                                         | QP              | Ν           | 0.1                                                            | 0.1                            | 44.7                                                 | 63.6                | PASS          |
| 0.25                   | 41.7                                         | QP              | Ν           | 0.1                                                            | 0.1                            | 41.9                                                 | 61.7                | PASS          |
| 0.30                   | 39.4                                         | QP              | Ν           | 0.1                                                            | 0.1                            | 39.6                                                 | 60.2                | PASS          |
| 0.35                   | 38.5                                         | QP              | Ν           | 0.1                                                            | 0.1                            | 38.7                                                 | 58.9                | PASS          |
| 0.65                   | 35.9                                         | QP              | Ν           | 0.1                                                            | 0.1                            | 36.1                                                 | 56.0                | PASS          |
| 0.15                   | 42.3                                         | AV              | N           | 0.1                                                            | 0.1                            | 42.5                                                 | 56.0                | PASS          |
| 0.20                   | 38.2                                         | AV              | Ν           | 0.1                                                            | 0.1                            | 38.4                                                 | 53.6                | PASS          |
| 0.25                   | 33.1                                         | AV              | Ν           | 0.1                                                            | 0.1                            | 33.3                                                 | 51.7                | PASS          |
| all other values       |                                              |                 |             |                                                                |                                |                                                      |                     |               |
| <0.5                   | <36.0                                        | AV              | Ν           | 0.1                                                            | 0.1                            | <36.2                                                | 56.0 - 46.0         | PASS          |
| >0.5 - 30              | <30.0                                        | AV              | Ν           | 0.3                                                            | 0.4                            | <30.7                                                | 46.0, 50.0          | PASS          |
| 0.15                   | 45.9                                         | QP              | L1          | 0.1                                                            | 0.1                            | 46.1                                                 | 66.0                | PASS          |
| 0.21                   | 52.8                                         | QP              | L1          | 0.1                                                            | 0.1                            | 53.0                                                 | 63.2                | PASS          |
| 0.46                   | 36.5                                         | QP              | L1          | 0.1                                                            | 0.1                            | 36.7                                                 | 56,7                | PASS          |
| 0.51                   | 35.7                                         | QP              | L1          | 0.1                                                            | 0.1                            | 35.9                                                 | 56.0                | PASS          |
| 0.56                   | 35.8                                         | QP              | L1          | 0.1                                                            | 0.1                            | 36.0                                                 | 56.0                | PASS          |
| 21.26                  | 39.5                                         | QP              | L1          | 0.3                                                            | 0.4                            | 40.2                                                 | 60.0                | PASS          |
| 0.15                   | 39.2                                         | AV              | L1          | 0.1                                                            | 0.1                            | 39.4                                                 | 55.8                | PASS          |
| 0.21                   | 34.9                                         | AV              | L1          | 0.1                                                            | 0.1                            | 35.1                                                 | 53.5                | PASS          |
| 0.46                   | 27.4                                         | AV              | L1          | 0.1                                                            | 0.1                            | 27.6                                                 | 46.8                | PASS          |
| 0.51                   | 27.5                                         | AV              | L1          | 0.1                                                            | 0.1                            | 27.7                                                 | 46.0                | PASS          |
| 0.56                   | 26.7                                         | AV              | L1          | 0.1                                                            | 0.1                            | 26.9                                                 | 46.0                | PASS          |
| 0.62                   | 28.4                                         | AV              | <br>L1      | 0.1                                                            | 0.1                            | 28.6                                                 | 46.0                | PASS          |
|                        |                                              |                 |             |                                                                |                                |                                                      |                     |               |

AC power line conducted emission  $[dB\mu V]$  (7) = Reading of test receiver  $[dB\mu V]$  (2) + loss of cable between Line impedance stabilisation network (LISN) and test receiver (dB) (5) + LISN correction [dB] (6)

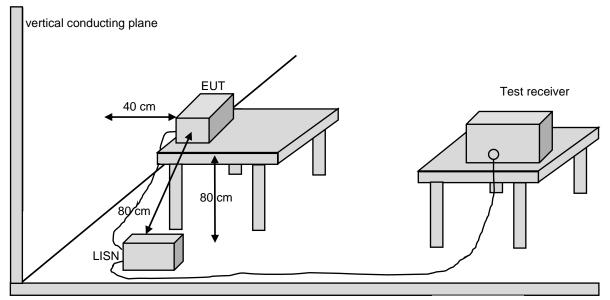
(1) = test frequency

(4) = tested port Phase (live, L1) or Neutral (N)

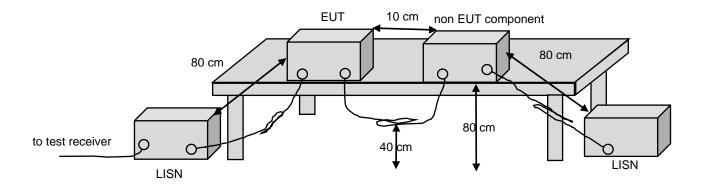
(8) = limit according to § 15.207 Conducted limits (9) = comparison between Limit [dB $\mu$ V] (8) and AC power line conducted emission [dB $\mu$ V] (7)

#### Results

From the measurement data obtained, the tested sample was considered to have COMPLIED with the requirements for the conducted emission measurements.


| Kind of equipment                                 | Manufacturer       | Туре                                              | PKM-<br>ident no. | Serial no. | Calibrated on | Calibration interval |
|---------------------------------------------------|--------------------|---------------------------------------------------|-------------------|------------|---------------|----------------------|
| EMI-Test-Receiver                                 | Rohde &<br>Schwarz | ESR7<br>Instrument FW 3.36                        | 11676             | 101694     | 2018-03-26    | 3 years              |
| Software                                          | PKM                | PKM U5/6                                          | -/-               | V1.01.03   | -/-           | -/-                  |
| Line impedance<br>stabilisation network<br>(LISN) | Rohde &<br>Schwarz | ESH2-Z5                                           | 10139             | 879675/028 | 2017-10-10    | 1 year               |
| Shielded room                                     | Siemens            | (6,2 x 4,7 x 3,3) m<br>(I x w x h)<br>DC – 10 GHz | 10113             | 1          | -/-           | -/-                  |

#### Test equipment used:




All measurements were made with measuring instruments, including any accessories that may affect test results, calibrated according to the requests of ISO/IEC 17025 according to which the test site is accredited from DAkkS. Measurement of conducted emissions was made with instruments conforming to American National Standard Specification, ANSI C63.10-2013.

#### **Block diagram Conducted emissions**



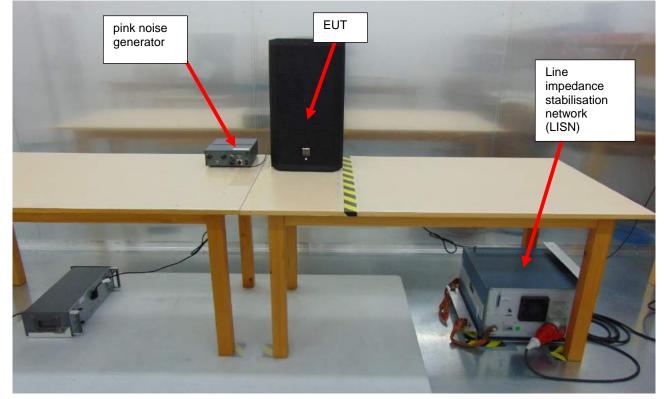
Groundplane



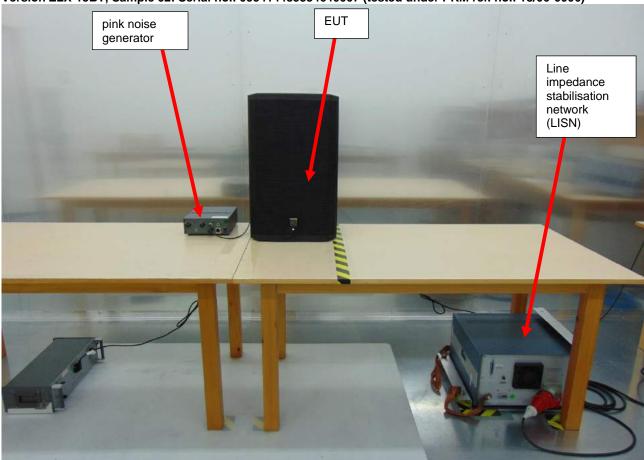
#### Measurement uncertainty according to CISPR 16-4-2 Edition 2.0 2011-06

| Measurement                                                          | calculated uncertainty<br>U <sub>lab</sub> | Specified CISPR uncertainty according CISPR 16-4-2<br>Edition 2.0 2011-06, table 1<br>U <sub>CISPR</sub> |
|----------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Conducted disturbance at mains<br>port using AMN<br>150 kHz – 30 MHz | 3,2 dB                                     | 3,4 dB                                                                                                   |

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.


The measurements uncertainty was calculated in accordance with CISPR 16-4-2 Edition 2.0 2011-06.

The measurement uncertainty was given with a confidence of 95 % (k = 2).




# Photo(s) of test setup

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)



Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)





#### 7. Radiated emission limits; general requirements §15.209

#### Test site

Measurement of radiated emissions from EUT was made in the semi-anechoic chamber SAC3 from DC to 26.5 GHz located in the test facility.

#### Detector function selection and bandwidth

For the radiated emissions measurement in the frequency range of 9 kHz to 1000 MHz, an EMI test receiver that have CISPR quasi-peak detector was used. The bandwidth of the detector of the EMI test receiver is 200 Hz over the frequency range of 9 kHz to 150 kHz, 9 kHz over the frequency range of 150 kHz to 30 MHz and 120 kHz over the frequency range of 30 to 1000 MHz. Emissions to be measured are detected in CISPR quasi peak mode, except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements with an average detector.

In the frequency range above 1 GHz the used bandwidth was 1000 kHz and emissions to be measured are detected in average and peak mode.

#### Antennas

Measurements were made using a calibrated loop antenna in the range of 9 kHz to 30 MHz, a calibrated bilog antenna in the range of 30 to 1000 MHz to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization.

The horizontal distance between the receiving antenna and the EUT was 3 meters.

In the range above 1 GHz measurements were made using a calibrated horn antenna to determine the emission characteristics of the EUT. Measurements were also made for both horizontal and vertical polarization. The horizontal distance between the receiving antenna and the EUT was 3 meters.

#### Frequency range to be scanned

For radiated emissions measurements, the spectrum in the range of 9 kHz to 24.800 GHz (10<sup>th</sup> harmonic of highest frequency) was investigated as the highest frequency generated is 2480 MHz.

#### Test conditions and configuration of EUT

The EUT was configured and operated with a pink noise input signal and an output power of 12.5 % of max. output power on internal speaker, so as to find the maximum radiated emission generated from EUT. Additional the Bluetooth transmitter was set to continuous transmission (hopping), transmitting on fixed frequencies (low, middle, high), receiving and link mode (connected to Smartphone with data transfer) using Basic Rate (GFSK with 1 MBit/s), EDR (PI/4-DQPSK with 2 MBit/s), EDR (8-DPSK with 3 MBit/s). These operation modes represents the normal operation. The procedure according to ANSI C63.10:2013 clause 6.3, 6.4, 6.5 and 6.6 is used and this modes were investigated by operating the EUT with typical cable positions and with a typical system equipment configuration and arrangement. Cable manipulation are performed within the range of likely configurations. The highest values measured are shown in the table below. The corresponding configuration is shown in the "Photo(s) of test setup".

During test the EUT was operated with rated Power (120 V~, 60 Hz), as specified in the user manual of the EUT. For frequencies up to 1000 MHz the EUT was placed on a 80 cm high non metallic table placed on the turntable. The EUT was rotated and the antenna height was varied between 1 m to 4 m to find the maximum RF energy generated from EUT.

For frequencies above 1000 MHz the EUT was placed on a 150 cm high non metallic table placed on the turntable. The EUT was rotated and the antenna height was varied between 1 m to 4 m to find the maximum RF energy generated from EUT.

As worst case the mode EDR (8-DPSK with 3 MBit/s) continuous transmission (hopping) was found and documented.

#### Applied standards

e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart B, § 15.209 Radiated emission limits



#### Requirements

| Frequency<br>MHz | Limits<br>µV/m<br>Quasi-<br>peak | Limits<br>dBµV/m<br>Quasi-peak | Limits<br>µV/m<br>Average | Limits<br>dBµV/m<br>Average | Test distance<br>m |
|------------------|----------------------------------|--------------------------------|---------------------------|-----------------------------|--------------------|
| 0.009 –<br>0.090 | -/-                              | -/-                            | 2400/F<br>(kHz)           | 48.5 – 28.5                 | 300                |
| 0.090 -<br>0.110 | 2400/F<br>(kHz)                  | 28.5 – 26.8                    | -/-                       | -/-                         | 300                |
| 0.110 –<br>0.490 | -/-                              | -/-                            | 2400/F<br>(kHz)           | 26.8 – 13.8                 | 300                |
| 0.490 -<br>1.705 | 24000/F<br>(kHz)                 | 33.8 – 23.0                    | -/-                       | -/-                         | 30                 |
| 1.705 - 30.0     | 30                               | 29.5                           | -/-                       | -/-                         | 30                 |
| 30 - 88          | 100                              | 40                             | -/-                       | -/-                         | 3                  |
| 88 - 216         | 150                              | 43.5                           | -/-                       | -/-                         | 3                  |
| 216 - 960        | 200                              | 46                             | -/-                       | -/-                         | 3                  |
| 960 - 1000       | 500                              | 54                             | -/-                       | -/-                         | 3                  |
| Above 1000       | /-                               | -/-                            | 500                       | 54                          | 3                  |

#### Measurements

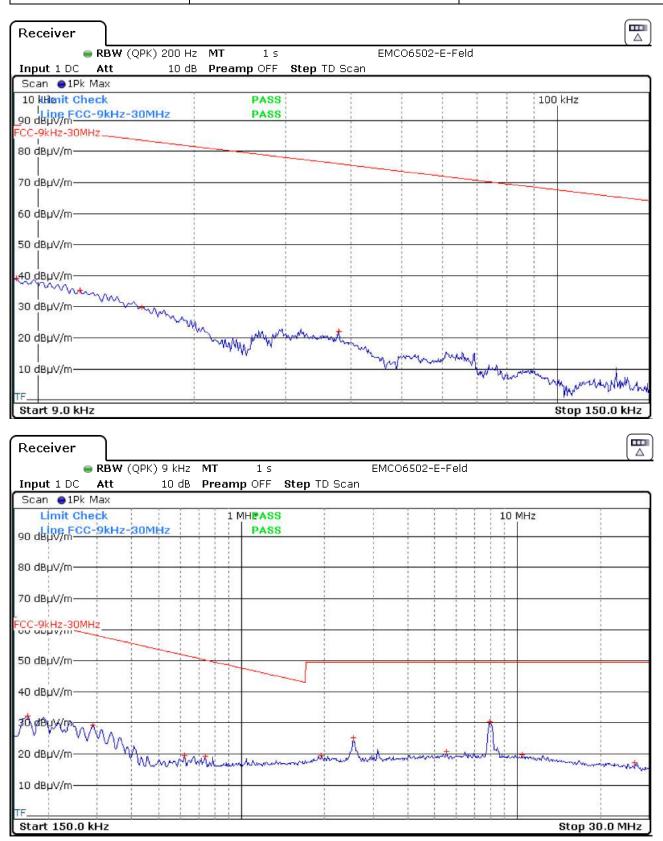
The measurements for Version ZLX-12BT and ZLX-15BT in the frequency range 9 kHz – 30 MHz had been performed on June 12, 2018.

The measurements for Version ZLX-12BT and ZLX-15BT in the frequency range 30 MHz – 24.800 GHz had been performed on June 11, 2018.

In the frequency range 9 kHz - 30 MHz the EUT'S had been scanned in a distance of 3 m and the relevant limit was adjused to this distance using a factor with 20 dB/decade. The values are detected in peak. Since all peak values are at least 10 dB below the relevant limit for both models, no further measurements had been performed.

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)

The highest peak emissions in the frequency range 9 kHz – 30 MHz in 3 m distance are as following:


| Frequency<br>[MHz] (1) | Reading<br>of test<br>receiver<br>[dBµV] (2)                                                    | Antenna<br>polarization<br>(3) | Correction<br>factor<br>[dB/m] (4) | Radiated<br>emission<br>[dBµV/m] (5) | Limit<br>[dBµV/m] (6) | Result<br>(7) |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|--------------------------------------|-----------------------|---------------|--|--|--|
| 0.009100               | 21.3                                                                                            | vertical                       | 17.7                               | 39.0                                 | 88.4                  | PASS          |  |  |  |
| 0.012050               | 19.0                                                                                            | vertical                       | 16.3                               | 35.3                                 | 86.0                  | PASS          |  |  |  |
| 0.015850               | 15.3                                                                                            | vertical                       | 14.6                               | 29.9                                 | 83.6                  | PASS          |  |  |  |
| 7.939500               | 19.8                                                                                            | vertical                       | 10.6                               | 30.4                                 | 49.5                  | PASS          |  |  |  |
| 2.535000               | 14.3                                                                                            | vertical                       | 10.9                               | 25.2                                 | 49.5                  | PASS          |  |  |  |
| 5.536500               | 10.1                                                                                            | vertical                       | 10.7                               | 20.8                                 | 49.5                  | PASS          |  |  |  |
| -/-                    | -/-                                                                                             | horizontal                     | -/-                                | -/-                                  | -/-                   | PASS          |  |  |  |
| All other em<br>limit. | All other emissions in the frequency range 9 kHz – 30 MHz are at least 20 dB below the relevant |                                |                                    |                                      |                       |               |  |  |  |

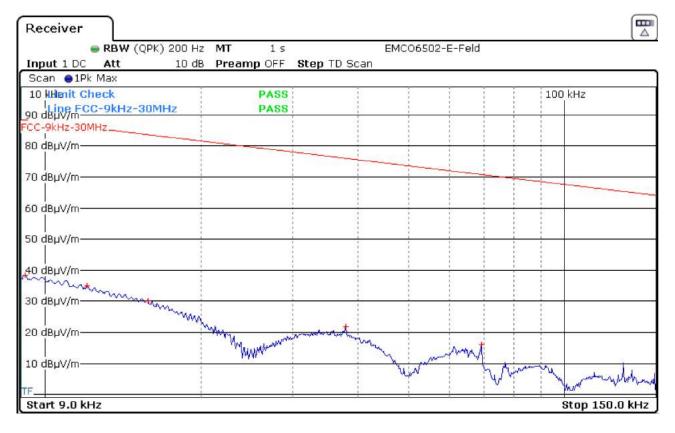
Radiated emission  $[dB\mu V/m]$  (5) = Reading of test receiver  $[dB\mu V]$  (2) + Correction factor [dB] (4) (= loss of cable between antenna and test receiver + antenna factor)

- (1) = test frequency
- (3) = polarization of the test antenna (Horizontal/Vertical)
- (6) = relevant limit according to §15.209 Radiated emission limits; general requirements corrected to 3 m test distance using a correction factor with 20 dB/decade (300 m to 3 m : +40 dB, 30 m to 3 m : +20 dB)
- (7) = comparison between Limit  $[dB\mu V/m]$  (7) and Radiated emission  $[dB\mu V/m]$  (6)

TESTED IN GERMANY Test report no.: **18/09-0026B** 

Page 14 of 94 pages




Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

The highest peak emissions in the frequency range 9 kHz – 30 MHz in 3 m distance are as following:

| Frequency<br>[MHz] (1) | Reading<br>of test<br>receiver<br>[dBµV] (2) | Antenna<br>polarization<br>(3) | Correction<br>factor<br>[dB/m] (4) | Radiated<br>emission<br>[dBµV/m] (5) | Limit<br>[dBµV/m] (6) | Result<br>(7) |
|------------------------|----------------------------------------------|--------------------------------|------------------------------------|--------------------------------------|-----------------------|---------------|
| 0.009150               | 20.8                                         | vertical                       | 17.6                               | 38.4                                 | 88.3                  | PASS          |
| 0.012050               | 18.7                                         | vertical                       | 16.3                               | 35.0                                 | 85.9                  | PASS          |
| 0.015800               | 15.4                                         | vertical                       | 14.6                               | 30.0                                 | 83.6                  | PASS          |
| 2.465250               | 15.3                                         | vertical                       | 10.9                               | 26.2                                 | 49.5                  | PASS          |
| 3.169500               | 12.2                                         | vertical                       | 10.8                               | 23.0                                 | 49.5                  | PASS          |
| 0.1041000              | 6.6                                          | vertical                       | 10.9                               | 17.5                                 | 47.3                  | PASS          |
| -/-                    | -/-                                          | horizontal                     | -/-                                | -/-                                  | -/-                   | PASS          |
| All other em<br>limit. | issions in the                               | frequency ran                  | ge 9 kHz – 30                      | MHz are at leas                      | t 20 dB below th      | ne relevant   |

Radiated emission  $[dB\mu V/m]$  (5) = Reading of test receiver  $[dB\mu V]$  (2) + Correction factor [dB] (4) (= loss of cable between antenna and test receiver + antenna factor)

- (1) = test frequency
- (3) = polarization of the test antenna (Horizontal/Vertical)
- (6) = relevant limit according to §15.209 Radiated emission limits; general requirements corrected to 3 m test distance using a correction factor with 20 dB/decade (300 m to 3 m : +40 dB, 30 m to 3 m : +20 dB)
- (7) = comparison between Limit [dB $\mu$ V/m] (7) and Radiated emission [dB $\mu$ V/m] (6)





| BW (QI                   | PK)9 kHz MT | 1 s                  | EMC06502- | E-Feld                      |                     |
|--------------------------|-------------|----------------------|-----------|-----------------------------|---------------------|
| Input 1 DC Att           |             | mp OFF Step TD S     |           |                             |                     |
| Scan 😑 1Pk Max           |             |                      |           |                             |                     |
| Limit Check<br>90 dBµV/m | )MHz        | MHPASS<br>PASS       |           | 10 MHz                      |                     |
| 80 dBµV/m                |             |                      |           |                             |                     |
| 70 dBµV/m                |             |                      |           |                             |                     |
| CC-9kHz-30MHz            |             |                      |           |                             |                     |
| 50 dBµV/m                |             |                      |           |                             |                     |
| 40 dBµV/m                |             |                      |           |                             |                     |
|                          |             |                      | t .       |                             |                     |
|                          | Munimum     | mother which with me | Anduran   | ant marting have a more and | hundredomater monor |
| 10 dBµV/m                |             |                      |           |                             |                     |
| rF<br>Start 150.0 kHz    |             |                      |           |                             | Stop 30.0 MH:       |

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)

Since all peak values are at least 6 dB below the relevant limit for both models, no further measurements had been performed. The six highest emissions for each polarization (H/V) in the frequency range 30 MHz – 1000 MHz are as following:

| Frequency<br>[MHz] (1) | Reading<br>of test<br>receiver<br>[dBµV] (2) | Antenna<br>polarization<br>(3) | loss of cable<br>between antenna<br>and test receiver<br>(dB) (4) | Antenna<br>factor<br>[dB/m] (5) | Radiated<br>emission<br>[dBµV/m] (6) | Limit<br>[dBµV/m] (7) | Result<br>(8) |
|------------------------|----------------------------------------------|--------------------------------|-------------------------------------------------------------------|---------------------------------|--------------------------------------|-----------------------|---------------|
| 31.86                  | 10.6                                         | vertical                       | 4.4                                                               | 17.9                            | 32.9                                 | 40.0                  | PASS          |
| 31.14                  | 8.5                                          | vertical                       | 4.5                                                               | 17.8                            | 30.8                                 | 40.0                  | PASS          |
| 33.48                  | 7.9                                          | vertical                       | 4.5                                                               | 17.3                            | 29.7                                 | 40.0                  | PASS          |
| 34.36                  | 8.3                                          | vertical                       | 4.5                                                               | 16.8                            | 29.6                                 | 40.0                  | PASS          |
| 34.91                  | 7.3                                          | vertical                       | 4.6                                                               | 16.4                            | 28.3                                 | 40.0                  | PASS          |
| 35.01                  | 5.2                                          | vertical                       | 4.6                                                               | 16.3                            | 26.1                                 | 40.0                  | PASS          |
| -/-                    | -/-                                          | horizontal                     | -/-                                                               | -/-                             | -/-                                  | -/-                   | PASS          |
| All other em           | issions in the                               | frequency ran                  | ge 30 MHz – 1000 M                                                | Hz are at least                 | 20 dB below the                      | e relevant limit.     |               |

Radiated emission  $[dB\mu V/m]$  (6) = Reading of test receiver  $[dB\mu V]$  (2) + loss of cable between antenna and test receiver (dB) (4) + antenna factor [dB] (5)

- (1) = test frequency
- (3) = polarization of the test antenna (Horizontal/Vertical)
- (7) = relevant limit according to §15.209 Radiated emission limits; general requirements
- (8) = comparison between Limit [dB $\mu$ V/m] (7) and Radiated emission [dB $\mu$ V/m] (6)



vertical

| Receiver                                                                                                                          | Spectrun                    | n 🛞                              |             |                |         |        | (m)          |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|-------------|----------------|---------|--------|--------------|
|                                                                                                                                   | RBW (EMI) 120               | and the second second            | 100 ms      |                | CBL6111 |        |              |
| Input 1 AC                                                                                                                        | 75 621                      | 0 dB Preamp                      |             | Step TD Scan   | ODEOTT  |        |              |
| Scan 🔵 1 Pk                                                                                                                       | Max                         |                                  |             |                |         |        |              |
| Limit Ch                                                                                                                          |                             | 100 MHz                          |             |                |         |        |              |
| 90 dBµV/m-                                                                                                                        | C Part 15                   |                                  | PASS        |                |         |        |              |
|                                                                                                                                   |                             |                                  |             |                |         |        |              |
| 80 dBµV/m—                                                                                                                        |                             |                                  |             |                |         |        |              |
| 70 d0.4//m                                                                                                                        |                             |                                  |             |                |         |        |              |
| 70 dBµV/m—                                                                                                                        |                             |                                  |             |                |         |        |              |
| 60 dBµV/m—                                                                                                                        |                             |                                  |             |                |         |        |              |
|                                                                                                                                   |                             |                                  |             | 1              |         |        |              |
| 50 dBµV/m—                                                                                                                        |                             |                                  |             |                |         |        |              |
| FCC Part 15                                                                                                                       |                             | 0                                |             |                |         |        |              |
|                                                                                                                                   |                             |                                  |             |                |         |        |              |
| BO dBuV/m-                                                                                                                        |                             |                                  |             |                |         | mai    | nanonimina   |
| · hours                                                                                                                           |                             |                                  |             |                | mannon  | mont   |              |
| 20 dBµV/m                                                                                                                         | marie                       | mationstream                     | man man     | "March in sour |         |        |              |
| 10 - 10 - 1/m                                                                                                                     | Jan Manun                   | when                             |             |                |         |        |              |
| 10 dBµV/m—                                                                                                                        |                             |                                  |             |                |         |        |              |
|                                                                                                                                   |                             |                                  |             | I<br>I         | 1       | TF     |              |
| Start 30.0 M                                                                                                                      | AHZ                         |                                  |             |                |         |        | Stop 1.0 GHz |
| Ionzonia                                                                                                                          |                             |                                  |             |                |         |        | _            |
| Receiver                                                                                                                          | Spectrun<br>RBW (EMI) 120   |                                  | 100 ms      |                | CBL6111 |        |              |
|                                                                                                                                   | RBW (EMI) 120               | and the second second            |             | Step TD Scan   | CBL6111 |        |              |
| Receiver                                                                                                                          | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp            | OFF         | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan @1Pk<br>Limit Cf                                                                                   | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line FC                                                                        | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF         | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan @1Pk<br>Limit Cf                                                                                   | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit CP<br>Line FC<br>70 dBµV/m—                                                          | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line FC                                                                        | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cf<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—                                            | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Input 1 AC<br>Scan ●1Pk<br>Limit Cf<br>Line FC<br>70 dBµV/m—                                                                      | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cf<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—                                            | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cf<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—                                            | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   | CBL6111 |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit CP<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—<br>50 dBµV/m—<br>FCC Part 15               | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   |         |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—<br>50 dBµV/m—<br>FCC Part 15<br>30 dBµV/m— | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   |         |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—<br>50 dBµV/m—<br>FCC Part 15<br>30 dBµV/m— | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF<br>PASS | Step TD Scan   |         | www.ww |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—<br>50 dBµV/m—<br>FCC Part 15<br>30 dBµV/m— | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF         |                |         |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line FC<br>70 dBµV/m—<br>60 dBµV/m—<br>50 dBµV/m—<br>FCC Part 15<br>30 dBµV/m— | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF         | Step TD Scan   |         | www.w  |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line:FC<br>70 dBµV/m—<br>60 dBµV/m—<br>50 dBµV/m—<br>FCC Part 15<br>30 dBµV/m— | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF         |                |         |        |              |
| Receiver<br>Input 1 AC<br>Scan ●1Pk<br>Limit Cl<br>Line:FC<br>70 dBµV/m—<br>60 dBµV/m—<br>50 dBµV/m—<br>FCC Part 15<br>30 dBµV/m— | RBW (EMI) 120<br>Att<br>Max | kHz MT<br>0 dB Preamp<br>100 MHz | OFF         |                |         |        |              |

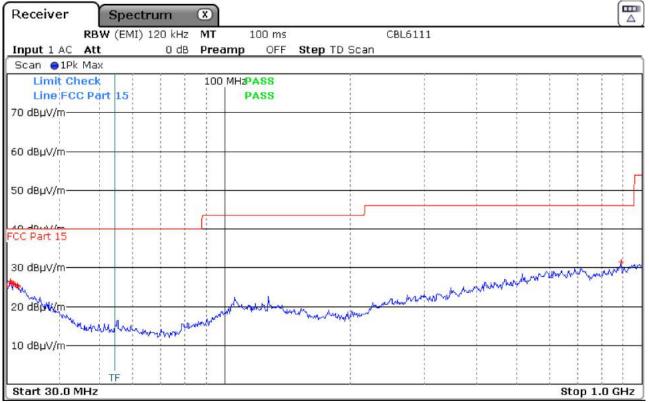
| TESTED<br>IN GERMANY | Test report no.: | Page 18 of 94 pages |
|----------------------|------------------|---------------------|
| IN GERMANY           | 18/09-0026B      |                     |

Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

Since all peak values are at least 10 dB below the relevant limit for both models, no further measurements had been performed. The six highest emissions for each polarization (H/V) in frequency range 30 MHz – 1000 MHz are as following:

| Frequency<br>[MHz] (1) | Reading<br>of test<br>receiver<br>[dBµV] (2) | Antenna<br>polarization<br>(3) | loss of cable<br>between antenna<br>and test receiver<br>(dB) (4) | Antenna<br>factor<br>[dB/m] (5) | Radiated<br>emission<br>[dBµV/m] (6) | Limit<br>[dBµV/m] (7) | Result<br>(8) |
|------------------------|----------------------------------------------|--------------------------------|-------------------------------------------------------------------|---------------------------------|--------------------------------------|-----------------------|---------------|
| 30.09                  | 4.2                                          | vertical                       | 4.4                                                               | 17.9                            | 26.5                                 | 40.0                  | PASS          |
| 30.84                  | 5.5                                          | vertical                       | 4.5                                                               | 17.8                            | 27.8                                 | 40.0                  | PASS          |
| 31.11                  | 5.8                                          | vertical                       | 4.5                                                               | 17.3                            | 27.6                                 | 40.0                  | PASS          |
| 31.44                  | 8.2                                          | vertical                       | 4.5                                                               | 16.9                            | 29.6                                 | 40.0                  | PASS          |
| 31.83                  | 7.2                                          | vertical                       | 4.6                                                               | 16.5                            | 28.3                                 | 40.0                  | PASS          |
| 31.98                  | 7.4                                          | vertical                       | 4.6                                                               | 16.4                            | 28.4                                 | 40.0                  | PASS          |
| -/-                    | -/-                                          | horizontal                     | -/-                                                               | -/-                             | -/-                                  | -/-                   | PASS          |
| All other em           | issions in the                               | frequency ran                  | ge 30 MHz – 1000 M                                                | Hz are at least                 | 10 dB below the                      | e relevant limit.     |               |

Radiated emission  $[dB\mu V/m]$  (6) = Reading of test receiver  $[dB\mu V]$  (2) + loss of cable between antenna and test receiver (dB) (4) + antenna factor [dB] (5)


- (1) = test frequency
- (3) = polarization of the test antenna (Horizontal/Vertical)
- (7) = relevant limit according to §15.209 Radiated emission limits; general requirements
- (8) = comparison between Limit [dB $\mu$ V/m] (7) and Radiated emission [dB $\mu$ V/m] (6)

| ve | rtı | ca |  |
|----|-----|----|--|
|    |     |    |  |

| Receiver Spectrum X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| RBW (EMI) 120 kHz MT 100 ms CBL6111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Input 1 AC Att 0 dB Preamp OFF Step TD Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Scan 🔵 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Limit Check 100 MHzPASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Line FGC Part 15 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 70 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 60 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  |
| 50 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 40 dBu0/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| FCC Part 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 20 dBµV/m<br>20 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| and the second s |    |
| 20 dBpW/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| mon many many many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 10 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Start 30.0 MHz Stop 1.0 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iz |



#### horizontal



The highest emissions for each polarization (H/V) in frequency range 1 GHz – 24.800 GHz are as following:

| Lower Channe | ei 2402MHz   |         |        |          |          |        |        |        |
|--------------|--------------|---------|--------|----------|----------|--------|--------|--------|
| Test         | Antenna      | Reading | Corr.  | Meas.    | Limit    | Meas.  | Limit  | Result |
| Frequency    | Polarisation | [dBµV]  | [dB/m] | value    | [dBµV/m] | value  | [µV/m] | (9)    |
| [MHz]        | (H/V)        | (3)     | (4)    | [dBµV/m] | (6)      | [µV/m] | (8)    |        |
| (1)          | (2)          |         |        | (5)      |          | (7)    |        |        |
| 4804         | V            | 41.0    | 0.5    | 41.5     | 54.0     | 118.9  | 500    | PASS   |
| 7206         | V            | 39.9    | 3.1    | 43.0     | 54.0     | 141.3  | 500    | PASS   |
| 9608         | V            | <38.1   | 4.7    | <42.8    | 54.0     | <138.0 | 500    | PASS   |
| 12010        | V            | <37.2   | 5.8    | <43.0    | 54.0     | <141.3 | 500    | PASS   |
| 14412        | V            | <36.2   | 6.5    | <42.7    | 54.0     | <136.5 | 500    | PASS   |
| 16814        | V            | <36.9   | 7.1    | <44.0    | 54.0     | <158.5 | 500    | PASS   |
| 19216        | V            | <38.1   | 6.4    | <44.5    | 54.0     | <167.9 | 500    | PASS   |
| 21618        | V            | <38.6   | 7.2    | <45.8    | 54.0     | <195.0 | 500    | PASS   |
| 24020        | V            | <38.9   | 7.6    | <46.5    | 54.0     | <211.3 | 500    | PASS   |
| 4804         | Н            | 48.0    | 0.5    | 48.5     | 54.0     | 266.1  | 500    | PASS   |
| 7206         | Н            | 42.8    | 3.1    | 45.9     | 54.0     | 197.2  | 500    | PASS   |
| 9608         | Н            | <38.1   | 4.7    | <42.8    | 54.0     | <138.0 | 500    | PASS   |
| 12010        | Н            | <37.2   | 5.8    | <43.0    | 54.0     | <141.3 | 500    | PASS   |
| 14412        | Н            | <36.2   | 6.5    | <42.7    | 54.0     | <136.5 | 500    | PASS   |
| 16814        | Н            | <36.9   | 7.1    | <44.0    | 54.0     | <158.5 | 500    | PASS   |
| 19216        | Н            | <38.1   | 6.4    | <44.5    | 54.0     | <167.9 | 500    | PASS   |
| 21618        | Н            | <38.6   | 7.2    | <45.8    | 54.0     | <195.0 | 500    | PASS   |
| 24020        | Н            | <38.9   | 7.6    | <46.5    | 54.0     | <211.3 | 500    | PASS   |

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005) Lower Channel 2402MHz



Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005) Middle Channel 2440MHz

| Test      | Antenna      | Reading | Corr. | Meas.    | Limit    | Meas.  | Limit  | Result |
|-----------|--------------|---------|-------|----------|----------|--------|--------|--------|
| Frequency | Polarisation | [dBµV]  | [dB/  | value    | [dBµV/m] | value  | [µV/m] | (9)    |
| [MHz]     | (H/V)        | (3)     | m]    | [dBµV/m] | (6)      | [µV/m] | (8)    |        |
| (1)       | (2)          |         | (4)   | (5)      |          | (7)    |        |        |
| 4880      | V            | 45.9    | 0.8   | 46.7     | 54.0     | 216.3  | 500    | PASS   |
| 7320      | V            | <39.3   | 3.2   | <42.5    | 54.0     | <133.4 | 500    | PASS   |
| 9760      | V            | <37.8   | 5.0   | <42.8    | 54.0     | <138.0 | 500    | PASS   |
| 12200     | V            | <38.9   | 5.8   | <44.7    | 54.0     | <171.8 | 500    | PASS   |
| 14640     | V            | <36.6   | 6.4   | <43.0    | 54.0     | <141.3 | 500    | PASS   |
| 17080     | V            | <36.9   | 7.2   | <44.1    | 54.0     | <160.3 | 500    | PASS   |
| 19520     | V            | <38.5   | 6.8   | <45.3    | 54.0     | <184.1 | 500    | PASS   |
| 21960     | V            | <38.9   | 7.4   | <46.3    | 54.0     | <206.5 | 500    | PASS   |
| 24400     | V            | <39.5   | 7.7   | <47.2    | 54.0     | <229.1 | 500    | PASS   |
| 4880      | Н            | 45.2    | 0.8   | 46.0     | 54.0     | 199.5  | 500    | PASS   |
| 7320      | Н            | <39.8   | 3.2   | <43.0    | 54.0     | <141.3 | 500    | PASS   |
| 9760      | Н            | <37.5   | 5.0   | <42.5    | 54.0     | <133.4 | 500    | PASS   |
| 12200     | Н            | <39.1   | 5.8   | <44.9    | 54.0     | <175.8 | 500    | PASS   |
| 14640     | Н            | <36.3   | 6.4   | <42.7    | 54.0     | <136.5 | 500    | PASS   |
| 17080     | Н            | <37.6   | 7.2   | <44.8    | 54.0     | <173.8 | 500    | PASS   |
| 19520     | Н            | <38.6   | 6.8   | <45.4    | 54.0     | <186.2 | 500    | PASS   |
| 21960     | Н            | <39.3   | 7.4   | <46.7    | 54.0     | <216.3 | 500    | PASS   |
| 24400     | Н            | <39.8   | 7.7   | <47.5    | 54.0     | <237.1 | 500    | PASS   |

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005) Upper Channel 2480MHz

| Test      | Antenna      | Reading | Corr. | Meas.    | Limit    | Meas.  | Limit  | Result |
|-----------|--------------|---------|-------|----------|----------|--------|--------|--------|
| Frequency | Polarisation | [dBµV]  | [dB/  | value    | [dBµV/m] | value  | [µV/m] | (9)    |
| [MHz]     | (H/V)        | (3)     | m]    | [dBµV/m] | (6)      | [µV/m] | (8)    |        |
| (1)       | (2)          |         | (4)   | (5)      |          | (7)    |        |        |
| 4960      | V            | 43.7    | 1.0   | 44.7     | 54.0     | 171.8  | 500    | PASS   |
| 7440      | V            | <38.1   | 3.2   | <41.3    | 54.0     | <116.1 | 500    | PASS   |
| 9920      | V            | <39.8   | 5.2   | <45.0    | 54.0     | <177.8 | 500    | PASS   |
| 12400     | V            | <39.2   | 5.7   | <44.9    | 54.0     | <175.8 | 500    | PASS   |
| 14880     | V            | <36.3   | 6.3   | <42.6    | 54.0     | <134.9 | 500    | PASS   |
| 17360     | V            | <36.8   | 7.2   | <44.0    | 54.0     | <158.5 | 500    | PASS   |
| 19840     | V            | <38.7   | 6.9   | <45.6    | 54.0     | <190.5 | 500    | PASS   |
| 22320     | V            | <39.0   | 7.5   | <46.5    | 54.0     | <211.3 | 500    | PASS   |
| 24800     | V            | <39.4   | 7.8   | <47.2    | 54.0     | <229.1 | 500    | PASS   |
| 4960      | Н            | 48.3    | 1.0   | 49.3     | 54.0     | 291.7  | 500    | PASS   |
| 7440      | Н            | <39.3   | 3.2   | <42.5    | 54.0     | <133.4 | 500    | PASS   |
| 9920      | Н            | <38.7   | 5.2   | <43.9    | 54.0     | <156.7 | 500    | PASS   |
| 12400     | Н            | <39.3   | 5.7   | <45.0    | 54.0     | <177.8 | 500    | PASS   |
| 14880     | Н            | <36.7   | 6.3   | <43.0    | 54.0     | <141.3 | 500    | PASS   |
| 17360     | Н            | <37.1   | 7.2   | <44.3    | 54.0     | <164.1 | 500    | PASS   |
| 19840     | Н            | <38.6   | 6.9   | <45.5    | 54.0     | <188.4 | 500    | PASS   |
| 22320     | Н            | <39.1   | 7.5   | <46.6    | 54.0     | <213.8 | 500    | PASS   |
| 24800     | Н            | <39.4   | 7.8   | <47.2    | 54.0     | <229.1 | 500    | PASS   |



| Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006) |
|-----------------------------------------------------------------------------------------------------|
| Lower Channel 2402MHz                                                                               |

| Test      | Antenna      | Reading | Corr.  | Meas.    | Limit    | Meas.  | Limit  | Result |
|-----------|--------------|---------|--------|----------|----------|--------|--------|--------|
| Frequency | Polarisation | [dBµV]  | [dB/m] | value    | [dBµV/m] | value  | [µV/m] | (9)    |
| [MHz]     | (H/V)        | (3)     | (4)    | [dBµV/m] | (6)      | [µV/m] | (8)    |        |
| (1)       | (2)          | (-)     | ( )    | (5)      | (-)      | (7)    | (-)    |        |
| 4804      | V            | 43.7    | 0.5    | 44.2     | 54.0     | 162.2  | 500    | PASS   |
| 7206      | V            | <38.9   | 3.1    | <42.0    | 54.0     | <125.9 | 500    | PASS   |
| 9608      | V            | <38.0   | 4.7    | <42.7    | 54.0     | <136.5 | 500    | PASS   |
| 12010     | V            | <37.4   | 5.8    | <43.2    | 54.0     | <144.5 | 500    | PASS   |
| 14412     | V            | <36.2   | 6.5    | <42.7    | 54.0     | <136.5 | 500    | PASS   |
| 16814     | V            | <36.9   | 7.1    | <44.0    | 54.0     | <158.5 | 500    | PASS   |
| 19216     | V            | <38.1   | 6.4    | <44.5    | 54.0     | <167.9 | 500    | PASS   |
| 21618     | V            | <38.6   | 7.2    | <45.8    | 54.0     | <195.0 | 500    | PASS   |
| 24020     | V            | <38.9   | 7.6    | <46.5    | 54.0     | <211.3 | 500    | PASS   |
| 4804      | Н            | 44.8    | 0.5    | 45.3     | 54.0     | 184.1  | 500    | PASS   |
| 7206      | Н            | <39.5   | 3.1    | <42.6    | 54.0     | <134.9 | 500    | PASS   |
| 9608      | Н            | <41.1   | 4.7    | <45.8    | 54.0     | <195.0 | 500    | PASS   |
| 12010     | Н            | <37.2   | 5.8    | <43.0    | 54.0     | <141.3 | 500    | PASS   |
| 14412     | Н            | <36.2   | 6.5    | <42.7    | 54.0     | <136.5 | 500    | PASS   |
| 16814     | Н            | <36.9   | 7.1    | <44.0    | 54.0     | <158.5 | 500    | PASS   |
| 19216     | Н            | <38.1   | 6.4    | <44.5    | 54.0     | <167.9 | 500    | PASS   |
| 21618     | Н            | <38.6   | 7.2    | <45.8    | 54.0     | <195.0 | 500    | PASS   |
| 24020     | Н            | <38.9   | 7.6    | <46.5    | 54.0     | <211.3 | 500    | PASS   |

Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006) Middle Channel 2440MHz

|           |              |         | 0      | Maria    | 1.1      | N.4    | 1.1.1.10 | Decult |
|-----------|--------------|---------|--------|----------|----------|--------|----------|--------|
| Test      | Antenna      | Reading | Corr.  | Meas.    | Limit    | Meas.  | Limit    | Result |
| Frequency | Polarisation | [dBµV]  | [dB/m] | value    | [dBµV/m] | value  | [µV/m]   | (9)    |
| [MHz]     | (H/V)        | (3)     | (4)    | [dBµV/m] | (6)      | [µV/m] | (8)      |        |
| (1)       | (2)          |         |        | (5)      |          | (7)    |          |        |
| 4880      | V            | 46.1    | 0.8    | 46.9     | 54.0     | 221.3  | 500      | PASS   |
| 7320      | V            | 44.0    | 3.2    | 47.2     | 54.0     | 229.1  | 500      | PASS   |
| 9760      | V            | 39.7    | 5.0    | 44.7     | 54.0     | 171.8  | 500      | PASS   |
| 12200     | V            | <40.0   | 5.8    | <45.8    | 54.0     | <195.0 | 500      | PASS   |
| 14640     | V            | <36.6   | 6.4    | <43.0    | 54.0     | <141.3 | 500      | PASS   |
| 17080     | V            | <36.9   | 7.2    | <44.1    | 54.0     | <160.3 | 500      | PASS   |
| 19520     | V            | <38.5   | 6.8    | <45.3    | 54.0     | <184.1 | 500      | PASS   |
| 21960     | V            | <38.9   | 7.4    | <46.3    | 54.0     | <206.5 | 500      | PASS   |
| 24400     | V            | <39.5   | 7.7    | <47.2    | 54.0     | <229.1 | 500      | PASS   |
| 4880      | Н            | 43.5    | 0.8    | 44.3     | 54.0     | 164.1  | 500      | PASS   |
| 7320      | Н            | 46.0    | 3.2    | 49.2     | 54.0     | 288.4  | 500      | PASS   |
| 9760      | Н            | 43.5    | 5.0    | 48.5     | 54.0     | 266.1  | 500      | PASS   |
| 12200     | Н            | <40.8   | 5.8    | <46.6    | 54.0     | <213.8 | 500      | PASS   |
| 14640     | Н            | <36.3   | 6.4    | <42.7    | 54.0     | <136.5 | 500      | PASS   |
| 17080     | Н            | <37.6   | 7.2    | <44.8    | 54.0     | <173.8 | 500      | PASS   |
| 19520     | Н            | <38.6   | 6.8    | <45.4    | 54.0     | <186.2 | 500      | PASS   |
| 21960     | Н            | <39.3   | 7.4    | <46.7    | 54.0     | <216.3 | 500      | PASS   |
| 24400     | Н            | <39.8   | 7.7    | <47.5    | 54.0     | <237.1 | 500      | PASS   |

| SNFETY-MURINA |            |
|---------------|------------|
|               | TESTED     |
| DAVCE 1978    | IN GERMANY |

Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006) Upper Channel 2480MHz

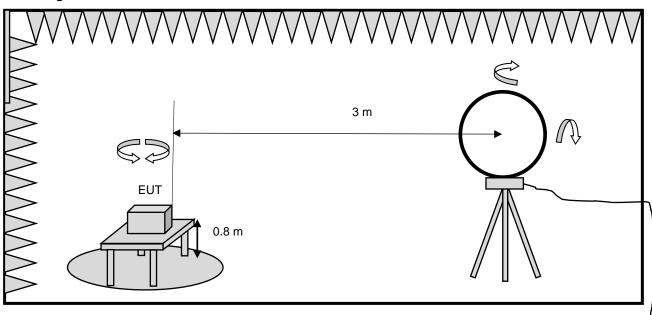
| Test      | Antenna      | Reading | Corr.  | Meas.    | Limit    | Meas.  | Limit  | Result |
|-----------|--------------|---------|--------|----------|----------|--------|--------|--------|
| Frequency | Polarisation | [dBµV]  | [dB/m] | value    | [dBµV/m] | value  | [µV/m] | (9)    |
| [MHz]     | (H/V)        | (3)     | (4)    | [dBµV/m] | (6)      | [µV/m] | (8)    |        |
| (1)       | (2)          |         |        | (5)      |          | (7)    |        |        |
| 4960      | V            | 46.7    | 1.0    | 47.7     | 54.0     | 242.7  | 500    | PASS   |
| 7440      | V            | 48.7    | 3.2    | 51.9     | 54.0     | 393.6  | 500    | PASS   |
| 9920      | V            | 40.5    | 5.2    | 45.7     | 54.0     | 192.8  | 500    | PASS   |
| 12400     | V            | <38.8   | 5.7    | <44.5    | 54.0     | <167.9 | 500    | PASS   |
| 14880     | V            | <36.3   | 6.3    | <42.6    | 54.0     | <134.9 | 500    | PASS   |
| 17360     | V            | <36.8   | 7.2    | <44.0    | 54.0     | <158.5 | 500    | PASS   |
| 19840     | V            | <38.7   | 6.9    | <45.6    | 54.0     | <190.5 | 500    | PASS   |
| 22320     | V            | <39.0   | 7.5    | <46.5    | 54.0     | <211.3 | 500    | PASS   |
| 24800     | V            | <39.4   | 7.8    | <47.2    | 54.0     | <229.1 | 500    | PASS   |
| 4960      | Н            | 49.8    | 1.0    | 50.8     | 54.0     | 346.7  | 500    | PASS   |
| 7440      | Н            | 44.9    | 3.2    | 48.1     | 54.0     | 254.1  | 500    | PASS   |
| 9920      | Н            | 39.8    | 5.2    | 45.0     | 54.0     | 177.8  | 500    | PASS   |
| 12400     | Н            | <39.4   | 5.7    | <45.1    | 54.0     | <179.9 | 500    | PASS   |
| 14880     | Н            | <36.7   | 6.3    | <43.0    | 54.0     | <141.3 | 500    | PASS   |
| 17360     | Н            | <37.1   | 7.2    | <44.3    | 54.0     | <164.1 | 500    | PASS   |
| 19840     | Н            | <38.6   | 6.9    | <45.5    | 54.0     | <188.4 | 500    | PASS   |
| 22320     | Н            | <39.1   | 7.5    | <46.6    | 54.0     | <213.8 | 500    | PASS   |
| 24800     | Н            | <39.4   | 7.8    | <47.2    | 54.0     | <229.1 | 500    | PASS   |

Measured value  $[dB\mu V/m]$  (5) = Reading of test receiver  $[dB\mu V]$  (3) + correction factor (dB) (4) (loss of cable between antenna and test receiver + antenna factor)

- (1) = test frequency
- (2) = polarization of the test antenna (Horizontal/Vertical)
- (6) = relevant limit [dB $\mu$ V/m]
- (7) = Measured value [ $\mu$ V/m] =10^[(Measured value [dB $\mu$ V/m] (5) /20)]
- (8) = relevant limit  $[\mu V/m]$
- (9) = comparison between Limit [ $\mu$ V/m] (7) and Radiated emission [ $\mu$ V/m] (7)

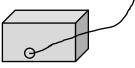
#### Results

From the measurement data obtained, the tested samples were considered to have **COMPLIED** with the requirements for the radiated emission measurements.



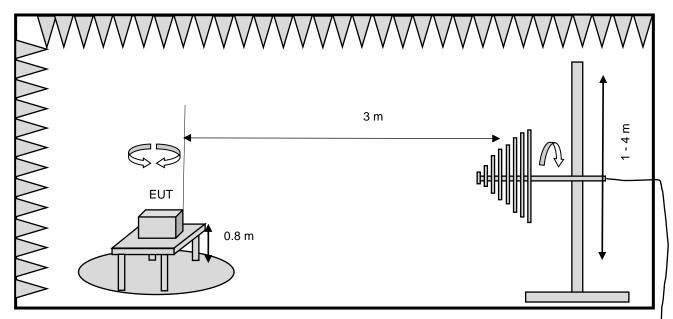

# Test equipment used:

| Kind of equipment                               | Manufacturer       | Туре                                 | PKM-<br>ident no. | Serial no.      | Calibrated on (y-m-d)    | Calibration interval |
|-------------------------------------------------|--------------------|--------------------------------------|-------------------|-----------------|--------------------------|----------------------|
| Signal Spectrum<br>Analyzer 2Hz - 26,5<br>GHz   | Rohde &<br>Schwarz | FSW 26<br>Instrument FW 2.60         | 11571             | 102047          | 2017-12-13<br>2019-01-17 | 1 year               |
| EMI-Test-Receiver                               | Rohde &<br>Schwarz | ESR7<br>Instrument FW 3.36           | 11676             | 101694          | 2018-03-26               | 3 years              |
| Software                                        | PKM                | PKM IT 5/6                           | -/-               | V1.03.04        | -/-                      | -/-                  |
| Antenna 9 kHz – 30<br>MHz                       | EMCO               | 6502                                 | 10546             | 2018            | 2017-11-03               | 3 years              |
| Antenna                                         | Chase              | CBL6111C                             | 10022             | 1064            | 2017-01-30               | 3 years              |
| Antenna 1GHz – 18<br>GHz                        | Electro Metric     | RGA50/60                             | 10273             | 2753            | 2017-11-06               | 3 years              |
| Broadband-<br>Hornantenne 15 -<br>26,5 (40) GHz | Schwarzbeck        | BBHA 9170                            | 11580             | BBHA91706<br>21 | 2017-01-27               | 3 years              |
| Broadband-<br>Preamplifier<br>1-18 GHz          | Schwarzbeck        | BBV9718                              | 11231             | 9718-002        | 2017-10-09               | 3 year               |
| Preamplifier 18 - 40<br>GHz                     | CERNEX             | CBM18403523                          | 11679             | 29711           | 2018-05-07               | 1 year               |
| Cable                                           | el-spec GmbH       | FlexCore-SMA11-<br>SMA11-8000-ARM    | 11625             | -/-             | 2017-12-07               | 3 years              |
| Shielded<br>room/Chamber                        | Frankonia          | SAC3 "SEMI-<br>ANECHOIC-<br>CHAMBER" | 11609             | 004/16          | 2016-03-23               | 3 years              |


All measurements were made with measuring instruments, including any accessories that may affect test results, calibrated according to the requests of ISO/IEC 17025 according to which the test site is accredited from DAkkS. Measurement of radiated emissions was made with instruments conforming to American National Standard Specification, ANSI C63.10-2013.

### **Block diagram Radiated emissions**

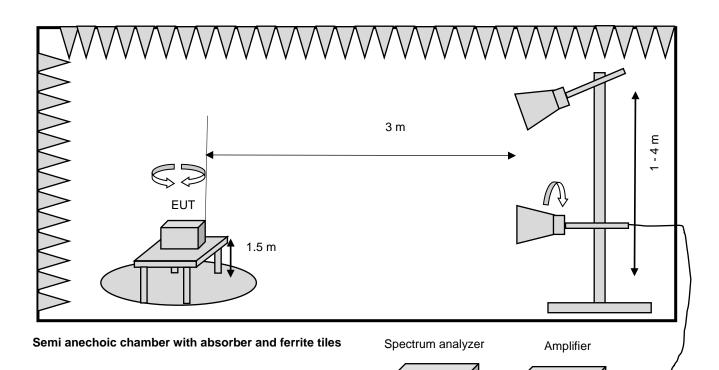



Semi anechoic chamber with absorber and ferrite tiles

Test receiver



tested frequency range 9 kHz - 30 MHz






Test receiver

Semi anechoic chamber with absorber and ferrite tiles

tested frequency range 30 MHz - 1000 MHz



Θ

Ω

G

tested frequency range > 1000 MHz



#### Measurement uncertainty

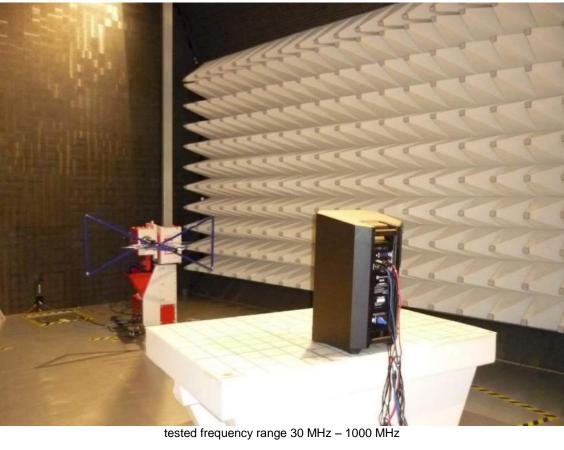
# according to CISPR 16-4-2 Edition 2.0 2011-06

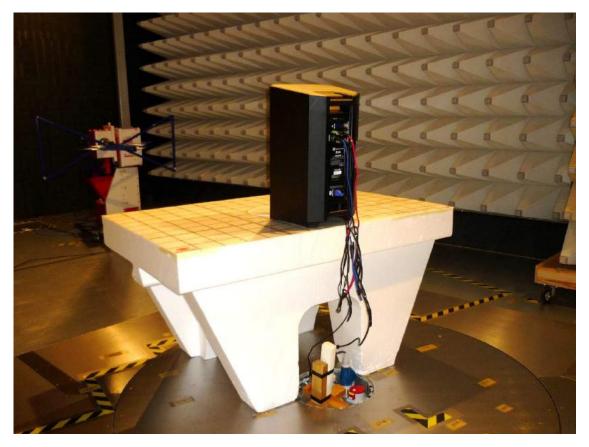
| Measurement                                                                         | calculated uncertainty<br>U <sub>lab</sub> | Specified CISPR uncertainty according CISPR 16-4-<br>2 Edition 2.0 2011-06, table 1<br>U <sub>CISPR</sub> |
|-------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Radiated disturbance (electric field<br>strength in the SAC)<br>30 MHz to 1 000 MHz | 4,7 dB                                     | 6,3 dB                                                                                                    |
| Radiated disturbance (electric field<br>strength in the SAC)<br>1 GHz to 26.5 GHz   | 4.1 dB                                     | -/-                                                                                                       |

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

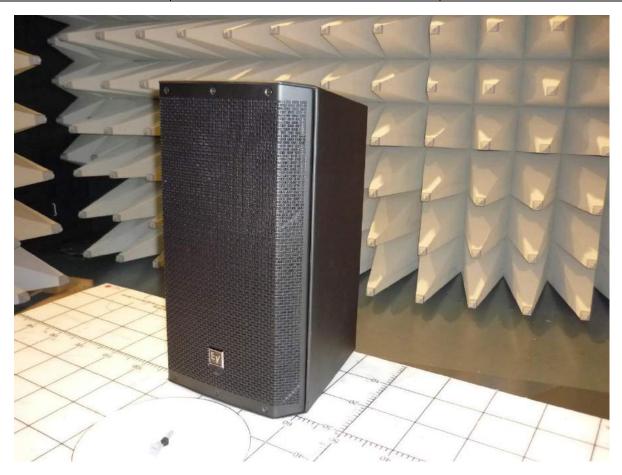
The measurements uncertainty was calculated in accordance with CISPR 16-4-2 Edition 2.0 2011-06.

The measurement uncertainty was given with a confidence of 95 % (k = 2).


# Photo(s) of test setup


Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)




tested frequency range 9 kHz - 30 MHz



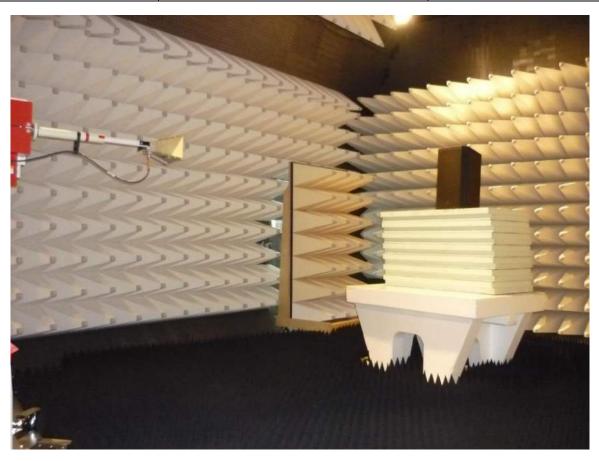










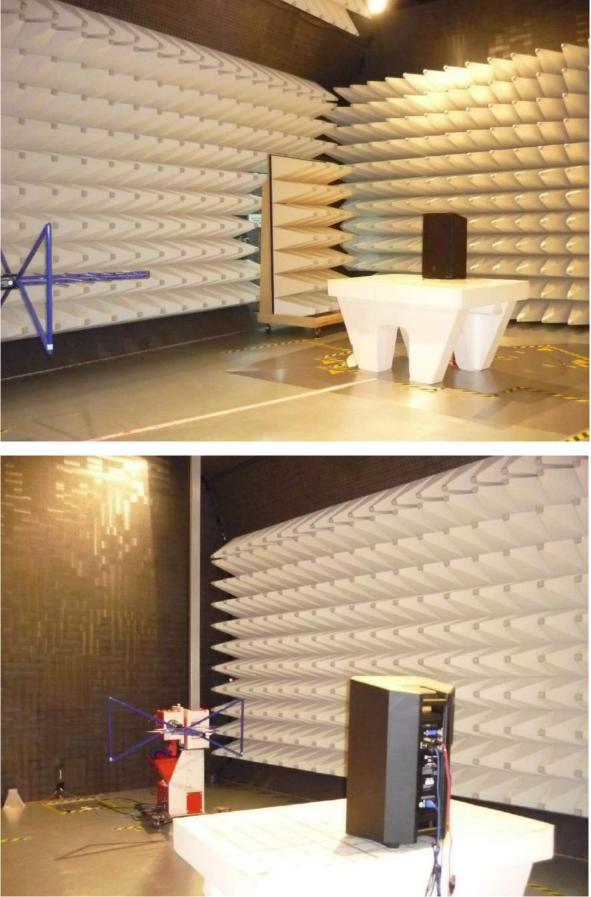






tested frequency range >1000 MHz

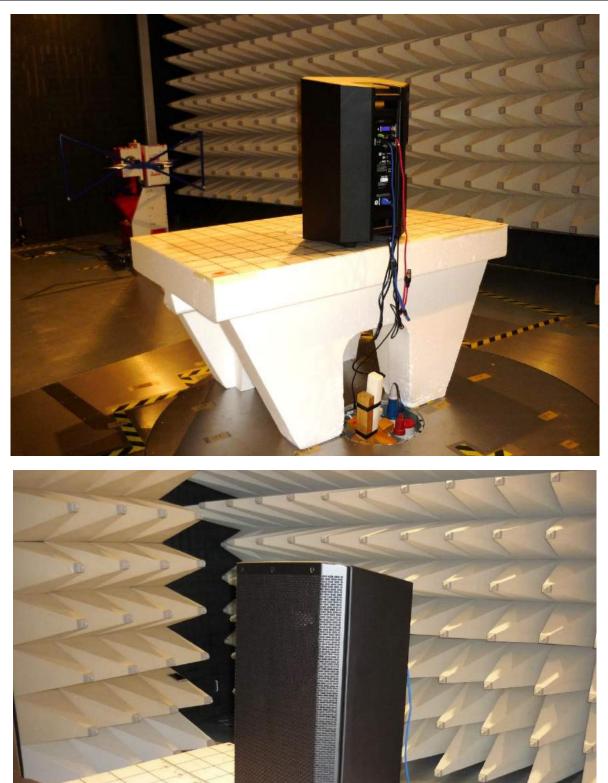




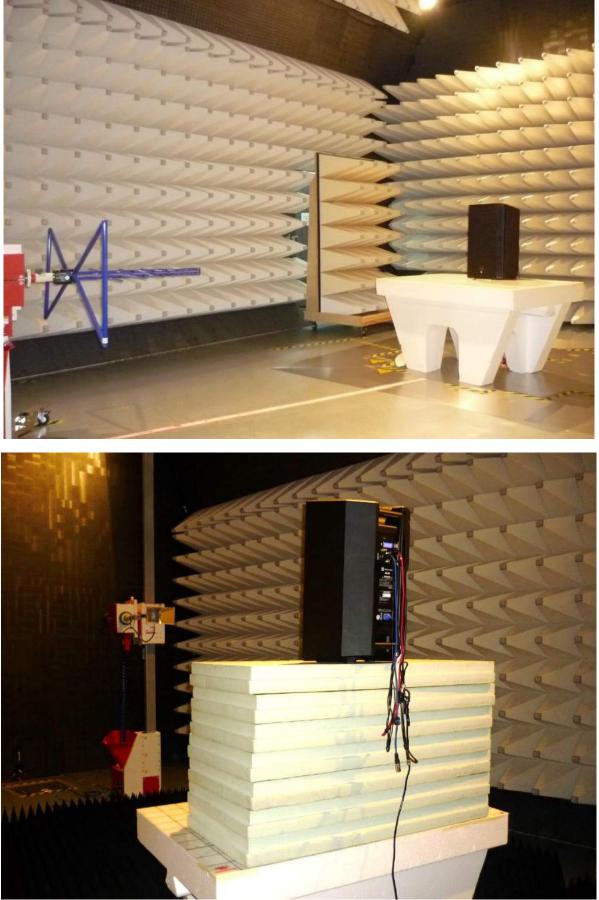



Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)




tested frequency range 9 kHz - 30 MHz






tested frequency range 30 MHz - 1000 MHz









tested frequency range >1000 MHz





# 8. Additional provisions to the general radiated emission limitations §15.215

The additional provisions to the general radiated emission limitations are fulfilled.



### 9. Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz §15.247.

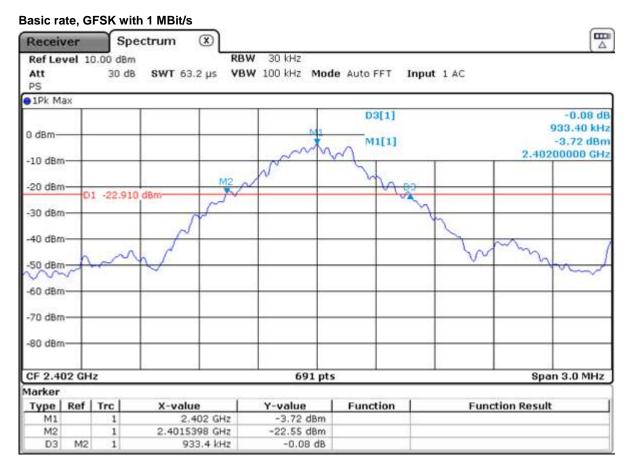
The measurements for Version ZLX-12BT and ZLX-15BT had been performed on: 20 dB/99 % Bandwidth: Mar 14, 2019. hopping channel carrier frequencies separation: Mar 18, 2019, Apr 02, 2019 hopping channel frequencies: June 11, 2018 Time of Occupancy (Dwell Time): Mar 15,2019 Maximum peak conducted output power: Mar 19, 2019 Conducted RF band edge emissions: Oct 25, 2018 Spurious emission: Mar 19,2019

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

The separation is 1 MHz, which is within the two-thirds of the 20 dB bandwidth (0.677 MHz) of the hopping channel and the 20 dB bandwidth (1.016 MHz) of the hopping channel.

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)

| Operating | Modulation                        | 20 dB     | 99 %      | channel    | Channel separation limit (two-              | Result |
|-----------|-----------------------------------|-----------|-----------|------------|---------------------------------------------|--------|
| frequency | /Data rate                        | bandwidth | bandwidth | separation | thirds of the 20 dB bandwidth)/             |        |
| [MHz]     |                                   | [MHz]     | [MHz]     | [MHz]      | 20 dB bandwidth [MHz]                       |        |
| 2402      | Basic rate, GFSK with 1 MBit/s    | 0.9334    | 0.8683    | 1000       | >0.9334 (20 dB bandwidth)                   | PASS   |
| 2441      | Basic rate, GFSK<br>with 1 MBit/s | 0.9421    | 0.8596    | 1000       | >0.9421 (20 dB bandwidth)                   | PASS   |
| 2480      | Basic rate, GFSK with 1 MBit/s    | 0.9465    | 0.8640    | 1000       | >0.9465 (20 dB bandwidth)                   | PASS   |
| 2402      | EDR, π/4-DQPSK<br>with 2 MBit/s   | 1.2373    | 1.1852    | 1000       | >0.8249 (two-thirds of the 20 dB bandwidth) | PASS   |
| 2441      | EDR, π/4-DQPSK<br>with 2 MBit/s   | 1.2547    | 1.1852    | 1000       | >0.8365 (two-thirds of the 20 dB bandwidth) | PASS   |
| 2480      | EDR, π/4-DQPSK<br>with 2 MBit/s   | 1.2504    | 1.1896    | 1000       | >0.8336 (two-thirds of the 20 dB bandwidth) | PASS   |
| 2402      | EDR, 8-DPSK<br>with 3 MBit/s      | 1.2547    | 1.1679    | 1000       | >0.8365 (two-thirds of the 20 dB bandwidth) | PASS   |
| 2441      | EDR, 8-DPSK<br>with 3 MBit/s      | 1.2634    | 1.1809    | 1000       | >0.8423 (two-thirds of the 20 dB bandwidth) | PASS   |
| 2480      | EDR, 8-DPSK<br>with 3 MBit/s      | 1.2547    | 1.1852    | 1000       | >0.8365 (two-thirds of the 20 dB bandwidth) | PASS   |


Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

| Operating<br>frequency | Modulation<br>/Data rate          | 20 dB<br>bandwidth | 99 %<br>bandwidth | channel<br>separation | Channel separation limit (two-<br>thirds of the 20 dB bandwidth) | Result |
|------------------------|-----------------------------------|--------------------|-------------------|-----------------------|------------------------------------------------------------------|--------|
| [MHz]                  |                                   | [MHz]              | [MHz]             | [MHz]                 | [MHz]                                                            |        |
| 2402                   | Basic rate, GFSK<br>with 1 MBit/s | 0.9030             | 0.8683            | 1000                  | >0.9030 (20 dB bandwidth)                                        | PASS   |
| 2441                   | Basic rate, GFSK<br>with 1 MBit/s | 0.9204             | 0.8640            | 1000                  | >0.9204 (20 dB bandwidth)                                        | PASS   |
| 2480                   | Basic rate, GFSK<br>with 1 MBit/s | 0.9161             | 0.8596            | 1000                  | >0.9161 (20 dB bandwidth)                                        | PASS   |
| 2402                   | EDR, π/4-DQPSK<br>with 2 MBit/s   | 1.2677             | 1.1809            | 1000                  | >0.8451 (two-thirds of the 20 dB bandwidth)                      | PASS   |
| 2441                   | EDR, π/4-DQPSK<br>with 2 MBit/s   | 1.2417             | 1.1896            | 1000                  | >0.8278 (two-thirds of the 20 dB bandwidth)                      | PASS   |
| 2480                   | EDR, π/4-DQPSK<br>with 2 MBit/s   | 1.2460             | 1.2113            | 1000                  | >0.8307 (two-thirds of the 20 dB bandwidth)                      | PASS   |
| 2402                   | EDR, 8-DPSK<br>with 3 MBit/s      | 1.2547             | 1.1679            | 1000                  | >0.8365 (two-thirds of the 20 dB bandwidth)                      | PASS   |
| 2441                   | EDR, 8-DPSK<br>with 3 MBit/s      | 1.2590             | 1.1896            | 1000                  | >0.8393 (two-thirds of the 20 dB bandwidth)                      | PASS   |
| 2480                   | EDR, 8-DPSK<br>with 3 MBit/s      | 1.2634             | 1.2026            | 1000                  | >0.8423 (two-thirds of the 20 dB bandwidth)                      | PASS   |



#### a) 20 dB bandwidth:

# Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)



| Receiv              | ver   | S               | oectrum ( | ×                                             |                        |             |      |                                         |            |                                                  |
|---------------------|-------|-----------------|-----------|-----------------------------------------------|------------------------|-------------|------|-----------------------------------------|------------|--------------------------------------------------|
| Ref Le<br>Att<br>PS | vel 1 | 0.00 dB<br>30 d |           | RB<br>µs VB                                   | 사람님은 사람은 것을 알았는 것이 좋다. | de Auto FFT | Inpu | t 1 AC                                  |            | (=                                               |
| ●1Pk M              | ах    |                 |           |                                               |                        |             |      |                                         |            |                                                  |
| 0 dBm-              |       |                 |           |                                               | MI                     | D3[1]       |      |                                         | 2.44       | 0.07 dB<br>942.10 kHz<br>-2.45 dBm<br>100000 GHz |
| -20 dBm             |       | 1 -22.9         | 10 dBm    | M2                                            | N                      | ~~          | 103  |                                         |            |                                                  |
| -30 dBrr            |       |                 | 1         | 5                                             | -                      |             | N    | 2                                       |            |                                                  |
| -40 dBm             | 6     | ~~              | w         |                                               |                        |             |      | 7                                       | m          |                                                  |
| -50 dBn             | 5     |                 |           |                                               |                        |             |      |                                         | 2          | m                                                |
| -70 dBm             | +     |                 |           |                                               |                        |             |      |                                         |            |                                                  |
| -80 dBrr            | +     |                 |           |                                               | + +                    |             |      |                                         |            |                                                  |
| CF 2.4              | 41 GH | z               |           | -                                             | 691 p                  | ts          |      | , i i i i i i i i i i i i i i i i i i i | Sp         | an 3.0 MHz                                       |
| Marker              | 21    |                 |           |                                               |                        |             |      |                                         |            |                                                  |
| Type                | Ref   | Trc             | X-value   |                                               | Y-value                | Function    |      | Fun                                     | ction Resu | lt                                               |
| M1                  |       | 1               | 2.44      | 1 GHz                                         | -2.45 dBm              | _           |      |                                         |            |                                                  |
| M2                  |       | 1               | 2,440531  | and the local operation of the local distance | -22.34 dBm             | -           |      |                                         |            |                                                  |
| D3                  | M2    | 1               | 942       | .1 kHz                                        | 0.07 dB                | 2           | _    |                                         |            |                                                  |

| ( plen s   | TESTED     |
|------------|------------|
| SINCE 1978 | IN GERMANY |

Page 36 of 94 pages

| Recei                                    | ver   | Sp                | ectrum              | ×                                     |                           |              |           |              |                                               |
|------------------------------------------|-------|-------------------|---------------------|---------------------------------------|---------------------------|--------------|-----------|--------------|-----------------------------------------------|
| Att<br>PS                                |       | 0.00 dBn<br>30 dI |                     | RB<br>µs VB                           | W 30 kHz<br>W 100 kHz Mod | e Auto FFT I | nput 1 AC |              |                                               |
| 1Pk M                                    | ax    |                   |                     |                                       |                           |              |           |              |                                               |
| 0 dBm-                                   | 0     |                   |                     |                                       | m                         | D3[1]        |           | -            | -0.43 dB<br>46.50 kHz<br>2.91 dBm<br>0000 GHz |
| -20 dBn<br>-30 dBn                       | n-D   | 1 -22.91          | 0 dBm               | MZ                                    | N                         | ma           | <u></u>   |              |                                               |
| -30 dBn<br>-40 dBn                       | n     | $\sim$            | h                   |                                       |                           |              | 1         | ~            |                                               |
| -40 dBn<br>-50 dBn<br>-60 dBn<br>-70 dBn |       |                   |                     |                                       |                           |              |           | h            | m                                             |
| -70 dBn                                  | n     |                   |                     |                                       |                           |              | _         |              |                                               |
| -80 dBn                                  | n     |                   |                     |                                       |                           |              |           |              |                                               |
| CF 2.4                                   | 8 GHz |                   |                     |                                       | 691 pts                   |              |           | Span         | 3.0 MHz                                       |
| Marker                                   |       |                   | A-14-44-14-14-14-14 | 12                                    |                           |              |           |              |                                               |
| Type                                     | Ref   | Trc               | X-value             |                                       | Y-value                   | Function     | Fun       | ction Result |                                               |
| M1                                       |       | 1                 |                     | H8 GHz                                | -2.91 dBm                 |              |           |              |                                               |
| M2                                       |       | 1                 | 2.479531            | or other states and the second second | -22.83 dBm                |              |           |              |                                               |
| D3                                       | M2    | 1                 | 946                 | .5 kHz                                | -0.43 dB                  |              |           |              |                                               |

# EDR, $\pi$ /4-DQPSK with 2 MBit/s

| Receiv              | ver   | Sp                | ectrum        | $\otimes$     |                            |              |                 |                                                        |  |
|---------------------|-------|-------------------|---------------|---------------|----------------------------|--------------|-----------------|--------------------------------------------------------|--|
| Ref Le<br>Att<br>PS | vel 1 | 0.00 dBm<br>30 dB |               | RB<br>2 µs VB | W 30 kHz<br>W 100 kHz Mode | e Auto FFT I | nput 1 AC       |                                                        |  |
| 1Pk M               | ax    |                   |               |               |                            |              |                 |                                                        |  |
| 0 dBm—              | -     |                   |               |               | M12                        | D3[1]        |                 | -0.34 dB<br>1,23730 MHz<br>-5.68 dBm<br>2.40200000 GHz |  |
| -10 dBm             |       |                   |               | m             | which                      | Ann          | ~               |                                                        |  |
| -20 dBm             |       | 1 -25.68          | dBm-          | 1             |                            |              | No3             |                                                        |  |
| -30 dBm             |       |                   | ſ             |               |                            |              |                 |                                                        |  |
| -40 dBm             | 1-    |                   |               |               |                            |              | 1               |                                                        |  |
| -50 dBm             | 2     | S                 |               |               |                            |              |                 | tur lum                                                |  |
| -60 dBrr            | -     |                   | -             |               |                            |              |                 |                                                        |  |
| -70 dBm             | -     |                   |               |               |                            |              |                 |                                                        |  |
| -80 dBm             | +     |                   |               |               |                            |              |                 |                                                        |  |
| CF 2.4              | 02 GH | z                 |               |               | 691 pts                    | 8            |                 | Span 3.0 MHz                                           |  |
| Marker              |       |                   |               |               |                            |              |                 |                                                        |  |
| Type<br>M1          | Ref   |                   | 2.402 GHz     |               | -5.68 dBm                  | Function     | Function Result |                                                        |  |
| M2                  |       | 1                 | 2.4013792 GHz |               | -24.76 dBm                 |              |                 |                                                        |  |
| D3                  | M2    | 1                 | 1.2373 MHz    |               | -0.34 dB                   |              |                 |                                                        |  |

| TESTED               |
|----------------------|
| TESTED<br>IN GERMANY |
|                      |

D3

M2

1

1.2504 MHz

Test report no.: 18/09-0026B Page 37 of 94 pages

| Receive            | er                | Spectru               | ım      | ×                |              |                   |                              |         |     |            |      |           |                         |
|--------------------|-------------------|-----------------------|---------|------------------|--------------|-------------------|------------------------------|---------|-----|------------|------|-----------|-------------------------|
| COLORADO DE MARINE | el 10.00          | and the second second |         |                  | RBW          | 30 kHz            |                              |         |     |            |      |           | [                       |
| Att                | 30                | db SV                 | NT 63.  | 2 µs             | VBW          | 100 kHz           | Mode                         | Auto FF | т   | Input 1 AC |      |           |                         |
| PS<br>PS Max       |                   |                       |         |                  |              |                   |                              |         |     |            |      |           |                         |
| TPK Max            |                   |                       |         |                  |              | 5                 | -                            | D3[     | 11  |            |      |           | -0.26 dB                |
| 0 dBm              |                   |                       |         |                  |              |                   | MI                           |         | -   |            |      | 3         | .25470 MHz              |
| 0 ubin             |                   |                       |         |                  |              |                   | X                            | M1      | [1] |            |      | V. 1978   | -3.87 dBm               |
| -10 dBm-           | -                 | -                     |         |                  | 0            | A                 | An                           | And     | 2   |            |      | 2.44      | 100000 GHz              |
| 00 10-             |                   |                       |         | 1 m              | ~ ~          | 14 5              | 1.8                          |         | wh- | 2          |      |           |                         |
| -20 dBm-           | D1 -23            | .860 dBm              |         |                  |              |                   | _                            |         |     | 403        |      |           | -                       |
| -30 dBm-           |                   |                       | 1       | <u> </u>         | -            |                   | +                            |         |     |            | _    |           | -                       |
| 10 10-             |                   | 1                     | 1       |                  |              |                   |                              |         |     |            |      |           |                         |
| -40 dBm-           | ww                | mm                    |         |                  |              |                   |                              |         |     |            | 2C   | w         | m                       |
| -50 dBm-           | -                 |                       |         | <u> </u>         |              |                   | +                            |         |     |            |      |           | -                       |
|                    |                   |                       |         |                  |              |                   |                              |         |     |            |      |           |                         |
| -60 dBm-           |                   |                       |         |                  |              |                   | 1                            |         |     |            |      |           |                         |
| -70 dBm-           |                   |                       |         | <u> </u>         | _            |                   | +                            |         |     |            | _    |           |                         |
|                    |                   |                       |         |                  |              |                   |                              |         |     |            |      |           |                         |
| -80 dBm-           |                   |                       |         |                  |              |                   |                              |         |     |            |      |           |                         |
| 05 0 111           |                   |                       |         |                  |              |                   |                              |         |     |            |      |           | 0.0 000                 |
| CF 2.441<br>Marker | GHZ               |                       |         |                  | _            | 69                | 1 pts                        |         | _   |            |      | sp        | an 3.0 MHz              |
|                    | Ref   Trc         | 1 >                   | (-value |                  | 1            | Y-value           | 1                            | Functi  | on  |            | Fund | tion Resu | lt                      |
| M1                 | 1                 |                       | 2.4     | 41 GHz           |              | -3.87 (           | a ha shi da ba ana a a sha a |         |     |            |      |           |                         |
| M2<br>D3           | M2 1              |                       | .44036  | 61 GHz<br>47 MHz |              | -24.16 (          |                              |         |     |            |      |           |                         |
| 03                 | 1912 1            | 4                     | 1.20    | 47 MP12          | 61. <u> </u> | -0.26             | ub                           |         | _   | 1          | _    |           |                         |
| Receive            | Street and street | Spectru               | ım      | ×                |              |                   |                              |         |     |            |      |           |                         |
| Att<br>PS          | el 10.00<br>30    |                       | WT 63.  |                  | RBW<br>VBW   | 30 kHz<br>100 kHz | Mode                         | Auto FF | т   | Input 1 AC |      |           |                         |
| 1Pk Max            |                   |                       |         |                  |              |                   |                              |         |     |            |      |           |                         |
|                    |                   |                       |         |                  |              |                   |                              | D3[     | 1]  |            |      |           | 0.39 dB                 |
| 0 dBm              |                   |                       |         |                  |              |                   | MI                           |         |     |            |      | 1         | .25040 MHz              |
|                    |                   |                       |         |                  |              |                   | Å                            | M1      | [1] |            |      | 2.48      | -4.10 dBm<br>000000 GHz |
| -10 dBm-           | -                 | -                     |         |                  | ~            | 2m                | 42                           | that    | m   |            |      |           |                         |
| -20 dBm-           | _                 |                       | MO      | 1                |              |                   |                              |         |     | 103        | _    |           | -                       |
|                    | D1 -24            | .100 dBm              | 1       |                  | -            | 2                 | +                            |         |     | Mrs .      |      |           |                         |
| -30 dBm-           | -                 |                       | 1       |                  | -            | 5                 | -                            |         |     |            |      | 2         | 2 0 2                   |
| -40.08m7           |                   | ~                     | 1       |                  |              | -                 | -                            |         |     | 1          | A    |           | 100000                  |
| ~~~~               |                   |                       | 3       |                  |              |                   |                              |         |     |            | ~    | w         | P                       |
| -50 dBm-           | -                 |                       |         |                  | -            |                   | +                            |         |     |            | -    |           | -                       |
| -60 dBm-           |                   |                       |         |                  |              | -                 |                              |         |     |            |      | -         |                         |
| -00 0011           |                   |                       |         |                  |              |                   |                              |         |     |            |      |           |                         |
| -70 dBm-           | -                 |                       |         | <u> </u>         | -            |                   | +                            |         |     |            | _    |           | -                       |
| -80 dBm-           |                   |                       |         |                  |              |                   |                              |         |     |            |      | _         |                         |
| -80 08/11-         |                   |                       |         |                  |              |                   |                              |         |     |            |      |           |                         |
| CF 2.48            | CH2               |                       |         |                  |              | 60                | 1 pts                        |         |     |            |      |           | an 3.0 MHz              |
| Marker             | 0112              |                       |         |                  |              | 09                | r pts                        |         |     |            |      | эр        |                         |
|                    | Ref   Trc         |                       | (-value | 3                | 1            | Y-value           | 1                            | Functi  | on  |            | Fund | tion Resu | lt                      |
|                    | 1                 |                       |         | 48 GHz           | 8            | -4.10 (           | fBm                          |         |     |            |      |           |                         |
| M1<br>M2           | 1                 |                       | .47936  | C 4              | 21           | -24.42 (          | in                           |         |     |            |      |           |                         |

0.39 dB



Page 38 of 94 pages

# EDR, 8-DPSK with 3 MBit/s

| Receiv               | er    | Sp                | ectrum 🗵  | ס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                |                                        | E A                                            |
|----------------------|-------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------------------------------|------------------------------------------------|
| Ref Lev<br>Att<br>PS | el 10 | ).00 dBr<br>30 dI |           | RBW<br>JS VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | de Auto FFT    | Input 1 AC                             |                                                |
| 1Pk Ma               | x     |                   | 78 De     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85 IS      |                |                                        |                                                |
| 0 dBm—               |       |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MI         | D3[1]<br>M1[1] |                                        | -0.46 dl<br>1.25470 MH<br>-5.68 dBn            |
| -10 dBm-             | -     |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ant        | A              |                                        | 2.40200000 GH                                  |
| -20 dBm-             |       |                   | M2        | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | m              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                |
| -30 dBm-             |       | -25.68            | 30 dBm    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                | 1                                      |                                                |
| -40 dBm-             | ~     |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                | 1                                      | mm                                             |
| -50 dBm-             |       | han               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                |                                        |                                                |
| -60 dBm-             | +     |                   | + +       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                |                                        |                                                |
| -70 dBm-             | +     |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                |                                        |                                                |
| -80 dBm-             | -     |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                |                                        |                                                |
| CF 2.40              | 2 GH: | z                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 691 p      | ts             |                                        | Span 3.0 MHz                                   |
| Marker               |       |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                |                                        |                                                |
| Type                 | Ref   | Trc               | X-value   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y-value    | Function       | F                                      | unction Result                                 |
| M1                   |       | 1                 | 2.402     | and the second sec | -5.68 dBm  |                | 1.00                                   | 2011 XIII 2020 1020 1020 1020 1020 1020 1020 1 |
| M2<br>D3             |       | 1                 | 2.4013618 | and the second sec | -24.80 dBm |                |                                        |                                                |
|                      | M2    | 1                 | 1.2547    | MH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.46 dB   | 01             | 1                                      |                                                |

| Receiv   | /er   | S               | pectrum | (X)      |     |                   |        |          |      |         |        |            |                          |
|----------|-------|-----------------|---------|----------|-----|-------------------|--------|----------|------|---------|--------|------------|--------------------------|
| Ref Le   | vel 1 | 0.00 dB<br>30 d |         | 63.2 µs  | RBW | 30 kHz<br>100 kHz | Mode   | Auto FF  | ाः । | Input 1 | AC     |            |                          |
| PS       |       |                 |         | p.       |     |                   |        |          |      |         |        |            |                          |
| 91Pk M   | эх    |                 | 10.     | 100      |     | 3                 |        |          |      |         |        |            |                          |
| 0 dBm—   |       |                 |         |          |     |                   | Ma     | D3[      |      |         |        |            | -0.64 dB                 |
| -10 dBrr | 1     |                 |         |          |     | A                 | A      | A M1     | 11   |         |        | 2.4        | -3.85 dBn<br>+100000 GH: |
| -20 dBrr |       |                 |         | MP       | ~~~ | ~                 |        | - ww     | h    | 1       |        |            |                          |
| -30 dBrr |       | 1 -23.8         | 60 dBm  | 4        |     |                   |        | _        |      | -       |        |            |                          |
| -40 dBr  | A     | 2-              | N       | <u> </u> |     |                   | +      |          |      | _       | The    | ma         | · ·····                  |
| -50 dBm  |       |                 | -       | -        | _   | -                 |        |          |      | _       |        | - Y        |                          |
| -60 dBrr | +     |                 | -       |          |     | -                 | +      | -        |      | -       |        | -          | -                        |
| -70 dBm  | +     |                 |         | -        |     |                   | -      |          |      | +       |        |            | -                        |
| -80 dBm  | +     |                 |         | _        |     |                   | +-     |          |      |         |        |            |                          |
| CF 2.4   | +1 GH | z               |         |          |     | 69                | 01 pts | ( )      |      | -       |        | S          | pan 3.0 MHz              |
| Marker   |       |                 |         |          |     |                   |        |          |      |         |        |            |                          |
| Type     | Ref   | Trc             | X-v     | alue     |     | Y-value           | 1      | Function | on   |         | Fur    | nction Res | ult                      |
| M1       |       | 1               |         | 2.441 GH | z   | -3.85             | dBm    |          |      | 1       | 0,0103 |            |                          |
| M2       |       | 1               | 2.44    | 03531 GH | z   | -23.54            | dBm    |          |      |         |        |            |                          |
| D3       | M2    | 1               | 1       | .2634 MH | z   | -0.64             | 4 dB   |          |      |         |        |            |                          |



Page 39 of 94 pages

| Receiv              | ver   | Spe               | ectrum 🛞              |                       |                  |          |         |     |             |                                                   |
|---------------------|-------|-------------------|-----------------------|-----------------------|------------------|----------|---------|-----|-------------|---------------------------------------------------|
| Ref Le<br>Att<br>PS | vel 1 | 0.00 dBm<br>30 dB |                       | RBW 30 k<br>VBW 100 k |                  | Auto FFT | Input 1 | AC  |             |                                                   |
| 91Pk M              | ax    |                   |                       |                       |                  |          |         |     |             |                                                   |
| 0 dBm-              | n     |                   |                       |                       | n An             | D3[1]    |         |     |             | -0.53 dB<br>.25470 MHz<br>-4.09 dBm<br>000000 GHz |
| -20 dBm             | 0     | 1 -24.090         | M2<br>) dBm           |                       |                  | vin      | - more  |     |             |                                                   |
| -99.dBn             | w     | ~~~               | ~~                    |                       |                  |          | X       | 200 | www.v       | mo.                                               |
| -50 dBm             |       |                   |                       |                       |                  |          |         |     |             |                                                   |
| -70 dBm             | n     |                   |                       |                       | -                | -        |         |     |             |                                                   |
| -80 dBm             | n     |                   |                       |                       |                  |          |         |     |             |                                                   |
| CF 2.4              | 8 GHz |                   |                       | 867/16                | 691 pts          | ¢1       |         |     | Spa         | an 3.0 MHz                                        |
| Marker<br>Type      | Ref   | Trc               | X-value               | Y-va                  | lue              | Function | 1       | Fun | ction Resul | t                                                 |
| M1<br>M2            |       | 1                 | 2.48 G<br>2.4793575 G | Hz -4.                | 09 dBm<br>06 dBm |          |         |     |             |                                                   |
| D3                  | M2    | 1                 | 1.2547 M              | Hz -I                 | 0.53 dB          |          |         |     |             |                                                   |

### 20 dB bandwidth:

Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

### Basic rate, GFSK with 1 MBit/s

| Receiv              | ver   | Sp                | ectrum  | ×                                                                                                              |                           |              |           |                                                       |
|---------------------|-------|-------------------|---------|----------------------------------------------------------------------------------------------------------------|---------------------------|--------------|-----------|-------------------------------------------------------|
| Ref Le<br>Att<br>PS | vel 1 | 0.00 dBm<br>30 dB |         | RB<br>2 µs VB                                                                                                  | W 30 kHz<br>W 100 kHz Mod | e Auto FFT I | nput 1 AC |                                                       |
| O 1Pk M             | ах    |                   |         |                                                                                                                |                           |              |           |                                                       |
| 0 dBm-              |       |                   |         |                                                                                                                | Mª                        | D3[1]        |           | -0.27 dB<br>903.00 kHz<br>-0.76 dBm<br>2.40199570 GHz |
| -10 dBm             | 1     |                   |         | M2                                                                                                             | N                         | U.           |           |                                                       |
| -20 dBm             | 0     | 1 -20.76          | ) dBm   | Jul                                                                                                            |                           | D3           |           |                                                       |
| -30 dBm             |       |                   |         | 5                                                                                                              |                           |              | 7         |                                                       |
| -40 dBm             | 1     | m                 | 5       |                                                                                                                | -                         |              | h         | m /                                                   |
| 50 dBr              | F     | ~                 | ~       |                                                                                                                |                           |              |           | 1 w                                                   |
| -60 dBm             | +     |                   | -       |                                                                                                                |                           | -            | -         |                                                       |
| -70 dBm             | -     |                   |         |                                                                                                                |                           |              |           |                                                       |
| -80 dBrr            | -     |                   |         |                                                                                                                |                           |              | -         |                                                       |
| CF 2.4              | 02 GH | z                 |         |                                                                                                                | 691 pts                   |              | ;         | Span 3.0 MHz                                          |
| Marker              |       |                   |         |                                                                                                                |                           |              |           |                                                       |
| Туре                | Ref   |                   | X-value |                                                                                                                | Y-value                   | Function     | Fund      | tion Result                                           |
| M1                  |       | 1                 | 2.40199 | and the barry has been been as the second second                                                               | -0.76 dBm                 |              |           |                                                       |
| M2                  | 140   | 1                 | 2.40154 | And a second | -20.24 dBm                |              |           |                                                       |
| D3                  | M2    | 1                 | 903     | 3.0 kHz                                                                                                        | -0.27 dB                  |              |           |                                                       |

D3

M2

1

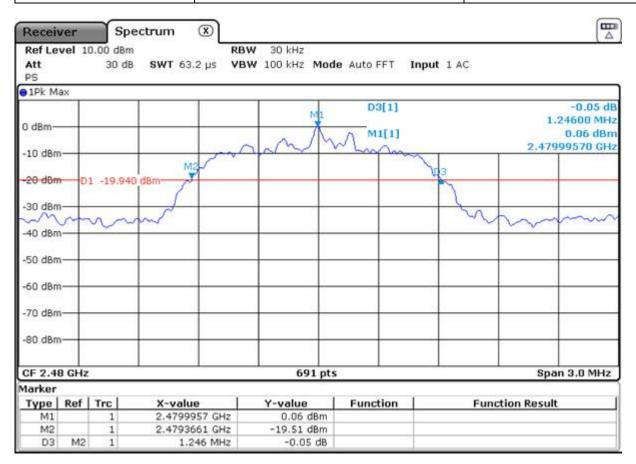
916.1 kHz

-0.19 dB

Test report no.: 18/09-0026B

Page 40 of 94 pages

| Receiver                                                                                                                                                                   | Spe                              | ectrum 🛞                                                                                                       |                                                                   |                                 |           |                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-----------|------------------------------------------------------|
| Ref Level 1                                                                                                                                                                |                                  | and a second | BW 30 kHz                                                         |                                 |           |                                                      |
| Att                                                                                                                                                                        | 30 dB                            |                                                                                                                |                                                                   | e Auto FFT                      | nput 1 AC |                                                      |
| 1Pk Max                                                                                                                                                                    |                                  |                                                                                                                |                                                                   |                                 |           |                                                      |
|                                                                                                                                                                            |                                  |                                                                                                                | M1                                                                | D3[1]                           |           | -0.26 dB                                             |
| 0 dBm                                                                                                                                                                      |                                  | <u> </u>                                                                                                       | mt                                                                | M1[1]                           |           | 920.40 kHz<br>0.71 dBm                               |
| -10 d8m-                                                                                                                                                                   |                                  |                                                                                                                | 1                                                                 | M                               |           | 2.44099570 GHz                                       |
|                                                                                                                                                                            |                                  | M2 /                                                                                                           | ~~                                                                | 4 03                            |           |                                                      |
| -20 d8m-0                                                                                                                                                                  | 1 -19.300                        | dBm                                                                                                            |                                                                   | 200                             |           |                                                      |
| -30 dBm                                                                                                                                                                    |                                  | 1                                                                                                              |                                                                   |                                 | Z         |                                                      |
|                                                                                                                                                                            |                                  | $\sim$                                                                                                         |                                                                   |                                 | ~         |                                                      |
| -40 dBm                                                                                                                                                                    | M                                | N                                                                                                              |                                                                   | 1                               |           | m                                                    |
| -40 dBm                                                                                                                                                                    | <u>~</u>                         |                                                                                                                |                                                                   |                                 |           | - Chan                                               |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                     |                                  |                                                                                                                |                                                                   |                                 |           |                                                      |
| -60 dBm-                                                                                                                                                                   |                                  |                                                                                                                |                                                                   |                                 |           |                                                      |
| -70 dBm                                                                                                                                                                    |                                  |                                                                                                                |                                                                   |                                 | _         |                                                      |
| -80 dBm                                                                                                                                                                    |                                  |                                                                                                                |                                                                   |                                 |           |                                                      |
| -80 08m                                                                                                                                                                    |                                  |                                                                                                                |                                                                   |                                 |           |                                                      |
| CF 2.441 GH                                                                                                                                                                | Iz                               |                                                                                                                | 691 pts                                                           |                                 |           | Span 3.0 MHz                                         |
| Marker                                                                                                                                                                     |                                  |                                                                                                                |                                                                   | 51                              |           |                                                      |
| Type   Ref                                                                                                                                                                 | Tral                             | X-value                                                                                                        | V uslus                                                           |                                 | Eup       | ction Result                                         |
|                                                                                                                                                                            |                                  |                                                                                                                | Y-value                                                           | Function                        | run       | ction nostin                                         |
| M1                                                                                                                                                                         | 1                                | 2.4409957 GHz                                                                                                  | 0.71 dBm                                                          | Function                        | run       | crion no sur                                         |
| M1<br>M2<br>D3 M2                                                                                                                                                          | 1 1 1                            | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz                                                                    |                                                                   | Function                        | Pun       |                                                      |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att                                                                                                                        | 1<br>1<br>Spe                    | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum                                                          | 0.71 dBm<br>-19.40 dBm                                            |                                 | nput 1 AC |                                                      |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS                                                                                                                  | 1<br>1<br>0.00 dBm               | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum                                                          | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz                   |                                 | a concert |                                                      |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS                                                                                                                  | 1<br>1<br>0.00 dBm               | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum                                                          | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod |                                 | a concert | -0.19 dB                                             |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>0 dBm                                                                                            | 1<br>1<br>0.00 dBm               | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum                                                          | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz                   | e Auto FFT II                   | a concert | -0.19 dE<br>916.10 kHz                               |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>0 dBm                                                                                            | 1<br>1<br>0.00 dBm               | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum                                                          | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II                   | a concert | -0.19 dB                                             |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>PIPk Max<br>0 dBm<br>-10 dBm                                                                                  | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>PIPk Max<br>0 dBm<br>-10 dBm                                                                                  | 1<br>1<br>0.00 dBm               | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II                   | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                        | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>0<br>-30 dBm                                                        | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>0<br>-30 dBm                                                        | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>0<br>-30 dBm                                                        | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>• 1Pk Max<br>• 0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm                                 | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>0<br>-30 dBm                                                        | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>• 1Pk Max<br>• 10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>• 10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-70 dBm                                   | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>• 10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-60 dBm                                  | 1<br>1<br>0.00 dBm<br>30 dB      | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II<br>D3[1]<br>M1[1] | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>PIPk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm                | 1<br>1<br>1<br>0.00 dBm<br>30 dB | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II                   | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn<br>2.47999570 GHz |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>• 10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm | 1<br>1<br>1<br>0.00 dBm<br>30 dB | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II                   | a concert | -0.19 dE<br>916.10 kHz<br>1.10 dBn                   |
| M1<br>M2<br>D3 M2<br>Receiver<br>Ref Level 1<br>Att<br>PS<br>• 1Pk Max<br>• 10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm | 1<br>1<br>1<br>0.00 dBm<br>30 dB | 2.4409957 GHz<br>2.4405355 GHz<br>920.4 kHz<br>ectrum<br>SWT 63.2 μs VI                                        | 0.71 dBm<br>-19.40 dBm<br>-0.26 dB<br>BW 30 kHz<br>BW 100 kHz Mod | e Auto FFT II                   |           | -0.19 dE<br>916.10 kHz<br>1.10 dBn<br>2.47999570 GHz |




### EDR, $\pi$ /4-DQPSK with 2 MBit/s

| Receiv             | ver    | Spe               | ectrum 🛞                       |                              |             |            |                             |
|--------------------|--------|-------------------|--------------------------------|------------------------------|-------------|------------|-----------------------------|
| Contraction of the |        | 0.00 dBm          | L,                             | RBW 30 kHz                   |             |            | 1-                          |
| Att                |        | 30 dB             | SWT 63.2 µs                    | BW 100 kHz Mo                | de Auto FFT | Input 1 AC |                             |
| O 1Pk Ma           | ах     |                   | 92 - 24                        | N2 60                        |             |            |                             |
| -                  |        |                   |                                |                              | D3[1]       |            | -0.09 dB                    |
| 0 dBm-             | _      |                   |                                | M1                           |             |            | 1.26770 MHz                 |
|                    |        |                   |                                | A                            | M1[1]       |            | -2.77 dBm<br>2.40199570 GHz |
| -10 dBm            | n      |                   |                                | non                          | polyn       | m          | 2.40199370 GH2              |
| -20 dBm            | n      | 00 770            | Ma                             |                              |             | 100        |                             |
|                    |        | -22.770           | dBm                            |                              |             |            |                             |
| -30 dBm            | n- -   |                   |                                |                              |             |            |                             |
| -40 dBm            | n      |                   | 1                              |                              |             | -          | the star of                 |
| m                  | S      | sm                | ~                              |                              |             |            | the second second           |
| -50 dBm            | n      |                   |                                |                              |             |            |                             |
| -60 dBm            | n      |                   | -                              | _                            |             |            | _                           |
| 1995 - 30          |        |                   |                                |                              |             |            |                             |
| -70 dBm            | n      |                   |                                |                              |             |            |                             |
| -80 dBm            |        |                   |                                |                              |             |            |                             |
|                    |        |                   |                                |                              |             |            |                             |
| CF 2.40            | 02 GH  | z                 |                                | 691 pt                       | s           |            | Span 3.0 MHz                |
| Marker             |        |                   |                                |                              |             |            |                             |
| Туре               | Ref    |                   | X-value                        | Y-value                      | Function    | E FI       | unction Result              |
| M1<br>M2           |        | 1                 | 2.4019957 GHz<br>2.4013705 GHz | -2.77 dBm<br>-22.56 dBm      |             |            |                             |
| D3                 | M2     | 1                 | 1.2677 MHz                     | -0.09 dB                     |             |            |                             |
| Att                | vel 10 | 0.00 dBm<br>30 dB |                                | BW 30 kHz<br>/BW 100 kHz Mod | le Auto FFT | Input 1 AC |                             |
| PS<br>PS Ma        | 50     |                   |                                |                              |             |            |                             |
| DIPK M             | ax     |                   | 1 1                            |                              | D3[1]       |            | -0.04 dB                    |
| 0.40               |        |                   |                                | Ma                           | DOLL        |            | 1.24170 MHz                 |
| 0 dBm-             |        |                   |                                | . A.                         | A M1[1]     |            | -0.57 dBm                   |
| -10 dBm            | n      |                   |                                | non                          | M1[1]       | ~          | 2.44099570 GHz              |
|                    |        |                   | Ma                             |                              | 2.53        | 13         |                             |
| -20 d8m            | D      | -20.570           | dBm                            | -                            |             | -          |                             |
| -30 dBm            | n      |                   |                                |                              |             |            |                             |
| m                  | m      | s m               | ~                              |                              |             | 20         | hann                        |
| -40 dBm            |        |                   |                                |                              |             |            |                             |
| -50 dBm            | n      |                   |                                |                              |             |            |                             |
|                    |        |                   |                                |                              |             |            |                             |
| -60 dBm            | n      |                   |                                |                              |             |            |                             |
| -70 dBm            | n      |                   |                                |                              |             |            |                             |
|                    |        |                   |                                |                              |             |            |                             |
| -80 dBm            | 0      |                   |                                |                              |             |            |                             |
| CF 2.44            | 41 CH  | 7                 |                                | 691 pt                       |             |            | Span 3.0 MHz                |
| Marker             | ri un  |                   |                                | bar ht                       |             |            | apon 3.0 MHz                |
| Type               | Ref    | Trc               | X-value                        | Y-value                      | Function    | I Fu       | Inction Result              |
| M1                 |        | 1                 | 2.4409957 GHz                  | -0.57 dBm                    |             |            |                             |
| M2<br>D3           | M2     | 1                 | 2.4403661 GHz<br>1.2417 MHz    | -19.95 dBm<br>-0.04 dB       |             | _          |                             |
|                    | M2     | 1                 | 1.2417 MH2                     | =11.04.dB                    |             |            |                             |

| SNEETY-MURTINE |            |
|----------------|------------|
|                |            |
| JANCE 1978     | IN GERMANY |

Page 42 of 94 pages

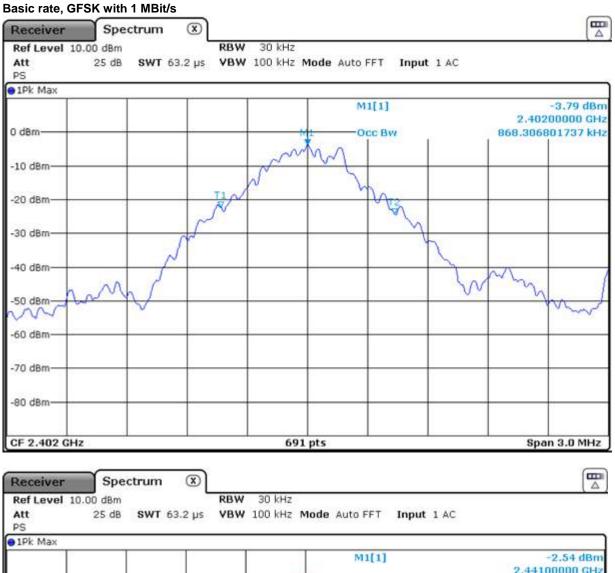


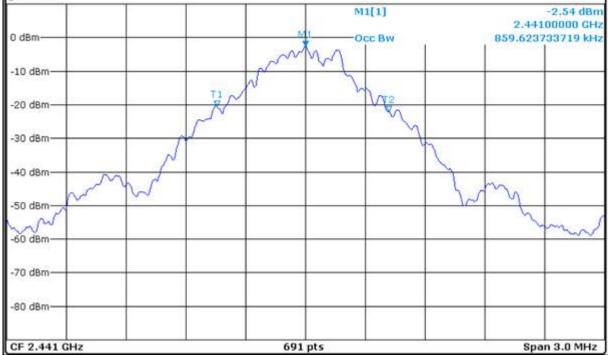
### EDR, 8-DPSK with 3 MBit/s

| Receiv    | /er   | Spe               | ectrum 🛞    | Î          |                 |               |           |                                                        |
|-----------|-------|-------------------|-------------|------------|-----------------|---------------|-----------|--------------------------------------------------------|
| Att<br>PS |       | 0.00 dBm<br>30 dB |             | RBW<br>VBW | S 7878 (S. 177) | e Auto FFT In | nput 1 AC |                                                        |
| 9 1Pk M   | эх    |                   | 1           |            |                 |               |           |                                                        |
| 0 dBm-    |       |                   |             |            | Anth            | D3[1]         |           | -0.17 dB<br>1.25470 MHz<br>-2.79 dBm<br>2.40199570 GHz |
| -20 dBm   | D     | 1 -22.810         | M2          | ~~~        |                 |               | he        |                                                        |
| -30 dBn   | +     |                   |             |            |                 |               |           |                                                        |
| -40 dBm   | ~ ~   | har               |             |            |                 |               | he        | m                                                      |
| -60 d8n   |       |                   |             |            |                 |               |           |                                                        |
| -70 dBr   | +     |                   | · · · · ·   |            |                 |               | -         |                                                        |
| -80 dBm   | +     |                   |             |            |                 |               |           |                                                        |
| CF 2.4    | )2 GH | z                 |             |            | 691 pts         | 3             |           | Span 3.0 MHz                                           |
| Marker    |       |                   |             | 10         |                 |               |           |                                                        |
| Туре      | Ref   |                   | X-value     |            | Y-value         | Function      | Fun       | ction Result                                           |
| M1        |       | 1                 | 2.4019957 G |            | -2.79 dBm       |               |           |                                                        |
| M2<br>D3  | M2    | 1                 | 2.4013575 G |            | -22.10 dBm      |               |           |                                                        |
| 03        | M2    | 1                 | 1.2547 M    | H2         | -0.17 dB        |               |           |                                                        |

| ( pkm      | ITESTED    |
|------------|------------|
| SINCE 1978 | IN GERMANY |

Page 43 of 94 pages

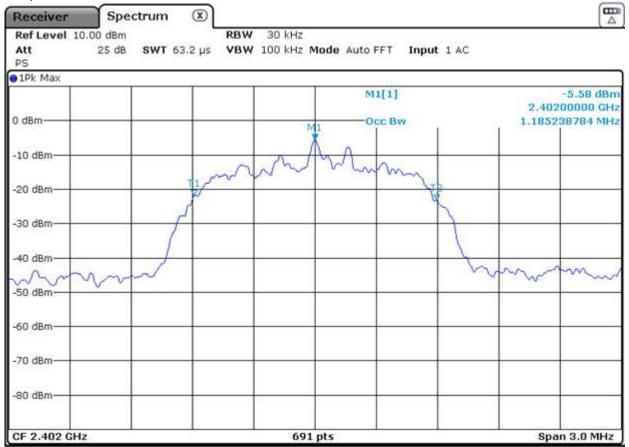

| Recei              | ver   | Sp                | ectrum   | ×                                       |            |              |           |                                                   |
|--------------------|-------|-------------------|----------|-----------------------------------------|------------|--------------|-----------|---------------------------------------------------|
| Att<br>PS          |       | 0.00 dBn<br>30 dB |          | RB<br>µs VB                             |            | e Auto FFT I | nput 1 AC | Va<br>Va                                          |
| 1Pk M              | lax   |                   |          |                                         |            |              |           |                                                   |
| 0 dBm-             | n     |                   |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | m          | D3[1]        |           | 0.27 d<br>1.25900 MF<br>-0.56 dB<br>2.44099570 GF |
| -20 dBr            | n - 0 | 1 -20.56          | 0 d8m    | 2                                       |            |              | 183<br>1  |                                                   |
| -30 dBr            | 0     | m                 |          |                                         |            |              | the       | man                                               |
| -40 dBr<br>-50 dBr |       |                   |          | -                                       |            |              |           |                                                   |
| -60 dBr            | n     |                   |          |                                         |            |              |           |                                                   |
| -70 dBr            | n     |                   |          |                                         |            |              | 2         |                                                   |
| -80 dBr            | n     |                   |          | -                                       |            |              |           |                                                   |
| CF 2.4             | 41 GH | z                 |          |                                         | 691 pts    | 1            |           | Span 3.0 MHz                                      |
| Marker             | S     |                   | 0.00     |                                         |            |              |           |                                                   |
| Туре               | Ref   | Trc               | X-value  | 2                                       | Y-value    | Function     | Fur       | nction Result                                     |
| M1                 |       | 1                 | 2,440995 |                                         | -0.56 dBm  |              |           |                                                   |
| M2                 |       | 1                 | 2.440348 |                                         | -20.28 dBm |              |           |                                                   |
| D3                 | M2    | 1                 | 1,25     | 9 MHz                                   | 0.27 dB    |              |           |                                                   |


| Receiv              | ver   | Sp               | ectrum   | X                                          |                           |            |            |                                     |
|---------------------|-------|------------------|----------|--------------------------------------------|---------------------------|------------|------------|-------------------------------------|
| Ref Le<br>Att<br>PS | vel 1 | 0.00 dBr<br>30 d |          | RB<br>µs VB                                | W 30 kHz<br>W 100 kHz Mod | e Auto FFT | Input 1 AC | 3.                                  |
| O 1Pk M             | ax    |                  |          |                                            |                           |            |            |                                     |
| 0 dBm-              | _     |                  |          |                                            | MI                        | D3[1]      |            | -0.63 dE<br>1.26340 MHz<br>0.07 dBm |
| -10 dBm             | -     |                  |          | sor and                                    | m mm                      | - Lyn      | $\sim$     | 2.47999570 GHz                      |
| -20 dBm             | n D   | 1 -19.94         | 0 dBm    | <u> </u>                                   | -                         |            | No3        |                                     |
| -30 dBm             | 1     | m                |          | -                                          | 0                         |            | 1 h        | man                                 |
| -40 dBm             | 1     |                  |          |                                            |                           |            |            |                                     |
| -50 dBm             | 1-    |                  |          |                                            |                           |            |            |                                     |
| -60 dBm             | -     |                  |          |                                            | -                         | -          |            |                                     |
| -70 dBm             |       |                  |          |                                            |                           |            |            | -                                   |
| -80 dBn             | ,+-   |                  |          |                                            |                           |            |            | _                                   |
| CF 2.4              | 8 GHz |                  |          |                                            | 691 pts                   | . I        |            | Span 3.0 MHz                        |
| Marker              |       |                  |          |                                            |                           |            |            |                                     |
| Туре                | Ref   |                  | X-value  |                                            | Y-value                   | Function   | Fi Fi      | unction Result                      |
| M1                  |       | 1                | 2.479995 |                                            | 0.07 dBm                  |            |            |                                     |
| M2                  |       | 1                | 2.479348 | and plane period of the state of the local | -19.56 dBm                |            |            |                                     |
| D3                  | M2    | 1                | 1.263    | 4 MHz                                      | -0.63 dB                  | 1          | 1          |                                     |



### b) 99% bandwidth:

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)






| Test report no.:<br><b>18/09-0026B</b> | Page 45 of 94 pages |
|----------------------------------------|---------------------|
|                                        |                     |

| Receiver                    | Spect | rum     | × |                     |                        |                 |        |     |                                   |
|-----------------------------|-------|---------|---|---------------------|------------------------|-----------------|--------|-----|-----------------------------------|
| Ref Level 10.0<br>Att<br>PS |       | SWT 63. |   | W 30 kH<br>W 100 kH | z<br>z <b>Mode</b> Aut | o FFT Inpu      | t 1 AC |     |                                   |
| 1Pk Max                     |       |         |   | 27                  | 2                      |                 |        |     |                                   |
| 0 dBm                       |       |         |   |                     | MI                     | M1[1]<br>Occ Bw |        |     | -2.83 dBr<br>00000 GH<br>67728 kH |
| -10 dBm                     | -+    |         |   | m                   | www                    | 2               |        |     |                                   |
| -20 dBm                     |       |         | N |                     |                        | ME              |        |     |                                   |
| -30 d8m                     |       |         | 1 | -                   | 1-                     | M               | 4      |     |                                   |
| -40 dBm-                    | m     | 1       |   | -                   |                        | -               | 1      | m   |                                   |
| -50 dBm                     |       | ~       |   |                     |                        |                 | 1      | h   | m                                 |
| -60 dBm                     |       |         |   |                     |                        |                 |        |     |                                   |
| -80 dBm                     |       |         |   |                     |                        |                 |        |     |                                   |
| CF 2.48 GHz                 |       |         |   |                     | 591 pts                |                 |        | Sna | n 3.0 MHz                         |

### ι, π



| TESTED<br>IN GERMANY                                                | Test report no.:<br><b>18/09-0026B</b>               | Page 46 of 94 pag                 |
|---------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|
| Receiver Spectrum<br>Ref Level 10.00 dBm<br>Att 25 dB SWT 63.<br>PS | RBW 30 kHz<br>2 µs VBW 100 kHz Mode Auto FFT Input 1 | I AC                              |
| 1Pk Max                                                             | M1[1]                                                | -3.95 dBm                         |
| ) dBm                                                               | Occ Bw                                               | 2.44100000 GHz<br>1.185238784 MHz |
| 10 dBm                                                              | manum                                                |                                   |
| 20 dBm                                                              |                                                      |                                   |
| 30 dBm                                                              |                                                      |                                   |
| 0 dBm mm                                                            |                                                      | Munu                              |
| 0 dBm                                                               |                                                      |                                   |
| 0 dBm                                                               |                                                      |                                   |
| 0 dBm                                                               |                                                      |                                   |
| 30 dBm                                                              |                                                      |                                   |
| F 2.441 GHz                                                         | 691 pts                                              | Span 3.0 MHz                      |
| eceiver Spectrum                                                    | $\overline{\mathbf{x}}$                              |                                   |

| 🔵 1Pk Max   |   |    |             |       |      |     |                                      |
|-------------|---|----|-------------|-------|------|-----|--------------------------------------|
| 0 dBm       |   |    |             | M1[1] | , r  |     | -4.01 dBm<br>000000 GHz<br>80318 MHz |
| -10 dBm     |   | m  | m           | hann  | ~    |     |                                      |
| -20 dBm     | Ţ | 1/ |             |       | - TE |     |                                      |
| -30 dBm     |   |    |             |       | 1    |     |                                      |
| -40,68m     | m |    | · · · · · · |       | JV-  | w   | www                                  |
| -50 dBm     |   |    |             |       |      |     |                                      |
| -60 dBm     |   |    |             |       |      |     |                                      |
| -70 dBm     |   |    |             |       |      |     |                                      |
| -80 dBm     |   |    |             |       |      |     | 1                                    |
| CF 2.48 GHz |   |    | 691         | pts   |      | Spa | in 3.0 MHz                           |

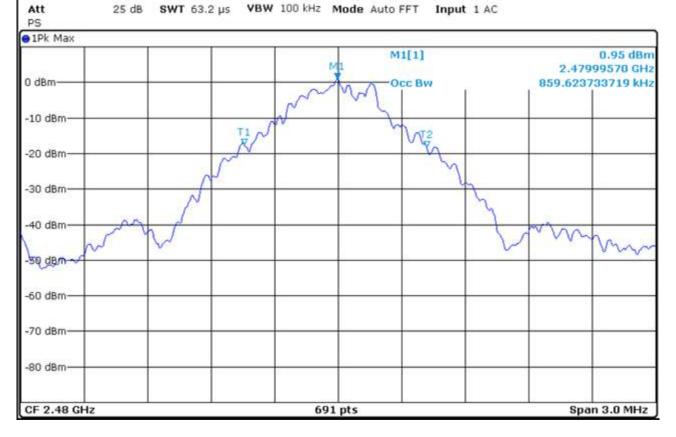


# EDR, 8-DPSK with 3 MBit/s

| Receiver                                                                                                                                                                           | and the second second second | ctrum            | ×               |       |                       |            |       |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|-----------------|-------|-----------------------|------------|-------|-------------------------|
| Ref Level<br>Att                                                                                                                                                                   | 10.00 dBm<br>25 dB           | SWT 63.          | RBW<br>2 µs VBW |       | ode Auto FFT          | Input 1 AC |       |                         |
| PS<br>1Pk Max                                                                                                                                                                      |                              |                  |                 |       |                       |            |       |                         |
|                                                                                                                                                                                    |                              |                  |                 |       | M1[1]                 |            | 1.000 | -5.56 dBm               |
| 0 dBm                                                                                                                                                                              | · · · · · · · · ·            |                  |                 |       | Occ By                |            |       | 200000 GHz<br>72648 MHz |
| 545543                                                                                                                                                                             |                              |                  |                 | M1    |                       |            | 1     |                         |
| -10 dBm-                                                                                                                                                                           |                              |                  |                 | Ant   | MA                    |            | -     |                         |
|                                                                                                                                                                                    |                              |                  | in              | w v.  | m                     | V +0       |       |                         |
| -20 dBm                                                                                                                                                                            |                              |                  | Y               |       |                       | Vi         |       |                         |
| -30 dBm                                                                                                                                                                            | · ·                          |                  | Y               |       |                       |            |       |                         |
| -50 0611                                                                                                                                                                           |                              | /                |                 |       |                       | 1          |       |                         |
| -40 dBm-                                                                                                                                                                           |                              |                  |                 |       |                       |            |       |                         |
| mon                                                                                                                                                                                | han                          | M                |                 |       |                       | m          | mon   | m                       |
| -50 dBm-                                                                                                                                                                           |                              | 3 <sup>2</sup>   | -               | -     |                       |            | -     |                         |
|                                                                                                                                                                                    |                              |                  | 1               |       |                       |            |       |                         |
| -60 dBm                                                                                                                                                                            |                              |                  |                 |       |                       |            |       |                         |
| -70 dBm                                                                                                                                                                            |                              |                  |                 |       |                       |            |       |                         |
| 2.5. TX TX TX 10. X                                                                                                                                                                |                              |                  |                 |       |                       |            |       |                         |
| -80 dBm                                                                                                                                                                            |                              |                  |                 |       |                       |            |       |                         |
|                                                                                                                                                                                    |                              |                  |                 |       |                       |            |       |                         |
| CF 2.402 G                                                                                                                                                                         | Hz                           |                  |                 | 691 p | its                   |            | Spa   | n 3.0 MHz               |
| Receiver                                                                                                                                                                           | Spe                          | ctrum            | ×               |       |                       |            |       |                         |
| Ref Level<br>Att                                                                                                                                                                   | 10.00 dBm                    | ctrum<br>SWT 63. | RBW             |       | ode Auto FFT          | Input 1 AC |       |                         |
| Att<br>PS                                                                                                                                                                          | 10.00 dBm                    |                  | RBW             |       | ode Auto FFT          | Input 1 AC |       |                         |
| Ref Level<br>Att                                                                                                                                                                   | 10.00 dBm                    |                  | RBW             |       | ode Auto FFT<br>M1[1] | Input 1 AC |       | -3.97 dBm               |
| Ref Level<br>Att<br>PS<br>1Pk Max                                                                                                                                                  | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max                                                                                                                                                  | 10.00 dBm                    |                  | RBW             |       |                       |            | 2.441 | -3.97 dBm               |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm                                                                                                                                         | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm                                                                                                                                         | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm                                                                                                                              | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                   | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                   | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                        | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                        | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                             | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level           Att           PS           IPk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                     | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level           Att           PS           IPk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                     | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level           Att           PS           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm                   | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level<br>Att<br>PS                                                                                                                                                             | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level           Att           PS           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm                   | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |
| Ref Level           Att           PS           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm | 10.00 dBm                    |                  | RBW             |       | M1[1]                 |            | 2.441 | -3.97 dBm<br>00000 GHz  |

| SNEETY-MUR TIME |            |
|-----------------|------------|
|                 | TESTED     |
| SINCE 1978      | IN GERMANY |

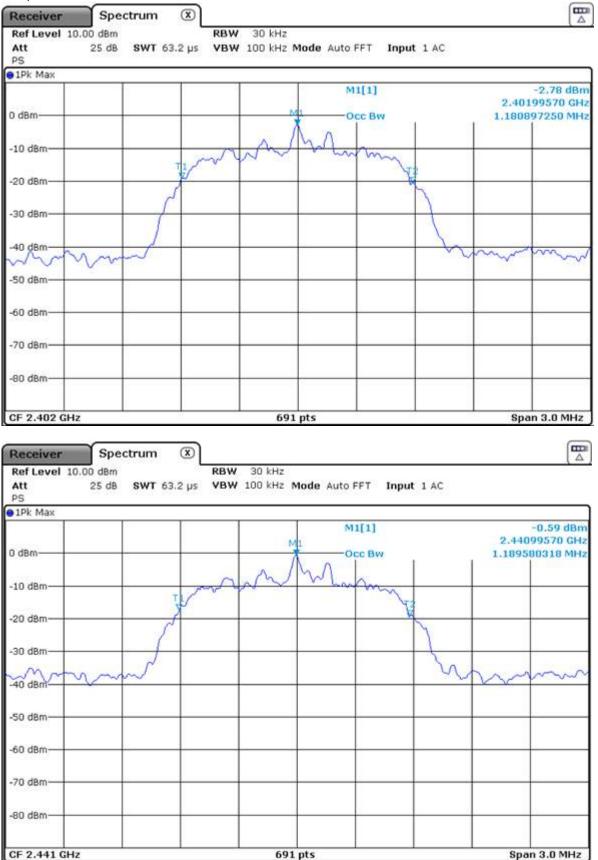
Page 48 of 94 pages


| Receiver                  | Spee | trum          | ×                 |     |                 |                                         |    |                                       |
|---------------------------|------|---------------|-------------------|-----|-----------------|-----------------------------------------|----|---------------------------------------|
| Ref Level 10<br>Att<br>PS |      | <b>SWT</b> 63 | RBN<br>8.2 µs VB1 |     | Mode Auto FFT I | nput 1 AC                               |    |                                       |
| 1Pk Max                   |      |               |                   |     |                 |                                         |    |                                       |
| 0 dBm                     |      |               |                   |     | M1[1]           |                                         |    | -4.00 dBm<br>000000 GHz<br>238784 MHz |
| -10 dBm                   |      |               | ~~~~              | And | ham             |                                         |    |                                       |
| -20 dBm                   |      |               |                   |     |                 | T                                       |    |                                       |
| -30 dBm                   |      | -             |                   |     |                 | 4                                       | -  |                                       |
| vederer h                 | ~~~  | ~             | -                 | 1   |                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | m  | how                                   |
| -50 d8m                   |      |               |                   |     |                 |                                         |    |                                       |
| -60 dBm                   |      |               |                   |     |                 |                                         |    |                                       |
| -80 dBm                   |      |               | -                 |     |                 |                                         |    |                                       |
| CF 2.48 GHz               |      |               |                   | 69  | L pts           |                                         | Sn | an 3.0 MHz                            |

**99% bandwidth:** Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

### Basic rate, GFSK with 1 MBit/s

| Receiver                   | Spectru | um 🛞       |                         |                           |                 |        |       |                                     |
|----------------------------|---------|------------|-------------------------|---------------------------|-----------------|--------|-------|-------------------------------------|
| RefLevel 10.0<br>Att<br>PS |         | WT 63.2 µs | RBW 30 kH<br>VBW 100 kH | iz<br>Iz <b>Mode</b> Auto | FFT Inpu        | t 1 AC |       |                                     |
| ●1Pk Max                   |         |            |                         |                           |                 |        |       |                                     |
| 0 dBm                      |         |            |                         | M1                        | 11[1]<br>Dec Bw | 1      | 2.401 | -0.87 dBm<br>99570 GHz<br>01736 kHz |
| -10 dBm                    |         |            | T1 N                    | 1                         | ~               |        |       |                                     |
| -20 d8m                    |         | ~          | N N                     |                           | Ma              |        |       |                                     |
| -30 dBm                    |         |            |                         |                           | (               | 1      |       |                                     |
| -40 dBm                    | ~^      | f -        |                         |                           |                 | Ja     | an    | (                                   |
| 350 UBm                    | my      |            |                         |                           |                 | V.*    | h     | had                                 |
| -60 dBm                    |         |            |                         |                           |                 |        |       |                                     |
| -70 dBm                    |         |            |                         | _                         | -               |        | -     |                                     |
| -80 dBm                    |         |            |                         |                           |                 |        |       |                                     |
| CF 2.402 GHz               |         |            |                         | 691 pts                   |                 |        | Spa   | n 3.0 MHz                           |

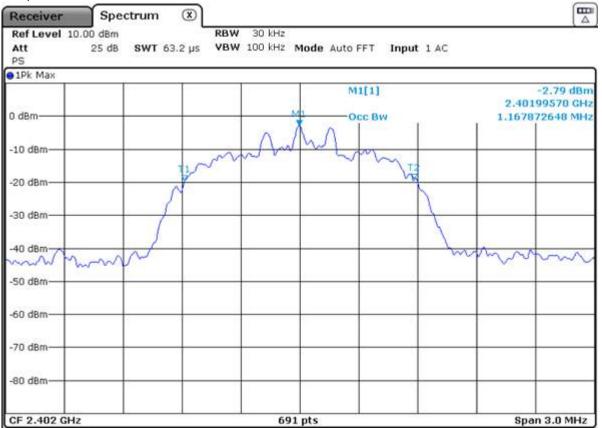

| TESTED<br>IN GERMANY                     | Test repor<br><b>18/09-00</b>        |                        | Page    | e 49 of 94 p                       |
|------------------------------------------|--------------------------------------|------------------------|---------|------------------------------------|
| Receiver Spectrum<br>Ref Level 10.00 dBm | RBW 30 kHz                           |                        | <i></i> |                                    |
| Att 25 dB SWT 6.<br>PS                   | 3.2 μs <b>VBW</b> 100 kHz <b>M</b> α | ode Auto FFT Input 1 A | .C      |                                    |
| 1Pk Max<br>dBm                           | Ma                                   | M1[1]                  |         | 0.51 dBm<br>99570 GHz<br>67728 kHz |
| 10 dBm-                                  |                                      | - La                   |         |                                    |
| 20 dBm                                   | N N                                  | M2                     |         |                                    |
| 30 dBm                                   | r <sup>u</sup>                       | - the                  |         | <u></u>                            |
| 40 dBm                                   |                                      |                        | Im      | 1                                  |
| 50 dBm                                   |                                      |                        | V. V    | m                                  |
| 60 dBm                                   |                                      |                        |         |                                    |
| 70 dBm                                   |                                      |                        |         |                                    |
| 80 dBm                                   |                                      |                        |         | 1 <u></u>                          |
| CF 2.441 GHz                             | 691 p                                | ts                     | Spa     | n 3.0 MHz                          |
| Receiver Spectrum                        | ×                                    |                        |         |                                    |





Page 50 of 94 pages

### EDR, π/4-DQPSK with 2 MBit/s




| STAFETY-MURTIN |            |
|----------------|------------|
| ( (pkm) )      |            |
| DAVCE 1978     | IN GERMANY |

Page 51 of 94 pages

| Receiver                  | Spe               | ctrum | ×      |   |                        |          |         |    |     |                                     |
|---------------------------|-------------------|-------|--------|---|------------------------|----------|---------|----|-----|-------------------------------------|
| Ref Level 10<br>Att<br>PS | 0.00 dBm<br>25 dB | SWT 6 | 3.2 µs |   | kHz<br>kHz <b>Mode</b> | Auto FFT | Input 1 | AC |     |                                     |
| 1Pk Max                   |                   |       |        |   |                        |          |         |    |     |                                     |
| 0 dBm                     |                   | 1     | -      |   | MI                     | M1[1]    | •       |    |     | 0.10 dBm<br>999570 GHz<br>87988 MHz |
| -10 dBm                   |                   |       | - 7    | m |                        | han      | $\sim$  |    | 12  |                                     |
| -20 dBm                   |                   |       | 7      |   |                        |          | The     |    |     |                                     |
| -30 dBm                   | u m               | m     |        |   | - 10<br>7.             |          |         | h  | 000 | ·····                               |
| -40 dBm                   |                   |       | -      |   |                        |          |         |    | ~ v |                                     |
| -50 dBm                   |                   | 6     |        |   |                        |          |         |    |     |                                     |
| -60 d8m                   |                   |       | -      |   |                        |          |         |    |     |                                     |
| -70 dBm                   |                   | -     | -      |   |                        | -        |         |    |     |                                     |
| -80 dBm                   |                   | 17    |        | 1 |                        |          |         |    |     |                                     |
| CF 2.48 GHz               |                   |       |        |   | 691 pts                |          |         |    | Snz | n 3.0 MHz                           |

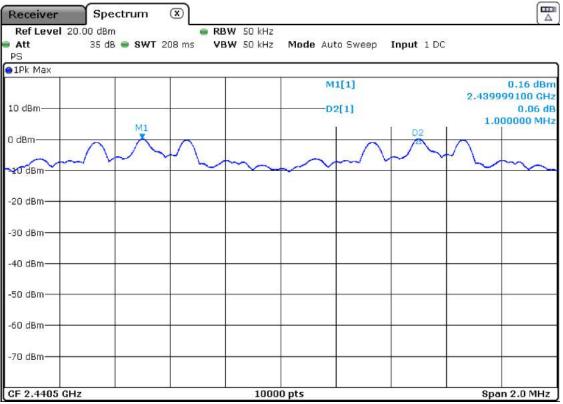
### EDR, 8-DPSK with 3 MBit/s



| TESTED<br>IN GERMANY | Test report no.:<br><b>18/09-0026B</b> |  |
|----------------------|----------------------------------------|--|
|----------------------|----------------------------------------|--|

Page 52 of 94 pages

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  | _                |                         |                    |          |      |       |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|------------------|-------------------------|--------------------|----------|------|-------|-------------------------|
| Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | ctrum            | ×                |                         |                    |          |      |       |                         |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | OUT 63           | RBW              | / 30 kHz<br>/ 100 kHz M | Indo Auto Ef       | T Innut  | 1 40 |       | 5.°                     |
| PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 UB                     | SWI 03.          | 2 µ5 <b>40</b> M | 100 KH2                 | IOUE AUTO FF       | 1 Input  | IAC  |       |                         |
| 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                  |                  |                         |                    |          |      |       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                  |                         | MI                 | [1]      |      | 2.44  | -0.58 dBm<br>099570 GHz |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                  |                  |                         | 000                | BW       |      |       | 580318 MHz              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                  | And                     | hall               |          |      |       |                         |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                  | m                | and V                   | - hope             | m        |      |       | -                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 1                | Valle            |                         |                    | V        |      |       |                         |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 1                | 1                |                         |                    |          | 1    |       |                         |
| 20 d0m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                  |                  |                         |                    |          | 1    |       |                         |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                         |                  |                  |                         |                    |          | 1    |       |                         |
| -40 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                         | ~                |                  |                         |                    |          | 5    | ma    | m                       |
| 10 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                         | č.               |                  |                         |                    |          |      |       |                         |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                  |                  |                         |                    |          |      | -     | -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                  |                         |                    |          |      |       |                         |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                  |                  | -                       |                    |          |      | -     | -                       |
| The former of the state of the |                           |                  |                  |                         |                    |          |      |       |                         |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                  |                  |                         |                    |          |      |       | 1                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                  |                         |                    |          |      |       |                         |
| -80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                         |                  |                  |                         |                    |          | -    |       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 1                |                  |                         |                    |          |      |       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                  |                         |                    |          |      |       |                         |
| CF 2.441 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz                        |                  | -                | 691                     | pts                |          |      | Sp    | an 3.0 MHz              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                  | 691                     | pts                |          |      | Sp    |                         |
| Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spe                       | ctrum            | ®                |                         | pts                |          |      | Sp    | an 3.0 MHz              |
| Receiver<br>Ref Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spe                       |                  | RBW              | 30 kHz                  |                    | T Input  | 1.40 | Sp    |                         |
| Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spe                       | ctrum<br>SWT 63. | RBW              |                         |                    | ⊺ Input  | 1 AC | Sp    |                         |
| Receiver<br>Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spe                       |                  | RBW              | 30 kHz                  | ode Auto FF        |          | 1 AC | Sp    |                         |
| Receiver<br>Ref Level<br>Att<br>PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF        |          | 1 AC |       | 0.10 dBm                |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]       | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]       | 1 AC | 2.47  | 0.10 dBm                |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]       | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver           Ref Level           Att           PS           • 1Pk Max           • 1Pk Max           • 0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Pk Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spe                       |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF<br>M1[ | 1]<br>Bw | 1 AC | 2.47  | 0.10 dBm<br>099570 GHz  |
| Receiver           Ref Level           Att           PS           • 1Pk Max           • 1Pk Max           • 0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spe<br>10.00 dBm<br>25 dB |                  | RBW              | 30 kHz<br>100 kHz M     | ode Auto FF        | 1]<br>Bw | 1 AC | 2.479 | 0.10 dBm<br>099570 GHz  |



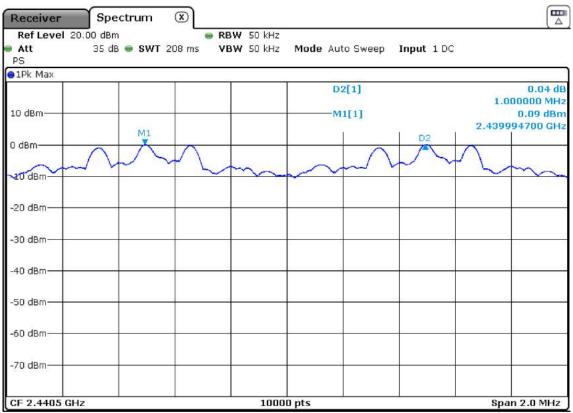

### c) hopping channel carrier frequencies separation

### The hopping channel carrier frequencies separation is for all modulations and bit rates same.

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005) Receiver Spectrum X Ref Level 10.00 dBm RBW 10 kHz 30 dB SWT 568.7 µs VBW 100 kHz Mode Auto FFT Input 1 AC Att Count 1000/1000 PS ●1Av Max D5[1] 0.03 dB M D D5 D 4.000100 MHz 0 dBm-M1[1] 0.58 dBm 2.437991400 GHz -10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-MUM AAM -80 dBm-10000 pts Span 10.0 MHz CF 2.44 GHz Marker Type | Ref | Trc X-value Y-value Function Function Result 2.4379914 GHz 0.58 dBm M1 1 -0.01 dB D2 M1 1 1.0001 MHz 2.0001 MHz -0.03 dB D3 M1 1 D4 Μ1 1 3.0001 MHz -0.06 dB D5 Μ1 1 4.0001 MHz 0.03 dB

only unmodulated carrier




modulated EDR (8-DPSK with 3 MBit/s) – channel separation is 1 MHz



### hopping channel carrier frequencies separation

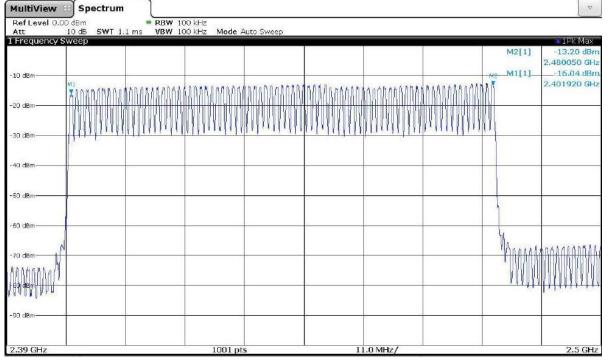
Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006) () Spectrum Receiver Ref Level 10.00 dBm RBW 10 kHz Att 30 dB SWT 568.7 µs VBW 100 kHz Mode Auto FFT Input 1 AC Count 1000/1000 PS ●1Av Max **P**5[1] -0.11 dB D DB D5 M1 4.000077 MHz 0 dBm-M1[1] 2.77 dBm 2.437991423 GHz -10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBmmalas -70 dBm--80 dBm· CF 2.44 GHz 10000 pts Span 10.0 MHz Marker Type | Ref | Trc X-value Function **Function Result** Y-value 2.77 dBm 2.43799142 GHz M1 1 0.00 dB D2M1 1 1.00008 MHz D3 M1 1 2.00008 MHz -0.03 dB D4 M1 1 3.00008 MHz -0.07 dB 4.00008 MHz D5 M1 1 -0.11 dB

only unmodulated carrier



modulated EDR (8-DPSK with 3 MBit/s) - channel separation is 1 MHz

| TESTED<br>IN GERMANY | Test report no.:<br><b>18/09-0026B</b> | Page 55 of 94 pages |
|----------------------|----------------------------------------|---------------------|
| MOE 1979             | 10/05-00200                            |                     |


(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

### d) hopping channel frequencies:

The number of hopping channel frequencies is 79 for all modes. The documented mode is BR (GFSK with 1MBit/s).

| Frequency Band (MHz) | Number of Hopping<br>Frequencies | Limit | Result |
|----------------------|----------------------------------|-------|--------|
| 2402 - 2480.0        | 79                               | >15   | Pass   |

# Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)



Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

C 3

| MultiView                              | Spectrum                              |              |                                                        |               |              |              |            |                                              | 4                                                      |
|----------------------------------------|---------------------------------------|--------------|--------------------------------------------------------|---------------|--------------|--------------|------------|----------------------------------------------|--------------------------------------------------------|
| Ref Level 0.0                          |                                       | BBW 1        |                                                        | luto Sweep    |              |              |            |                                              |                                                        |
| Att<br>I Frequency S                   | 10 dB SWT 1.<br>weep                  | 1 ms VBW 1   | OU KHZ MOde #                                          | uto sweep     |              |              |            |                                              | 🔹 1Pk Max                                              |
|                                        |                                       |              |                                                        |               |              |              |            | M2[1]                                        | -11.51 dBm                                             |
|                                        |                                       |              |                                                        |               |              |              |            | M2M1[1]                                      | 2.479950 GHz<br>-15.54 dBm                             |
| -10 d8m                                | M1.                                   |              |                                                        | REARANT       | Adhanser     |              |            | no Milli                                     | 2.402030 GHz                                           |
|                                        | 1 <u>7</u> 09001000000                | ULAN ANDALOL | ALU MAGA                                               | 1/10/11/14/14 | UND (CAAA B) | ADAAADAHAAA  | N. 110,274 |                                              | 2.102000 014                                           |
| -20 dBm                                |                                       |              | - <u>4               </u>                              |               |              |              |            |                                              |                                                        |
|                                        | THUR D                                | (144-004))   | A (17, 4) Y A (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, | 1448 11 1.1   | 17,171(1))   | 14171111     | 11111111   | 484                                          |                                                        |
| -30 dBm                                | Millinger                             | I WALL IN    | all an all all all all all all all all a               | 111           | 1 and d H    | 111111111111 |            |                                              |                                                        |
|                                        | 0                                     |              |                                                        |               |              |              |            |                                              |                                                        |
| -40 d8m                                |                                       |              |                                                        |               |              |              |            |                                              |                                                        |
| 40 4011                                |                                       |              |                                                        |               |              |              |            |                                              |                                                        |
|                                        |                                       |              |                                                        |               |              |              |            |                                              |                                                        |
| -50 dBm                                |                                       |              |                                                        |               |              |              |            | 1                                            | <                                                      |
|                                        |                                       |              |                                                        |               |              |              |            |                                              |                                                        |
| -60 d8m                                |                                       |              |                                                        |               |              |              |            | -                                            |                                                        |
| N                                      |                                       |              |                                                        |               |              |              |            | MALLER                                       |                                                        |
| -70 dBm                                |                                       |              | 1                                                      |               |              |              |            | <u>'////////////////////////////////////</u> | 14-14-14-14-14                                         |
| IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |                                       |              |                                                        |               |              |              |            | 【【【】                                         | N N N N N N                                            |
|                                        |                                       |              |                                                        |               |              |              |            | 664140                                       | WAAAAAAAA waxaa ku |
| NAM AND ON                             | · · · · · · · · · · · · · · · · · · · |              |                                                        |               |              |              |            | 10%                                          |                                                        |
|                                        |                                       |              |                                                        |               |              |              |            |                                              |                                                        |
| -90 dBm                                |                                       |              |                                                        |               |              |              | 1          |                                              |                                                        |
|                                        |                                       |              |                                                        |               |              |              |            |                                              |                                                        |
| 2.39 GHz                               | ļ                                     |              | 1001 pt                                                |               | 1            | 1.0 MHz/     |            |                                              | 2.5 GHz                                                |

### e) Time of Occupancy (Dwell Time)

The average time of occupancy on any channel shall not be greater then 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

| Version ZLX-12BT, Sample 02, Serial no.: 09541438533457000 | e (tested under PKM ref. no.: 18/06-0005) |
|------------------------------------------------------------|-------------------------------------------|
|------------------------------------------------------------|-------------------------------------------|

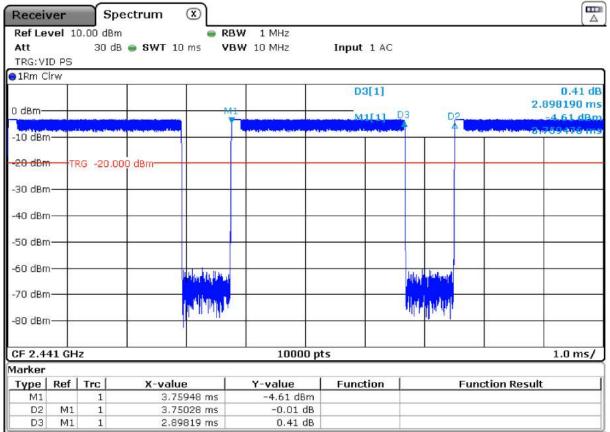
| Channel No. | Frequency<br>(MHz) | Modulation                           | Time of Occupancy<br>(ms) | Limit<br>(ms) | Result |
|-------------|--------------------|--------------------------------------|---------------------------|---------------|--------|
| 39          | 2441               | GFSK with 1<br>MBit/s                | 309.4                     | < 400         | Pass   |
| 39          | 2441               | EDR (π/4-<br>DQPSK with 2<br>MBit/s) | 309.4                     | < 400         | Pass   |
| 39          | 2441               | EDR (8-DPSK<br>with 3 MBit/s)        | 309.4                     | < 400         | Pass   |

Test time period:  $0.4 \times 79 = 31.6 \text{ s}$ 

Hopping time of one hop: 3.75 ms

Hopping times within 1 s: 1000 ms/3.75 ms = 266.7 hops/sec.

Occupancy time per hop: 2.90 ms


The maximum occupancy time within 31.6sec: [(2.90 ms x 266.7)/79] x 31.6 = 309.4 msec

### GFSK with 1 MBit/s

| Receiv                   | /er       | 5            | Spectrum                    | ×               |                           |        |           |                     |                                       |
|--------------------------|-----------|--------------|-----------------------------|-----------------|---------------------------|--------|-----------|---------------------|---------------------------------------|
| Ref Lev<br>Att<br>SGL TR |           | 30           | Bm<br>dB <del>e</del> SWT 1 | 1.1             | BW 1 MHz<br>BW 10 MHz     | I      | nput 1 AC |                     | , , , , , , , , , , , , , , , , , , , |
| ●1Rm C                   | lrw       |              | 15                          | 201             | 575                       |        |           |                     |                                       |
| .0 dBm—                  |           |              |                             |                 | 41                        |        | D3[1]     |                     | 0.77 dB<br>2.898190 ms                |
| -10 dBm                  |           |              |                             |                 |                           |        | wi[i] e   |                     | -4.64 dBm<br>3.759476 ms              |
| -20 dBm                  |           | RG -20       | .000 dBm                    |                 |                           | -      |           |                     |                                       |
| -30 dBm                  | -         |              |                             |                 |                           |        |           |                     |                                       |
| -40 dBm                  |           |              |                             |                 |                           |        |           |                     |                                       |
| -50 dBm                  |           |              |                             |                 |                           |        |           |                     |                                       |
| -60 dBm                  |           |              |                             | and could part  |                           |        |           | il all the all the  |                                       |
| -70 dBm                  | +         |              |                             | hiller ly rible |                           | -      |           | New Jackson Jackson |                                       |
| -80 dBm                  | -+-       |              |                             |                 |                           |        |           |                     |                                       |
| CF 2.44                  | ↓<br>1 G⊢ | Iz           |                             |                 | 100                       | 00 pts |           | 70                  | 1.0 ms/                               |
| Marker                   |           | ( <b>T</b> _ | v. 1                        |                 |                           |        |           | _                   |                                       |
| Type<br>M1               | Ref       | Trc<br>1     | X-valu                      | 1e 5948 ms      | <u>Y-value</u><br>-4.64 d |        | unction   | Fu                  | nction Result                         |
| D2                       | M1        | 1            |                             | 5948 ms         | -4.64 u<br>0.01           |        |           |                     |                                       |
| D3                       | M1        | 1            |                             | 9819 ms         | 0.77                      |        |           |                     |                                       |



### EDR ( $\pi$ /4-DQPSK with 2 MBit/s)



### EDR (8-DPSK with 3 MBit/s)

| Receiv             | ver         | Spe         | ectrum                                 |                                  |            |                 |                                          |
|--------------------|-------------|-------------|----------------------------------------|----------------------------------|------------|-----------------|------------------------------------------|
| Att<br>SGL TR      | G: VID      |             |                                        | BW 1 MHz<br>BW 10 MHz            | Input 1 AC |                 |                                          |
| ●1Rm C<br>0 dBm-   |             |             |                                        |                                  | D3[1]      |                 | 0.71 dB<br>2.898190 ms<br>=4.62 dBp<br>= |
| -10 dBm<br>-20 dBm |             | RG -20.00   | 0 dBm                                  |                                  |            |                 |                                          |
| -30 dBm<br>-40 dBm | 8           |             |                                        |                                  |            |                 |                                          |
| -50 dBm            | 1 <u></u> - |             |                                        |                                  |            |                 |                                          |
| -60 dBm            |             |             | and shall be                           | 1                                | 5          | apart love that |                                          |
| -80 dBm            |             |             |                                        |                                  |            |                 |                                          |
| CF 2.4             | 41 GH       | z           |                                        | 10000 p                          | ts         |                 | 1.0 ms/                                  |
| Marker<br>Type     | Ref         | Trc         | X-value                                | Y-value                          | Function   | Functio         | on Result                                |
| M1<br>D2<br>D3     | M1<br>M1    | 1<br>1<br>1 | 3.75948 ms<br>3.75028 ms<br>2.89819 ms | -4.62 dBm<br>-0.01 dB<br>0.71 dB |            |                 |                                          |

| SNFETY-MURTIN |            |
|---------------|------------|
| (* (pkm) *)   | TESTED     |
| SINCE 1978    | IN GERMANY |

Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

| Channel No. | Frequency<br>(MHz) | Modulation                           | Time of Occupancy<br>(ms) | Limit<br>(ms) | Result |
|-------------|--------------------|--------------------------------------|---------------------------|---------------|--------|
| 39          | 2441               | GFSK with 1<br>MBit/s                | 309.4                     | < 400         | Pass   |
| 39          | 2441               | EDR (π/4-<br>DQPSK with 2<br>MBit/s) | 309.4                     | < 400         | Pass   |
| 39          | 2441               | EDR (8-DPSK<br>with 3 MBit/s)        | 309.4                     | < 400         | Pass   |

Test time period:  $0.4 \times 79 = 31.6 \text{ s}$ 

Hopping time of one hop: 3.75 ms

Hopping times within 1 s: 1000 ms/3.75 ms = 266.7 hops/sec.

Occupancy time per hop: 2.90 ms

The maximum occupancy time within 31.6sec: [(2.90 ms x 266.7)/79] x 31.6 = 309.4 msec

### GFSK with 1 MBit/s

| Receiv                  | ver        | S       | pectrum 🗵    |                         |            |               |                          |
|-------------------------|------------|---------|--------------|-------------------------|------------|---------------|--------------------------|
| Ref Le<br>Att<br>SGL TR |            |         |              | RBW 1 MHz<br>/BW 10 MHz | Input 1 AC |               | <b>,</b>                 |
| ⊖1Rm C                  | lrw        |         | 1 1          |                         | D3[1]      |               | 0.68 dE                  |
|                         |            |         |              | M1                      | Da[1]      | _D2 _ Da      | 2,899190 ms              |
| 0 dBm—                  |            |         |              | Ť l                     | M1[1]      |               | -1.50 dBm<br>3.759476 ms |
| -10 dBm                 | ו          |         |              | 1 + +                   | 1          |               | 0.70947011               |
| -20 dBn                 |            | RG -20. | 000 dBm      |                         |            |               |                          |
| -30 dBm                 |            |         |              |                         |            |               |                          |
| -40 dBm                 | 1          |         |              |                         |            |               |                          |
| -50 dBm                 | n- -       |         |              |                         |            |               |                          |
| -60 dBm                 | η <u> </u> |         |              | 1                       |            | White all the |                          |
| -70 dBm                 | η          |         | Anally all t |                         |            | and Andreas   |                          |
| -80 dBm                 | ۱ <u> </u> |         | 4 date # 11. | 1                       |            | and also here |                          |
| CF 2.4                  | 41 GH      | z       | 25. 81       | 10000                   | pts        |               | 1.0 ms/                  |
| Marker                  |            |         |              |                         |            |               |                          |
| Туре                    | Ref        | Trc     | X-value      | Y-value                 | Function   | Functi        | on Result                |
| M1                      |            | 1       | 3.75948 ms   | -1.50 dBm               | ·          |               |                          |
| D2                      | M1         | 1       | 3.75028 ms   | -0.01 dE                |            |               |                          |
| D3                      | M1         | 1       | 2.89919 ms   | 0.68 dB                 | 3          |               |                          |



# EDR (π/4-DQPSK with 2 MBit/s)

| Receiv                   | ver  | Sp                 | ectrum          | ເ                      |                                                                                                                 |                          |                                                                                                                 |    |     |                        |                         |
|--------------------------|------|--------------------|-----------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|----|-----|------------------------|-------------------------|
| Ref Le<br>Att<br>TRG: VI |      | 0.00 dBr<br>30 di  | n<br>B 👄 SWT 10 |                        | BW 1 MHz<br>BW 10 MHz                                                                                           |                          | Input 1 AC                                                                                                      |    |     |                        |                         |
| <mark>⊜1</mark> Rm V     | /iew |                    |                 |                        |                                                                                                                 |                          |                                                                                                                 |    |     |                        |                         |
| A dam-                   |      |                    |                 | м                      | 11                                                                                                              |                          | D3[1]                                                                                                           | D3 | D2  |                        | -0.11 dE<br>2.903190 ms |
| -                        |      | and a state of the |                 | 1.1                    | in the second |                          | and and the first of the second se | 1  | 4   | interes and the second | 3.759476 ms             |
| -10 dBm                  | n    |                    | -               |                        |                                                                                                                 | -                        |                                                                                                                 |    |     |                        | 0.70577011.             |
| -20 dBm                  | n T  | RG -20.0           | 00 dBm          |                        |                                                                                                                 |                          |                                                                                                                 |    |     |                        |                         |
| -30 dBm                  | n    |                    |                 |                        |                                                                                                                 | -                        |                                                                                                                 |    |     |                        | -                       |
| -40 dBm                  | n    |                    | -               |                        |                                                                                                                 |                          |                                                                                                                 |    |     | -                      |                         |
| -50 dBm                  | n    |                    | -               | -                      |                                                                                                                 |                          |                                                                                                                 | -  | 3   | -                      |                         |
| -60 dBm                  | n    |                    | -               | a water and the second |                                                                                                                 |                          |                                                                                                                 | -  |     | +                      |                         |
| -70 dBm                  | n    |                    |                 |                        |                                                                                                                 |                          |                                                                                                                 |    |     | -                      | -                       |
| -80 dBm                  | n    |                    |                 |                        |                                                                                                                 |                          |                                                                                                                 |    |     |                        |                         |
| CF 2.4                   |      | lz                 | D.C.            |                        | 100                                                                                                             | 00 pt                    | 5                                                                                                               |    |     | Vero d                 | 1.0 ms/                 |
| Marker                   |      |                    |                 |                        |                                                                                                                 |                          |                                                                                                                 |    |     |                        |                         |
| Туре                     | Ref  |                    | X-valu          |                        | Y-value                                                                                                         |                          | Function                                                                                                        |    | Fun | ction Res              | ult                     |
| M1                       |      | 1                  |                 | 948 ms                 | -1.45                                                                                                           |                          |                                                                                                                 |    |     |                        |                         |
| D2                       | M1   | 1                  |                 | 028 ms                 | 0.00                                                                                                            | Contraction of the local |                                                                                                                 | -  |     |                        |                         |
| D3                       | M1   | 1                  | 2.90            | 319 ms                 | -0.11                                                                                                           | L dB                     |                                                                                                                 |    |     |                        |                         |

### EDR (8-DPSK with 3 MBit/s)

| Receiv                   | /er      | S         | pectrum                       | ×                |                  |                          |         |              |        |               |       |                         |      |                    |
|--------------------------|----------|-----------|-------------------------------|------------------|------------------|--------------------------|---------|--------------|--------|---------------|-------|-------------------------|------|--------------------|
| Ref Lev<br>Att<br>SGL TR |          |           | m<br>dB <b>e SWT</b> 10       |                  | BW 10<br>BW 10 M |                          | Input   | 1 AC         |        |               |       |                         |      | ,                  |
| ●1Rm Cl                  | rw       |           |                               |                  |                  |                          |         |              |        |               |       |                         |      |                    |
| - <del>0</del> d8m-      |          |           |                               | N                | 11               |                          | D       | 3[1]<br>[    | 03     | D             | 2.    |                         | 2.90 | 0.35 dB<br>3190 ms |
| -10 dBm                  |          | Hasherson | ileite teesetti esteren ester |                  | a leebad         | ent alle dans la das das | Maria M | ALL Deserved |        |               | llead | a fa fa fa fa dha dha a |      | .47 dBm<br>9476 ms |
| -10 dBm                  |          | RG -20,   | 000 dBm                       |                  |                  |                          |         |              |        |               |       |                         |      |                    |
| -30 dBm                  |          |           |                               |                  |                  |                          |         |              | +      |               |       |                         | _    |                    |
| -40 dBm                  | -        |           |                               |                  |                  |                          |         |              | -      |               |       |                         |      |                    |
| -50 dBm                  | -        |           |                               |                  |                  |                          |         |              | -      |               |       |                         |      |                    |
| -60 dBm                  | -        |           | _                             | L. While Louis   |                  |                          |         |              | il p.U | ().<br>Marine |       |                         |      |                    |
| -70 dBm                  | +        |           |                               | -                |                  |                          |         |              | ull    | N. P. No.     | ,     | 2<br>1                  |      |                    |
| -80 dBm                  |          |           |                               |                  | ·                |                          |         |              | 1      |               |       | 2                       |      |                    |
| CF 2.44                  | 11 GF    | lz        |                               | I                |                  | 10000 p                  | ts      |              |        | L             |       |                         |      | 1.0 ms/            |
| Marker                   |          |           |                               |                  |                  |                          |         |              |        |               |       |                         |      |                    |
|                          | Ref      |           | X-value                       |                  | Y-Va             |                          | Func    | tion         |        |               | Fund  | ction Re                | sult |                    |
| M1                       |          | 1         |                               | 948 ms           |                  | .47 dBm                  | -       |              |        |               |       |                         |      |                    |
| D2<br>D3                 | M1<br>M1 |           |                               | 028 ms<br>319 ms |                  | 0.02 dB<br>0.35 dB       |         |              |        |               |       |                         |      |                    |

### f) Maximum peak conducted output power

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

As the EUT's have a channel separation less than the 20 dB bandwidth, 0.125 W is the applicable limit.

All maximum peak conducted output power measurements had been performed with maximum output power setting of the EUT.

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)

### GFSK with 1 MBit/s

| Channel | Frequency | Measured     | Cable      | Corrected | Output | Limit | Result |
|---------|-----------|--------------|------------|-----------|--------|-------|--------|
| No.     | (MHz)     | Output Power | correction | Output    | Power  | (mW)  | (8)    |
| (1)     | (2)       | (dBm)        | (dB)       | Power     | (mW)   | (7)   |        |
|         |           | (3)          | (4)        | (dBm)     | (6)    |       |        |
|         |           |              |            | (5)       |        |       |        |
| 0       | 2402      | 0.83         | 0.3        | 1.13      | 1.3    | 125   | Pass   |
| 39      | 2441      | 2.36         | 0.3        | 2.66      | 1.8    | 125   | Pass   |
| 78      | 2480      | 2.72         | 0.3        | 3.02      | 2.0    | 125   | Pass   |

### EDR (π/4-DQPSK with 2 MBit/s)

| Channel<br>No.<br>(1) | Frequency<br>(MHz)<br>(2) | Measured<br>Output Power<br>(dBm)<br>(3) | Cable<br>correction<br>(dB)<br>(4) | Corrected<br>Output<br>Power<br>(dBm) | Output<br>Power<br>(mW)<br>(6) | Limit<br>(mW)<br>(7) | Result<br>(8) |
|-----------------------|---------------------------|------------------------------------------|------------------------------------|---------------------------------------|--------------------------------|----------------------|---------------|
| 0                     | 2402                      | -0.08                                    | 0.3                                | (5)<br>0.22                           | 1.1                            | 125                  | Pass          |
| 39                    | 2441                      | 2.02                                     | 0.3                                | 2.32                                  | 1.7                            | 125                  | Pass          |
| 78                    | 2480                      | 2.53                                     | 0.3                                | 2.83                                  | 1.9                            | 125                  | Pass          |

### EDR (8-DPSK with 3 MBit/s)

| Channel | Frequency | Measured     | Cable      | Corrected | Output | Limit | Result |
|---------|-----------|--------------|------------|-----------|--------|-------|--------|
| No.     | (MHz)     | Output Power | correction | Output    | Power  | (mW)  | (8)    |
| (1)     | (2)       | (dBm)        | (dB)       | Power     | (mW)   | (7)   |        |
|         |           | (3)          | (4)        | (dBm)     | (6)    |       |        |
|         |           |              |            | (5)       |        |       |        |
| 0       | 2402      | 0.45         | 0.3        | 0.75      | 1.2    | 125   | Pass   |
| 39      | 2441      | 2.68         | 0.3        | 2.98      | 2.0    | 125   | Pass   |
| 78      | 2480      | 2.81         | 0.3        | 3.11      | 2.0    | 125   | Pass   |

- (1) = Bluetooth channel number
- (2) = Corresponding Bluetooth channel frequency
- (3) = Measured output power on spectrum analyzer
- (4) = Cable loss between EUT and analyzer
- (5) = (3) + (4)
- (6) = Linear power  $(10^{(5)/10})$
- (7) = Limit
- (8) = Comparison between (6) and (7)



### GFSK with 1 MBit/s

| Receiver                                                                                                                                                                         | Spe                | ctrum            | ×          |                       |          |          |            |        |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|------------|-----------------------|----------|----------|------------|--------|------------------------|
|                                                                                                                                                                                  | 10.00 dBm          |                  |            | BW 2 MHz              |          |          |            |        |                        |
| Att<br>PS                                                                                                                                                                        | 30 dB              | <b>SWT</b> 966   | i.4 ns 🛛 🗸 | BW 20 MHz             | Mode Au  | to FFT   | Input 1 AC |        |                        |
| ●1Rm Max                                                                                                                                                                         |                    |                  |            |                       |          |          |            |        |                        |
|                                                                                                                                                                                  |                    |                  |            |                       | M1 M     | 1[1]     |            | 2 4021 | 0.83 dBm<br>179700 GHz |
| 0 dBm                                                                                                                                                                            |                    |                  |            |                       | Y        |          | -          | 2.4021 |                        |
|                                                                                                                                                                                  |                    |                  |            |                       |          |          |            |        |                        |
| -10 dBm                                                                                                                                                                          |                    |                  |            |                       |          |          |            |        |                        |
| -20 dBm-                                                                                                                                                                         |                    |                  |            |                       |          |          | 2          | 2      |                        |
| -20 0811                                                                                                                                                                         |                    |                  |            |                       |          |          | 3          |        |                        |
| -30 dBm                                                                                                                                                                          |                    |                  | 2          |                       | 8        |          | -          |        |                        |
|                                                                                                                                                                                  |                    |                  |            |                       |          |          |            |        |                        |
| -40 dBm—                                                                                                                                                                         |                    |                  | -          |                       | -        | -        |            |        |                        |
| 14                                                                                                                                                                               |                    |                  |            |                       |          |          |            |        |                        |
| -50 dBm                                                                                                                                                                          |                    |                  |            |                       | -        |          |            |        |                        |
| -60 dBm                                                                                                                                                                          |                    |                  | 2          |                       |          |          | 2          |        |                        |
|                                                                                                                                                                                  |                    |                  |            |                       |          |          |            |        |                        |
| -70 dBm—                                                                                                                                                                         |                    |                  | 8          |                       | -        | 6)<br>() | 2          |        |                        |
|                                                                                                                                                                                  |                    |                  |            |                       |          |          |            |        |                        |
| -80 dBm                                                                                                                                                                          |                    |                  |            | 2                     |          |          | ÷          |        |                        |
|                                                                                                                                                                                  |                    |                  |            |                       |          |          |            |        |                        |
| CF 2.402 0                                                                                                                                                                       | GHz                |                  |            | 1000                  | 0 pts    |          |            | Spa    | n 6.0 MHz              |
|                                                                                                                                                                                  |                    |                  |            |                       |          |          |            |        |                        |
|                                                                                                                                                                                  |                    |                  |            |                       |          |          |            |        |                        |
| Receiver                                                                                                                                                                         | 11                 | ctrum            | ®          |                       |          |          |            |        |                        |
|                                                                                                                                                                                  | 10.00 dBm<br>30 dB | ctrum<br>SWT 966 | e Ri       | BW 2 MHz<br>BW 20 MHz | Mode Aut | OFFT 1   | Input 1 AC |        |                        |
| Ref Level<br>Att<br>PS                                                                                                                                                           | 10.00 dBm          |                  | e Ri       |                       | Mode Aut | OFFT     | Input 1 AC |        |                        |
| Ref Level<br>Att                                                                                                                                                                 | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC |        |                        |
| Ref Level<br>Att<br>PS<br>1Rm Max                                                                                                                                                | 10.00 dBm          |                  | e Ri       |                       |          | :0 FFT   | Input 1 AC | 2.4408 | 2.36 dBm<br>14300 GHz  |
| Ref Level<br>Att<br>PS                                                                                                                                                           | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm                                                                                                                                       | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max                                                                                                                                                | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm                                                                                                                                       | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm                                                                                                                            | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm                                                                                                                            | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                      | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                 | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level           Att           PS           • 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                 | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                      | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level           Att           PS           1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>● 1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                                                   | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                                                                                | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          |            | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                                                     | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          |            | 2.4408 | 2.36 dBm               |
| Ref Level<br>Att<br>PS<br>● 1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                                                   | 10.00 dBm          |                  | e Ri       | BW 20 MHz             |          |          | Input 1 AC | 2.4408 | 2.36 dBm               |
| Ref Level         Att         PS         ● 1Rm Max         0 dBm         -10 dBm         -20 dBm         -30 dBm         -30 dBm         -50 dBm         -50 dBm         -70 dBm | 10.00 dBm<br>30 dB |                  | e Ri       | BW 20 MHz             | M.       |          |            |        | 2.36 dBm               |

| ( pkm) *   | TESTED     |
|------------|------------|
| SINCE 1978 | IN GERMANY |

Page 62 of 94 pages

| Receiver               | Spec               | trum         | × |                         |         |        |            |        |                       |
|------------------------|--------------------|--------------|---|-------------------------|---------|--------|------------|--------|-----------------------|
| Ref Level<br>Att<br>PS | 10.00 dBm<br>30 dB | <b>SWT</b> 9 |   | RBW 2 MHz<br>VBW 20 MHz | Mode Au | to FFT | input 1 AC |        |                       |
| ●1Rm Max               |                    |              |   |                         |         |        |            |        |                       |
|                        |                    |              |   | M1                      | М       | 1[1]   |            | 2,4798 | 2.72 dBm<br>70100 GHz |
| 0 dBm                  |                    |              |   |                         |         |        |            |        |                       |
| -10 dBm                |                    |              | - |                         |         |        |            |        |                       |
| -20 dBm-               |                    |              |   |                         |         |        |            |        |                       |
| -30 dBm                |                    |              |   |                         | -       | 2      |            |        |                       |
| -40 dBm                |                    |              |   |                         |         |        |            |        |                       |
| -50 dBm                |                    |              |   |                         |         |        |            |        |                       |
| -60 dBm                |                    |              | - | 1.<br>                  |         |        | _          |        |                       |
| -70 dBm                |                    | 2            |   |                         | ×       |        |            |        |                       |
| -80 dBm                |                    |              |   |                         |         |        |            |        |                       |
| CF 2.48 GH             | lz                 |              |   | 1000                    | )0 pts  |        |            | Spa    | n 6.0 MHz             |

# EDR (π/4-DQPSK with 2 MBit/s)

| Receiver Spe                           | ectrum 🗵         |           |                    |                              |
|----------------------------------------|------------------|-----------|--------------------|------------------------------|
| Ref Level 10.00 dBm<br>Att 30 dB<br>PS | SWT 966.4 ns VBV |           | uto FFT Input 1 AC |                              |
| 1Rm Max                                |                  |           |                    |                              |
| 0 - 10                                 |                  | M1        | M1[1]              | -0.08 dBm<br>2.402147900 GHz |
| 0 dBm                                  |                  |           |                    |                              |
| -10 dBm                                |                  |           |                    |                              |
| -20 dBm                                |                  |           |                    |                              |
| -30 dBm                                |                  |           |                    |                              |
| -40 dBm                                |                  |           |                    |                              |
| -50 dBm                                |                  |           |                    |                              |
| -60 dBm                                |                  |           |                    |                              |
| -70 dBm                                |                  |           |                    |                              |
| -80 dBm                                |                  |           |                    |                              |
| CF 2.402 GHz                           |                  | 10000 pts |                    | Span 6.0 MHz                 |

| IN GERMANY 18/09-0026B |
|------------------------|
|------------------------|

| Receiver                                                                                                                |                           | ctrum          | ×       |                         |              |          |      |        |                       |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|---------|-------------------------|--------------|----------|------|--------|-----------------------|
|                                                                                                                         | 10.00 dBm<br>30 dB        | our o          |         | RBW 2 MHz               | Mada Auto F  |          | 1.40 |        |                       |
| Att<br>PS                                                                                                               | 30 QB                     | <b>SWT</b> 9   | 66.4 ns | VBW 20 MHz              | Mode Auto FF | - input  | IAC  |        |                       |
| ⊖1Rm Max                                                                                                                |                           |                |         |                         | 26           |          |      |        |                       |
|                                                                                                                         |                           |                | 1000    | M1                      | M1[1]        |          |      | 2.4408 | 2.02 dBm<br>74300 GHz |
| 0 dBm                                                                                                                   |                           |                |         |                         |              |          |      | _      |                       |
| -10 dBm-                                                                                                                |                           |                |         |                         |              |          |      |        |                       |
| -20 dBm-                                                                                                                | 3                         |                |         |                         |              |          |      | 3      |                       |
| -30 dBm                                                                                                                 |                           |                |         |                         |              |          |      |        |                       |
| -40 dBm                                                                                                                 |                           |                |         | -                       |              |          |      |        |                       |
| -50 dBm—                                                                                                                |                           |                |         |                         |              |          |      | 2      |                       |
| -60 dBm                                                                                                                 |                           |                |         |                         |              |          |      |        |                       |
| -70 dBm                                                                                                                 |                           |                | _       |                         |              |          |      |        |                       |
| -80 dBm                                                                                                                 | 2                         |                | _       |                         |              |          |      | 1      |                       |
| CF 2.441                                                                                                                | GHz                       | 4              | 10      | 1000                    | 0 pts        | 22       |      | Spa    | n 6.0 MHz             |
|                                                                                                                         |                           |                |         |                         |              |          |      |        |                       |
|                                                                                                                         |                           |                | _       |                         |              |          |      |        |                       |
| Receiver                                                                                                                |                           | ctrum          | ×       |                         |              |          |      |        |                       |
| Ref Level<br>Att                                                                                                        | 5pe<br>10.00 dBm<br>30 dB | ctrum<br>swт 9 |         | RBW 2 MHz<br>VBW 20 MHz | Mode Auto Ff | -⊤ Input | 1 AC |        |                       |
| Ref Level<br>Att<br>PS                                                                                                  | 10.00 dBm                 |                |         |                         | Mode Auto FF | -⊤ Input | 1 AC |        |                       |
| Ref Level<br>Att                                                                                                        | 10.00 dBm                 |                |         | <b>VBW</b> 20 MHz       | 7.           | S32      | 1 AC |        |                       |
| Ref Level<br>Att<br>PS<br>●1Rm Max                                                                                      | 10.00 dBm                 |                |         |                         | Mode Auto Ff | S32      | 1 AC | 2.4797 | 2.53 dBm<br>98700 GHz |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm-                                                                             | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>●1Rm Max                                                                                      | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm-                                                                             | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm                                                                   | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                        | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                             | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                  | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                       | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm            | 10.00 dBm                 |                |         | VBW 20 MHz              | 7.           | S32      | 1 AC | 2.4797 | 2.53 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm | 10.00 dBm<br>30 dB        |                |         | VBW 20 MHz              | M1[1]        | S32      | 1 AC |        | 2.53 dBm              |

| SNSETY-MUR PUL |            |
|----------------|------------|
|                | TESTED     |
| SINCE 1978     | IN GERMANY |

CF 2.441 GHz

Test report no.: **18/09-0026B** 

Span 6.0 MHz

### EDR (8-DPSK with 3 MBit/s)

| Deselves                                 | - Cro              | ctrum          | ×         |             |         |            |          |            |           |
|------------------------------------------|--------------------|----------------|-----------|-------------|---------|------------|----------|------------|-----------|
| Receiver                                 |                    | cuum           |           |             |         |            |          |            |           |
| Att                                      | 10.00 dBm<br>30 dB | <b>SWT</b> 966 | e RE      |             | Mode A  | ito FFT In | nut 1 AC |            |           |
| PS                                       | 50 UB              | 8W1 900        | 7.4115 ¥L | 377 20 MINZ | HOUE AU |            | put I AC |            |           |
| ⊖1Rm Max                                 | x -                |                |           |             | 0       |            |          |            |           |
|                                          |                    |                |           |             |         | 11[1]      |          | 0.02104020 | 0.45 dBm  |
| 0.40                                     |                    |                |           | N           | 11      | 1          | i i      | 2.4020     | 14700 GHz |
| 0 dBm                                    |                    |                |           |             |         |            |          |            |           |
| to do-                                   |                    |                |           |             |         |            |          |            |           |
| -10 dBm                                  |                    |                |           |             |         |            |          |            | -         |
|                                          |                    |                |           | c           |         |            |          |            |           |
| -20 dBm—                                 |                    |                |           |             |         |            |          |            |           |
| 20 dBm                                   |                    |                |           |             |         |            |          |            |           |
| -30 dBm                                  |                    |                |           |             |         | 8          |          |            |           |
| 40 dBm                                   | ÷                  |                | -         | ×           |         |            |          |            |           |
| -40 dBm                                  |                    |                |           |             |         |            |          |            |           |
| -50 dBm                                  |                    |                |           | 0           |         |            |          |            |           |
| -30 ubm                                  |                    |                |           | ().         |         | 8          |          |            |           |
| -60 dBm                                  |                    |                |           |             |         |            |          |            |           |
| -00 0011                                 |                    |                |           |             |         |            |          |            |           |
| -70 dBm                                  |                    |                | _         | 8           |         | -          |          |            |           |
| yo dom                                   |                    |                |           |             |         |            |          |            |           |
| -80 dBm                                  |                    |                |           |             |         |            |          |            |           |
| -00 0011                                 |                    |                |           |             |         |            |          |            |           |
|                                          |                    |                |           |             |         |            |          |            |           |
| CF 2.402 0                               | GHz                |                |           | 1000        | 0 pts   |            |          | Spa        | n 6.0 MHz |
|                                          |                    |                | _         |             |         |            |          |            | $\frown$  |
| Receiver                                 | Spe                | ctrum          | ×         |             |         |            |          |            |           |
| Ref Level                                | 10.00 dBm          |                | 🔵 RE      | W 2 MHz     |         |            |          |            |           |
| Att                                      | 30 dB              | <b>SWT</b> 966 | 0.4 ns VE | 3W 20 MHz   | Mode Au | ito FFT In | put 1 AC |            |           |
| PS                                       |                    |                |           |             |         |            |          |            |           |
|                                          | <u> </u>           |                |           |             | N       | 11[1]      |          |            | 2.68 dBm  |
|                                          |                    |                | 17        | M           |         |            |          | 2.4409     | 70300 GHz |
| 0 dBm                                    |                    |                |           | -           | -       |            |          |            |           |
|                                          |                    |                |           |             |         |            |          |            |           |
| -10 dBm-                                 | -                  |                |           |             |         |            |          |            |           |
|                                          |                    |                |           |             |         | 1          |          |            |           |
|                                          |                    |                |           |             |         |            |          |            |           |
| -20 dBm-                                 |                    |                |           |             |         |            |          |            |           |
|                                          | 2                  |                |           |             |         |            |          |            |           |
| -20 dBm—                                 |                    |                |           |             |         |            |          |            |           |
| -30 dBm                                  |                    |                |           |             |         |            | -        |            |           |
|                                          |                    |                |           |             |         |            |          |            |           |
| -30 dBm                                  |                    |                |           |             |         |            |          |            |           |
| -30 dBm                                  |                    |                |           |             |         |            |          |            |           |
| -30 dBm<br>-40 dBm<br>-50 dBm            |                    |                |           |             |         |            |          |            |           |
| -30 dBm                                  |                    |                |           |             |         |            |          |            |           |
| -30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm |                    |                |           |             |         |            |          |            |           |
| -30 dBm<br>-40 dBm<br>-50 dBm            |                    |                |           |             |         |            |          |            |           |
| -30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm |                    |                |           |             |         |            |          |            |           |

10000 pts

| TESTED<br>IN GERMANY | Test report no.:<br>18/09-0026B | Page 65 of 94 pages |
|----------------------|---------------------------------|---------------------|
|                      | •                               | •                   |

| Receiver                | Spe                | ctrum          | ×                               |           |              |            |                             |
|-------------------------|--------------------|----------------|---------------------------------|-----------|--------------|------------|-----------------------------|
| RefLevel 1<br>Att<br>PS | 10.00 dBm<br>30 dB | <b>SWT</b> 966 | <b>e RB</b><br>5.4 ns <b>VB</b> |           | ode Auto FFT | Input 1 AC |                             |
| <mark>⊜1</mark> Rm Max  |                    |                |                                 |           |              |            |                             |
| 0 dBm                   |                    |                |                                 | M1        | M1[1]        | I          | 2.81 dBm<br>2.479928900 GHz |
| 2000 (2000) 2000 2000   |                    |                |                                 |           |              |            |                             |
| -10 dBm                 |                    |                |                                 |           |              |            |                             |
| -20 dBm                 |                    |                |                                 |           |              |            |                             |
| -30 dBm                 |                    |                |                                 |           |              |            |                             |
| -40 dBm                 |                    | c.             |                                 |           |              |            |                             |
| -50 dBm                 |                    |                |                                 |           |              |            |                             |
| -60 dBm                 |                    | 0              |                                 |           |              |            |                             |
| -70 dBm                 |                    | -              |                                 |           |              |            |                             |
| -80 dBm                 |                    | 0              |                                 |           |              |            |                             |
| CF 2.48 GHz             | z                  |                |                                 | 10000 pts | s            |            | Span 6.0 MHz                |



Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

### GFSK with 1 MBit/s

| Channel | Frequency | Measured     | Cable      | Corrected | Output | Limit | Result |
|---------|-----------|--------------|------------|-----------|--------|-------|--------|
| No.     | (MHz)     | Output Power | correction | Output    | Power  | (mW)  | (8)    |
| (1)     | (2)       | (dBm)        | (dB)       | Power     | (mW)   | (7)   |        |
|         |           | (3)          | (4)        | (dBm)     | (6)    |       |        |
|         |           |              |            | (5)       |        |       |        |
| 0       | 2402      | 1.24         | 0.3        | 1.54      | 1.4    | 125   | Pass   |
| 39      | 2441      | 2.83         | 0.3        | 3.13      | 2.1    | 125   | Pass   |
| 78      | 2480      | 3.25         | 0.3        | 3.55      | 2.3    | 125   | Pass   |

### EDR ( $\pi$ /4-DQPSK with 2 MBit/s)

| Channel | Frequency | Measured     | Cable      | Corrected | Output | Limit | Result |
|---------|-----------|--------------|------------|-----------|--------|-------|--------|
| No.     | (MHz)     | Output Power | correction | Output    | Power  | (mW)  | (8)    |
| (1)     | (2)       | (dBm)        | (dB)       | Power     | (mW)   | (7)   |        |
|         |           | (3)          | (4)        | (dBm)     | (6)    |       |        |
|         |           |              |            | (5)       |        |       |        |
| 0       | 2402      | 0.22         | 0.3        | 0.52      | 1.1    | 125   | Pass   |
| 39      | 2441      | 2.52         | 0.3        | 2.82      | 1.9    | 125   | Pass   |
| 78      | 2480      | 2.84         | 0.3        | 3.14      | 2.1    | 125   | Pass   |

### EDR (8-DPSK with 3 MBit/s)

| Channel | Frequency | Measured     | Cable      | Corrected | Output | Limit | Result |
|---------|-----------|--------------|------------|-----------|--------|-------|--------|
| No.     | (MHz)     | Output Power | correction | Output    | Power  | (mW)  | (8)    |
| (1)     | (2)       | (dBm)        | (dB)       | Power     | (mW)   | (7)   |        |
|         |           | (3)          | (4)        | (dBm)     | (6)    |       |        |
|         |           |              |            | (5)       |        |       |        |
| 0       | 2402      | 0.28         | 0.3        | 0.58      | 1.1    | 125   | Pass   |
| 39      | 2441      | 2.63         | 0.3        | 2.93      | 2.0    | 125   | Pass   |
| 78      | 2480      | 2.99         | 0.3        | 3.29      | 2.1    | 125   | Pass   |

- (1) = Bluetooth channel number
  (2) = Corresponding Bluetooth channel frequency
  (3) = Measured output power on spectrum analyzer
- (4) = Cable loss between EUT and analyzer
- (5) = (3) + (4)
- (6) = Linear power  $(10^{(5)/10})$
- (7) = Limit
- (8) = Comparison between (6) and (7)



# GFSK with 1 MBit/s

| Receiver                                                                                                                                                                                 | Spe                | ctrum          | ×        |                       |         |                                         |            |        |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------|-----------------------|---------|-----------------------------------------|------------|--------|-----------------------|
|                                                                                                                                                                                          | 10.00 dBm          |                |          | 3W 2 MHz              | -       | antata ana ang tang tang tang tang tang |            |        | (=)                   |
| Att<br>PS                                                                                                                                                                                | 30 dB              | <b>SWT</b> 966 | .4 ns VE | 3W 20 MHz             | Mode Au | to FFT Inj                              | put 1 AC   |        |                       |
| ●1Rm Max                                                                                                                                                                                 |                    |                |          | 1                     |         |                                         |            |        |                       |
| And the Prop                                                                                                                                                                             |                    |                |          |                       | M1      | 1[1]                                    |            | 2.4021 | 1.24 dBm<br>80900 GHz |
| 0 dBm                                                                                                                                                                                    |                    |                |          |                       |         |                                         |            |        |                       |
| -10 dBm                                                                                                                                                                                  |                    |                |          |                       |         |                                         |            |        |                       |
| 10 0011                                                                                                                                                                                  |                    |                |          |                       |         |                                         |            |        |                       |
| -20 dBm-                                                                                                                                                                                 |                    |                |          |                       | s       |                                         | 2          | -      |                       |
| -30 dBm                                                                                                                                                                                  |                    |                |          |                       |         |                                         |            |        |                       |
| -50 0011                                                                                                                                                                                 |                    |                |          |                       |         |                                         | °'         |        |                       |
| -40 dBm                                                                                                                                                                                  |                    |                |          |                       |         |                                         |            |        |                       |
| E0 d0m                                                                                                                                                                                   |                    |                |          |                       |         |                                         |            |        |                       |
| -50 dBm                                                                                                                                                                                  |                    |                |          |                       |         |                                         |            | -      |                       |
| -60 dBm                                                                                                                                                                                  |                    |                |          |                       |         |                                         |            |        |                       |
| 70 40                                                                                                                                                                                    |                    |                |          |                       |         |                                         |            |        |                       |
| -70 dBm                                                                                                                                                                                  |                    |                |          |                       |         |                                         |            |        |                       |
| -80 dBm                                                                                                                                                                                  |                    |                |          |                       |         |                                         | 7          |        |                       |
|                                                                                                                                                                                          |                    |                |          |                       |         |                                         |            |        |                       |
| CF 2.402 (                                                                                                                                                                               | GHz                |                |          | 1000                  | D pts   |                                         | 2.4<br>2.4 | Spar   | n 6.0 MHz             |
|                                                                                                                                                                                          |                    |                |          |                       |         |                                         |            |        |                       |
|                                                                                                                                                                                          | Y a                | -              |          |                       |         |                                         |            |        | (IIII)                |
| Receiver                                                                                                                                                                                 |                    | ectrum         | ®        |                       |         |                                         |            |        |                       |
| Ref Level<br>Att                                                                                                                                                                         | 10.00 dBm<br>30 dB |                | e R      | BW 2 MHz<br>BW 20 MHz | Mode Au | ito FFT In                              | put 1 AC   |        |                       |
| Ref Level<br>Att<br>PS                                                                                                                                                                   | 10.00 dBm          |                | e R      |                       | Mode Au | ito FFT In                              | put 1 AC   |        |                       |
| Ref Level<br>Att                                                                                                                                                                         | 10.00 dBm          |                | e R      | BW 20 MHz             |         | ito FFT In                              | put 1 AC   |        | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max                                                                                                                                                        | 10.00 dBm          |                | e R      |                       |         |                                         | put 1 AC   | 2.4408 |                       |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm                                                                                                                                               | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max                                                                                                                                                        | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm                                                                                                                                    | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm                                                                                                                                               | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm                                                                                                                                    | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                              | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                         | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                              | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                                                                                        | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level           Att           PS           IRm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                           | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                                                                                        | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS           • 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                                                             | 10.00 dBm          |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   | 2.4408 | 2.83 dBm              |
| Ref Level Att         PS         IRm Max         0 dBm         -10 dBm         -20 dBm         -30 dBm         -40 dBm         -50 dBm         -70 dBm                                   | 10.00 dBm<br>30 dB |                | e R      | BW 20 MHz             |         |                                         | put 1 AC   |        | 2.83 dBm              |

|--|--|

Page 68 of 94 pages

| Receiver               | Spe                | ct <b>ru</b> m | ×                   |                     |               |            |                  |                  |
|------------------------|--------------------|----------------|---------------------|---------------------|---------------|------------|------------------|------------------|
| Ref Level<br>Att<br>PS | 10.00 dBm<br>30 dB | <b>SWT</b> 960 | e RBW<br>5.4 ns VBW | / 2 MHz<br>/ 20 MHz | Mode Auto FFT | Input 1 AC |                  |                  |
| ●1Rm Max               |                    |                |                     |                     |               |            |                  |                  |
|                        |                    |                |                     | M1                  | M1[1]         |            | 3.2<br>2.4798503 | 25 dBm<br>00 GHz |
| 0 dBm                  |                    |                |                     |                     |               |            |                  |                  |
| -10 dBm                |                    |                |                     |                     |               |            |                  |                  |
| -28 dBm-               |                    |                |                     |                     |               |            |                  | X                |
| -30 dBm                |                    |                |                     |                     |               |            |                  |                  |
| -40 dBm                |                    |                |                     |                     |               |            |                  |                  |
| -50 dBm                |                    |                |                     |                     |               |            |                  |                  |
| -60 dBm                |                    |                |                     |                     |               |            |                  |                  |
| -70 dBm                |                    |                |                     |                     |               |            |                  |                  |
| -80 dBm                |                    |                |                     |                     |               |            |                  |                  |
| CF 2.48 GH             | z                  |                |                     | 10000               | pts           |            | Span 6.0         | 0 MHz            |

# EDR (π/4-DQPSK with 2 MBit/s)

| Receiver                       | Spectrum 🗵                      |                             |                    |                             |
|--------------------------------|---------------------------------|-----------------------------|--------------------|-----------------------------|
| Ref Level 10.00<br>Att 3<br>PS | dBm<br>0 dB <b>SWT</b> 966.4 ns | RBW 2 MHz<br>VBW 20 MHz Mod | e Auto FFT Input 1 | AC                          |
| ●1Rm Max                       |                                 | MI                          | M1[1]              | 0.22 dBm<br>2.402128700 GHz |
| 0 dBm<br>-10 dBm               |                                 |                             |                    |                             |
| -20.dBm                        |                                 |                             |                    |                             |
| -30 dBm                        |                                 |                             |                    |                             |
| -50 dBm                        |                                 |                             |                    |                             |
| -60 dBm                        |                                 |                             |                    |                             |
| -80 dBm                        |                                 |                             |                    |                             |
| CF 2.402 GHz                   |                                 | 10000 pts                   |                    | Span 6.0 MHz                |

| The state of the s | TESTED     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| SUINCE 1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IN GERMANT |

Page 69 of 94 pages

| Receiver                                                                                                                                                                                                                  | Spee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ctrum | ×               |       |                           |         |                  |            |             |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-------|---------------------------|---------|------------------|------------|-------------|-----------|
| Ref Level                                                                                                                                                                                                                 | 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                 | e RB  | A 2 MHz                   |         |                  |            |             | ()        |
| Att                                                                                                                                                                                                                       | 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SWT   | 966.4 ns        | VB    | ₩ 20 MHz                  | Mode Au | uto FFT          | Input 1 AG | 3           |           |
| PS                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       | M1                        | N       | 41[1]            |            |             | 2.52 dBm  |
| 0 dBm                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | -               |       |                           |         | T                | - 1        | 2.4408      | 55700 GHz |
| U UBIII                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -10 dBm                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         | -                |            |             |           |
|                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                 |       |                           |         |                  |            | 5.7         |           |
| -20 dBm-                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | -               |       |                           | 8       | -                |            |             |           |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -30 dBm                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           | -       | -                |            |             |           |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -40 dBm                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -50 dBm                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -50 0011                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -60 dBm                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2     |                 |       |                           | ·       | -                |            |             |           |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -70 dBm                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -     | 2               |       |                           | 6       | 5                |            | _           |           |
| advantant tanà ao amin'                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             |           |
| -80 dBm                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       | 5                         | 2       | - 2              |            | _           | -         |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            |             | I         |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |       |                           |         |                  |            | 1           |           |
| CF 2.441 C                                                                                                                                                                                                                | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -     | <u>0</u>        |       | 1000                      | 0 pts   |                  | 1.0        | Spa         | n 6.0 MHz |
| CF 2.441 (                                                                                                                                                                                                                | iHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |       | 1000                      | 0 pts   |                  |            | Spa         |           |
| CF 2.441 C<br>Receiver                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ctrum | ×               |       | 1000                      | 0 pts   |                  |            | Spa         |           |
| Receiver<br>Ref Level                                                                                                                                                                                                     | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 | e RBV | W 2 MHz                   |         |                  |            |             |           |
| Receiver<br>Ref Level<br>Att                                                                                                                                                                                              | Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | (X)<br>966.4 ns |       |                           |         | uto FFT          | Input 1 A  |             |           |
| Receiver<br>Ref Level                                                                                                                                                                                                     | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz                   |         | uto FFT          | Input 1 A  |             |           |
| Receiver<br>Ref Level<br>Att<br>PS                                                                                                                                                                                        | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  | uto FFT<br>11[1] | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Rm Max                                                                                                                                                                           | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | ₩ 2 MHz<br>₩ 20 MHz       | Mode A  |                  | Input 1 A  | c           |           |
| Receiver<br>Ref Level<br>Att<br>PS                                                                                                                                                                                        | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>• 1Rm Max                                                                                                                                                                           | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm                                                                                                                                                                    | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm                                                                                                                                                                    | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                              | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm                                                                                                                                                         | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                   | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                              | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                        | 5pe<br>10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                   | 5pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver<br>Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                        | 5pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  |            | c           | 2.84 dBm  |
| Receiver           Ref Level           Att           PS           ● 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                   | 5pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver           Ref Level           Att           PS           ● 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                                     | 5pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  |            | c           | 2.84 dBm  |
| Receiver           Ref Level           Att           PS           ● 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm | 5pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  |            | c           | 2.84 dBm  |
| Receiver           Ref Level           Att           PS           ● 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                   | 5pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode A  |                  | Input 1 A  | c           | 2.84 dBm  |
| Receiver           Ref Level           Att           PS           ● 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm | Spectronal |       |                 |       | W 2 MHz<br>W 20 MHz<br>M1 | Mode Ar |                  |            | C<br>2.4798 | 2.84 dBm  |

|  | TESTED<br>N GERMANY |
|--|---------------------|
|--|---------------------|

# EDR (8-DPSK with 3 MBit/s)

| Receiver                                                                                                                                                                             | Spe                | ctrum            | ×    |                                     |          |           |           |        |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|------|-------------------------------------|----------|-----------|-----------|--------|-----------|
| Ref Level<br>Att                                                                                                                                                                     | 10.00 dBm<br>30 dB | <b>SWT</b> 966   | e RE | 3W 2 MHz<br>3W 20 MHz               | Mode Aut | to FFT In | put 1 AC  |        |           |
| PS                                                                                                                                                                                   |                    |                  |      |                                     |          |           |           |        |           |
| ⊜1Rm Max                                                                                                                                                                             | 2                  |                  | T    | 1                                   | M        | 1[1]      |           |        | 0.28 dBm  |
|                                                                                                                                                                                      |                    |                  |      | M                                   |          | *[*]      | 2 A       | 2.4019 | 81700 GHz |
| 0 dBm                                                                                                                                                                                | 14                 |                  |      |                                     | -        |           |           |        |           |
| 10/01/0-01/0.001 (                                                                                                                                                                   | 5.5                |                  |      |                                     |          |           |           |        |           |
| -10 dBm                                                                                                                                                                              |                    |                  |      | -                                   | Ċ.       | 12        |           |        | _         |
|                                                                                                                                                                                      | 0.94               |                  |      |                                     |          |           |           |        |           |
| -20 dBm                                                                                                                                                                              |                    | 2                |      |                                     |          |           |           |        |           |
| -30 dBm                                                                                                                                                                              | 3                  | 9                |      |                                     |          | 1         |           |        |           |
| -50 0011                                                                                                                                                                             |                    |                  |      |                                     |          |           |           |        |           |
| -40 dBm                                                                                                                                                                              |                    |                  |      |                                     |          |           |           |        |           |
| 10 0.011                                                                                                                                                                             |                    |                  |      |                                     |          |           |           |        |           |
| -50 dBm                                                                                                                                                                              |                    | -                |      |                                     |          |           |           |        |           |
| Fishes Soles                                                                                                                                                                         |                    |                  |      |                                     |          |           |           |        |           |
| -60 dBm                                                                                                                                                                              |                    | 2                | -    |                                     |          |           |           |        |           |
|                                                                                                                                                                                      |                    |                  |      |                                     |          |           |           |        |           |
| -70 dBm                                                                                                                                                                              | 0                  | 5                | -    |                                     |          |           |           |        | g.        |
|                                                                                                                                                                                      |                    |                  |      |                                     |          |           |           |        |           |
| -80 dBm                                                                                                                                                                              | i                  | <u>.</u>         |      |                                     | è        |           | -         |        |           |
|                                                                                                                                                                                      |                    |                  |      |                                     |          |           |           |        |           |
| CF 2.402 G                                                                                                                                                                           | Hz                 |                  |      | 1000                                | ) pts    |           |           | Spar   | n 6.0 MHz |
|                                                                                                                                                                                      |                    |                  |      |                                     |          |           |           |        |           |
|                                                                                                                                                                                      |                    |                  |      |                                     |          |           |           |        |           |
| Receiver                                                                                                                                                                             | Spe                | ctrum            | ×    |                                     |          |           |           |        |           |
| Receiver<br>Ref Level                                                                                                                                                                | 3                  | ctrum            |      | BW 2 MHz                            |          |           |           |        |           |
| Ref Level<br>Att                                                                                                                                                                     | 3                  | ctrum<br>SWT 960 | e RE | <b>BW</b> 2 MHz<br><b>BW</b> 20 MHz | Mode Au  | to FFT II | nput 1 AC |        |           |
| Ref Level<br>Att<br>PS                                                                                                                                                               | 10.00 dBm          |                  | e RE |                                     | Mode Au  | to FFT II | nput 1 AC |        |           |
| Ref Level<br>Att                                                                                                                                                                     | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC |        |           |
| Ref Level<br>Att<br>PS<br>●1Rm Max                                                                                                                                                   | 10.00 dBm          |                  | e RE |                                     | M        | to FFT II | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS                                                                                                                                                               | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>IRm Max                                                                                                                                                    | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>●1Rm Max                                                                                                                                                   | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm                                                                                                                                | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>IRm Max                                                                                                                                                    | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                     | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm                                                                                                                                | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                          | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>IRm Max<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                     | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                               | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                          | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                               | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                                                                                    | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                                                                                    | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level           Att           PS           • 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |
| Ref Level           Att           PS           • 1Rm Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           |           | 2.4409 | 2.63 dBm  |
| Ref Level<br>Att<br>PS<br>1Rm Max<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm                                                              | 10.00 dBm          |                  | e RE | BW 20 MHz                           | M        |           | nput 1 AC | 2.4409 | 2.63 dBm  |

| TESTED<br>IN GERMANY | Test report no.:<br><b>18/09-0026B</b> | Page 71 of 94 pages |
|----------------------|----------------------------------------|---------------------|
|                      |                                        |                     |

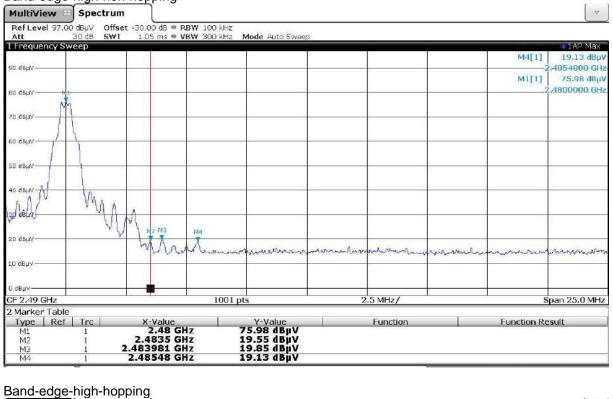
| Receiver                               | Spe   | ctrum   | ×               |                 |                |         |                |          |           |
|----------------------------------------|-------|---------|-----------------|-----------------|----------------|---------|----------------|----------|-----------|
| Ref Level 1                            |       |         |                 | W 2 MHz         | alata 207 - 20 |         | Neo es sub cou |          |           |
| Att<br>PS                              | 30 dB | SWT 966 | .4 ns <b>VB</b> | <b>W</b> 20 MHz | Mode Au        | to FFT  | Input 1 AC     |          |           |
| 91Rm Max                               |       |         |                 |                 |                |         |                |          |           |
|                                        |       |         |                 | [M1             | M              | 1[1]    |                |          | 2.99 dBm  |
| 22-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 |       |         |                 | <b>V</b>        |                |         | 6              | 2.4799   | 43900 GHz |
| 0 dBm                                  |       |         |                 |                 |                |         |                | 2        |           |
| 10 40                                  |       |         |                 |                 |                |         |                |          |           |
| -10 dBm                                |       |         |                 |                 |                |         |                |          |           |
| -20 dBm                                |       |         |                 |                 |                |         |                |          | 1         |
| 20 0011                                |       |         |                 |                 |                |         |                |          |           |
| -30 dBm                                | -     |         |                 |                 |                |         |                |          |           |
|                                        |       |         |                 |                 |                |         |                |          |           |
| -40 dBm                                |       |         |                 |                 |                |         |                | G        |           |
|                                        |       |         |                 |                 |                |         |                |          |           |
| -50 dBm                                |       |         |                 |                 |                |         |                | 2)<br>2) |           |
|                                        |       |         |                 |                 |                |         |                |          |           |
| -60 dBm                                |       |         |                 |                 | -              |         |                | 8 8      |           |
|                                        |       |         |                 |                 |                |         |                |          |           |
| -70 dBm                                |       |         |                 |                 |                |         |                |          |           |
| -80 dBm                                |       |         |                 |                 |                |         |                |          |           |
| -00 UBIII                              |       |         |                 |                 |                |         |                |          |           |
|                                        |       |         |                 |                 |                |         |                |          |           |
| CF 2.48 GH                             | 2     |         |                 | 1000            | 0 pts          | · · · · |                | Spa      | n 6.0 MHz |

### g) Conducted RF band edge emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in §15.209(a) is not required.

All conducted measured radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Measurement had been performed with GFSK with 1 MBit/s as worst case.

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005) Band-edge-low-non-hopping


| MultiView 🗄 Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ectrum                     |                          |                | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 100.10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Att 30 a<br>1 Frequency Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 SWT 1.05 ms 🛡 VBW 3     | 00 kHz Mode Auto Sweep   |                | I AP Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Threquency Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                          |                | M4[1] 33.57 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                | 2,3991690 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 90 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                | M1[1] 77.52 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8 (2) ( - 4) ( - 1) ( - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                          |                | 2,4020000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 80 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                | run -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 70 dBµV-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| in rehv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                          |                | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 dBµV-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                | l la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                | where the second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                | MALA NO TALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| эр d8µV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                | AT N V W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| and the second s |                            |                          |                | WALL N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20 dBuV-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                          |                | N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 120 UDHV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mare harrington my harring | warman marken marken and | man hour hours | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Contraction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBµ9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 2.3935 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 1001 pts                 | 2.5 MHz/       | Span 25.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 Marker Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 1001 pts                 | 2.3 MHZ/       | apan 25/0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Type Ref Tro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X-Value                    | Y-Value                  | Function       | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.402 GHz                  | 77.52 dBµV               | - uncuorr      | T uncdoff Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4 GHz                    | 34.89 dBµV               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.399494 GHz               | 30.40 dBµV               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.399169 GHz               | 33.57 dBµV               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Band-edge-low-hopping

| MultiView 🖯 Spe                    | ctrum                       |                        |                        | ∀                       |
|------------------------------------|-----------------------------|------------------------|------------------------|-------------------------|
| Ref Level 100.10 dBµV              |                             |                        |                        |                         |
| Att 30 dB<br>1 Frequency Sweep     | SWT 1.05 ms 🛡 VBW 30        | 10 kHz Mode Auto Sweep |                        | 1 AP Max                |
| T Frequency Sweep                  |                             |                        |                        | M3[1] 23.56 dBµV        |
|                                    |                             |                        |                        | 2.3991440 GHz           |
| 90 dBpV                            |                             |                        |                        | M1[1] 75.12 dBµV        |
|                                    |                             |                        |                        | 2.4020000 GHz           |
| 80 d8µV                            |                             |                        |                        | MI                      |
|                                    |                             |                        |                        | The my my my my         |
| 70 dBµV                            | -                           |                        |                        |                         |
|                                    |                             |                        |                        |                         |
| 60 dBµV                            |                             |                        |                        |                         |
| on cohk                            |                             | 3                      |                        |                         |
| - Sec.                             |                             |                        |                        | 1                       |
| 50 dBµV                            |                             |                        |                        |                         |
|                                    |                             |                        |                        |                         |
| 40 dBµV                            |                             |                        |                        |                         |
|                                    |                             |                        |                        | N                       |
| 30 d8µV                            |                             |                        |                        |                         |
|                                    |                             |                        | B14                    | Condition of the series |
| 20 dBuk                            | Mary mary and around a more | the phy phy phy phy    | Man Marine Marine Port | Sur .                   |
| hand hold have have                | white has not a have have   | i was made that the    | I had had here have    | × ·                     |
| 10 dBµV-                           |                             |                        |                        |                         |
|                                    |                             |                        |                        |                         |
|                                    |                             |                        |                        |                         |
| CF 2.3935 GHz                      |                             | 1001 pts               | 2.5 MHz/               | Span 25.0 MHz           |
| 2 Marker Table<br>Type   Ref   Trc | X-Value                     | Y-Value                | Function               | Function Result         |
| Type Ref Trc<br>M1 1               | 2.402 GHz                   | 75.12 dBµV             | Function               | runcdon Result          |
| M2 1                               | 2.4 GHz                     | 26.25 dBuV             |                        |                         |
| M3 1                               | 2.399144 GHz                | 23.56 dBµV             |                        |                         |
| M4 1                               | 2.397821 GHz                | 20.19 dBµV             |                        |                         |



#### Band-edge-high-non-hopping



|                 | Spectrum                 |                              |             |                        |            |            |            |             | $\bigtriangledown$            |
|-----------------|--------------------------|------------------------------|-------------|------------------------|------------|------------|------------|-------------|-------------------------------|
| Ref Level 97.00 | dBµV Offset<br>30 dB SWT | -30.00 dB • R<br>1.05 ms • V |             | <b>Iode</b> Auto Swee  | p          |            |            |             |                               |
| 1 Frequency Sw  | eep                      |                              |             |                        |            | <u> </u>   |            |             | 💿 1 AP. Max                   |
|                 |                          |                              |             |                        |            |            |            | M4[1]       | 21,78 dBµV                    |
| 90 dBµV         |                          |                              |             |                        |            |            |            | M1[1]       | 4859790 GHz<br>75.22 dBμV     |
| 00.45.41        |                          |                              |             |                        |            |            |            | WILLI       | 2.4800000 GHz                 |
| 80 dBµV         |                          |                              |             |                        |            |            |            |             |                               |
| to abov My My   | -                        |                              |             |                        |            |            |            |             |                               |
|                 |                          |                              |             |                        |            |            |            |             |                               |
| 60 dB           | 1                        |                              | ÷           |                        |            |            |            |             |                               |
| co obyp         | 1                        |                              |             |                        |            |            |            |             |                               |
| 50 dBµV         | l'                       |                              |             |                        |            |            |            |             |                               |
|                 | 1                        |                              |             |                        |            |            |            |             |                               |
| 40 dBµV         | 1                        |                              |             |                        |            |            |            |             |                               |
| 000000000000    | in .                     |                              |             |                        |            |            |            |             |                               |
| 30 dBµV         | 4                        |                              |             |                        |            | -          | -          |             |                               |
|                 | NM                       | A M2 M                       | M4          |                        |            |            |            |             | The Designation of the second |
| 20 dBµV         | - Vily                   | in the p                     | a by but    | my my r                | in the but | mmp        | n m        | MAR         | n pro pro                     |
|                 |                          | 4 W                          | had had h   | of the had             | and had h  | at had had | the has to | of had had  | had had b                     |
| 10 dBµV         |                          |                              |             |                        |            |            |            |             |                               |
|                 |                          |                              |             |                        |            |            |            |             |                               |
| o dayy-         |                          |                              |             |                        |            |            |            |             |                               |
| CF 2,49 GHz     |                          |                              | 1001 pt     | S                      | 2          | 2.5 MHz/   | 1.         | 5           | pan 25.0 MHz                  |
| 2 Marker Table  | 1 The L                  |                              | 1           | 12 11-1                |            |            | C          | C           |                               |
| Type Ref<br>M1  | Trc 1                    | X-Value<br>2.48 GH           | z 7         | Y-Value<br>5.22 dBµV   |            | Function   |            | Function Re | esuit                         |
| M2              |                          | 483975 GH                    | lz 2        | 1.70 dBuV              |            |            |            |             |                               |
| M3<br>M4        |                          | 2.48498 GH<br>485979 GH      | z 2         | 2.02 dBµV<br>1.78 dBµV |            |            |            |             |                               |
| D.let           | _1 <b>Z</b> .            | 40 <i>3373</i> Gr            | 12 <u>2</u> | 7120 00044             |            |            | (i)        |             |                               |

| LAFETY-MUT |            |
|------------|------------|
| ( phen )   | TESTED     |
| SIACE 1978 | IN GERMANY |

Page 74 of 94 pages

## Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006) Band-edge-low-non-hopping

| MultiView      | Spectru        | um )             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | ~                |
|----------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|------------------|
| BefLevel 102   |                | offset -25.00 dB | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |          | 10               |
| Att            | 30 dB S        |                  | 300 kHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |          | -                |
| I Frequency Sv | weep           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 1AP Max          |
| 100 dBµV       |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | M2[1] 37.66 dBµV |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 2.4000000 GHz    |
| эр двру        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | -M1[1]           |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | M1 2.4020000 GHz |
| 80 dBµY        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
| an asha        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | line (           |
| 100000 De      |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
| 70 d8µY        |                |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |          | 1 5              |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 2                |
| 60 dBµV        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
| 50 dBµV        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
| 40 d8µV        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | M2 A     | 14000            |
| 40.0004        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | M3 T DIV | 4 [m/ by/]       |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | AAAP     | Y (              |
| ар двру        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 14010    | 2.               |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 1.01             |
| 20, deluman    | and the states | and month of the | all and the second and the second and the second se | 1. A provident and a second | yw.      | ww.              |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
| 10 dBµV        |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
|                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
| CF 2.3935 GHz  |                |                  | 1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5 MHz/                    | -        | Span 25.0 MHz    |
| 2 Marker Table |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |                  |
| Type   Ref     |                | X-Value          | Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function                    |          | Function Result  |
| Mi             | 1              | 2.402 GHz        | 80.41 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |          |                  |
| M2             | 1              | 2.4 GHz          | 37.66 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |          |                  |
| M3             | 1              | 2.399494 GHz     | 34.08 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |          |                  |
| M4             | 1              | 2.399144 GHz     | 36.06 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |          |                  |

## Band-edge-low-hopping

| MultiView Spec               |                                         |                               |                  | ▽                                 |
|------------------------------|-----------------------------------------|-------------------------------|------------------|-----------------------------------|
|                              | Offset -25.00 dB RBW 10                 |                               |                  |                                   |
| Att 30 dB<br>Frequency Sweep | SWT 1.05 ms = VBW 30                    | 0 kHz Mode Auto Sweep         |                  | a 1AP Max                         |
| 100 depv                     |                                         |                               |                  |                                   |
| con appr                     |                                         |                               |                  | M3[1] 23.76 dBpV<br>2.3995190 GHz |
| A. 2002                      |                                         |                               |                  |                                   |
| 90 dBµV                      | 2                                       |                               |                  | M1[1] 77.91 dBpV                  |
|                              |                                         |                               |                  | 2.4020000 GHz                     |
| 30 dBµV                      |                                         |                               |                  | M1                                |
| 1775 AND 1                   |                                         |                               |                  | m m m m                           |
|                              |                                         |                               |                  |                                   |
| 70 dBµV                      | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                               |                  |                                   |
|                              |                                         |                               |                  |                                   |
| 5D dBµV                      |                                         |                               |                  |                                   |
|                              |                                         |                               |                  |                                   |
| 50 dBµV                      |                                         |                               |                  |                                   |
| ou deba                      |                                         |                               |                  |                                   |
|                              |                                         |                               |                  |                                   |
| 40 авнл.                     |                                         |                               |                  |                                   |
|                              |                                         |                               |                  | Ja AV                             |
| 30 dBµV                      |                                         |                               | Md               | in of                             |
|                              | -                                       |                               | X                | M3 MAN                            |
| my my my my                  | in my my my my                          | my phy phy pay                | all my my in all | - 1                               |
| bonder Von Francisco mar     | have had have hered                     | way prove present property by | a my na put of   |                                   |
|                              |                                         |                               |                  |                                   |
| LO deuv-                     |                                         |                               |                  |                                   |
|                              |                                         |                               |                  |                                   |
| CF 2.3935 GHz                | I                                       | 001 pts                       | 2.5 MHz/         | Span 25.0 MHz                     |
| 2 Marker Table               |                                         |                               |                  |                                   |
| Type   Ref   Trc             | X-Value                                 | Y-Value                       | Function         | Function Result                   |
| M1 1                         | 2.402 GHz                               | 77.91 dBµV                    |                  | Contractory Constants             |
| M2 1                         | 2.4 GHz                                 | 29.57 dBuV                    |                  |                                   |
| M3 1                         | 2.399519 GHz                            | 23.76 dBµV<br>26.49 dBµV      |                  |                                   |
| M4 1                         | 2.399144 GHz                            | 26.49 dBuV                    |                  |                                   |



## Band-edge-high-non-hopping

| Offset -25.00 dB • RBW 10<br>SWT 1.05 ms • VBW 30 | 00 kHz Mode Auto Sweep       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M4[1] 24.50 dBµ<br>2.48548000 dBµ<br>M1[1] 81.38 dBµ<br>2.4800000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWT 1.05 ms VBW 30                                | DD kHz Mode Auto Sweep       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | М4[1] 24.50 dBµ<br>2.4854800 GH<br>М1[1] 81.38 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M4[1] 24.50 dBµ<br>2.4854800 GH<br>M1[1] 81.38 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4854800 GH<br>M1[1]81.38 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1] 81.38 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                 | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1 4 6                                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V V M2 M3 M4                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| White when                                        | and the second second second | a hours in hours .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   |                              | and the states of the states o | and the second s |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | 1001 pts                     | 2.5 MHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Span 25.0 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                   | 1001 pts                     | 210 00 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5pan 23/6 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| X-Value                                           | Y-Value                      | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.48 GHz                                          | 81.38 dBµV                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | 24.84 dBµV                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | X-Value                      | X-Value         Y-Value           2.48 GHz         81.38 dBµV           2.4835 GHz         24.84 dBµV           2.4838 GHz         25.41 dBµV           2.48548 GHz         24.50 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X-Value         Y-Value         Function           X-Value         Y-Value         Function           2.48 GHz         81.38 dBµV         2.4835 GHz           2.483981 GHz         25.41 dBµV           2.48548 GHz         24.50 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Type Ref<br>M1<br>M2<br>M3<br>M4 |         | 8 GHz<br>4 GHz<br>5 GHz | <u>Y-Value</u><br>80.41 dBµ¥<br>27.22 dBµ¥<br>27.43 dBµ¥<br>27.38 dBµ¥ | 1       | Function |         | Function Re | esult        |
|----------------------------------|---------|-------------------------|------------------------------------------------------------------------|---------|----------|---------|-------------|--------------|
| CF 2.49 GHz<br>2 Marker Table    | 10 OC   | 1001                    | pts                                                                    | 2       | .5 MHz/  |         | S           | pan 25.0 MH; |
| 10 dBµV                          |         |                         |                                                                        |         |          |         |             |              |
| 20 dBµY                          | W" W    | had had had             |                                                                        | h V h   |          | W W L   | 100         | UW           |
| 30 авµч                          | Wayny ? | 12 M3 M4                | n m m m                                                                | y my My | my my my | a my my | M M M       | of had bud   |
| 40 dBµv                          | -h      |                         |                                                                        |         |          |         |             |              |
| sa двих                          |         |                         |                                                                        |         |          |         |             | 2            |
| <u>V</u> V<br>50 dBµV            |         |                         |                                                                        |         |          | - 8     |             | -            |
| to day                           |         |                         |                                                                        |         |          |         |             |              |
| BRANBUY HAN MA                   |         |                         |                                                                        |         |          |         |             |              |



A

#### h) Spurious emission

All radio frequency power that is produced in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power (0.1 dBm, smallest wanted power value, worst case), based on the RF conducted/radiated measurements and comply with the limits.

## All radiated emissions including emissions which fall in the restricted bands comply with the radiated emission limits specified in §15.209 (see clause 7 in this thest report).

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005) Hopping with GFSK with 1 MBit/s, which is the worst case as the distance between desired power and the power that is produced in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating shows the smallest distance. The smallest distance in this case is more than 50 db.

| MultiView                    | Spectrum                        |                                                                    |                               |                                                                                                                |                          | V          |
|------------------------------|---------------------------------|--------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|------------|
| Ref Level 10.00<br>Att<br>DC | ) dBm<br>30 dB <b>SWT</b> 24 ms | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> <li>Mode</li> </ul> | Auto Sweep                    |                                                                                                                |                          |            |
| Frequency Sw                 | eep                             |                                                                    |                               |                                                                                                                |                          | 💿 1Pk Mas  |
|                              |                                 |                                                                    |                               |                                                                                                                |                          |            |
| 0 dBm                        |                                 |                                                                    |                               |                                                                                                                |                          | -          |
| - 10 dBm                     |                                 |                                                                    |                               |                                                                                                                |                          | <br>       |
| -20 dBm                      |                                 |                                                                    |                               |                                                                                                                | _                        |            |
| -30 d8m                      |                                 |                                                                    |                               |                                                                                                                |                          | <br>       |
| -40 d8m                      |                                 |                                                                    | -                             |                                                                                                                |                          | <br>_      |
| -50 dBm                      |                                 |                                                                    |                               |                                                                                                                |                          | <br>       |
| -60 d9m                      |                                 |                                                                    |                               | The second s |                          | <br>- out  |
| 70 den                       |                                 | Wedle and an an an an a start of the start                         | dell'en and solved and solved | temelei distrikas (peratinistan                                                                                | heritentheterate beck so |            |
|                              |                                 |                                                                    |                               |                                                                                                                |                          |            |
| -80 dem                      |                                 |                                                                    |                               |                                                                                                                | -                        |            |
| 9.0 kHz                      |                                 | 20000 p                                                            |                               | 240.0 MHz/                                                                                                     | 1                        | <br>2.4 GH |

15:48:28 19.03.2019

| MultiView 🕒 Spectrum                  |                                                                                  |                                        |                                                                                                                | [                                                                                                               |
|---------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| RefLevel 10.00 dBm<br>Att 30 dB SWT 3 | <ul> <li>RBW 100 kHz</li> <li>224 ms</li> <li>VBW 300 kHz</li> <li>Mo</li> </ul> | de Auto Sweep                          |                                                                                                                |                                                                                                                 |
| Frequency Sweep                       |                                                                                  |                                        |                                                                                                                | ∎1Pk Ma                                                                                                         |
| ) dBm                                 |                                                                                  | -                                      |                                                                                                                |                                                                                                                 |
| 10 dBm                                |                                                                                  |                                        |                                                                                                                |                                                                                                                 |
| 20 dBm                                |                                                                                  |                                        |                                                                                                                |                                                                                                                 |
| ao dem                                |                                                                                  |                                        |                                                                                                                |                                                                                                                 |
| 40 dBm                                |                                                                                  |                                        |                                                                                                                |                                                                                                                 |
| SD dBm                                |                                                                                  |                                        |                                                                                                                |                                                                                                                 |
| 60 dBm                                | منعا وعلام المسالي المسلحا                                                       | المريحين المراجع المحمد المحمد المراجع | Well and the second | and the second states a |
| 70 dBm                                |                                                                                  |                                        |                                                                                                                |                                                                                                                 |
| 9D dBm                                |                                                                                  |                                        |                                                                                                                |                                                                                                                 |

| ANTIVALITY INTERIOR | Test report no.: | Page 77 of 94 pages |
|---------------------|------------------|---------------------|
| TESTED              | 18/09-0026B      |                     |

6

\$

Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006) Hopping with GFSK with 1 MBit/s, which is the worst case as the distance between desired power and the power that is produced in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating shows the smallest distance. The smallest distance in this case is more than 50 db.

| MultiView                  | Spectrum                        | ר              |                                                              |            |                               |                                       |                            |     | ~       |
|----------------------------|---------------------------------|----------------|--------------------------------------------------------------|------------|-------------------------------|---------------------------------------|----------------------------|-----|---------|
| RefLevel 10.0<br>Att<br>DC | 00 dBm<br>30 dB <b>SWT</b> 24 m | s BW 3         |                                                              | Auto Sweep |                               |                                       |                            |     |         |
| 1 Frequency Sv             | veep                            |                |                                                              |            |                               |                                       |                            |     | 1Pk Max |
|                            |                                 |                | 8                                                            |            | 2                             | · · · · · · · · · · · · · · · · · · · |                            |     |         |
| 0 d8m                      |                                 |                | 1                                                            |            |                               |                                       |                            | 2.1 |         |
| -10 dBm-                   |                                 |                | 1                                                            |            |                               |                                       | 2                          | 2   |         |
| -20 dBm                    |                                 |                |                                                              |            |                               |                                       | -                          |     |         |
| -30 d8m                    |                                 |                | (                                                            |            |                               | -                                     |                            |     |         |
| -40 dBm                    |                                 |                |                                                              |            |                               |                                       |                            |     |         |
| -50 dBm                    |                                 |                |                                                              |            |                               |                                       |                            |     |         |
| -60 dBm-                   |                                 |                |                                                              |            |                               |                                       |                            |     |         |
| -70 dBm                    | فعيده فتقرف المستنفين           | Little Balling | a landa yang balandara ta data<br>banganga nanya papa bayang |            | the still of the second start | na malana shalandinshi da             | entite on the model of the |     |         |
| -80 d8m-                   |                                 |                |                                                              |            |                               |                                       |                            |     |         |
| -ou dam-                   |                                 |                |                                                              |            |                               |                                       |                            |     |         |
| 9.0 kHz                    |                                 |                | 20000 p                                                      | S          | 24                            | 10.0 MHz/                             |                            |     | 2.4 GH  |

| MultiView 🖽 Spectri                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| RefLevel 10.00 dBm<br>Att 30 dB SV | ● RBW 100 kHz<br>VT 224 ms ● VBW 300 kHz 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mode Auto Sweep                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| DC.<br>Frequency Sweep             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1Pk Max                        |
| n equency sweep                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THK ING                        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| d8m                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| dom                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 10 dBm-                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 20 dBm                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 20 35/11                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 30 dBm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 40 dBm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| to ability                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| -541 Dami                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 50 dBm-                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 50 dBm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    | A CONTRACTOR OF THE OWNER OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A Station when the state                                                                                        | ورور و المرون المراجع المروحة المراجع المراجع المرور المرون المرون المرون المرون المرون المرون المرون المرون ال | والمقادية فالمنافقة فالمعادي والمعادية والم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the standard by a fair a stand |
|                                    | and the state of t | And a state of the second s | anten alle States (States States and States a | A REAL PROPERTY OF A REAL PROPER |                                |
| 70 dBm-                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 30 dBm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| .4835 GHz                          | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 pts                                                                                                          | 2.23 GHz/                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.8 G                         |

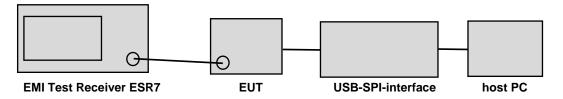


The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

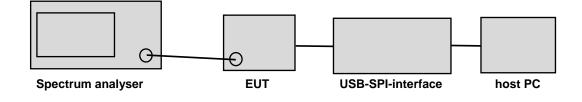
The hopping algorithm of the EUT is dictated by the Bluetooth specification according to which the EUT is certified, so that the above mentioned requirements are fulfilled.



#### Results


From the measurement data obtained, the tested samples were considered to have COMPLIED with the requirements for the operation within the band 2400-2483.5 MHz according to §15.247.

#### Test equipment used:


| Kind of equipment                               | Manufacturer       | Туре                                 | PKM-<br>ident no. | Serial no.      | Calibrated<br>on (y-m-d) | Calibration interval |
|-------------------------------------------------|--------------------|--------------------------------------|-------------------|-----------------|--------------------------|----------------------|
| Signal Spectrum<br>Analyzer 2Hz - 26,5<br>GHz   | Rohde &<br>Schwarz | FSW 26<br>Instrument FW 2.60         | 11571             | 102047          | 2017-12-13<br>2019-01-17 | 1 year               |
| ESR7 EMI<br>Testreceiver 7GHz                   | Rohde &<br>Schwarz | ERS7                                 | 11676             | 101694          | 2018-03-26               | 3 years              |
| Antenna 9 kHz – 30<br>MHz                       | EMCO               | 6502                                 | 10546             | 2018            | 2017-11-03               | 3 years              |
| Antenna                                         | Chase              | CBL6111C                             | 10022             | 1064            | 2017-01-30               | 3 years              |
| Antenna 1GHz – 18<br>GHz                        | Electro Metric     | RGA50/60                             | 10273             | 2753            | 2017-11-06               | 3 years              |
| Broadband-<br>Hornantenne 15 -<br>26,5 (40) GHz | Schwarzbeck        | BBHA 9170                            | 11580             | BBHA91706<br>21 | 2017-01-27               | 3 years              |
| Broadband-<br>Preamplifier<br>1-18 GHz          | Schwarzbeck        | BBV9718                              | 11231             | 9718-002        | 2017-10-09               | 3 year               |
| Preamplifier 18 - 40<br>GHz                     | CERNEX             | CBM18403523                          | 11679             | 29711           | 2018-05-07               | 1 year               |
| Cable                                           | el-spec GmbH       | FlexCore-SMA11-<br>SMA11-8000-ARM    | 11625             | -/-             | 2017-12-07               | 3 years              |
| Shielded<br>room/Chamber                        | Frankonia          | SAC3 "SEMI-<br>ANECHOIC-<br>CHAMBER" | 11609             | 004/16          | 2016-03-23               | 3 years              |

All measurements were made with measuring instruments, including any accessories that may affect test results, calibrated according to the requests of ISO/IEC 17025 according to which the test site is accredited from DAkkS. Measurement of radiated emissions was made with instruments conforming to American National Standard Specification, ANSI C63.10-2013.

Block diagram for conducted measurements (20 dB bandwidth, 99 % bandwidth, hopping channel separation, hopping channel frequencies, time of occupancy, Maximum peak conducted output power, Conducted RF band edge emissions).



Block diagram for spurious emission conducted (radiated emissions see clause 7 in this thest report)





#### Measurement uncertainty

according to CISPR 16-4-2 Edition 2.0 2011-06

| Measurement                                                                         | calculated uncertainty<br>U <sub>lab</sub>             | Specified CISPR uncertainty according<br>CISPR 16-4-2 Edition 2.0 2011-06, table 1<br>U <sub>CISPR</sub> |
|-------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Conducted disturbance at mains<br>port using AMN<br>150 kHz – 30 MHz                | 3,2 dB                                                 | 3,4 dB                                                                                                   |
| Radiated disturbance (electric field<br>strength in the SAC)<br>30 MHz to 1 000 MHz | 4,7 dB                                                 | 6,3 dB                                                                                                   |
| Radiated disturbance (electric field<br>strength in the SAC)<br>1 GHz to 26.5 GHz   | 4.1 dB                                                 | -/-                                                                                                      |
|                                                                                     |                                                        | Maximum measurement uncertainty according to EN300328:V2.1.1, table 17                                   |
| Channel Bandwidth                                                                   | 1.17 %                                                 | ±5 %                                                                                                     |
| RF output power, conducted                                                          | ±1,36 dB                                               | ±1,5 dB                                                                                                  |
| Power Spectral Density, conducted                                                   | ±1.99 dB                                               | ±3 dB                                                                                                    |
| Unwanted Emissions, conducted                                                       | ±1.71 dB                                               | ±3 dB                                                                                                    |
| All emissions, radiated                                                             | ±4.8 dB                                                | ±6 dB                                                                                                    |
| Temperature                                                                         | ±0.72 °C                                               | ±3 °C                                                                                                    |
| Supply voltages                                                                     | ±0.76 % (DC up to 40V)<br>±1.74 % (AC 50Hz up to 400V) | ±3 %                                                                                                     |
| Time                                                                                | ±0.012 %                                               | ±5 %                                                                                                     |

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

The measurements uncertainty was calculated in accordance with CISPR 16-4-2 Edition 2.0 2011-06.

The measurement uncertainty was given with a confidence of 95 % (k = 2).



### Photo(s) of test setup

Version ZLX-12BT, Sample 02, Serial no.: 095414385334570009 (tested under PKM ref. no.: 18/06-0005)

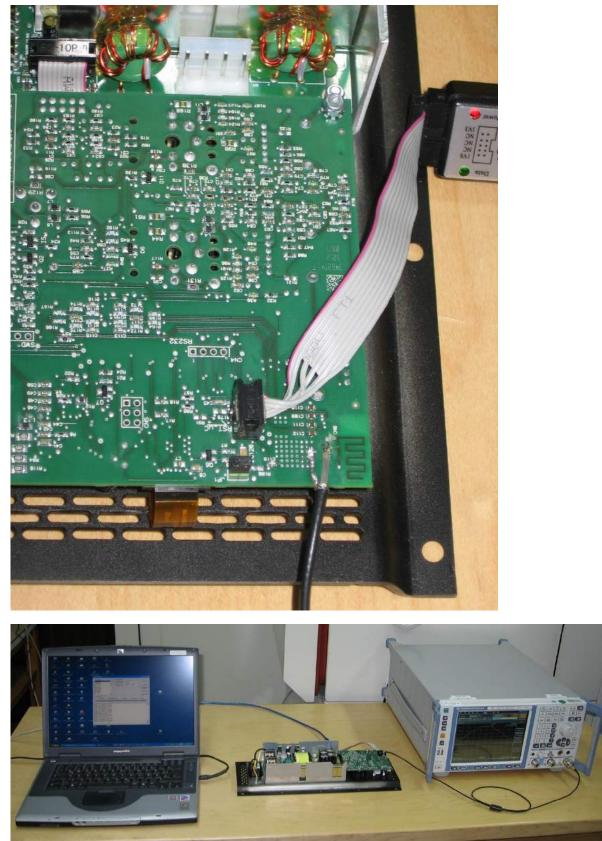


spurious emission conducted with spectrum analyzer








20 dB bandwidth, 99 % bandwidth, hopping channel separation, hopping channel frequencies, time of occupancy, Maximum peak conducted output power, Conducted RF band edge emissions with ESR7 EMI Testreceiver



Version ZLX-15BT, Sample 02: Serial no.: 095414485334640007 (tested under PKM ref. no.: 18/06-0006)

spurious emission conducted with spectrum analyzer





20 dB bandwidth, 99 % bandwidth, hopping channel separation, hopping channel frequencies, time of occupancy, Maximum peak conducted output power, Conducted RF band edge emissions with ESR7 EMI Testreceiver

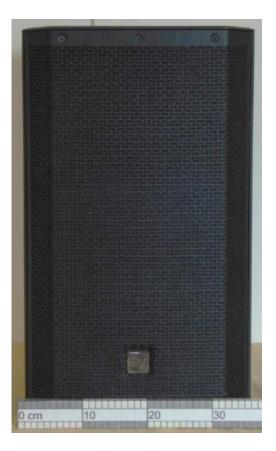


#### **10. CONCLUSIONS**

From the measurement data obtained, the tested sample was considered to have **COMPLIED** with the requirements for the following clauses of Federal Communications Commission Rules for intentional radiators e-CFR Title 47 Chapter I Subchapter A Part 15 Subpart C and Part 2.

- §15.203 Antenna requirement
- §15.205 Restricted bands of operation
- §15.207 Conducted limits
- §15.209 Radiated emission limits; general requirements
- §15.215 Additional provisions to the general radiated emission limitations
- §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850 MHz


Following specific modifications and/or special attributes are necessary to pass the above mentioned requirements: none

| 05.04.2019<br>prepared on | G. Raithel DiplIng. (FH), Head of Laboratory<br>(name / position) | electronic GmbH<br>a member of the STC IF<br>Annual<br>(signature) |
|---------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
| 05.04.2019<br>released on | K. Simon, Deputy Head of Laboratory<br>(name / position)0         | Karl Simon<br>(signature)                                          |
|                           |                                                                   | (0.9.1.4.4.10)                                                     |



## 11. Photos of tested sample(s)

## Version ZLX-12BT





















## Mat/N: F01U348781 CTN: ZLX-12BT-EU SN: 095414385334570009

POWER RATING / TEGANGAN: 100-240V~ 50-60Hz 0.8-0.5A FUSE: T4A/L/250V BOSCH SECURITY SYSTEMS, INC. 130 PERINTON PARKWAY

FAIRPORT, NY, 14450 USA EU IMPORTER: BOSCH SICHERHEITSSYSTEME GMBH

R.-BOSCH-RG 5, D-85626 GRASBRUNN FOR INDONESIA ONLY: IMPORTED BY / DIIMPOR OLEH PT ROBERT BOSCH, JAKARTA, INDONESIA

WWW.ELECTROVOICE.COM | MADE IN CHINA







## Version ZLX-15BT













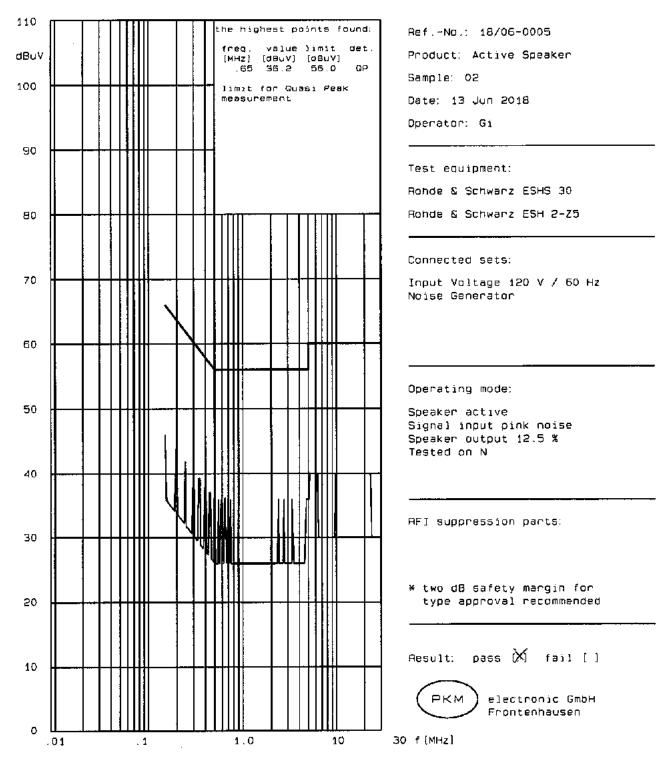












End of test report



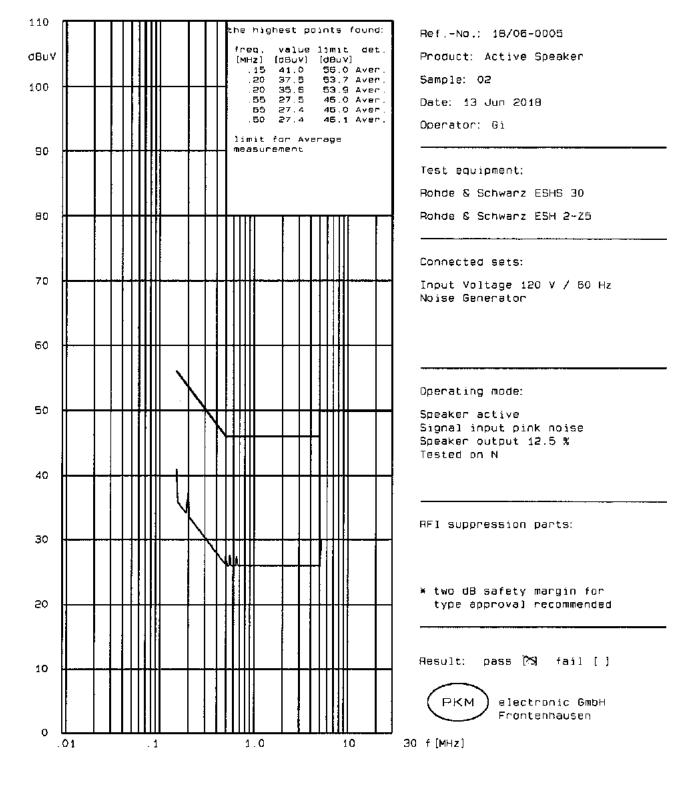
Page 1 of 7 Pages

1/2

Interference Voltage 150 KHz - 30 MHz acc. FCC PART 15.107(a) Class B ICES-003





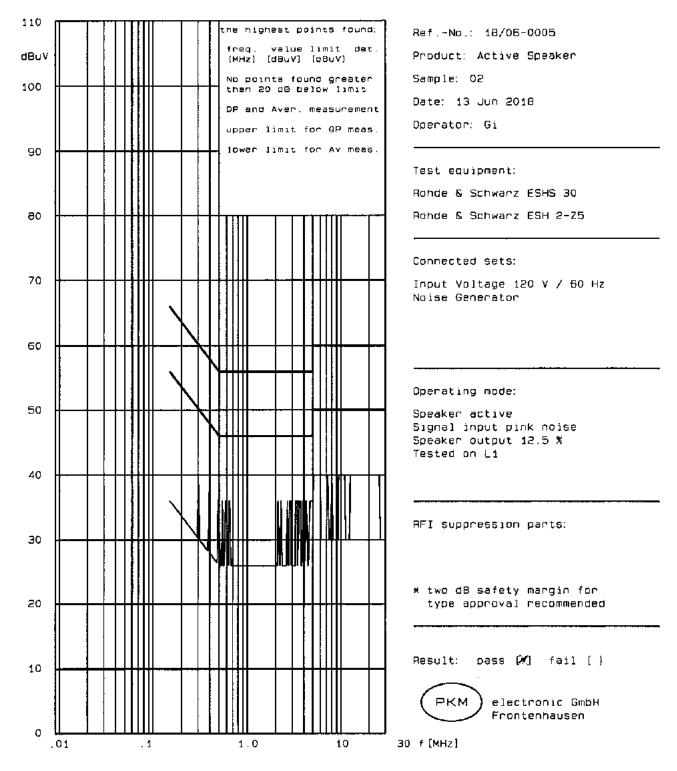

Annex 1 Test report no.: 18/09-0026

Page 2 of 7 Pages



Interference Voltage 150 KHz - 30 MHz acc, FCC PART 15.107(a) Class B

ICES-003



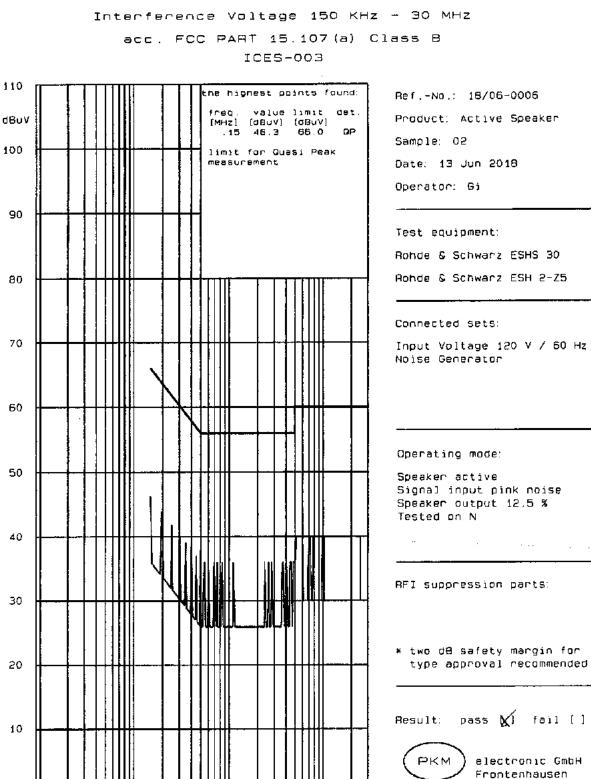



Page 3 of 7 Pages

1/2

Interference Voltage 150 KHz - 30 MHz acc. FCC PART 15.107 (a) Class B ICES-003






0

.01

. 1

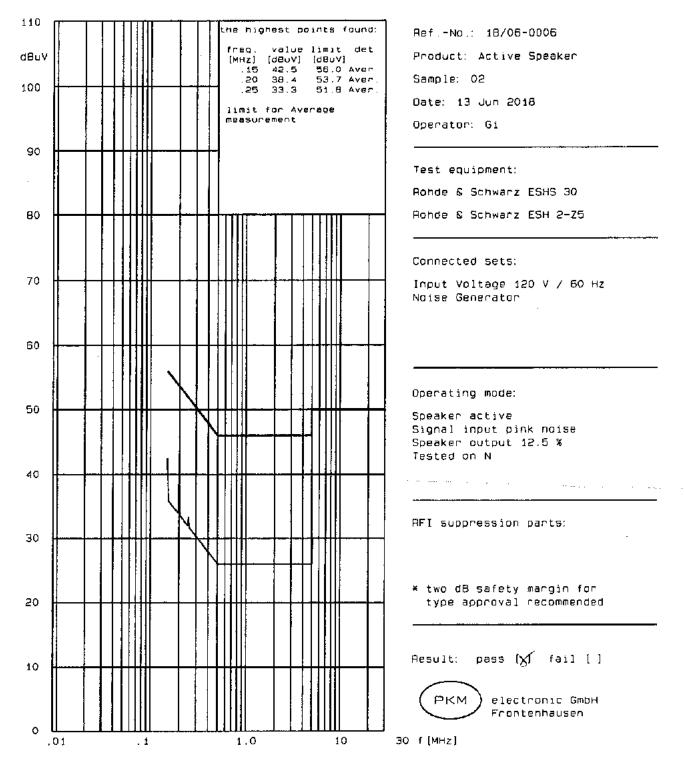
IT 1/2




- Frontenha
- 30 f[MHz]

10

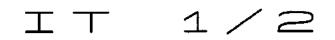
1.0




Page 5 of 7 Pages

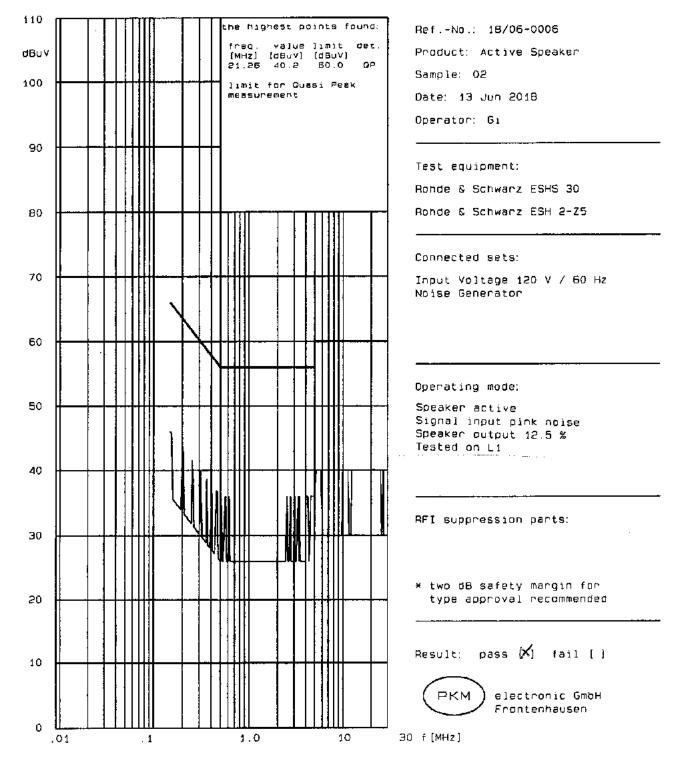


Interference Voltage 150 KHz - 30 MHz acc. FCC PART 15.107(a) Class B


ICES-003





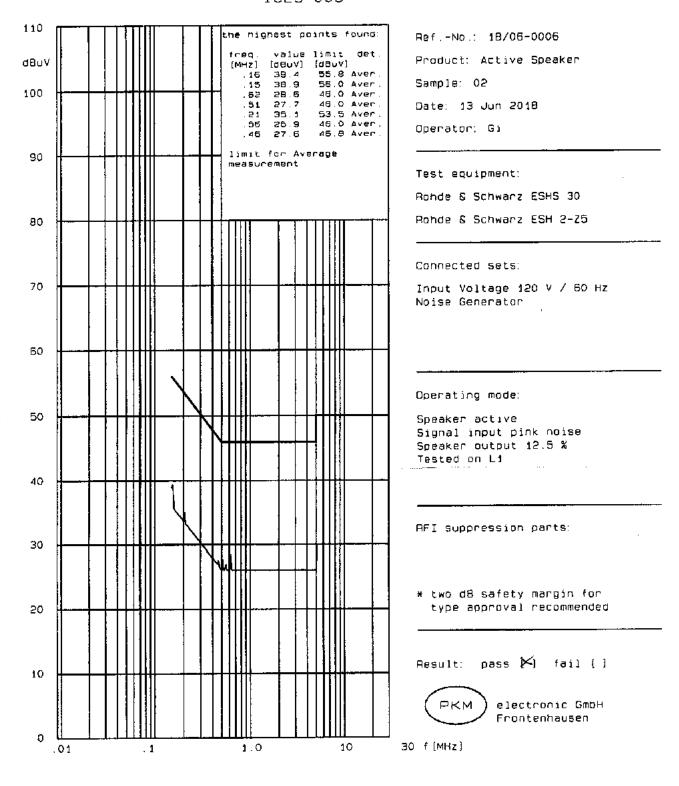

Annex 1 Test report no.: 18/09-0026

Page 6 of 7 Pages



Interference Voltage 150 KHz - 30 MHz acc. FCC PART 15.107(a) Class B

ICES-003






Page 7 of 7 Pages

1/2

Interference Voltage 150 KHz - 30 MHz acc. FCC PART 15.107(a) Class B ICES-003

