

Date: July 10, 2008

To: FCC

From: Larry Canady, larry.canady@bsci.com
Guidant Corporation
4100 Hamline Ave. N.
Arden Hills, MN 55112

Subject: TCB412 Cover Letter – Application for Equipment Certification, FCC ID:
ESCCRM647608

Introduction

The Model 6476 (also known as the Generation 2 or G2) LATITUDE™ Communicator is a new product for the Guidant Corporation (a wholly owned subsidiary of Boston Scientific Corporation doing business as Boston Scientific Cardiac Rhythm Management, hereinafter referred to as BSC). This is the third device intended for home monitoring of BSC implantable cardioverter defibrillators (ICD's) and cardiac resynchronization therapy defibrillators (CRT-D's). This is a new product and will therefore be a new FCC submission.

BSC is seeking a system approval of the Model 6476 LATITUDE™ Communicator which includes a transceiver subsystem operating at 916.5MHz that is used to communicate with BSC implantable devices. The FCC ID chosen for this product is based on previously similar products and is ESCCRM647608. The FCC sections applicable to this product per this submission include CFR FCC Part 15.205 and 15.249. In addition, since the product has an analog modem connection, FCC Part 68 also applies.

Device Description

The G2 Communicator is comprised of hardware similar to that used for the Model 6482 Communicator (FCC ID ESCCRM648204). The G2 Communicator is an externally powered device that communicates with BSC radio frequency (RF) enabled implantable devices via a 916.5MHz RF link. The implantable data along with Communicator status information is transmitted back to a central database.

The 916.5MHz RF transceiver configuration and mode of operation is controlled via an on board processor. It is co-located with a Bluetooth radio that enables data collection from Bluetooth-enabled external sensors uniquely designed to be used with the system. The Bluetooth radio (FCC ID:POOWML-C40) already has a modular approval.

Figure 1 shows the G2 Communicator. The printed circuit boards of the high level assembly include the integrated main circuit board and button board. The main circuit board contains the majority of the circuitry while the button board contains the status indicators and provides contacts for the user push buttons. There is a liquid crystal display (LCD) with touch screen, a plastic internal frame used to hold the button board, and various miscellaneous cables.

Figure 1. BSC Model 6476 Communicator

The push buttons on the front panel are used to perform various functions as well as provide alerts to the patient for predetermined conditions. The alerts are provided by light emitting diodes visible through the translucent indicator button. The touch-screen is used to access the various menus and health assessment questions.

Sincerely,

Larry Canady
Fellow, Electrical Engineer
Boston Scientific Corporation