

Boston Scientific Corporation

Ingenio 2

FCC 95I:2018 MedRadio Report # BSTN0835

TESTING

NVLAP LAB CODE: 200881-0

Last Date of Test: May 22, 2018 Boston Scientific Corporation Model: Ingenio 2

Radio Equipment Testing

Standards	
Specification	Method
FCC 95I:2018	ANSI C63.26:2015

Results

Method	Test Description	Applied	Results	Comments
ANSI C63.26 5.4.3	Emission Bandwidth	Yes	Pass	
FCC 95.2579(a)(1)	Emission Mask	Yes	Pass	
ANSI C63.26 5.2.3.3	Conducted Output Power	Yes	Pass	
ANSI C63.26 5.6	Frequency Stability	Yes	Pass	
ANSI C63.26 5.5.4	Spurious Radiated Emissions	Yes	Pass	
ANSI C63.26 5.7	Spurious Conducted Emissions	Yes	Pass	
ANSI C63.26 5.2.3.3, 5.2.7	Radiated Power (EIRP)	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Description Date	
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

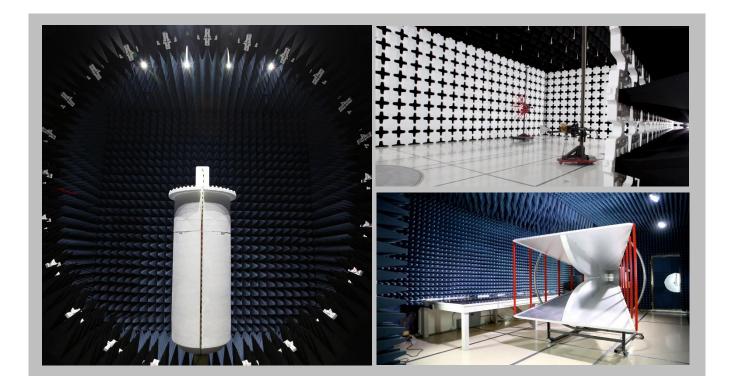
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
	NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1			
		BSI	МІ					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	N/A	US0017	US0191	US0157			
US0158	US0175	N/A	US0017	US0191	US0157			

EMISSIONS MEASUREMENTS

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

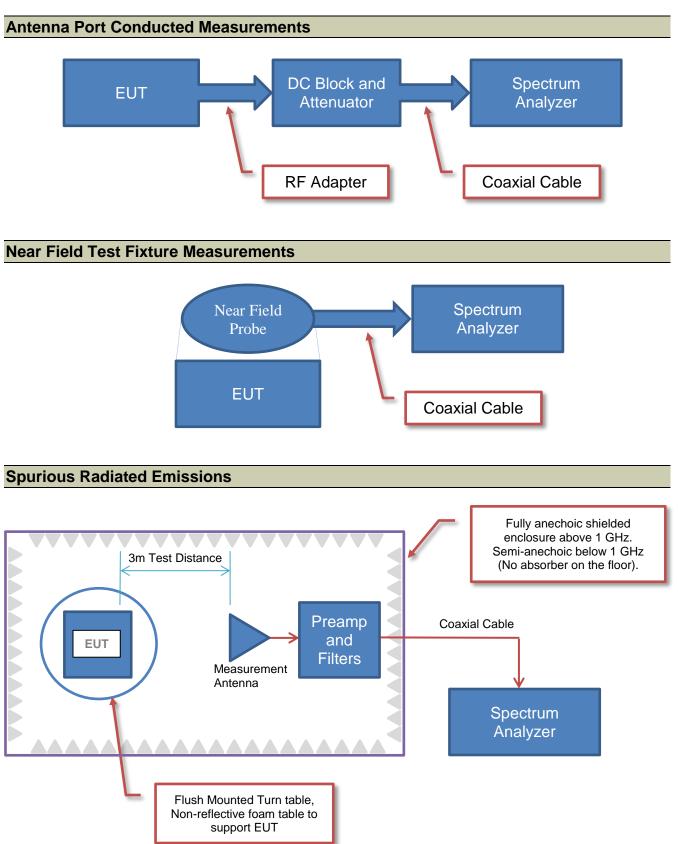
Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the bandwidths and detectors specified. No video filter was used.

Sample Calculations

Radiated Emissions:


Field Strength		Measured Level		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation
33.5	=	42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0

Conducted Emissions:

Adjusted Level		Measured Level		Transducer Factor		Cable Factor		External Attenuation
47.1	=	26.7	+	0.3	+	0.1	+	20.0

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Boston Scientific Corporation
Address:	4100 Hamline Avenue North
City, State, Zip:	St. Paul, MN 55112-5798
Test Requested By:	Ching Wang
Model:	Ingenio 2
First Date of Test:	May 14, 2018
Last Date of Test:	May 22, 2018
Receipt Date of Samples:	May 14, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

MedRadio device with 1 antenna type

Testing Objective:

Seeking FCC authorization for the MedRadio transmitter to FCC Part 95I.

Configuration BSTN0835-1

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Implant	Boston Scientific Corporation	U228	728066			

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
RA Lead	Boston Scientific Corporation	IS-1 B1 GDT4555	169728				
RV Lead	Boston Scientific Corporation	IS-1 B1 CPI0013	310303				
LV Lead	Boston Scientific Corporation	IS-4 Nav2 19313	115705				

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
RA Lead	No	0.9m	No	Implant	Tissue Simulant			
RV Lead	No	1.0m	No	Implant	Tissue Simulant			
LV Lead	No	1.0m	No	Implant	Tissue Simulant			

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Implant	Boston Scientific Corporation	L331	776657				

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
RA Lead	Boston Scientific Corporation	IS-1 B1 GDT4555	169728		
RV Lead	Boston Scientific Corporation	IS-1 B1 CPI0013	310303		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
RA Lead	No	0.9m	No	Implant	Tissue Simulant	
RV Lead	No	1.0m	No	Implant	Tissue Simulant	

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Implant	Boston Scientific Corporation	L300	720522		

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
RV Lead	Boston Scientific Corporation	IS-1 B1 CPI0013	310303	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
RV Lead	No	1.0m	No	Implant	Tissue Simulant

CONFIGURATIONS

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Hybrid Implant Board	Boston Scientific Corporation	E78789-401	75602703		

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
DC Power Supply	EZ	GP-4303D	TQK	
Hybrid Inductive Antenna	Boston Scientific Corporation	None	None	

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Telemetry Test Module	Boston Scientific Corporation	SE11313-104	TTM1168		
Telemetry Wand	Boston Scientific Corporation	6577	Unknown		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Mains Cable (DC Power Supply)	No	1.8m	No	DC Power Supply	AC Mains
Banana Cables (x2)	No	1.0m	No	DC Power Supply	Hybrid Implant Board
AC Mains Cable (Telemetry Test Module)	No	1.8m	No	Telemetry Test Module	AC Mains
Telemetry Wand Cable	No	3.0m	No	Telemetry Wand	Telemetry Test Module
USB Cable	No	1.0m	No	Laptop	Telemetry Test Module
Hybrid Inductive Antenna Cable	No	0.45m	No	Hybrid Implant Board	Hybrid Inductive Antenna

CONFIGURATIONS

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Hybrid Implant Board	Boston Scientific Corporation	E78789-401	75602706

Peripherals in test setup boundary				
Description	Serial Number			
DC Power Supply	EZ	GP-4303D	TQK	
Hybrid Inductive Antenna	Boston Scientific Corporation	None	None	

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Telemetry Test Module	Boston Scientific Corporation	SE11313-104	TTM1168		
Telemetry Wand	Boston Scientific Corporation	6577	Unknown		

Cables										
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2					
AC Mains Cable (DC Power Supply)	No	1.8m	No	DC Power Supply	AC Mains					
Banana Cables (x2)	No	1.0m	No	DC Power Supply	Hybrid Implant Board					
AC Mains Cable (Telemetry Test Module)	No	1.8m	No	Telemetry Test Module	AC Mains					
Telemetry Wand Cable	No	3.0m	No	Telemetry Wand	Telemetry Test Module					
USB Cable	No	1.0m	No	Laptop	Telemetry Test Module					
Hybrid Inductive Antenna Cable	No	0.45m	No	Hybrid Implant Board	Hybrid Inductive Antenna					

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Hybrid Implant Board	Boston Scientific Corporation	E78789-401	75602701				

Peripherals in test setu	Peripherals in test setup boundary								
Description	Manufacturer	Model/Part Number	Serial Number						
DC Power Supply	EZ	GP-4303D	TQK						
Hybrid Inductive Antenna	Boston Scientific Corporation	None	None						

Remote Equipment Outside	Remote Equipment Outside of Test Setup Boundary								
Description Manufacturer Model/Part Number Serial Number									
Telemetry Test Module	Boston Scientific Corporation	SE11313-104	TTM1168						
Telemetry Wand	Boston Scientific Corporation	6577	Unknown						

Cables											
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2						
AC Mains Cable (DC Power Supply)	No	1.8m	No	DC Power Supply	AC Mains						
Banana Cables (x2)	No	1.0m	No	DC Power Supply	Hybrid Implant Board						
AC Mains Cable (Telemetry Test Module)	No	1.8m	No	Telemetry Test Module	AC Mains						
Telemetry Wand Cable	No	3.0m	No	Telemetry Wand	Telemetry Test Module						
USB Cable	No	1.0m	No	Laptop	Telemetry Test Module						
Hybrid Inductive Antenna Cable	No	0.45m	No	Hybrid Implant Board	Hybrid Inductive Antenna						

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	5/14/2018	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	5/16/2018	Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	5/21/2018	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	5/22/2018	Emission Mask	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	5/22/2018	Emission Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	5/22/2018	Conducted Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	5/22/2018	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

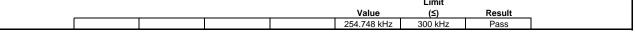
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

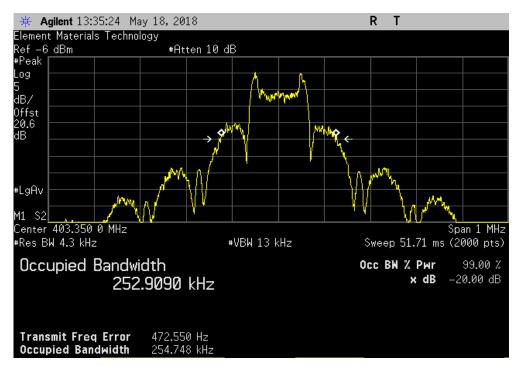
TEST EQUIPMENT

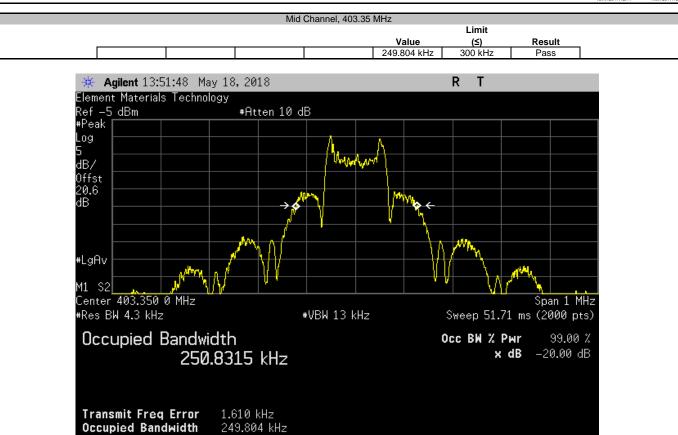
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	114	MMU	18-Jul-17	18-Jul-20
Power Supply - DC	EZ Digital Co., Ltd.	GP-4030D	TQK	NCR	NCR
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	12-Sep-17	12-Sep-18
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2-Aug-17	2-Aug-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.2573(a), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.




						TbtTx 2017.12.14	XMit 2017.12.13
EUT:	Ingenio 2				Work Order:	BSTN0835	
Serial Number:	See Comments					22-May-18	
Customer:	Boston Scientific Corpor	ation			Temperature:	23.2 °C	
Attendees:	Ching Wang					46.2% RH	
Project:					Barometric Pres.:		
	Dustin Sparks		Power: 3.2VDC		Job Site:	MN08	
TEST SPECIFICATI	IONS		Test Method				
FCC 95I:2018			ANSI C63.26:2	015			
COMMENTS							
		ole 1 (SN 75602703), sample 2 (SN 756	602706), and sample 3 (SN 7560270	1).			
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	4, 5, 6	Signature	Justin & parts	>			
						Limit	
					Value	(≤)	Result
Mid Channel, 403.35	5 MHz				253.8 kHz	300 kHz	Pass
Mid Channel, 403.35	5 MHz				254.748 kHz	300 kHz	Pass
Mid Channel, 403.35	5 MHz				249.804 kHz	300 kHz	Pass
Mild Charlinel, 400.00	/ 1011 12				243.004 KHZ	000 1112	1 433



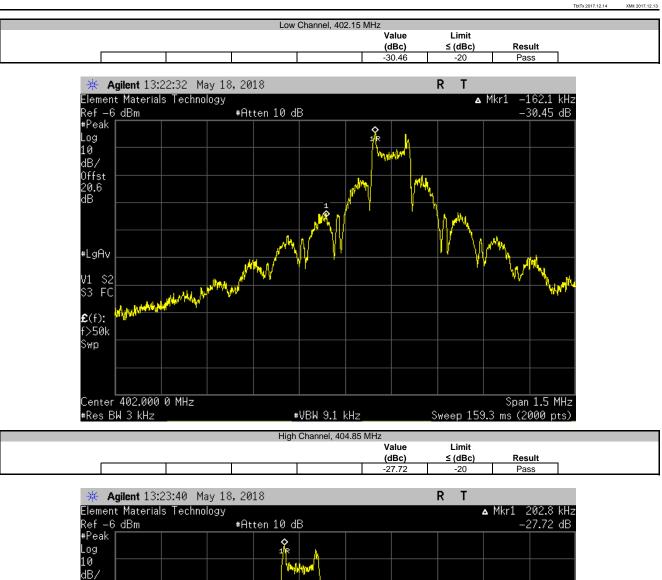
TbtTx 2017.12.14 XMit 2017.12.13

TbtTx 2017.12.14 XMit 2017.12.13

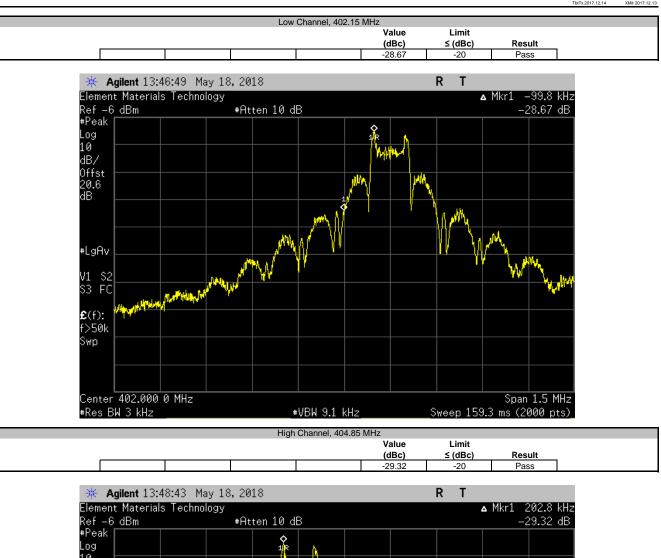
XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT ID Description Manufacturer Model Last Cal. Cal. Due Analyzer - Spectrum Analyzer N9010A (EXA) AFQ 19-Dec-17 19-Dec-18 Keysight Power Supply - DC EZ Digital Co., Ltd. GP-4030D TQK NCR NCR Meter - Multimeter Fluke 114 MMU 18-Jul-17 18-Jul-20 Generator - Signal Agilent E4422B TGQ 15-Mar-18 15-Mar-21 Cable ESM Cable Corp. TTBJ141 KMKM-72 MNU 15-Mar-18 15-Mar-19 Attenuator S.M. Electronics SA26B-20 RFW 13-Feb-18 13-Feb-19 Block - DC AMI 12-Sep-17 Fairview Microwave SD3379 12-Sep-18 Analyzer - Spectrum Analyzer AFD 2-Aug-17 Agilent E4440A 2-Aug-18

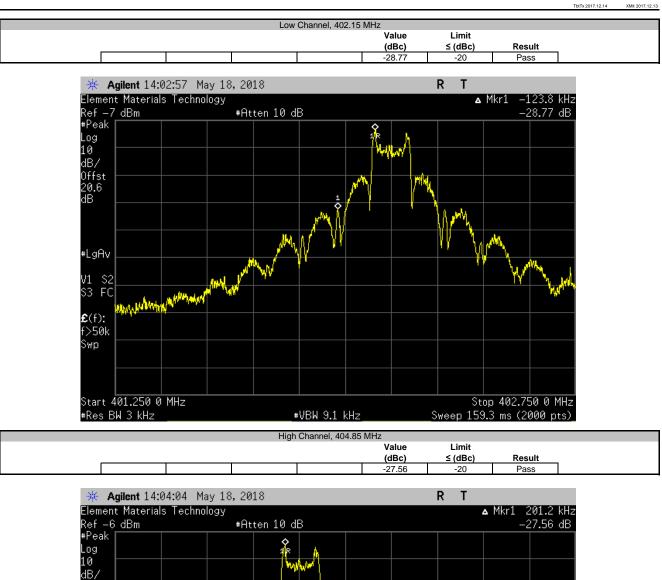

TEST DESCRIPTION

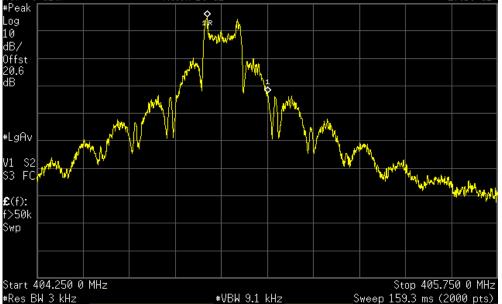
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.2579(a)(1) the emission mask was measured. Emissions more than 150 kHz away from the center frequency must be attenuated below the transmitter output power by at least 20 dB. This was evaluated by the Occupied Bandwidth measurement according to 47 CFR 95.2573(a). In addition, emissions 250 kHz or less above and below the MICS band (402-405 MHz) must be attenuated below the maximum permitted output power by at least 20 dB.


A spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.



EUT: Ing	genio 2					Work Order:	BSTN0835	
Serial Number: Se							22-May-18	
Customer: Bo	oston Scientific Corporation					Temperature:		
Attendees: Ch						Humidity:		
Project: No						Barometric Pres.:		
Tested by: Du					3.2VDC	Job Site:	MN08	
TEST SPECIFICATION	IS				Test Method			
FCC 95I:2018					ANSI C63.26:2015			
COMMENTS								
hree samples tested	simultaneously - sample 1 (S	SN 75602703), sample	2 (SN 7560	02706), and sample	3 (SN 75602701).			
EVIATIONS FROM T	EST STANDARD							
DEVIATIONS FROM TE	EST STANDARD							
	EST STANDARD 4, 5, 6	Sianature	Ľ	Fusting	Sparls			
None		Signature	Ľ	Justin	Sparls	Value (dBc)	Limit ≤ (dBc)	Result
None Configuration #	4, 5, 6	Signature	Ľ	Justin	Sparls	(dBc)	≤ (dBc)	
Configuration #	4, 5, 6	Signature	Ľ	Justin	Sparlo	(dBc) -30.46	≤ (dBc) -20	Pass
Configuration #	4, 5, 6	Signature	Ľ	Tustin	Sparlo	(dBc)	≤ (dBc)	
Configuration # Configuration # Low Channel, 402.15 M digh Channel, 404.85 M	4, 5, 6 IHz IHz	Signature	Ľ	Justin	Sparlo	 (dBc) -30.46	≤ (dBc) -20	Pass
tone Configuration # ow Channel, 402.15 M ligh Channel, 404.85 M ow Channel, 402.15 M	4, 5, 6 IHz IHz IHz	Signature	Ľ	Tusting	Sparlo	(dBc) -30.46 -27.72	≤ (dBc) -20 -20	Pass Pass
tone Configuration # ow Channel, 402.15 M ligh Channel, 404.85 M ow Channel, 402.15 M	4, 5, 6 IHz IHz IHz	Signature	Ľ	Tustin	Sparlo	(dBc) -30.46 -27.72 -28.67	≤ (dBc) -20 -20 -20	Pass Pass Pass
None	4, 5, 6 IHz IHz IHz	Signature	Ľ	Justin	Sparlo	(dBc) -30.46 -27.72 -28.67	≤ (dBc) -20 -20 -20	Pass Pass Pass



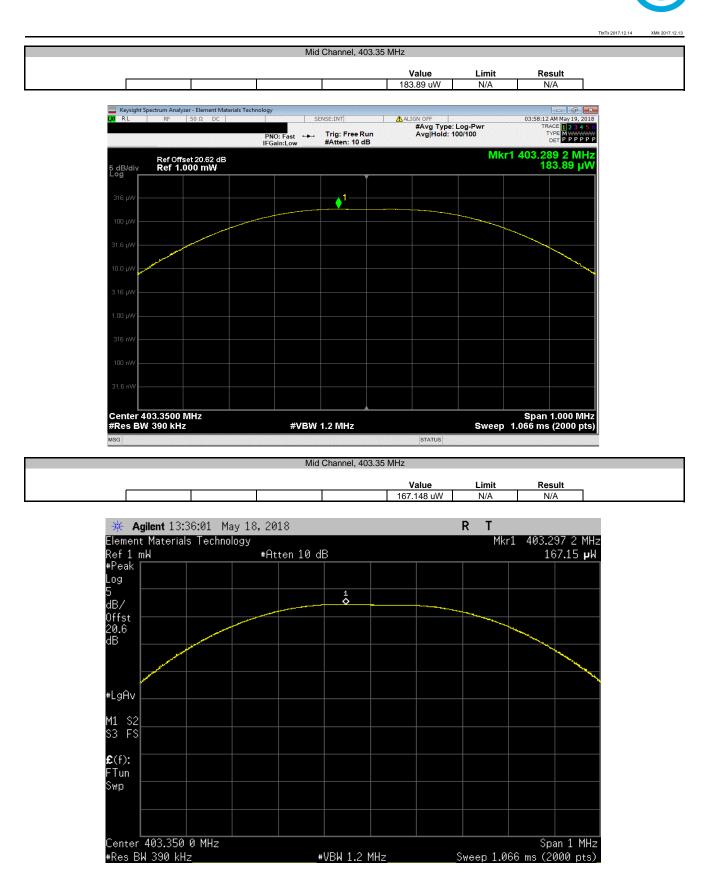


XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Power Supply - DC	EZ Digital Co., Ltd.	GP-4030D	TQK	NCR	NCR
Meter - Multimeter	Fluke	114	MMU	18-Jul-17	18-Jul-20
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	12-Sep-17	12-Sep-18
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2-Aug-17	2-Aug-18


TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1046, RSS-GEN, the output power shall be measured at the RF terminal. The peak output power was measured with the EUT configured in the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

FCC Part 95 and RSS-243 have no conducted output power limit. It is a requirement to characterize this information and that data is contained within this datasheet.

						TbtTx 2017.12.14	XMit 2017.12.13
EUT:	Ingenio 2				Work Order	BSTN0835	
Serial Number:	See Comments				Date	22-May-18	
Customer:	Boston Scientific Corpor	ation			Temperature	23.4 °C	
Attendees:	Ching Wang				Humidity	46.9% RH	
Project:	None				Barometric Pres.	1021 mbar	
Tested by:	Dustin Sparks		Power:	3.2VDC	Job Site	MN08	
TEST SPECIFICATI	ONS			Test Method			
FCC 95I:2018				ANSI C63.26:2015			
COMMENTS							
Three samples test	ed simultaneously - samp	ble 1 (SN 75602703), sample 2 (SN 7560	02706), and sample	3 (SN 75602701).			
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	4, 5, 6	Signature	Tusting	sparts			
					Value	Limit	Result
Mid Channel, 403.35	MHz				183.89 uW	N/A	N/A
Mid Channel, 403.35	MHz				167.148 uW	N/A	N/A
Mid Channel, 403.35	MHz				191.514 uW	N/A	N/A

Mid Channel, 403.35 MHz **Value** 191.514 uW Limit N/A Result N/A 🔆 Agilent 13:52:32 May 18, 2018 R Т Element Materials Technology Ref 1 mW #Peak Mkr1 403.278 2 MHz 191.51 µW #Atten 10 dB Log _1-♦ 5 dB/ Offst 20.6 dB #LgAv M1 S2 S3 FS **£**(f): FTun Swp Center 403.350 0 MHz #Res BW 390 kHz Span 1 MHz #VBW 1.2 MHz Sweep 1.066 ms (2000 pts)

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	114	MMU	18-Jul-17	18-Jul-20
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-32-3.5-SCT/AC	TBF	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUB	10-Nov-17	10-Nov-20
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	12-Sep-17	12-Sep-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2-Aug-17	2-Aug-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spectrum analyzer is configured with a precision frequency reference that exceeds the stability requirement of the transmitter. The EUT was placed inside a temperature / humidity chamber.

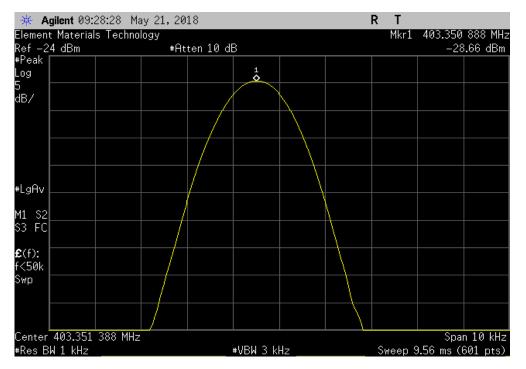
Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of the nominal voltage. A DC lab supply was used to vary the supply voltage.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (+25°, 37°C and +45° C).

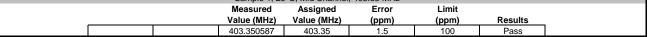
									TbtTx 2017.12.14	XMit 201	
	Ingenio 2							Work Order:			
Serial Number:	See Comments								21-May-18		
		Boston Scientific Corporation						Temperature:			
	: Ching Wang								39.5% RH		
Project:								Barometric Pres.: 1019 mbar			
	Dustin Sparks Power: 3.2VDC							Job Site:	MN08		
EST SPECIFICAT	IONS				Test Method						
CC 95I:2018					ANSI C63.26:2015						
COMMENTS											
Three samples tes	ted simultaneously	- sample 1 (SN 756	02703), sample 2	(SN 75602706), and sample	e 3 (SN 75602701).						
EVIATIONS FROM	M TEST STANDARD	1									
lone		•									
				6	0						
Configuration #	4, 5, 6			X Justin S	2. 0.						
-			Signature	Justin	praco						
						Measured	Assigned	Error	Limit		
						alue (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
Sample 1											
	Normal Voltage										
	Mid C	hannel, 403.35 MHz			4	103.350938	403.35	2.3	100	Pass	
	Extreme Voltage +1										
	Mid C	hannel, 403.35 MHz			4	103.350888	403.35	2.2	100	Pass	
	Extreme Voltage -1										
		hannel, 403.35 MHz			4	103.350871	403.35	2.2	100	Pass	
	25°C										
		hannel, 403.35 MHz			4	103.350587	403.35	1.5	100	Pass	
	35°C										
		hannel, 403.35 MHz			4	103.349952	403.35	0.1	100	Pass	
	45°C										
	Mid C	hannel, 403.35 MHz			4	103.349185	403.35	2	100	Pass	
Sample 2											
	Normal Voltage					00 050054	400.05	0.4	400	Dees	
		hannel, 403.35 MHz			4	103.350854	403.35	2.1	100	Pass	
	Extreme Voltage +1					102 25085 4	402.25	2.4	100	Derr	
		hannel, 403.35 MHz			4	103.350854	403.35	2.1	100	Pass	
	Extreme Voltage -1	5% hannel, 403.35 MHz				403.350871	403.35	2.2	100	Pass	
	25°C	namel, 403.35 IVITZ			4	103.330071	403.33	2.2	100	F d\$\$	
		hannel, 403.35 MHz				103.350704	403.35	1.8	100	Pass	
	35°C	1011101, 400.00 WINZ			4	100.000704	400.00	1.0	100	1 455	
		hannel, 403.35 MHz				103.349685	403.35	0.8	100	Pass	
	45°C				-		400.00	0.0	100	1 433	
		hannel, 403.35 MHz			4	103.348918	403.35	2.7	100	Pass	
ample 3					· · · · · · · · · · · · · · · · · · ·						
	Normal Voltage										
		hannel, 403.35 MHz			4	103.351187	403.35	2.9	100	Pass	
	Extreme Voltage +1	5%									
	Mid C	hannel, 403.35 MHz			4	103.351187	403.35	2.9	100	Pass	
	Extreme Voltage -1	5%									
		hannel, 403.35 MHz			4	103.351171	403.35	2.9	100	Pass	
	25°C										
		hannel, 403.35 MHz			4	403.351022	403.35	2.5	100	Pass	
	35°C										
		hannel, 403.35 MHz			4	103.350103	403.35	0.3	100	Pass	
	45°C										
	Mid C	hannel, 403.35 MHz			4	103.349185	403.35	2	100	Pass	

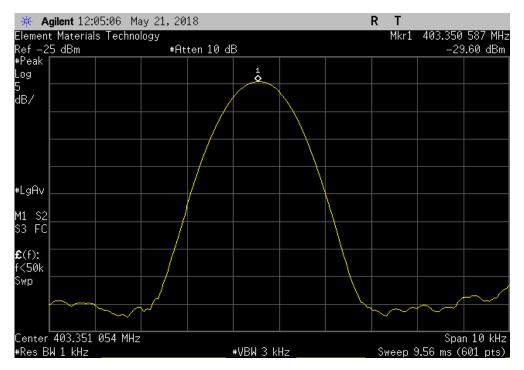


XMit 2017.12.13

TbtTx 2017.12.14

Sample 1, Normal Voltage, Mid Channel, 403.35 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.350938 403.35 100 Pass 2.3 Agilent 09:27:48 May 21, 2018 R Т ** Element Materials Technology Mkr1 403.350 938 MHz Ref -24 dBm #Peak #Atten 10 dB -28.64 dBm Log 1 5 dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.351 388 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts)

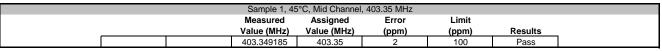


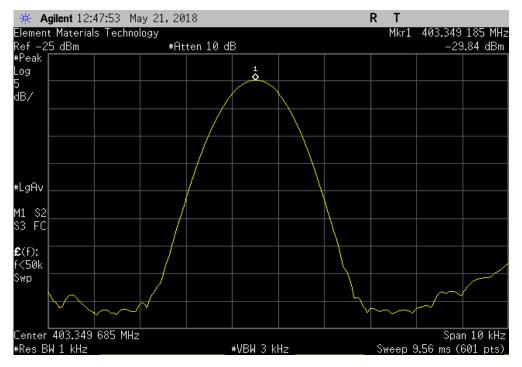


XMit 2017.12.13

TbtTx 2017.12.14

Sample 1, Extreme Voltage -15%, Mid Channel, 403.35 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.350871 403.35 100 Pass 2.2 Agilent 09:29:08 May 21, 2018 R Т * Element Materials Technology Mkr1 403.350 871 MHz Ref -24 dBm #Peak #Atten 10 dB -28.65 dBm Log 1 5 dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.351 388 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) Sample 1, 25°C, Mid Channel, 403.35 MHz

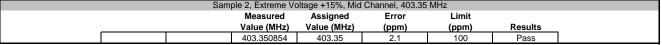


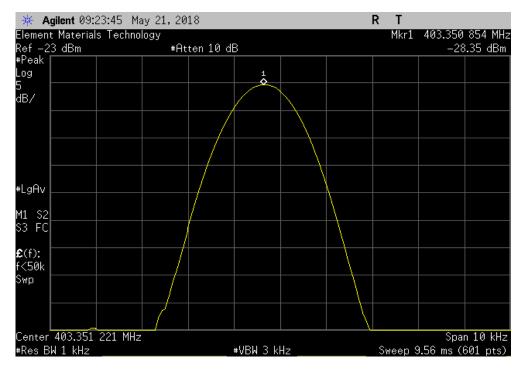


XMit 2017.12.13

TbtTx 2017.12.14

Sample 1, 35°C, Mid Channel, 403.35 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.349952 403.35 0.1 100 Pass Agilent 12:27:43 May 21, 2018 R Т ** Element Materials Technology Mkr1 403.349 952 MHz Ref —25 dBm #Peak #Atten 10 dB -29.83 dBm Log 1 5 dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.350 369 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts)

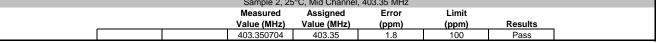


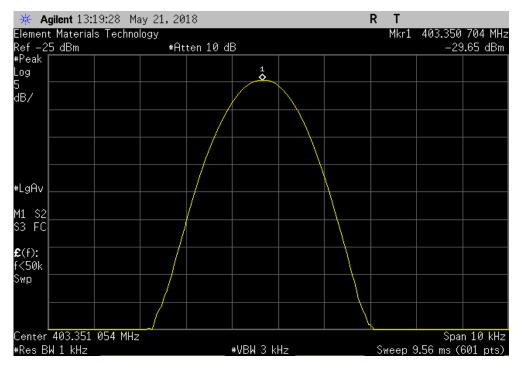


XMit 2017.12.13

TbtTx 2017.12.14

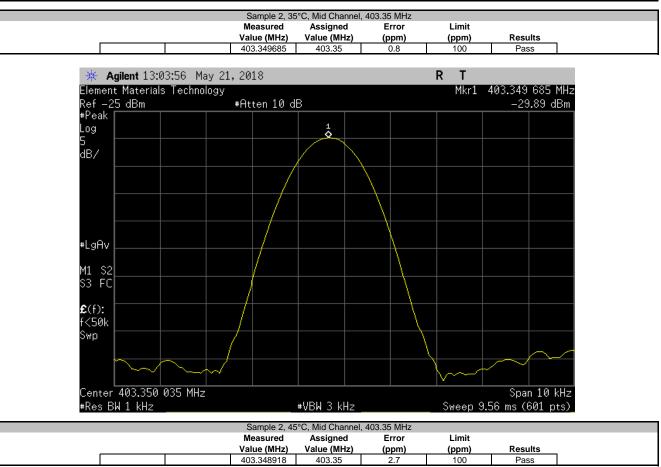
Sample 2, Normal Voltage, Mid Channel, 403.35 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.350854 403.35 100 Pass 2.1 Agilent 09:22:59 May 21, 2018 R Т * Element Materials Technology Mkr1 403.350 854 MHz Ref —23 dBm #Peak #Atten 10 dB -28.34 dBm Log 5 dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.351 204 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) Sample 2, Extreme Voltage +15%, Mid Channel, 403.35 MHz

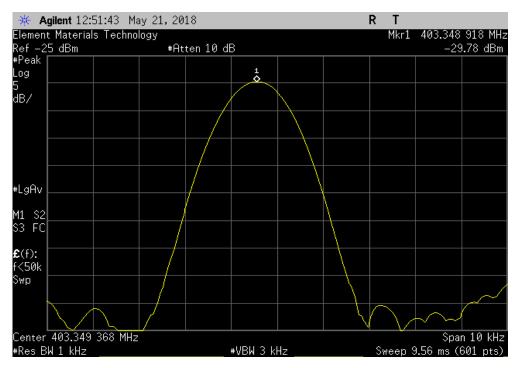


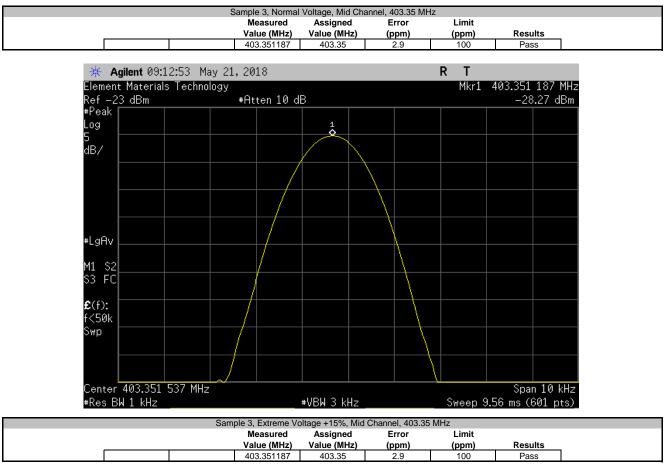


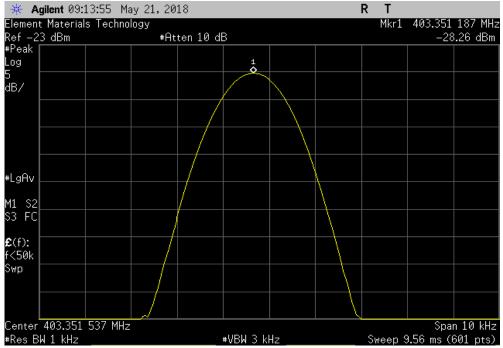
XMit 2017.12.13

TbtTx 2017.12.14

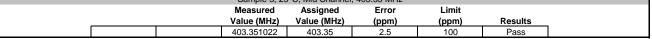

Sample 2, Extreme Voltage -15%, Mid Channel, 403.35 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.350871 403.35 100 Pass 2.2 Agilent 09:24:31 May 21, 2018 R Т * Element Materials Technology Mkr1 403.350 871 MHz Ref —23 dBm #Peak #Atten 10 dB -28.35 dBm Log 5 dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.351 371 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) Sample 2, 25°C, Mid Channel, 403.35 MHz

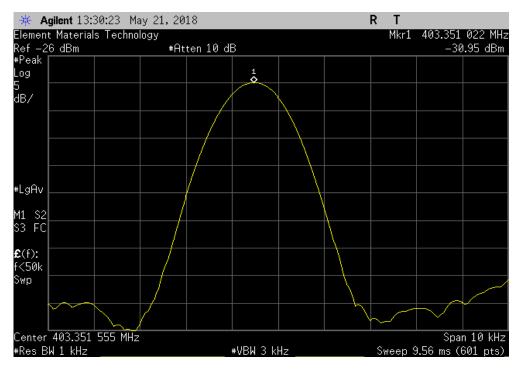



TbtTx 2017.12.14 XMit 2017.12.13



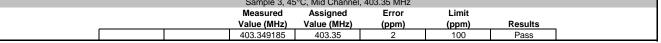
TbtTx 2017.12.14 XMit 2017.12.13

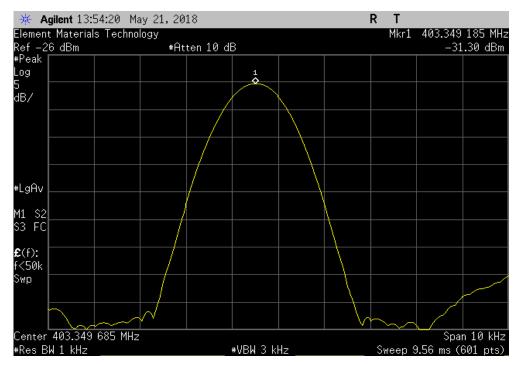



FREQUENCY STABILITY

XMit 2017.12.13

TbtTx 2017.12.14 Sample 3, Extreme Voltage -15%, Mid Channel, 403.35 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.351171 403.35 2.9 100 Pass Agilent 09:15:21 May 21, 2018 R Т * Element Materials Technology Mkr1 403.351 171 MHz Ref —23 dBm #Peak #Atten 10 dB -28.27 dBm Log 5 dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.351 704 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) Sample 3, 25°C, Mid Channel, 403.35 MHz


FREQUENCY STABILITY



XMit 2017.12.13

TbtTx 2017.12.14

Sample 3, 35°C, Mid Channel, 403.35 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Results 403.350103 403.35 0.3 100 Pass Agilent 13:41:21 May 21, 2018 R Т ** Element Materials Technology Mkr1 403.350 103 MHz Ref —26 dBm #Peak #Atten 10 dB -31.22 dBm Log 5 dB/ #LgAv M1 S2 S3 FC £(f): f<50k Swp Center 403.350 536 MHz Span 10 kHz #Res BW 1 kHz ₩VBW 3 kHz Sweep 9.56 ms (601 pts) Sample 3, 45°C, Mid Channel, 403.35 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting MICS - low channel (402.15 MHz), mid channel (403.35 MHz), and high channel (404.85 MHz) modulated

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

BSTN0835 - 1		
BSTN0835 - 2		
BSTN0835 - 3		

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz
-----------------	--------

Stop Frequency 5000 MHz

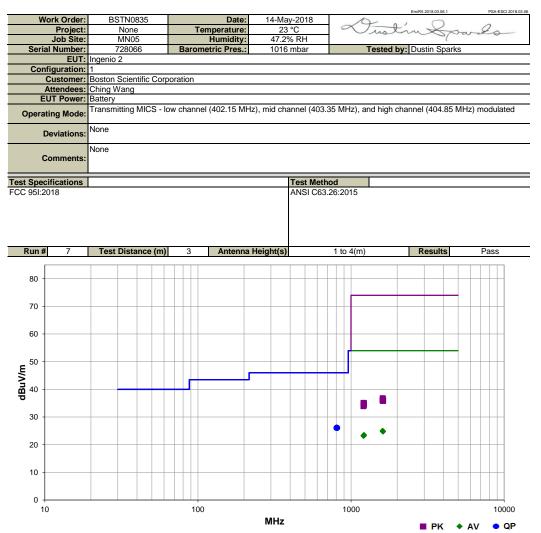
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

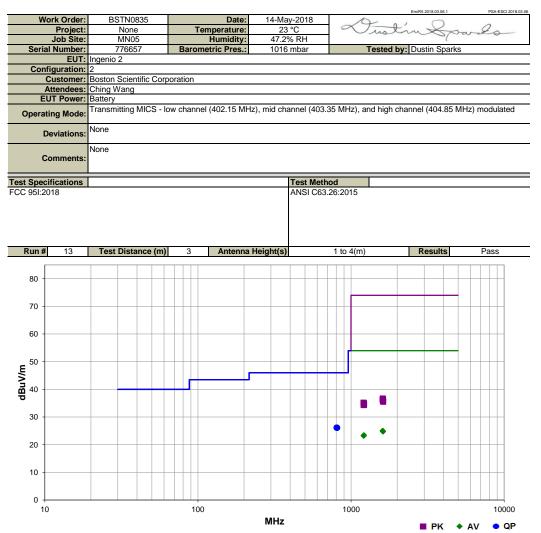
Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	13-Feb-2018	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	21-Nov-2017	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	23-Jun-2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	9-Nov-2017	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2-Aug-2017	12 mo

MEASUREMENT BANDWIDTHS


Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.26). A preamp was used for this test in order to provide sufficient measurement sensitivity.


Per CFR 47 95.2579(a), field strength measurements were performed and compared to the specified limits.

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
804.536	15.7	10.4	1.0	250.9	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	Low ch, EUT vertical
804.461	15.7	10.4	1.0	258.9	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Low ch, EUT vertical
803.971	15.7	10.4	1.0	149.1	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	Low ch, EUT on side
803.501	15.7	10.4	1.0	23.1	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Low ch, EUT on side
804.526	15.7	10.4	1.0	231.0	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	Low ch, EUT horizontal
805.227	15.7	10.4	1.0	163.1	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Low ch, EUT horizontal
806.487	15.7	10.4	2.3	145.1	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	Mid ch, EUT vertical
806.713	15.7	10.4	1.0	339.0	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Mid ch, EUT vertical
811.011	15.7	10.4	1.0	120.1	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	High ch, EUT vertical
810.500	15.7	10.4	1.1	235.9	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	High ch, EUT vertical
1609.225	31.0	-6.0	1.0	194.0	3.0	0.0	Horz	AV	0.0	25.0	54.0	-29.0	Low ch, EUT vertical
1608.208	31.0	-6.0	1.0	55.1	3.0	0.0	Vert	AV	0.0	25.0	54.0	-29.0	Low ch, EUT vertical
1611.692	30.9	-6.0	3.1	137.1	3.0	0.0	Horz	AV	0.0	24.9	54.0	-29.1	Mid ch, EUT vertical
1611.925	30.8	-6.0	1.0	246.9	3.0	0.0	Vert	AV	0.0	24.8	54.0	-29.2	Mid ch, EUT vertical
1617.833	30.6	-5.9	1.0	96.0	3.0	0.0	Horz	AV	0.0	24.7	54.0	-29.3	High ch, EUT vertical
1617.608	30.6	-5.9	1.0	24.0	3.0	0.0	Vert	AV	0.0	24.7	54.0	-29.3	High ch, EUT vertical
1214.983	31.6	-8.1	1.3	118.0	3.0	0.0	Horz	AV	0.0	23.5	54.0	-30.5	High ch, EUT vertical
1214.258	31.6	-8.1	1.6	66.1	3.0	0.0	Vert	AV	0.0	23.5	54.0	-30.5	High ch, EUT vertical
1211.725	31.5	-8.3	1.0	185.1	3.0	0.0	Horz	AV	0.0	23.2	54.0	-30.8	Mid ch, EUT vertical
1209.808	31.5	-8.3	2.4	44.1	3.0	0.0	Vert	AV	0.0	23.2	54.0	-30.8	Mid ch, EUT vertical
1207.908	31.5	-8.3	1.0	275.9	3.0	0.0	Horz	AV	0.0	23.2	54.0	-30.8	Low ch, EUT vertical
1204.300	31.5	-8.3	1.0	335.0	3.0	0.0	Vert	AV	0.0	23.2	54.0	-30.8	Low ch, EUT vertical
1610.017	42.8	-6.0	1.0	55.1	3.0	0.0	Vert	PK	0.0	36.8	74.0	-37.2	Low ch, EUT vertical
1612.942	42.3	-6.0	3.1	137.1	3.0	0.0	Horz	PK	0.0	36.3	74.0	-37.7	Mid ch, EUT vertical
1619.317	42.0	-5.9	1.0	24.0	3.0	0.0	Vert	PK	0.0	36.1	74.0	-37.9	High ch, EUT vertical
1606.825	42.1	-6.0	1.0	194.0	3.0	0.0	Horz	PK	0.0	36.1	74.0	-37.9	Low ch, EUT vertical
1611.942	42.0	-6.0	1.0	246.9	3.0	0.0	Vert	PK	0.0	36.0	74.0	-38.0	Mid ch, EUT vertical
1618.633	41.7	-5.9	1.0	96.0	3.0	0.0	Horz	PK	0.0	35.8	74.0	-38.2	High ch, EUT vertical
1207.950	43.4	-8.3	1.0	185.1	3.0	0.0	Horz	PK	0.0	35.1	74.0	-38.9	Mid ch, EUT vertical
1213.067	43.1	-8.1	1.3	118.0	3.0	0.0	Horz	PK	0.0	35.0	74.0	-39.0	High ch, EUT vertical
1205.225	43.2	-8.3	1.0	275.9	3.0	0.0	Horz	PK	0.0	34.9	74.0	-39.1	Low ch, EUT vertical
1212.492	42.7	-8.2	1.6	66.1	3.0	0.0	Vert	PK	0.0	34.5	74.0	-39.5	High ch, EUT vertical
1212.533	42.5	-8.1	2.4	44.1	3.0	0.0	Vert	PK	0.0	34.4	74.0	-39.6	Mid ch, EUT vertical
1205.858	42.2	-8.3	1.0	335.0	3.0	0.0	Vert	PK	0.0	33.9	74.0	-40.1	Low ch, EUT vertical

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
809.335	15.7	10.5	1.0	63.0	3.0	0.0	Horz	QP	0.0	26.2	46.0	-19.8	High ch, EUT vertical
802.843	15.7	10.5	1.7	154.0	3.0	0.0	Horz	QP	0.0	26.2	46.0	-19.8	Low ch, EUT vertical
810.692	15.7	10.4	1.0	199.1	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	High ch, EUT vertical
810.741	15.7	10.4	1.0	310.0	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	High ch, EUT on side
810.744	15.7	10.4	1.0	281.0	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	High ch, EUT on side
810.320	15.7	10.4	3.9	325.9	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	High ch, EUT horizontal
809.757	15.7	10.4	1.0	10.0	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	High ch, EUT horizontal
806.385	15.7	10.4	1.0	61.0	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	Mid ch, EUT vertical
806.037	15.7	10.4	2.2	229.0	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Mid ch, EUT vertical
804.503	15.7	10.4	1.0	184.1	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Low ch, EUT vertical
1609.275	31.0	-6.0	1.0	110.0	3.0	0.0	Horz	AV	0.0	25.0	54.0	-29.0	Low ch, EUT vertical
1607.050	31.0	-6.0	1.0	61.0	3.0	0.0	Vert	AV	0.0	25.0	54.0	-29.0	Low ch, EUT vertical
1612.292	31.0	-6.0	1.0	31.0	3.0	0.0	Horz	AV	0.0	25.0	54.0	-29.0	Mid ch, EUT vertical
1611.983	30.9	-6.0	3.3	294.9	3.0	0.0	Vert	AV	0.0	24.9	54.0	-29.1	Mid ch, EUT vertical
1617.275	30.6	-5.9	1.0	275.0	3.0	0.0	Horz	AV	0.0	24.7	54.0	-29.3	High ch, EUT vertical
1617.617	30.6	-5.9	1.0	330.9	3.0	0.0	Vert	AV	0.0	24.7	54.0	-29.3	High ch, EUT vertical
1212.383	31.6	-8.2	1.0	91.1	3.0	0.0	Horz	AV	0.0	23.4	54.0	-30.6	High ch, EUT vertical
1214.933	31.5	-8.1	1.0	33.1	3.0	0.0	Vert	AV	0.0	23.4	54.0	-30.6	High ch, EUT vertical
1211.542	31.6	-8.3	1.0	235.9	3.0	0.0	Vert	AV	0.0	23.3	54.0	-30.7	Mid ch, EUT vertical
1208.367	31.5	-8.3	1.0	303.0	3.0	0.0	Horz	AV	0.0	23.2	54.0	-30.8	Low ch, EUT vertical
1208.625	31.5	-8.3	1.0	300.0	3.0	0.0	Vert	AV	0.0	23.2	54.0	-30.8	Low ch, EUT vertical
1209.417	31.5	-8.3	1.0	160.1	3.0	0.0	Horz	AV	0.0	23.2	54.0	-30.8	Mid ch, EUT vertical
1610.550	42.7	-6.0	1.0	61.0	3.0	0.0	Vert	PK	0.0	36.7	74.0	-37.3	Low ch, EUT vertical
1614.942	42.5	-6.0	1.0	31.0	3.0	0.0	Horz	PK	0.0	36.5	74.0	-37.5	Mid ch, EUT vertical
1606.442	42.3	-6.0	1.0	110.0	3.0	0.0	Horz	PK	0.0	36.3	74.0	-37.7	Low ch, EUT vertical
1620.150	42.1	-5.9	1.0	330.9	3.0	0.0	Vert	PK	0.0	36.2	74.0	-37.8	High ch, EUT vertical
1614.067	41.8	-6.0	3.3	294.9	3.0	0.0	Vert	PK	0.0	35.8	74.0	-38.2	Mid ch, EUT vertical
1621.417	41.4	-5.9	1.0	275.0	3.0	0.0	Horz	PK	0.0	35.5	74.0	-38.5	High ch, EUT vertical
1204.867	43.5	-8.3	1.0	303.0	3.0	0.0	Horz	PK	0.0	35.2	74.0	-38.8	Low ch, EUT vertical
1216.067	43.1	-8.1	1.0	91.1	3.0	0.0	Horz	PK	0.0	35.0	74.0	-39.0	High ch, EUT vertical
1217.025	42.6	-8.1	1.0	33.1	3.0	0.0	Vert	PK	0.0	34.5	74.0	-39.5	High ch, EUT vertical
1208.908	42.7	-8.3	1.0	300.0	3.0	0.0	Vert	PK	0.0	34.4	74.0	-39.6	Low ch, EUT vertical
1210.242	42.7	-8.3	1.0	160.1	3.0	0.0	Horz	PK	0.0	34.4	74.0	-39.6	Mid ch, EUT vertical
1210.775	42.6	-8.3	1.0	235.9	3.0	0.0	Vert	PK	0.0	34.3	74.0	-39.7	Mid ch, EUT vertical

	ork Order:	BS	TN0835		_	Date:	14-Ma	y-2018	6		miR5 2018.03.06.1		PSA-ESCI 20
	Project:		None			Temperature:		°C	$\sim \mathcal{I}$	inti	n ×	Sard	2
	Job Site:	Ν	MN05			Humidity:	47.2	% RH			(
	Number:		20522		Bar	ometric Pres.:		mbar	Т	ested by:	Dustin Spa	rks	
		Ingenio 2	2								1		
Confi	iguration:	3											
C	ustomer:	Boston S	Scientific	c Corp	oratior	1							
A	ttendees:	Ching W	ang										
EU	JT Power:	Battery											
Operati	ng Mode:	Transmit	iting MIC	CS - lo	w cha	nnel (402.15 Mł	Hz), mid ch	annel (403.	35 MHz), ar	nd high chai	nnel (404.8	35 MHz) m	odulate
De	eviations:	None											
Co	omments:	None											
est Speci	fications							Test Meth	od				
CC 951:20		1						ANSI C63.					
Run #	20	Test D	Distance	e (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Р	ass
Г													
80 -													
												-	
70 +													
70 -													
70 — 60 —													
60													
60												_	
60													
60												-	
60 -													
60 50 m//ngp					F					•		-	
60					ſ					•		-	
60 50 m//ngp					ſ				•	•			
60 50 40 30					ſ				•	•			
60 50 m//ngp							P		• •	•			
60 50 40 30									• •	•			
60 50 40 30									•	•			
60 50 40 30 20									•	•		-	
60 50 40 30 20 10										•			
60 50 40 30 20 10 0										•			
60 50 40 30 20 10						00	MHz		1000	•			10000

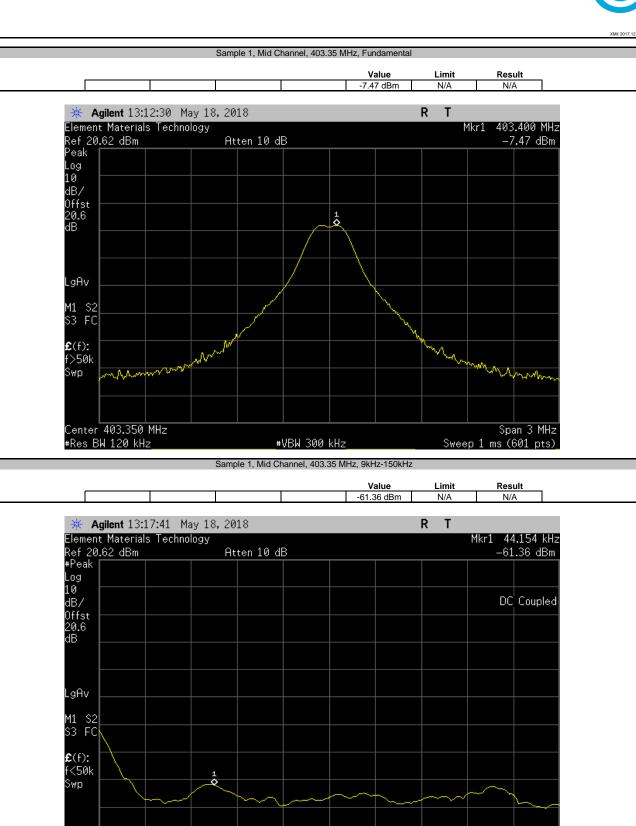
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
809.125	15.7	10.5	1.0	15.1	3.0	0.0	Horz	QP	0.0	26.2	46.0	-19.8	High ch, EUT on side
809.496	15.7	10.5	1.7	328.0	3.0	0.0	Vert	QP	0.0	26.2	46.0	-19.8	High ch, EUT on side
809.975	15.7	10.4	1.0	344.9	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	High ch, EUT vertical
810.405	15.7	10.4	1.0	264.9	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	High ch, EUT vertical
810.728	15.7	10.4	1.0	290.9	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	High ch, EUT horizontal
809.926	15.7	10.4	1.0	40.1	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	High ch, EUT horizontal
805.302	15.7	10.4	1.0	56.0	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	Mid ch, EUT vertical
805.150	15.7	10.4	1.0	34.1	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Mid ch, EUT vertical
805.360	15.7	10.4	1.0	108.0	3.0	0.0	Horz	QP	0.0	26.1	46.0	-19.9	Low ch, EUT vertical
805.188	15.7	10.4	1.0	243.9	3.0	0.0	Vert	QP	0.0	26.1	46.0	-19.9	Low ch, EUT vertical
1611.125	30.9	-6.0	3.0	49.0	3.0	0.0	Horz	AV	0.0	24.9	54.0	-29.1	Mid ch, EUT vertical
1612.425	30.9	-6.0	1.0	325.0	3.0	0.0	Vert	AV	0.0	24.9	54.0	-29.1	Mid ch, EUT vertical
1209.542	31.6	-8.3	3.5	119.1	3.0	0.0	Horz	AV	0.0	23.3	54.0	-30.7	Mid ch, EUT vertical
1211.650	31.6	-8.3	1.0	260.0	3.0	0.0	Vert	AV	0.0	23.3	54.0	-30.7	Mid ch, EUT vertical
1606.117	42.2	-6.0	1.0	346.0	3.0	0.0	Horz	PK	0.0	36.2	74.0	-37.8	Low ch, EUT vertical
1614.717	42.1	-6.0	3.0	49.0	3.0	0.0	Horz	PK	0.0	36.1	74.0	-37.9	Mid ch, EUT vertical
1606.233	42.0	-6.0	1.0	271.9	3.0	0.0	Vert	PK	0.0	36.0	74.0	-38.0	Low ch, EUT vertical
1611.967	41.9	-6.0	1.0	325.0	3.0	0.0	Vert	PK	0.0	35.9	74.0	-38.1	Mid ch, EUT vertical
1210.950	42.8	-8.3	3.5	119.1	3.0	0.0	Horz	PK	0.0	34.5	74.0	-39.5	Mid ch, EUT vertical
1207.233	42.7	-8.3	2.8	342.0	3.0	0.0	Horz	PK	0.0	34.4	74.0	-39.6	Low ch, EUT vertical
1212.217	42.4	-8.2	1.0	260.0	3.0	0.0	Vert	PK	0.0	34.2	74.0	-39.8	Mid ch, EUT vertical
1204.225	42.5	-8.3	3.9	105.1	3.0	0.0	Vert	PK	0.0	34.2	74.0	-39.8	Low ch, EUT vertical

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Power Supply - DC	EZ Digital Co., Ltd.	GP-4030D	TQK	NCR	NCR
Meter - Multimeter	Fluke	114	MMU	18-Jul-17	18-Jul-20
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	12-Sep-17	12-Sep-18
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2-Aug-17	2-Aug-18

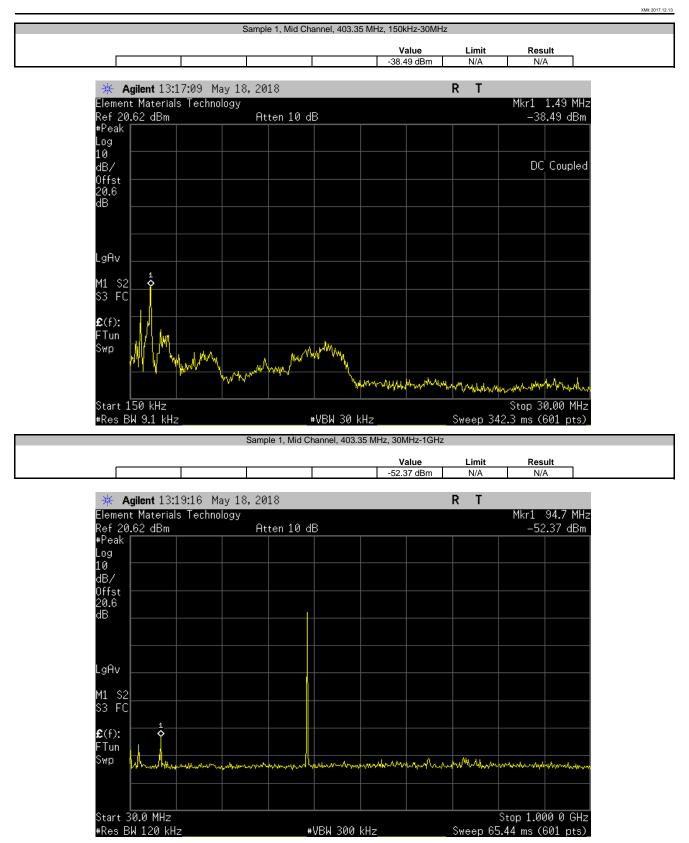

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1051, RSS-GEN, the spurious emissions shall be measured at the RF terminal. The peak spurious emissions were measured with the EUT configured to the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

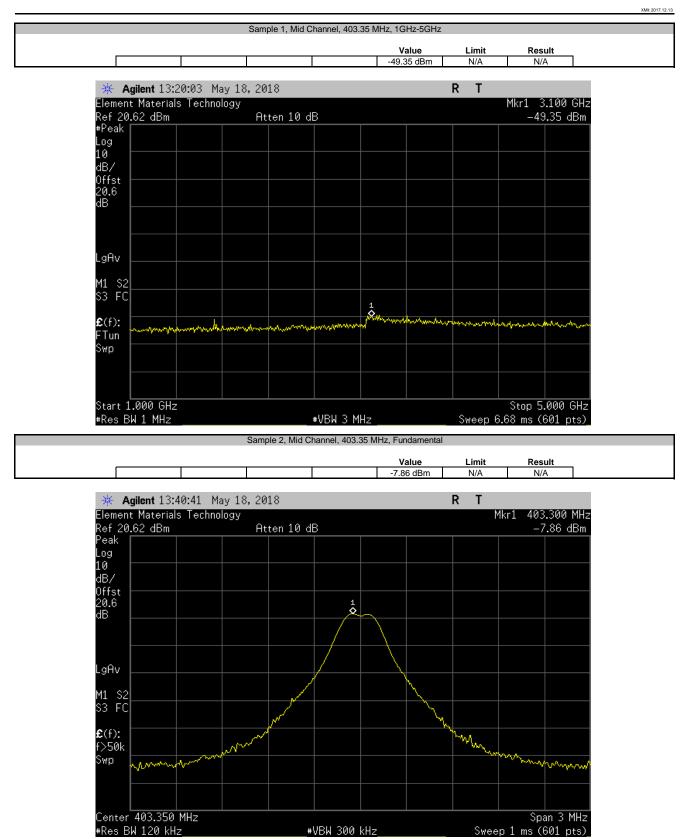
FCC Part 95 and RSS-243 have no conducted spurious emissions limit. It is a requirement to characterize this information and that data is contained within this datasheet.

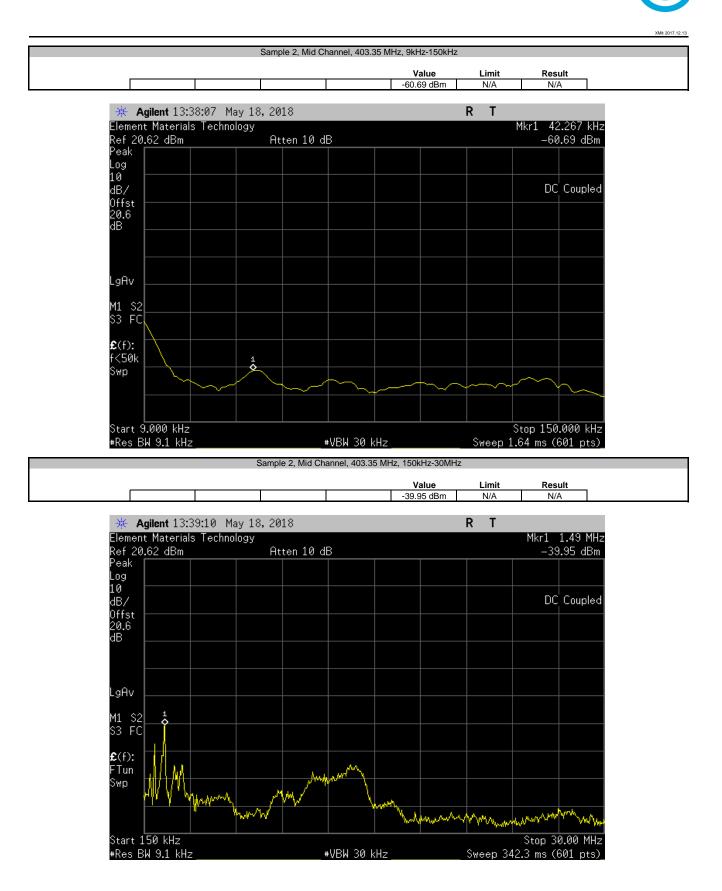
	In nonla Ó			Work Order:	DOTMODOC	XMit 2
	Ingenio 2 See Comments					
				Temperature:	22-May-18	
	Boston Scientific Corporation Ching Wang			Humidity:		
Attendees: Project:				Barometric Pres.:		
	Dustin Sparks	Power: 3.2V	P6	Job Site:		
TEST SPECIFICATI			Method	Job Site:	MINUO	
CC 951:2018	000		I C63.26:2015			
-00 931.2018		ANG	1 C03.20.2015			
COMMENTS						
	ed simultaneously - sample 1 (SN 75602703), sar		175000704)			
nree samples test	ed simultaneously - sample 1 (SN 75602703), sar	npie 2 (SN 75602706), and sample 3 (Si	N 75602701).			
FVIATIONS FROM	I TEST STANDARD					_
None						
		A -				
Configuration #	4, 5, 6	Justing	2			
g	Signature	month	raves			
	I					
				Value	Limit	Result
Sample 1						
	Mid Channel, 403.35 MHz					
	Fundamental			-7.47 dBm	N/A	N/A
	9kHz-150kHz			-61.36 dBm	N/A	N/A
	9kHz-150kHz 150kHz-30MHz					
				-61.36 dBm	N/A	N/A
	150kHz-30MHz			-61.36 dBm -38.49 dBm	N/A N/A	N/A N/A
Sample 2	150kHz-30MHz 30MHz-1GHz			-61.36 dBm -38.49 dBm -52.37 dBm	N/A N/A N/A	N/A N/A N/A
	150kHz-30MHz 30MHz-1GHz	_		-61.36 dBm -38.49 dBm -52.37 dBm	N/A N/A N/A	N/A N/A N/A
	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz	_	_	-61.36 dBm -38.49 dBm -52.37 dBm	N/A N/A N/A	N/A N/A N/A
	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm	N/A N/A N/A N/A	N/A N/A N/A N/A
	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -7.86 dBm	N/A N/A N/A N/A	N/A N/A N/A N/A
	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz		-	-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -7.86 dBm -60.69 dBm	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz 150kHz-30MHz			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -7.86 dBm -60.69 dBm -39.95 dBm	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
Sample 3	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz 150kHz-30MHz 30MHz-1GHz 1GHz-5GHz			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -7.86 dBm -60.69 dBm -39.95 dBm -54.90 dBm	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
Sample 3	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz 150kHz 30MHz-16Hz			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -77.86 dBm -60.69 dBm -39.95 dBm -54.90 dBm	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
Sample 3	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz 150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -60.69 dBm -60.69 dBm -39.95 dBm -54.90 dBm -49.74 dBm -49.74 dBm	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
Sample 3	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz 150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -77.86 dBm -60.69 dBm -39.95 dBm -54.90 dBm -49.74 dBm	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
Sample 3	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz 150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -60.69 dBm -60.69 dBm -39.95 dBm -54.90 dBm -49.74 dBm -49.74 dBm	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A
Sample 3	150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz 150kHz-30MHz 30MHz-1GHz 1GHz-5GHz Mid Channel, 403.35 MHz Fundamental 9kHz-150kHz			-61.36 dBm -38.49 dBm -52.37 dBm -49.35 dBm -7.86 dBm -60.69 dBm -39.95 dBm -54.90 dBm -49.74 dBm -7.30 dBm -63.05 dBm	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A

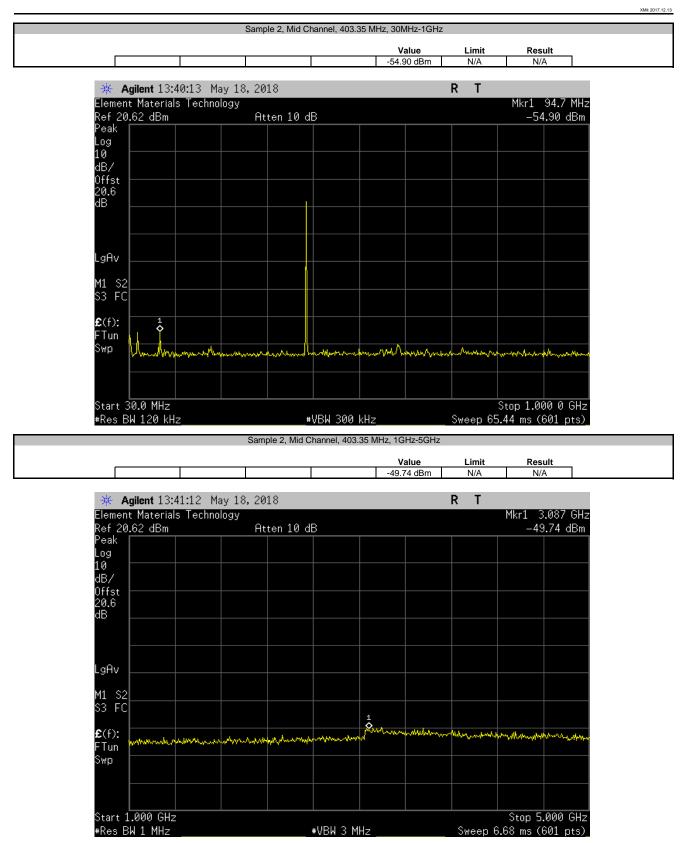
₩VBW 30 kHz

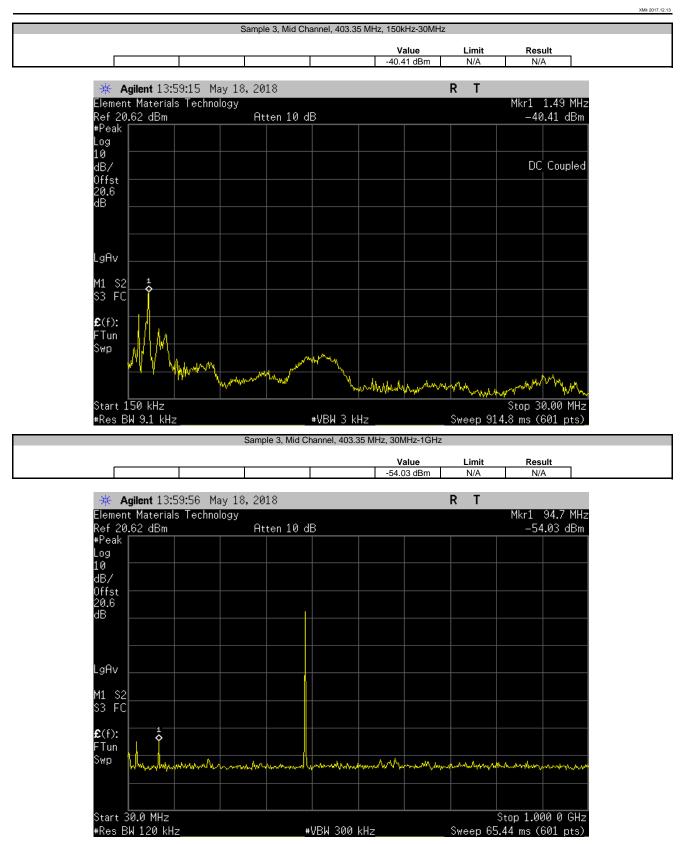

Start 9.000 kHz

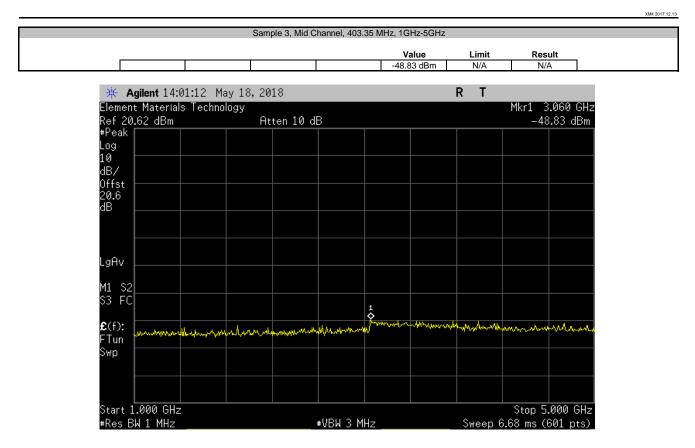
#Res BW 9.1 kHz


Stop 150.000 kHz


Sweep 1.64 ms (601 pts)






₩VBW 3 kHz

#Res BW 9.1 kHz

Sweep 4.36 ms (601 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx CW on Low, Mid, or High Ch at 402.15, 403.35, or 404.85 MHz.

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

BSTN0835 - 1 BSTN0835 - 2 BSTN0835 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency 402 MHz Stop Frequency 405 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Tank, Torso Simulator	None	None	PCN	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	9-Nov-2017	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2-Aug-2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

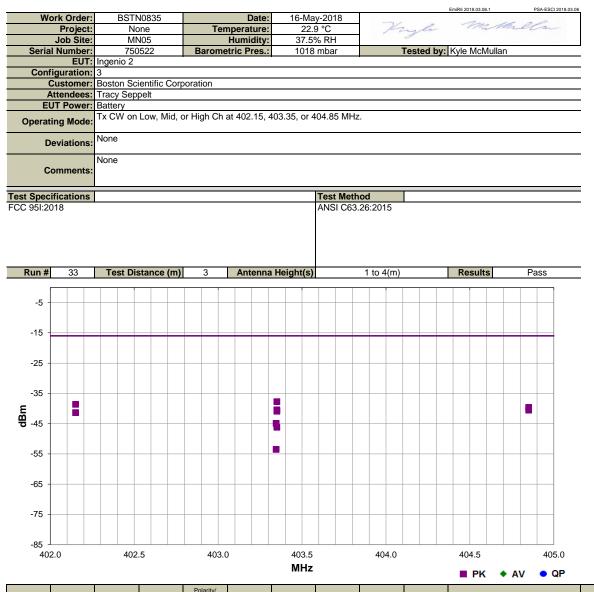
Per 95.2567(a)(2), the maximum radiated field strength for a MICS transmitter is 25uW EIRP. The Field Strength of the Fundamental data was converted to EIRP with the formula based upon the Friis transmission equation with 6 dB removed due to reflections from the ground plane: EIRP = $((E/2)^*d)^2/30$ where E is V/m and d = distance = 3m, and EIRP = W (Reference 95.2569(a)).

The Field Strength of the Fundamental was measured in the far-field at an FCC Listed Semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the radiated field strength of the fundamental.

The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

The EUT was configured to transmit in a fixture that simulates the human torso. The dimensions of the test fixture and the characteristics of the tissue substitute material met the requirements 95.2569(c) and FCC KDB 617965. The height of the transmitter was 1.5-meter above the reference ground plane.

	ork Or	der:		BSTI	N08	35					Date	:	16-1	/Jay-	2018							5 2018.03				PSA-ESCI 20		
		ject:			one				Те	mper	ature			2.9			Kugle Mathener							Can				
	Job	Site:	MN05					Humidity:				37.5% RH																
Serial	l Num	ber:		728	8066	6		Barometric Pres.: 1018						18 m								Kyle McMullan						
	E	EUT:	ngen	io 2																								
Confi	igurat	tion:																										
C	Sustor	mer:	Bosto	on Sc	cient	tific (Corp	oratio	on																			
A	ttend	ees:	Tracy	/ Sep	pelt																							
EU	JT Po	wer:	Batte	ry																								
Operati	ing M	ode:	Tx CW on Low, Mid, or High Ch at 402.15, 403.35, or 404.85 MHz.																									
De	eviati	ons:	None																									
			None																									
Co	omme	ents:																										
st Speci	ficati	ons												Т	est I	/leth	od											
C 951:20																	26:20	15										
Run #	3	1	Tes	st Di	star	nce	(m)		3	A	ntenn	a He	eight(s)			1 to	4(m)			F	Resu	lts		P	ass		
Γ																												
-5 -															-	-							-					
45																												
								_	-		-			-	-						-		-					
-15 -		_																										
-15 -																												
-15 -																												
																					_							
-25 - -35 -																												
-25 - -35 -																												
-25 -																												
-25 - -35 -																												
-25 - -35 - Egg -45 -																												
-25 - -35 -																												
-25 - -35 - Egg -45 -																												
-25 - -35 - Egg -45 -																												
-25 - -35 - Egg -45 - -55 -																												
-25 - -35 - Egg -45 - -55 - -65 -																												
-25 - -35 - Egg -45 - -55 -																												
-25 - -35 - Egg -45 - -55 - -65 -																												
-25 - -35 - Egg -45 - -55 - -65 - -75 -																												
-25 - -35 - -35 - -55 - -65 - -75 - -85 -																												
-25 - -35 - Ego -45 - -55 - -65 - -75 -				402	2.5				403	.0			403				40	04.0				404.5						
-25 - -35 - -35 - -55 - -65 - -75 - -85 -				402	2.5				403	.0			403				4(04.0								405.0		
-25 - -35 - -35 - -55 - -65 - -75 - -85 -				402	2.5				403	0							4(04.0				404.5						
-25 - -35 - -35 - -55 - -65 - -75 - -85 -			Ante	nna ght		Azimut		Trans	403 arity/ sducer		etector				EIRR		4(Limit	5	pared ti bapec.						405.0 • QF		


(MHz)	(meters)	(degrees)			(Watts)	(dBm)	(dBm)	(dB)	
402.150	1.6	308.9	Vert	PK	1.94E-07	-37.1	-16.0	-21.1	Low Ch, EUT Vert
404.850	1.6	315.0	Vert	PK	1.94E-07	-37.1	-16.0	-21.1	High Ch, EUT Vert
403.350	1.6	336.9	Vert	PK	1.73E-07	-37.6	-16.0	-21.6	Mid Ch, EUT Vert
403.345	1.1	265.9	Horz	PK	8.46E-08	-40.7	-16.0	-24.7	Mid Ch, EUT Vert
404.850	1.1	235.9	Horz	PK	7.89E-08	-41.0	-16.0	-25.0	High Ch, EUT Vert
403.345	1.2	50.0	Horz	PK	7.54E-08	-41.2	-16.0	-25.2	Mid Ch, EUT On Side
402.150	1.1	235.9	Horz	PK	7.03E-08	-41.5	-16.0	-25.5	Low Ch, EUT Vert
403.345	1.2	351.0	Horz	PK	1.98E-08	-47.0	-16.0	-31.0	Mid Ch, EUT Horz
403.350	1.5	315.0	Vert	PK	1.57E-08	-48.0	-16.0	-32.0	Mid Ch, EUT On Side
403.350	1.6	307.9	Vert	PK	5.46E-09	-52.6	-16.0	-36.6	Mid Ch, EUT Horz

																							Er	niR5 20'	18.03.06	.1		PS	A-ESCI 20
Wo			⁻ N08							Date:				-201	8		_			- 12		-	200		-	20	-		
Project					lone				Te			ture:			2.9				-	12	y	h		1	12	110	he	0	n
	Job		te: IVINUS Humidity: 37.5% KH																										
Serial					6657	7		Ba						18 I	mbar Tested by:						y: K	yle l	McM	ullar	1				
			Inge	nio 2																									
Confi	igura	tion:	2																										
С	usto	mer:	Bost	ton S	cient	ific (Corpo	oratio	on																				
A	ttend	lees:	Trac	v Se	ppelt				-																				
EU	IT Po	wer	Batte	erv																									
Operati			T O		n Lov	w, M	id, or	Hig	h Cł	n at 4	402.	15, 4	403.:	35, or	40	4.85	MH	z.											
De	eviati	ions	Non	None																									
Co	omme	ents:	Non	e																									
st Specif	ficati	ons													-	Test	Met	hod											
C 951:20		0113	ANSI C63.26:2015																										
Run #	3	2	T	est D	lista	nce	(m)		3		Ant	enn	a He	eight(s)			1	to 4	.(m)				Re	sults	5		Pas	s
Ittair #				001 0	iotai		()		0		/			-igin(~ /				10 1	()					June	-		1 40	0
Γ																													
-5 -		_		-																									_
4.5																													
-15																													
-25 -																													
20																													
-35 -																													_
_																													
-45 -	`	-																										-	
-45 +															_														_
													_																
-55 -		-		-																									
CE.																													
-65																													
-75 -																													
-/5																													
-85																													
	0			40	25				400	2 0				402	5				40	4.0				40.	1 5				405.0
402				40	2.0				403	5.0									404	+.0				404	t.0				405.0
402	.0		402.5 403.0 403.5 404.0 MHz										404.5 40																

Freq (MHz)	-	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments	
 403.35	0 1.6	329.9	Vert	PK	1.73E-07	-37.6	-16.0	-21.6	Mid Ch, EUT Vert	
404.84	5 1.6	328.0	Vert	PK	1.28E-07	-38.9	-16.0	-22.9	High Ch, EUT Vert	
402.14	5 1.6	311.0	Vert	PK	1.14E-07	-39.4	-16.0	-23.4	Low Ch, EUT Vert	
404.85	0 1.1	253.9	Horz	PK	1.11E-07	-39.5	-16.0	-23.5	High Ch, EUT Vert	
402.15	0 1.1	243.0	Horz	PK	1.06E-07	-39.7	-16.0	-23.7	Low Ch, EUT Vert	
403.35	0 1.1	247.9	Horz	PK	8.07E-08	-40.9	-16.0	-24.9	Mid Ch, EUT Vert	
403.35	0 1.2	37.1	Horz	PK	5.46E-08	-42.6	-16.0	-26.6	Mid Ch, EUT On Side	
403.35	0 1.2	311.9	Horz	PK	4.34E-08	-43.6	-16.0	-27.6	Mid Ch, EUT Horz	
403.35	0 1.6	303.0	Vert	PK	1.40E-08	-48.5	-16.0	-32.5	Mid Ch, EUT On Side	
403.34	5 1.7	324.0	Vert	PK	3.07E-09	-55.1	-16.0	-39.1	Mid Ch, EUT Horz	

	Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
-	403.350	1.6	326.9	Vert	PK	1.69E-07	-37.7	-16.0	-21.7	Mid Ch, EUT Vert
	402.150	1.6	308.9	Vert	PK	1.37E-07	-38.6	-16.0	-22.6	Low Ch, EUT Vert
	404.850	1.6	310.0	Vert	PK	1.09E-07	-39.6	-16.0	-23.6	High Ch, EUT Vert
	403.350	1.1	250.9	Horz	PK	9.06E-08	-40.4	-16.0	-24.4	Mid Ch, EUT Vert
	404.850	1.1	245.0	Horz	PK	8.85E-08	-40.5	-16.0	-24.5	High Ch, EUT Vert
	403.350	1.2	20.0	Horz	PK	8.07E-08	-40.9	-16.0	-24.9	Mid Ch, EUT On Side
	402.150	1.1	250.9	Horz	PK	7.36E-08	-41.3	-16.0	-25.3	Low Ch, EUT Vert
	403.345	1.6	301.9	Vert	PK	3.21E-08	-44.9	-16.0	-28.9	Mid Ch, EUT On Side
	403.350	1.2	311.0	Horz	PK	2.38E-08	-46.2	-16.0	-30.2	Mid Ch, EUT Horz
	403.345	1.6	71.0	Vert	PK	4.44E-09	-53.5	-16.0	-37.5	Mid Ch, EUT Horz