Nemko Test Report:	3L0107RUS1
Applicant:	Bosch Security Systems 130 Perinton Parkway Fairport, NY 14450 U.S.A.
Equipment Under Test: (E.U.T.)	DS840LSN 10.525 GHz
In Accordance With:	FCC Part 15, Subpart C For Operation Within The Bands 902-928 MHz, 2435-2465 MHz, 5785-5815 MHz, 10500-10550 MHz, 24075-24175 MHz Intentional Radiators Used As Field Disturbance Sensors Excluding Perimeter Protection Systems
Tested By:	Nemko Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	
	David Light, Production Manager
Date:	
Total Number of Pages:	21

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	Equipment Under Test (E.U.T.)	5
Section 3.	Equipment Configuration	8
Section 4.	Radiated Emissions	9
Section 5.	Powerline Conducted Emissions	12
Section 6.	Block Diagrams	14
Section 7.	Test Equipment List	16
Annex A - Re	estricted Bands	17
Annex B - Rad	diated Emission Limits	19

Section 1. Summary of Test Results

Manufacturer: Bosch Security Systems

Model No.: DS840LSN

Serial No.: Sample No. 1

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.245. All tests were conducted using measurement procedure ANSI C63.4-1992. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

\boxtimes	New Submission	\boxtimes	Production Unit
	Class II Permissive Change		Pre-Production Unit

Equipment Code

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. See "Summary of Test Data".

NVLAP LAB CODE: 100351-0

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. NEMKO Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

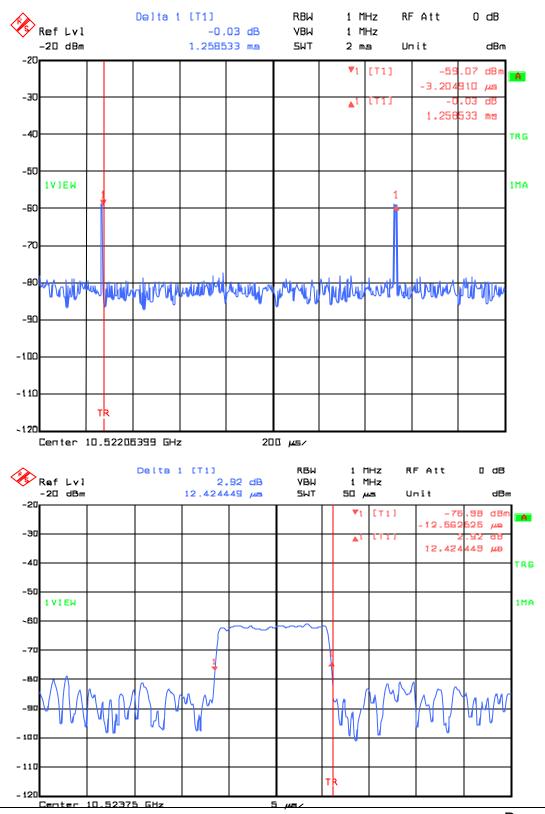
Name of Test	Paragraph Number	Results
Radiated Emissions	15.245	Complies
Powerline Conducted Emissions	15.207	Complies

Footnotes:

Section 2. Equipment Under Test (E.U.T.)

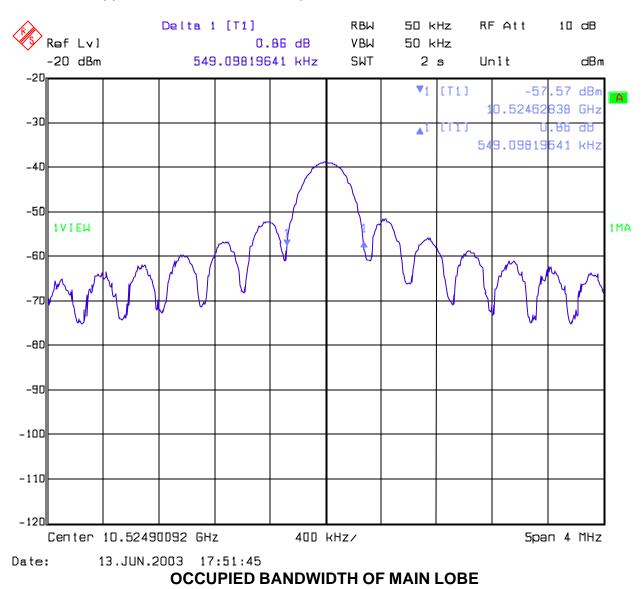
General Equipment Information

10.525 GHz
10.525 GHz
PON
2 Vdc
20 Log(80 x .0124/100) = -40 dB
) ()

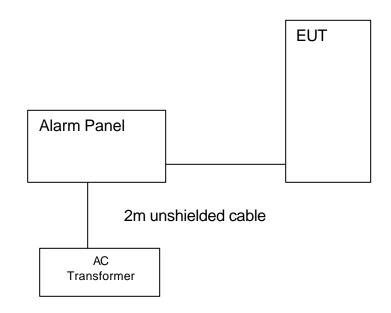

The transmitter pulses once every 1.25 msec. Each pulse is 12.4 microseconds (.0124 msec.)

The pulse repetition frequency is 1/1.25 msec. = .8 kHz In any 100 msec. period there are 100/1.25 = 80 pulses. The maximum rf on-time is therefore:

20 Log(80 x .0124msec./100msec.) = -40 dB


FCC PART 15, SUBPART C INTENTIONAL RADIATORS USED AS FIELD DISTURBANCE SENSORS PROJECT NO.: 3L0107RUS1

EQUIPMENT: DS840LSN



Description of E.U.T.

The EUT is a microwave motion detector operating at 10.525 GHz. The detector operates on 12 Vdc supplied from an alarm control panel.

Section 3. Equipment Configuration

Section 4. Radiated Emissions

NAME OF TEST: Radiated Emissions	PARA. NO.: 15.245
TESTED BY: Tom Tidwell	DATE: 26 May, 2003

Minimum Standard:

See Annex B

Test Results:

Test Data: See attached table.

Above 1 GHz a spectrum analyzer and low noise amplifier are used to measure emission levels. The spectrum analyzer resolution bandwidth was set to 1 MHz and video bandwidth was 1 MHz.

Complies.

In the case of handheld equipment, the E.U.T. is rotated in three planes to obtain worst-case results.

Nemko Dallas

FCC PART 15, SUBPART C INTENTIONAL RADIATORS USED AS FIELD DISTURBANCE SENSORS PROJECT NO.: 3L0107RUS1

EQUIPMENT: DS840LSN

Radiated Emissi	ons								
Page 1 of									
Job No.:	3L0107R Date: 5/26/2003								
Specification:	CFR 47, Par	t 15 245	Tempe	rature(°C):					
Tested By:	Tom Tidwell		Relative Hu						
E.U.T.:	DS840LSN-			initiatiy(70)	00	-			
Configuration:							•		
-	Full transmi	t power					-		
Sample Number:					DDW.	1 МП-			
Location:	AC 3	-				1 MHz			
Detector Type:	Peak	-			VBW:	1 MHz			
Test Equipment	Used								
Antenna:	1304	-		Dire	ectional Coupler:				
Pre-Amp:	983	-			Cable #1:	1627			
Filter:	#N/A	-			Cable #2:				
Receiver:	1464	-			Cable #3:	#N/A			
Attenuator #1	#N/A				Cable #4:	#N/A			
Attenuator #2:	#N/A	-			Mixer:	#N/A			
Additional									
equipment used:							-		
Measurement									
Uncertainty:	+/-3.6 dB	-							
				Pre-		<i>a</i>			
Frequency	Meter	Antonno	Cable	Amp	Distance	Corrected			
rrequency	wieter	Antenna	Cable	Amp	a	D 11			
(GHz)		Antenna Factor	Cable Loss	Gain	Correction	Reading	Limit	Margin	Comment
	Reading (dBuV)			-	Correction (dB)	Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Comment
	Reading	Factor	Loss	Gain		-		-	Comment Vertical @ 1m
(GHz)	Reading (dBuV)	Factor (dB)	Loss (dB)	Gain (dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
(GHz) 10.525	Reading (dBuV) 61.7	Factor (dB) 39.2	Loss (dB) 1.1	Gain (dB) 0.0	(dB) -9.5	(dBuV/m) 92.5	(dBuV/m) 128	(dB) -35.5	Vertical @ 1m
(GHz) 10.525 10.525	Reading (dBuV) 61.7 76.8	Factor (dB) 39.2 39.2	Loss (dB) 1.1 1.1	Gain (dB) 0.0 0.0	(dB) -9.5 -9.5	(dBuV/m) 92.5 107.6	(dBuV/m) 128 128	(dB) -35.5 -20.4	Vertical @ 1m Horizontal @ 1m
(GHz) 10.525 10.525 21.050	Reading (dBuV) 61.7 76.8 73.6	Factor (dB) 39.2 39.2 40.3	Loss (dB) 1.1 1.1 0.0	Gain (dB) 0.0 0.0 40.0	(dB) -9.5 -9.5 -9.5	(dBuV/m) 92.5 107.6 64.4	(dBuV/m) 128 128 74	(dB) -35.5 -20.4 -9.6	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m
(GHz) 10.525 10.525 21.050 21.050	Reading (dBuV) 61.7 76.8 73.6 71.2	Factor (dB) 39.2 39.2 40.3 40.3	Loss (dB) 1.1 1.1 0.0 0.0	Gain (dB) 0.0 0.0 40.0 40.0	(dB) -9.5 -9.5 -9.5 -9.5	(dBuV/m) 92.5 107.6 64.4 62.0	(dBuV/m) 128 128 74 74	(dB) -35.5 -20.4 -9.6 -12.0	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m
(GHz) 10.525 21.050 21.050 31.575	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0	Factor (dB) 39.2 40.3 40.3 43.5	Loss (dB) 1.1 1.1 0.0 0.0 0.0	Gain (dB) 0.0 0.0 40.0 40.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0	(dBuV/m) 128 128 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 42.0	Factor (dB) 39.2 39.2 40.3 40.3 43.5 43.5	Loss (dB) 1.1 1.1 0.0 0.0 0.0 0.0	Gain (dB) 0.0 0.0 40.0 40.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0	(dBuV/m) 128 128 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575 42.100	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 42.0 39.0	Factor (dB) 39.2 39.2 40.3 43.5 43.5 38.8	Loss (dB) 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 0.0 40.0 40.0 0.0 0.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3	(dBuV/m) 128 128 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Vertical @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575 42.100 42.100	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0	Factor (dB) 39.2 39.2 40.3 43.5 43.5 38.8 38.8	Loss (dB) 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3	(dBuV/m) 128 128 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m Horizontal @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575 42.100 42.100 52.685	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0	Factor (dB) 39.2 40.3 40.3 43.5 38.8 38.8 40.7	Loss (dB) 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 46.0	Factor (dB) 39.2 40.3 40.3 43.5 38.8 38.8 40.7	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 43.5	Factor (dB) 39.2 40.3 40.3 43.5 43.5 38.8 38.8 40.7 42.3	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 56.3	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 43.5 43.5	Factor (dB) 39.2 39.2 40.3 43.5 43.5 38.8 38.8 40.7 42.3 42.3	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 56.3 56.3	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7 -17.7	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m Horizontal @ .1 m Vertical @ .1 m
(GHz) 10.525 21.050 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 43.5 42.5	Factor (dB) 39.2 39.2 40.3 43.5 43.5 38.8 38.8 40.7 42.3 43.6	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 57.2 56.3 56.3 56.6	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7 -17.7 -17.4	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Vertical @ .1 m Horizontal @ .1 m
(GHz) 10.525 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 73.675	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 42.0 39.0 46.0 43.5 42.5	Factor (dB) 39.2 39.2 40.3 43.5 43.5 38.8 38.8 40.7 42.3 43.6	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 56.3 56.3 56.6 56.6	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -25.7 -16.8 -16.8 -17.7 -17.4 -17.4	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m
(GHz) 10.525 21.050 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 73.675 84.200	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 42.0 39.0 46.0 43.5 42.5 42.5 47.5	Factor (dB) 39.2 39.2 40.3 43.5 43.5 38.8 38.8 40.7 42.3 43.6 43.6 44.8	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 57.2 56.3 56.3 56.3 56.6 56.6 56.6	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -25.7 -16.8 -16.8 -17.7 -17.7 -17.4 -17.4 -17.3	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Vertical @ .1 m
(GHz) 10.525 21.050 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 73.675 84.200 84.200	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 43.5 42.5 42.5 47.5	Factor (dB) 39.2 39.2 40.3 43.5 38.8 38.8 40.7 42.3 43.6 44.8 44.8	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -35.6 -35.6	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 56.3 56.3 56.3 56.3 56.6 56.6 56.7 56.7	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7 -17.7 -17.4 -17.4 -17.3 -17.3	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ 1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Vertical @ .1 m Vertical @ .1 m Horizontal @ .1 m
(GHz) 10.525 10.525 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 73.675 84.200 84.200 94.725	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 46.0 43.5 42.5 42.5 47.5 47.5 49.0	Factor (dB) 39.2 39.2 40.3 43.5 38.8 38.8 40.7 42.3 43.6 43.6 44.8 44.8 45.8	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -35.6 -35.6	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 56.3 56.3 56.3 56.6 56.6 56.7 56.7 59.2	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7 -17.7 -17.4 -17.4 -17.3 -17.3 -14.8	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Vertical @ 1 m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .05 m
(GHz) 10.525 21.050 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 84.200 84.200 94.725 94.725	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 43.5 42.5 47.5 47.5 49.0	Factor (dB) 39.2 39.2 40.3 43.5 38.8 38.8 40.7 42.3 43.6 43.6 44.8 45.8 45.8	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -35.6 -35.6 -35.6	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 48.3 48.3 57.2 57.2 56.3 56.3 56.3 56.6 56.6 56.7 56.7 59.2 59.2 59.6	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -16.8 -17.7 -17.4 -17.4 -17.4 -17.3 -14.8 -14.8	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ 1 m Horizontal @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .1 m Vertical @ .1 m Vertical @ .1 m Horizontal @ .1 m Vertical @ .05 m Horizontal @ .05 m
(GHz) 10.525 21.050 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 84.200 84.200 94.725 94.725 105.250	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 43.5 42.5 47.5 47.5 49.0 48.5	Factor (dB) 39.2 39.2 40.3 43.5 38.8 38.8 40.7 42.3 43.6 43.6 44.8 45.8 46.7	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -35.6 -35.6 -35.6	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 56.0 48.3 48.3 57.2 57.2 57.2 56.3 56.3 56.3 56.6 56.6 56.7 56.7 59.2 59.2	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7 -17.4 -17.4 -17.4 -17.4 -17.3 -14.8 -14.8 -14.4	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Vertical @ .05 m Horizontal @ .05 m Horizontal @ .05 m
(GHz) 10.525 21.050 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 84.200 84.200 94.725 94.725 105.250	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 39.0 39.0 46.0 43.5 42.5 47.5 47.5 49.0 48.5	Factor (dB) 39.2 39.2 40.3 43.5 38.8 38.8 40.7 42.3 43.6 43.6 44.8 45.8 46.7	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -35.6 -35.6 -35.6	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 48.3 48.3 57.2 57.2 56.3 56.3 56.3 56.6 56.6 56.7 56.7 59.2 59.2 59.6	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7 -17.4 -17.4 -17.4 -17.4 -17.3 -14.8 -14.8 -14.4	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Vertical @ .05 m Horizontal @ .05 m Horizontal @ .05 m
(GHz) 10.525 21.050 21.050 21.050 31.575 31.575 42.100 42.100 52.685 52.685 63.150 63.150 73.675 84.200 84.200 94.725 94.725 105.250	Reading (dBuV) 61.7 76.8 73.6 71.2 42.0 42.0 39.0 46.0 43.5 42.5 47.5 47.5 49.0 48.5 48.5	Factor (dB) 39.2 39.2 40.3 43.5 38.8 38.8 40.7 42.3 43.6 43.6 44.8 45.8 46.7	Loss (dB) 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Gain (dB) 0.0 40.0 40.0 40.0 0.0 0.0 0.0 0.0 0.0	(dB) -9.5 -9.5 -9.5 -9.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -35.6 -35.6 -35.6	(dBuV/m) 92.5 107.6 64.4 62.0 56.0 48.3 48.3 57.2 57.2 56.3 56.3 56.3 56.6 56.6 56.7 56.7 59.2 59.2 59.6	(dBuV/m) 128 128 74 74 74 74 74 74 74 74 74 74	(dB) -35.5 -20.4 -9.6 -12.0 -18.0 -18.0 -25.7 -25.7 -16.8 -16.8 -17.7 -17.4 -17.4 -17.4 -17.4 -17.3 -14.8 -14.8 -14.4	Vertical @ 1m Horizontal @ 1m Vertical @ 1 m Horizontal @ 1 m Vertical @ 1 m Horizontal @ 1 m Vertical @ .1 m Vertical @ .05 m Horizontal @ .05 m Horizontal @ .05 m

FCC PART 15, SUBPART C INTENTIONAL RADIATORS USED AS FIELD DISTURBANCE SENSORS PROJECT NO.: 3L0107RUS1

EQUIPMENT: DS840LSN

		le		$\mathbf{\hat{O}}$		Lev	as Headquar 802 N. Kealy visville, TX 75 : (972) 436-9	057		
Nem	ko Dallas	, Inc.					(972) 436-2			
Radiated Emis	sions	, 								
Page <u>1</u> of	1									
Job No.:	3L0107R			Date:	5/26/2003					
Specification:	CFR 47, Par	t 15.245	Temper	rature(°C):	24					
Tested By:	Tom Tidwel	1 F	Relative Hu	midity(%)	60					
E.U.T.:	DS840LSN		•			•				
Configuration:	Full transm	it power					-			
Sample Numbe	1						•			
Location:	AC 3			-	RBW:	1 MHz				
Detector Type	Peak				VBW:	1 MHz				
Note: The mea	surement in	strument wa	s set to pea	k and the d	luty cycle cor	rection factor	was added.			
Test Equipmen	t Used		_							
Antenna:	1304			Directio	onal Coupler:	#N/A				
Pre-Amp:	983				Cable #1:	1627				
Filter:	#N/A				Cable #2:					
Receiver:	1464				Cable #3:	#N/A				
Attenuator #1	#N/A				Cable #4:	#N/A				
Attenuator #2:	#N/A				Mixer:	#N/A				
Additional equipment used: Measurement Uncertainty:	+/-3.6 dB									
Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre- Amp Gain (dB)	Dist. Corr. (dB)	Duty Cycle Corr. (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/ m)	Margin (dB)	Comment
10.525	61.7	39.2	1.1	0.0	-9.5	-40.0	52.5	128	-75.5	Vertical @ 1m
10.525	76.8	30.2	1.1	0.0	0.5	40.0	67.6	128	60.4	Horizontal @ 1m

(GHz)	Reading (dBuV)	Factor (dB)	Loss (dB)	Gain (dB)	Corr. (dB)	Cycle Corr. (dB)	Reading (dBuV/m)	(dBuV/ m)	Margin (dB)	Comment
10.525	61.7	39.2	1.1	0.0	-9.5	-40.0	52.5	128	-75.5	Vertical @ 1m
10.525	76.8	39.2	1.1	0.0	-9.5	-40.0	67.6	128	-60.4	Horizontal @ 1m
21.050	73.6	40.3	0.0	40.0	-9.5	-40.0	24.4	54	-29.6	Vertical @ 1 m
21.050	71.2	40.3	0.0	40.0	-9.5	-40.0	22.0	54	-32.0	Horizontal @ 1 m
31.575	42.0	43.5	0.0	0.0	-29.5	-40.0	16.0	54	-38.0	Vertical @ .1 m
31.575	42.0	43.5	0.0	0.0	-29.5	-40.0	16.0	54	-38.0	Horizontal @ .1 m
42.100	39.0	38.8	0.0	0.0	-29.5	-40.0	8.3	54	-45.7	Vertical @ .1 m
42.100	39.0	38.8	0.0	0.0	-29.5	-40.0	8.3	54	-45.7	Horizontal @ .1 m
52.685	46.0	40.7	0.0	0.0	-29.5	-40.0	17.2	54	-36.8	Vertical @ .1 m
52.685	46.0	40.7	0.0	0.0	-29.5	-40.0	17.2	54	-36.8	Horizontal @ .1 m
63.150	43.5	42.3	0.0	0.0	-29.5	-40.0	16.3	54	-37.7	Vertical @ .1 m
63.150	43.5	42.3	0.0	0.0	-29.5	-40.0	16.3	54	-37.7	Horizontal @ .1 m
73.675	42.5	43.6	0.0	0.0	-29.5	-40.0	16.6	54	-37.4	Vertical @ .1 m
73.675	42.5	43.6	0.0	0.0	-29.5	-40.0	16.6	54	-37.4	Horizontal @ .1 m
84.200	47.5	44.8	0.0	0.0	-35.6	-40.0	16.7	54	-37.3	Vertical @ .05 m
84.200	47.5	44.8	0.0	0.0	-35.6	-40.0	16.7	54	-37.3	Horizontal @ .05 m
94.725	49.0	45.8	0.0	0.0	-35.6	-40.0	19.2	54	-34.8	Vertical @ .05 m
94.725	49.0	45.8	0.0	0.0	-35.6	-40.0	19.2	54	-34.8	Horizontal @ .05m
105.250	48.5	46.7	0.0	0.0	-35.6	-40.0	19.6	54	-34.4	Vertical @ .05 m
105.250	48.5	46.7	0.0	0.0	-35.6	-40.0	19.6	54	-34.4	Horizontal @ .05 m
Notes:	Average									1

Section 5. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: 15.207
TESTED BY: T. Tidwell	DATE: 7/25/03

Minimum Standard:

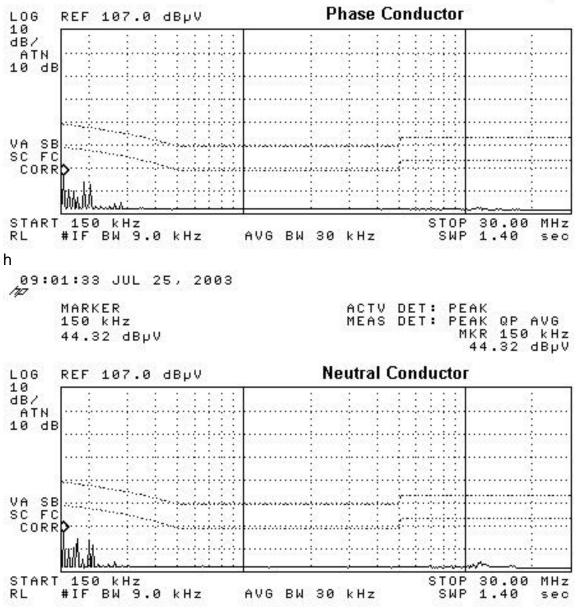
Frequency (MHz)	Maximum Powerline Conducted RF Voltage					
	Average (dB?V)	Quasi-Peak (dB?V)				
.1505	57	67				
.5 – 5	47	57				
5-30	50	60				

Test Results: Complies. See attached graphs and table.

Test Data: See attached table and graphs.

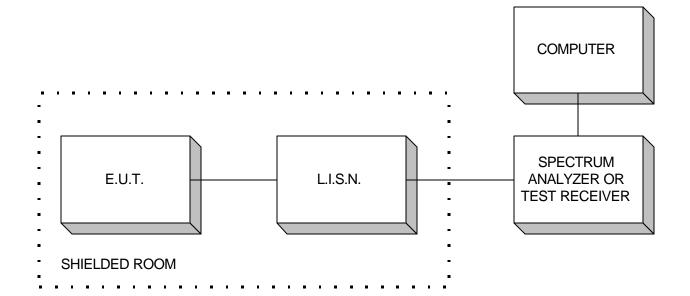
Method Of Measurement: (Procedure ANSI C63.4-1992)

Measurements were made using a spectrum analyzer with 9 kHz RBW, Peak detector. Any emissions that are close to the limit are measured using a test receiver with 9 kHz bandwidth, CISPR Quasi-Peak detector.

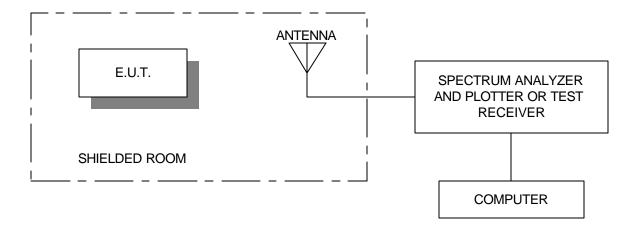

Broadband emissions are identified by switching the receiver detector function from Quasi-Peak to Average. If the amplitude of the emission drops by 6 dB or more then the emission is classified as broadband and the Quasi-Peak level is reduced by a factor of 13 dB.

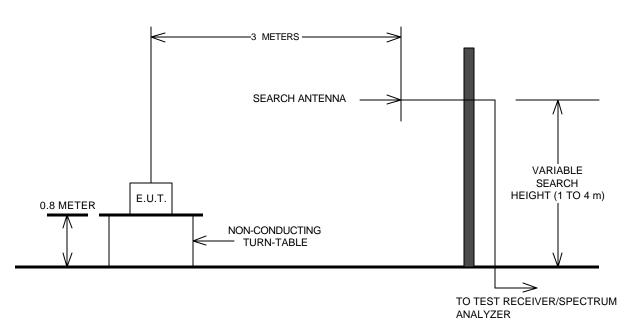
All emissions within 10 dB of limit have been recorded.

Measurement Data:

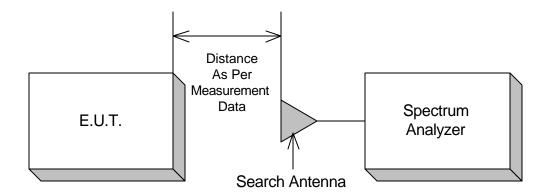

Note: Top line represents quasi-peak limit. Bottom line represents average limit. 08:59:54 JUL 25, 2003

MARKER	ACTV DET: PEAK
150 kHz	MEAS DET: PEAK QP AVG
	MKR 150 kHz
43.31 dBµV	43.31 dBµV




Section 6. Block Diagrams

Conducted Emissions


Radiated Prescan

Outdoor Test Site For Radiated Emissions

Indoor Measurement Setup for Emissions Above 10 GHz

Section 7. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
983	PRE-AMP, 18-40 GHz	KTL BB1	1	01/18/03	01/18/04
984	HORN ANTENNA	MILLITECH NONE	NONE	CNR	N/A
985	HORN ANTENNA	MILLITECH NONE	NONE	CNR	N/A
986	HARMONIC MIXER	Hewlett Packard 11970V	2521A01222	01/00/00	N/A
987	HARMONIC MIXER	Hewlett Packard 5356D	2521A00583	01/00/00	N/A
988	HARMONIC MIXER	Hewlett Packard 11970A	2332A01929	01/00/00	N/A
989	HARMONIC MIXER	Hewlett Packard 11970U	2332A00116	01/00/00	N/A
990	HORN ANTENNA	MILLITECH NONE	NONE	CNR	N/A
1304	HORN ANTENNA	ELECTRO METRICS RGA-60	6151	07/30/01	07/31/03
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	02/11/03	02/11/05
1627	CABLE, 5 ft	MEGAPHASE 10312 1GVT4	N/A	CBU	N/A

FCC PART 15, SUBPART C INTENTIONAL RADIATORS USED AS FIELD DISTURBANCE SENSORS PROJECT NO.: 3L0107RUS1

EQUIPMENT: DS840LSN

Annex A - Restricted Bands

Restricted Bands of Operation

(a) Except as shown in paragraph (d) of this section , only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.15
0.49 - 0.51	16.69475-16.69525	608-614	5.35-5.46
2.1735 - 2.1905	16.80425-16.80475	960-1240	7.25-7.75
3.020 - 3.026	25.5-25.67	1300-1427	8.025-8.5
4.125 - 4.128	37.5-38.25	1435-1626.6	9.0-9.2
4.17725 - 4.17775	73-74.6	1645.5-1646.5	9.3-9.5
4.20725 - 4.20775	74.8-75.2	1660-1710	10.6-12.7
6.215 - 6.218	108-121.94	1718.8-1722.2	13.25-13.4
6.31175 - 6.31225	123-138	2220-2300	14.47-14.5
8.291 - 8.294	149.9-150.05	2310-2390	15.35-16.2
8.362 - 8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625 - 8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425 - 8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29 - 12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975 - 12.52025	240-285	3345.8-3358	36.43-36.5
12.57675 - 12.57725	322-335.4	3600-4400	Above 38.6
13.36 - 13.41			

FCC PART 15, SUBPART C INTENTIONAL RADIATORS USED AS FIELD DISTURBANCE SENSORS PROJECT NO.: 3L0107RUS1

EQUIPMENT: DS840LSN

Annex B - Radiated Emission Limits

Radiated Emission Limits

§15.245 Operation within the bands 902-928 MHz, 2435-2465 MHz, 5785-5815 MHz, 10500-10550 MHz and 24075-24175 MHz.

- (a) Operation under the provision of this section is limited to intentional radiators used as field disturbance sensors, excluding perimeter protection systems.
- (b) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency (MHz)	Field Strength Of Fundamental (millivolts/meter)	Field Strength of Harmonics (millitvolts/meter)
902-928	500	1.6
2435-2465	500	1.6
5785-5815	500	1.6
10500-10550	2500	25.0
24075-24175	2500	25.0

- (1) Regardless of the limits shown in the above table, harmonic emissions in the restricted bands below 17.7 GHz, as specified in §15.205, shall not exceed the field strength limits shown in §15.209. Harmonic emissions in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:
 - (i) For field disturbance sensors designed for use only within a building or to open building doors, 25 mV/m.
 - (ii) For all other field disturbance sensors, 7.5 mV/m.
 - (iii) Field disturbance sensors designed to be used in motor vehicles or aircraft must include features to prevent continuous operation unless their emissions in the restricted bands fully comply with the limits given in §15.209. Continuous operation of field disturbance sensors designed to be used in farm equipment; vehicles such as fork-lifts that are intended primarily for use indoors or for very specialized operations. Or railroad locomotives, railroad cars and other equipment which travel on fixed tracks is permitted. A field disturbance sensor will be considered not to be operating in a continuous mode if its operation is

limited to specific activities of limited duration (e.g. putting a vehicle in reverse gear, activating a turn signal, etc.).

§15.245, continued

- (2) Field strength limits are specified at a distance of 3 meters.
- (3) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (4) The emission limits shown above are based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.

§15.209 Radiated Emission Limits, General Requirements

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (millivolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F (kHz)	300
0.490-1.705	2400/F (kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3