

Boston Scientific Corporation

Jaguar, Model 6290 FCC 95I:2015 FCC 15.207:2015

Report # BSTN0554

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: March 23, 2015 **Boston Scientific Corporation** Model: Jaguar, Model 6290

Radio Equipment Testing

Standards	
Specification	Method
FCC 95I:2015	ANSI/TIA/EIA-603-C-2004
FCC 15.207:2015	ANSI C63.10:2009

Results

Method Clause	thod Clause Test Description		Results	Comments
FCC 95.627(a)	FCC 95.627(a) Frequency Monitoring		N/A	Not requested as the customer is responsible to handle this requirement.
FCC 95.633(e)(3)	Emission Bandwidth	Yes	Pass	
FCC 95.635(d)(4-5)	Emission Mask	Yes	Pass	
FCC 2.2.1	Output Power	Yes	Pass	
FCC 2.2.2	Frequency Stability	Yes	Pass	
FCC 2.2.12	Spurious Radiated Emissions	Yes	Pass	
FCC 2.2.13	Spurious Conducted Emissions	Yes	Pass	
FCC 2.2.17	Radiated Power (EIRP)	Yes	Pass	
ANSI C63.10 - 6.2	AC Powerline Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number		Description	Date	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

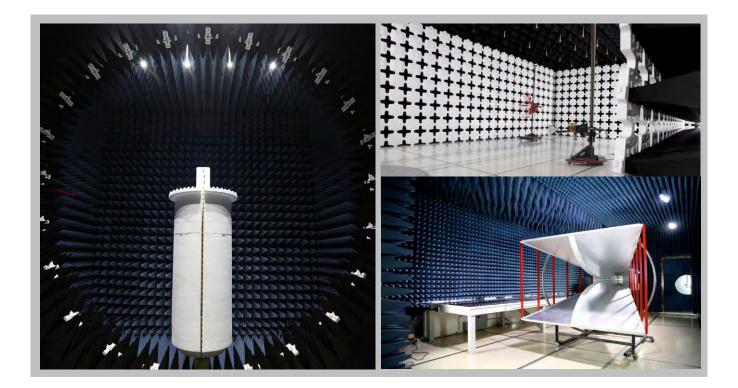
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error gualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.7 dB	-4.7 dB
AC Powerline Conducted Emissions (dB)	2.9 dB	-2.9 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600
		NV	'LAP		
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0
		Industry	Canada		
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
		BS	MI		
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
		VC	CI		
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Boston Scientific Corporation
Address:	4100 Hamline Avenue North
City, State, Zip:	St. Paul, MN 55112
Test Requested By:	Pete Musto
Model:	Jaguar, Model 6290
First Date of Test:	March 17, 2015
Last Date of Test:	March 23, 2015
Receipt Date of Samples:	March 17, 2015
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

In home monitor that communicates with an implant through MedRadio band communications.

Testing Objective:

Seeking an FCC Class II Permissive Change for a modification to increase the power on the S-ICD channels.

CONFIGURATIONS

Configuration BSTN0554-1

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Communicator (Jaguar)	Boston Scientific Corporation	6290	601				
DC Brick	GlobTek	GTM41061-1512-7.0	none				

Peripherals in test setup boundary							
Description Manufacturer Model/Part Number Serial Number							
US Cellular Adapter	Boston Scientific Corporation	6295	5				
US Bluetooth Adapter	Delta Mobile Systems	DM210	2E6B				

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
DC Power	No	1.80m	Yes	DC Brick	Communicator (Jaguar)		
RJ11 (x2)	No	1.80m	No	Communicator (Jaguar)	Unterminated		
USB Cable	Yes	0.20m	Yes	Communicator (Jaguar)	US Cellular Modem		

Configuration BSTN0554-2

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Communicator (Jaguar)	Boston Scientific Corporation	6290	601				
DC Brick	GlobTek	GTM41061-1512-7.0	none				

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
US Cellular Adapter	Boston Scientific Corporation	6295	5			
US Bluetooth Adapter	Delta Mobile Systems	DM210	2E6B			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	1.80m	Yes	DC Brick	Communicator (Jaguar)
RJ11 (x2)	No	1.80m	No	Communicator (Jaguar)	Unterminated
USB Cable	Yes	0.20m	Yes	Communicator (Jaguar)	US Cellular Modem
AC Power	No	1.80m	No	DC Brick	AC Mains

CONFIGURATIONS

Configuration BSTN0554-3

EUT									
Description	Manufacturer	Model/Part Number	Serial Number						
Communicator (Jaguar)	Boston Scientific Corporation	6290	601						
DC Brick	GlobTek	GTM41061-1512-7.0	None						

Peripherals in test setup boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
US Cellular Adapter	Boston Scientific Corporation	6295	5					
US Bluetooth Adapter	Delta Mobile Systems	DM210	2E6B					
Laptop	Gateway	ZE7	LUWZMOD00120219DD97614					
AC Adapter	Leader Electronics	IU40-11190-011S	AP04007002150069F8PP03					

Cables										
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2					
DC Power	No	1.80m	Yes	DC Brick	Communicator (Jaguar)					
RJ11 (x2)	No	1.80m	No	Communicator (Jaguar)	Unterminated					
USB Cable	Yes	0.20m	Yes	Communicator (Jaguar)	US Cellular Modem					
USB to Ribbon	No	1.90m	No	Laptop	Communicator (Jaguar)					
DC Power	No	2.50m	Yes	Laptop	AC Adapter					

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	3/17/2015	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	3/20/2015	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	3/20/2015	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	3/20/2015	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	3/20/2015	Conducted Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	3/20/2015	Emissions Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	3/20/2015	Emissions Mask	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
8	3/23/2015	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

EMISSIONS BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Spectrum Analyzer	Agilent	E4443A	AAS	3/27/2014	12
40 GHz DC Block	Fairview Microwave	SD3379	AMI	10/2/2014	12
MN08 Direct Connect Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	10/2/2014	12
Attenuator, 20db, 'SMA'	SM Electronics	SA26B-20	RFW	3/10/2015	12
Spectrum Analyzer	Agilent	E4440A	AAX	4/28/2014	12

TEST DESCRIPTION

Per 47 CFR 95.633(e)(3), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.

EMISSIONS BANDWIDTH

NORTHWEST								
	AC							
EN	/IL							
	XMit 2015.01.14							

EUT:	Jaguar, Model 6290				Work Order	BSTN0554	
Serial Number:	601				Date	: 03/20/15	
Customer:	Boston Scientific Corpor	ston Scientific Corporation			Temperature	: 22.8°C	
Attendees:	None				Humidity	: 23%	
Project:	None				Barometric Pres.	: 1017 mbar	
Tested by:	Jonathan Kiefer		Power:	110VAC/60Hz	Job Site	: MN08	
TEST SPECIFICATI	ONS			Test Method			
FCC 95I:2015				ANSI/TIA/EIA-603-C-2004			
COMMENTS							
US Power Setting =	= 51. Transmitting a modu	ılated carrier at 76.8 kbps.					
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	3	Signature Jro	wor	Buls			
					Value	Limit (≤)	Result
403.51 MHz					177.333 kHz	300 kHz	Pass

EMISSIONS BANDWIDTH

EMISSIONS MASK

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

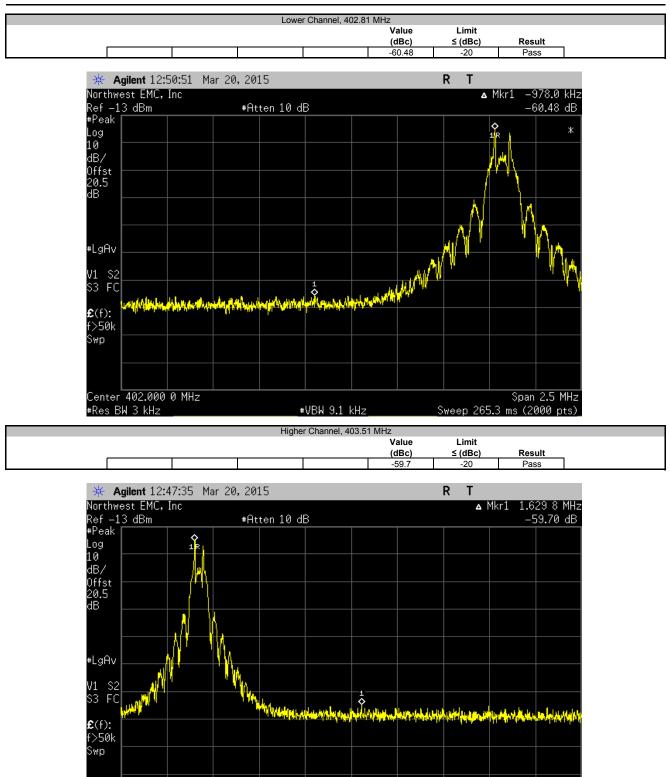
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Spectrum Analyzer	Agilent	E4443A	AAS	3/27/2014	12
40 GHz DC Block	Fairview Microwave	SD3379	AMI	10/2/2014	12
MN08 Direct Connect Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	10/2/2014	12
Attenuator, 20db, 'SMA'	SM Electronics	SA26B-20	RFW	3/10/2015	12
Spectrum Analyzer	Agilent	E4440A	AAX	4/28/2014	12

TEST DESCRIPTION

Per 47 CFR 95.635(d)(4) the emission mask was measured. Emissions more than 150 kHz away from the center frequency must be attenuated below the transmitter output power by at least 20 dB. This was evaluated by the Occupied Bandwidth measurement according to 47 CFR 95.633(e)(1). In addition, emissions 250 kHz or less above and below the MedRadio band (402-405 MHz) must be attenuated below the maximum permitted output power by at least 20 dB.

A spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.

EMISSIONS MASK



EUT:	Jaguar, Model 6290				Work Order:	BSTN0554	
Serial Number:	601				Date:	03/20/15	
Customer:	Boston Scientific Corpor	ation			Temperature:	22.8°C	
Attendees:	None				HuHigherity:	23%	
Project:	None				Barometric Pres.:	1017 mbar	
Tested by:	Jonathan Kiefer		Power:	110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATI	ONS			Test Method			
FCC 95I:2015				ANSI/TIA/EIA-603-C-2004			
COMMENTS				-			
US Power Setting =	51. Transmitting a modu	lated carrier at 76.8 kbps.					
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	3	Signature	revor	Buls			
					Value (dBc)	Limit ≤ (dBc)	Result
Lower Channel, 402.	.81 MHz				-60.48	-20	Pass
Higher Channel, 403	5.51 MHz				-59.7	-20	Pass

Report No. BSTN0554

EMISSIONS MASK

₩VBW 9.1 kHz

Center 405.000 0 MHz

#Res BW 3 kHz

Span 4.5 MHz

Sweep 477.5 ms (2000 pts)

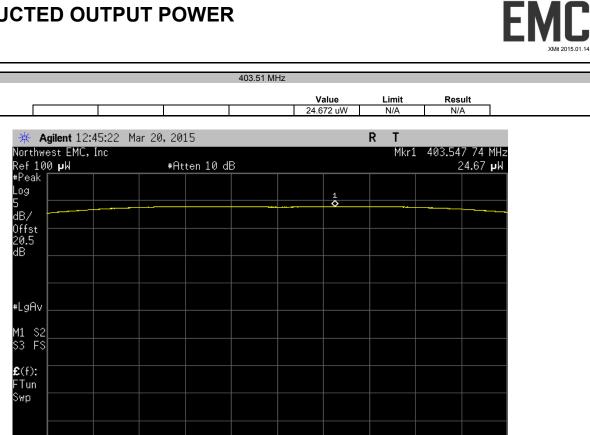
CONDUCTED OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Spectrum Analyzer	Agilent	E4443A	AAS	3/27/2014	12
40 GHz DC Block	Fairview Microwave	SD3379	AMI	10/2/2014	12
MN08 Direct Connect Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	10/2/2014	12
Attenuator, 20db, 'SMA'	SM Electronics	SA26B-20	RFW	3/10/2015	12
Spectrum Analyzer	Agilent	E4440A	AAX	4/28/2014	12

TEST DESCRIPTION


Per FCC Part 2.1046, RSS-GEN, the output power shall be measured at the RF terminal. The peak output power was measured with the EUT configured in the modes listed in the datasheet. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate. FCC Part 95 and RSS-243 have no conducted output power limit. It is a requirement to characterize this information and that data is contained within this datasheet.

CONDUCTED OUTPUT POWER

-									
EUT:	Jaguar, Model 6290					Nork Order:	BSTN0554		
Serial Number:	601					Date: 03/20/15			
Customer:	Boston Scientific Corpor	ston Scientific Corporation			T	emperature			
Attendees:	None					Humidity			
Project:	None				Baror		1017 mbar		
Tested by:	Jonathan Kiefer	athan Kiefer Power: 110VAC/60Hz				Job Site	MN08		
TEST SPECIFICATI	IONS								
FCC 95I:2015				ANSI/TIA/EIA-603-C-2004					
COMMENTS									
	-	lated carrier at 76.8 kbps.							
DEVIATIONS FROM	I TEST STANDARD								
None									
Configuration #	3	Signature Jre	vor l	3 uls					
						Value	Limit	Result	
403.51 MHz					24	.672 uW	N/A	N/A	

CONDUCTED OUTPUT POWER

Center 403.510 00 MHz #Res BW 300 kHz

#VBW 910 kHz_

NORTHWEST

Span 300 kHz

Sweep 1.066 ms (2000 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

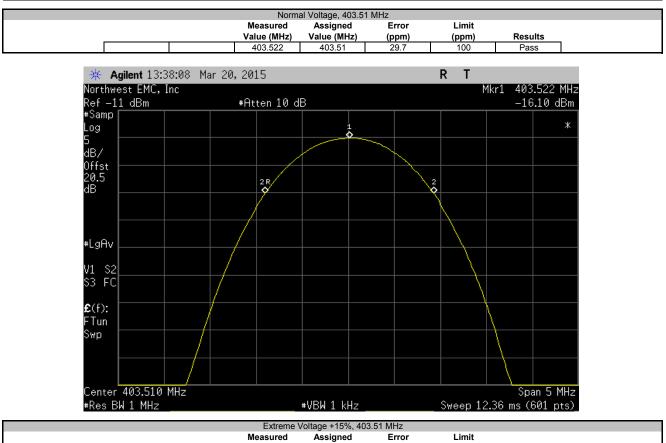
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
40 GHz DC Block	Fairview Microwave	SD3379	AMI	10/2/2014	12
MN08 Direct Connect Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	10/2/2014	12
Attenuator, 20db, 'SMA'	SM Electronics	SA26B-20	RFW	3/10/2015	12
Spectrum Analyzer	Agilent	E4440A	AAX	4/28/2014	12
Variable Transformer	Powerstat	246	XFR	NCR	0
Multimeter	Fluke	117	MLS	1/20/2014	36
Thermometer	Omega Engineering, Inc.	HH311	DUB	11/3/2014	36
Humidity Temperature Chamber	Cincinnati Sub Zero (CSZ)	ZPH-32-3.5-SCT/AC	TBF	NCR	0

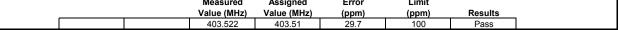
TEST DESCRIPTION

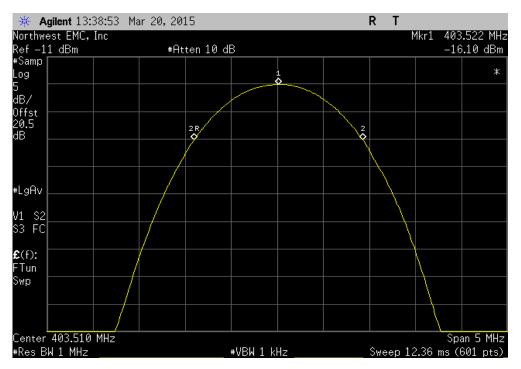
Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of the nominal voltage. A DC lab supply was used to vary the supply voltage.

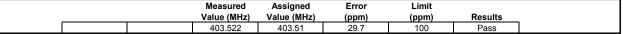
Variation of Ambient Temperature

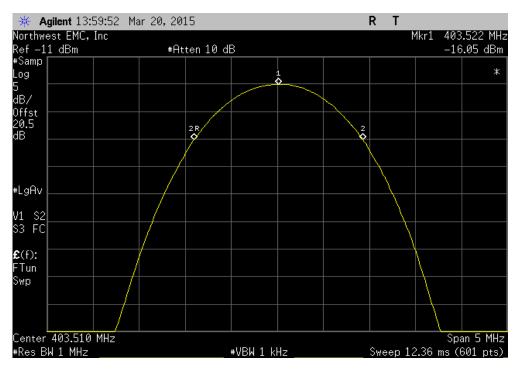

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (+25°, 37°C and +45° C).

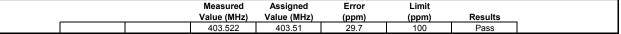

The Frequency Stability was measured using a near-field probe and a spectrum analyzer. The spectrum analyzer is configured with a precision frequency reference that exceeds the stability requirement of the transmitter. The EUT was placed inside a temperature / humidity chamber. The near-field probe was placed near the transmitter. A low-loss coaxial cable connected the near-field probe to the spectrum analyzer outside of the chamber.

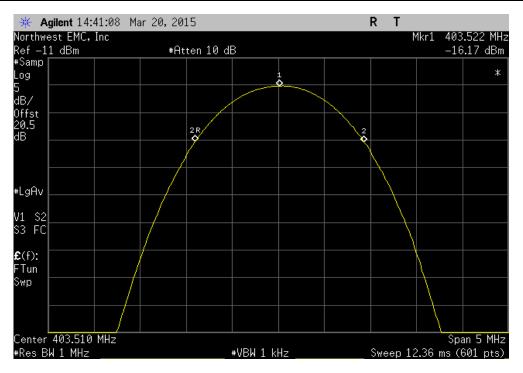

NOR	THW	/EST
		Г
		L
	XMit	2015.01.14

EUT: Jaguar, Model 6290			Work Order:	BSTN0554	
Serial Number: 601				03/23/15	
Customer: Boston Scientific Corporation			Temperature:	22.6°C	
Attendees: None			Humidity:	19%	
Project: None		E	Barometric Pres.:		
	wer: 110VAC/60Hz		Job Site:	MN05	
ST SPECIFICATIONS	Test Method				
C 951:2015	ANSI/TIA/EIA-603-C-2004				
DMMENTS					
S Power Setting = 51. Transmitting a modulated carrier at 76.8 kbps.					
EVIATIONS FROM TEST STANDARD					
one					
	-1-				
onfiguration # 3					
Signature	M	Analassad	F	1 1 14	
	Measured Value (MHz)	Assigned Value (MHz)	Error (ppm)	Limit (ppm)	Results
ormal Voltage	Value (III12)	value (williz)	(ppiii)	(ppiii)	Results
403.51 MHz	403.522	403.51	29.7	100	Pass
treme Voltage +15%					
403.51 MHz	403.522	403.51	29.7	100	Pass
treme Voltage -15%					
403.51 MHz	403.522	403.51	29.7	100	Pass
treme Temperature +55°C					
403.51 MHz	403.522	403.51	29.7	100	Pass
treme Temperature +50°C					
403.51 MHz	403.526	403.51	39.7	100	Pass
treme Temperature +40°C					-
403.51 MHz	403.522	403.51	29.7	100	Pass
treme Temperature +30°C	400 500	400.54	00.7	400	Dees
403.51 MHz	403.526	403.51	39.7	100	Pass
treme Temperature +20°C 403.51 MHz	403.522	403.51	29.7	100	Pass
treme Temperature +10°C	403.522	403.01	23.1	100	r a55
		403.51	29.7	100	Pass
403 51 MHz					
403.51 MHz treme Temperature 0°C	403.522	403.31	20.1		

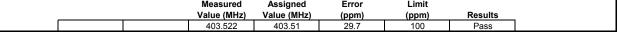


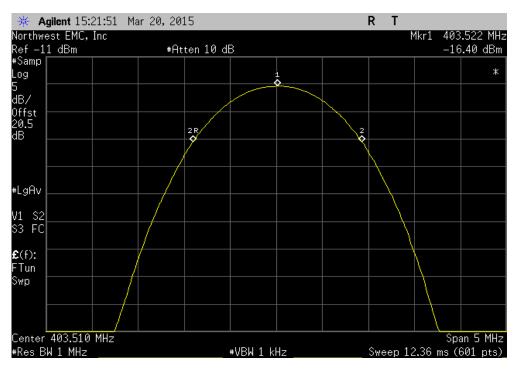


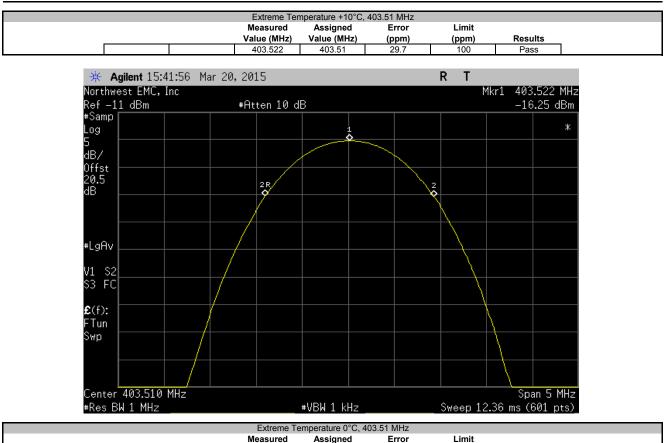


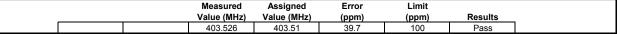


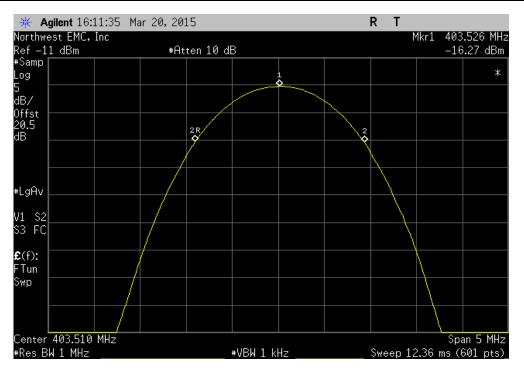












SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 403.51 MHz, 76.8 kbps (high baud rate)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

BSTN0554 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 5 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	3/2/2015	12 mo
MN05 Cables	ESM Cable Corp.	uble Ridge Guide Horn Cab	MNI	3/2/2015	12 mo
Antenna, Horn	ETS	3115	AJA	6/3/2014	24 mo
Pre-Amplifier	Miteq	AM-1616-1000	PAD	3/2/2015	12 mo
Antenna, Biconilog	Teseq	CBL 6141B	AYD	12/17/2013	24 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/2/2015	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured in the modes listed in the datasheet. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp was used for this test in order to provide sufficient measurement sensitivity.

NORTHWEST

SPURIOUS RADIATED EMISSIONS

		, HAMMI										
Wo	rk Order:	BSTI	N0554		Date:	03/2		/	-	0	0	
	Project:		one	Те	mperature:		5 °C	-	and and	r B	IND	2
	Job Site:	IM	N05		Humidity:	21.89	% RH	25	terro	FC V	mas	
	Number:		01	Barom	etric Pres.:		mbar			Jonathan k		
	EUT:	Jaguar, M	odel 6290			-						
Confi	guration:											
C	ustomer:	Boston Sc	ientific Corp	oration								
	ttendees:			oration								
		110VAC/6										
	ng Mode:			I MHz, 76.	8 kbps (high	baud rate)						
	eviations:	None										
Co	omments:				s tested in H nitting a mod				cturer beca	use the dev	ice will alw	ays be
est Speci	fications						Test Meth	od				
C 951:20	15							EIA-603-C:	2004			
D #		T 4 D		0	A			4 += 4/+=>		Desults		
Run #	4	l est Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass
80 —												
70 +												
60 +												
								│ │ │ ┏╉━━━━				
50 +												
₩/Angp												
ז 40 ∔												
ສ ~												
0												
30 -												
30												
								👗 🔺	.			
20 -									•			
20												
10 +												
10												
0 +				100	<u> </u>			1000	1			10000
10				100	1			1000				10000
						MHz						
			Antenna			External	Polarity/ Transducer		Distance			Compare
Freq	Amplitude	Factor	Height	Azimuth	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec
MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)
07.113	18.9	8.7	1.0	337.0	3.0	0.0	Horz	QP	0.0	27.6	46.0	-18.4
07.128	15.1	8.7	1.0	133.0	3.0	0.0	Vert	QP	0.0	23.8	46.0	-22.2
08.117	31.5 28.1	-7.0 -5.9	1.0	196.1	3.0	0.0 0.0	Horz	AV	0.0	24.5 22.2	54.0	-29.
16.167 14.250	28.1	-5.9 -5.9	1.0 3.3	257.0 231.0	3.0 3.0	0.0	Vert Horz	AV AV	0.0 0.0	22.2	54.0 54.0	-31.8 -31.8
208 067	28.1	-5.9	3.3 1 0	231.0	3.0	0.0	Vert	AV	0.0	22.2	54.0 54.0	-31.0

AV PK

ΡK

PK PK 0.0

0.0

0.0

0.0

0.0

21.6

36.9

33.0

32.6

32.5

28.6

43.9

38.9

38.5

39.4

-7.0

-7.0

-5.9

-5.9

-6.9

1.0

1.0

3.3

1.0

1.0

235.0

196.1

231.0

257.0 235.0 3.0

3.0

3.0

3.0

3.0

0.0

0.0

0.0

0.0

0.0

Vert

Horz

Horz

Vert

Vert

1208.067

1208.133

1612.358

1612.108

1213.000

-32.4

-37.1

-41.0

-41.4 -41.5

54.0

74.0

74.0

74.0

74.0

SPURIOUS CONDUCTED EMISSIONS

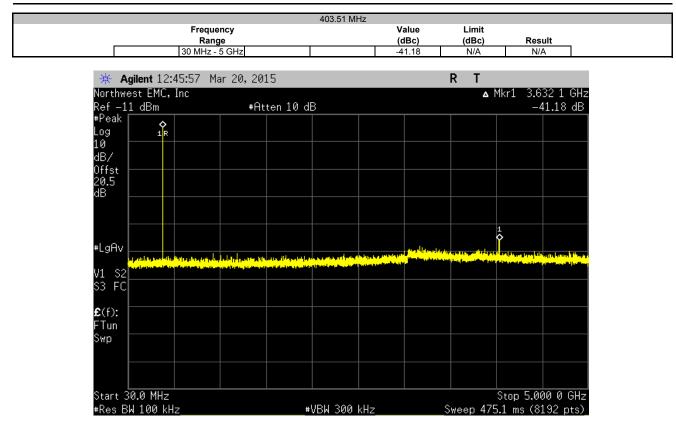
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Spectrum Analyzer	Agilent	E4443A	AAS	3/27/2014	12
40 GHz DC Block	Fairview Microwave	SD3379	AMI	10/2/2014	12
MN08 Direct Connect Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	10/2/2014	12
Attenuator, 20db, 'SMA'	SM Electronics	SA26B-20	RFW	3/10/2015	12
Spectrum Analyzer	Agilent	E4440A	AAX	4/28/2014	12

TEST DESCRIPTION

Per FCC Part 2.1052, RSS-GEN, the output power shall be measured at the RF terminal. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate. FCC Part 95 and RSS-243 have no conducted spurious limit. It is a requirement to characterize this information and that data is contained within this datasheet.


SPURIOUS CONDUCTED EMISSIONS

EUT:	Jaguar, Model 6290			Work Order:	BSTN0554	
Serial Number:	601			Date:	03/20/15	
Customer:	Boston Scientific Corpor	ation		Temperature:	22.8°C	
Attendees:	None			Humidity:		
Project:	None			Barometric Pres.:	1017 mbar	
Tested by:	Jonathan Kiefer		Power: 110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATI	IONS		Test Method			
FCC 95I:2015			ANSI/TIA/EIA-603-C-2004			
COMMENTS						
	-	lated carrier at 76.8 kbps.				
DEVIATIONS FROM	I TEST STANDARD					
None						
Configuration #	3	Signature Jree	vor Buls			
			Frequency	Value	Limit	
			Range	(dBc)	(dBc)	Result
403.51 MHz			30 MHz - 5 GHz	-41.18	N/A	N/A

SPURIOUS CONDUCTED EMISSIONS

EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting Low, High channels: 402.8183, 403.5108 MHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

BSTN0554 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Signal Generator MXG	Agilent	N5183A	TIK	10/17/2014	36 mo
Power Sensor	Agilent	N8481A	SQN	8/22/2014	12 mo
Power Meter	Agilent	N1913A	SQL	8/22/2014	12 mo
Antenna, Dipole	EMCO	3121C-DB4	ADI	12/21/2012	36 mo
Low Pass Filter, 0 - 1000 MHz	Micro-Tronics	LPM50004	HGK	3/2/2015	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	PAD	3/2/2015	12 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/2/2015	12 mo
Antenna, Biconilog	Teseq	CBL 6141B	AYD	12/17/2013	24 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12 mo

TEST DESCRIPTION

Per 95.627(g)(3), the maximum radiated field strength for a MICS transmitter is 25uW EIRP. The Field Strength of the Fundamental data was converted to EIRP with the formula based upon the Friis transmission equation with 6 dB removed due to reflections from the ground plane: EIRP = $((E/2)^*d)^2/30$ where E is V/m and d = distance = 3m, and EIRP = W.

The Field Strength of the Fundamental was measured in the far-field at an FCC Listed Semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the radiated field strength of the fundamental.

The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

EMC

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

			-				2121											•		'									
Wo	ork O			STN							ate:		0)3/17	7/15		_				-		-	2	-	1	-		
		ject:		Nor				Te		perat				22.2			4	<	_				-		1.0444	-			-
		Site:		MN						umic				4.2%						iele		-	-	-					
Seria				0006						ic Pr	es.:		10)32	mba	r				Test	ed by	': Jo	hna	atha	In L	.ee			
			Model	6290	Jagu	ar Co	omm	unic	ator																				
Conf	igura	tion:	1																										
			Bostor		entific	Corp	orati	ion																					
			Pete N																										
EL	JT Po	wer:	110VA																										
Operati	ing M	lode:		nitting	g Cha	nnel	10 =	403	.510)8 Mł	Hz a	nd C	Chan	nnel	11 =	= 402.	.818	3 M	Hz.										
D	eviati	ions:																											
Co	ommo	ents:	US Po operat	wer S ed in	Setting this p	g = 5 [·] ositic	1. EU on. T	JT w rans	as té mitt	ested ing a	l in F n un	Horiz moc	zonta dulat	al po ed c	arrie	on pei er.	r the	ma	nufa	ctur	er bec	ause	e th	e de	evic	e w	'ill al'	ways	be
ot Canadi	£														Taa	4 N/ ~ 4	h a d			1									
st Speci CC 951:20		ions												_		t Met SI/TIA													
Run #	8	3	Tes	t Dist	tance	(m)		3		Ante	enna	a He	ight	t(s)			1	to 4	(m)			F	Res	sult	S		Eva	luatio	on
0 Τ	1							<u> </u>																					٦
-10 -			_																				-		-	+		_	-
ł																										+	+		1
-20 -							_																			+		_	-
														-															
-30 -																							-		-				-
Ε																													
ug -40																										-			-
•																													
-50 -																													
-50																													
-60 -																												_	_
-70 -																							_		-	+	_	_	_
-80 🕹																									L				
402	2.0			402.5	5			403	3.0				403	3.5				404	4.0			4	404	1.5				40	05.0
													MI	Hz									_	D 12	,		^ \/	-	0
																								PK	•	• /	AV	-	QF
								larity/												6									
	Fr	ea	Antenna I	Height	Azim	uth		sducei ype		Detec	tor		EIRP		F	IRP	S	pec. L	.imit		npared to Spec.				(Com	ments	5	
		eq Hz)	(mete	-	(degre			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Delet			Watts)		dBm)		(dBn			(dB)								
	403.		1.0		354			lorz		PK			93E-0			17.1		-16.			-1.1							Pwr 51	
	402.		1.0		353			lorz /ort		PK			72E-(17.7 21 9		-16.			-1.7							Wr 51	

403.546

402.856

184.1

184.1

1.0

1.0

ΡK

ΡK

Vert

Vert

6.55E-06

5.55E-06

-16.0

-16.0

-5.8

-6.6

-21.8

-22.6

EUT Horizontal, Ch 10, Pwr 51

EUT Horizontal, Ch 11, Pwr 51

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

TEST EQUIPMENT

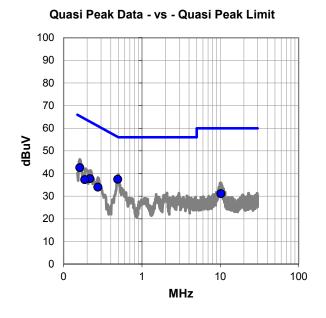
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESR7	ARI	05/06/2014	12 mo
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	05/15/2014	12 mo
MN03 Cables	ESM Cable Corp.	Conducted Cables	MNC	11/20/2014	12 mo
Attenuator 20dB, BNC	Fairview Microwave	SA01B-20	AQP	07/22/2014	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HGN	05/23/2014	12 mo

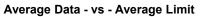
MEASUREMENT UNCERTAINTY

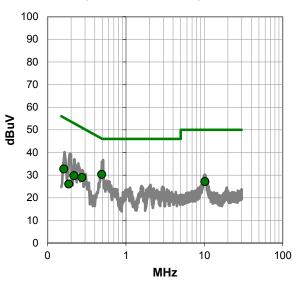
Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

BSTN0554-2


MODES INVESTIGATED


Transmitting at 403.51 MHz, 76.8 kbps (high baud rate)



EUT:	Jaguar, Mod	el 6290			Work Order:	BSTN0554				
Serial Number:	601				Date:	03/20/2015				
Customer:	Boston Scier	ntific Corpo	ration		Temperature:	22.2°C				
Attendees:	None				Relative Humidity:	22.6%				
Customer Project:	None				Bar. Pressure:	1017 mb				
Tested By:	Jonathan Kie	efer			Job Site:	MN03				
Power:	110VAC/60H	Ιz			Configuration:	BSTN0554-2				
TEST SPECIFIC	CATIONS									
Specification:				Method:						
FCC 15.207:2015				ANSI C63	.10:2009					
TEST PARAME	TERS									
Run #: 3		Line:	High Line		Ext. Attenuation (dB):	20				
COMMENTS	51. Transmitt	ing a modu	lated carrier at 76.8 k	ODS.						
EUT OPERATING MODES Transmitting at 403.51 MHz, 76.8 kbps (high baud rate).										
DEVIATIONS FROM TEST STANDARD										

None

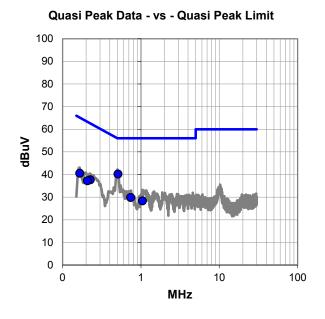
RESULTS - Run #3

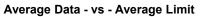
Quasi Peak Data - vs - Quasi Peak Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.491	17.2	20.2	37.4	56.1	-18.7
0.161	22.4	20.2	42.6	65.4	-22.8
0.217	17.6	20.1	37.7	62.9	-25.2
0.186	17.1	20.2	37.3	64.2	-26.9
0.275	13.8	20.1	33.9	61.0	-27.0
10.219	10.3	20.8	31.1	60.0	-28.9

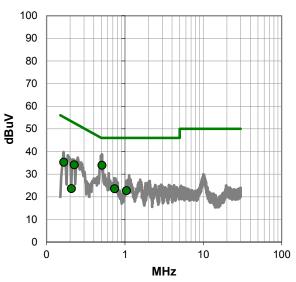
Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.491	10.1	20.2	30.3	46.1	-15.8
0.275	8.8	20.1	28.9	51.0	-22.0
0.161	12.5	20.2	32.7	55.4	-22.7
10.219	6.4	20.8	27.2	50.0	-22.8
0.217	9.6	20.1	29.7	52.9	-23.2
0.186	5.9	20.2	26.1	54.2	-28.1

CONCLUSION


Pass


Trevor Buls Tested By



EUT:	Jaguar, Model 6290	Work	Order:	BSTN0554		
Serial Number:	601	Date:		03/20/2015		
Customer:	Boston Scientific Corporation	Temp	erature:	22.2°C		
Attendees:	None	Relat	ive Humidity:	22.6%		
Customer Project:	None	Bar. I	Pressure:	1017 mb		
Tested By:	Jonathan Kiefer	Job S	Site:	MN03		
Power:	110VAC/60Hz	Confi	guration:	BSTN0554-2		
TEST SPECIFICATIONS						
Specification:		Method:				
FCC 15.207:2015		ANSI C63.10:2009				
TEST PARAMETERS						
Run #: 4	Line: Neutral	Ext. Atten	uation (dB):	20		
COMMENTS						
US Power Setting = 51. Transmitting a modulated carrier at 76.8 kbps.						
EUT OPERATING MODES						
Transmitting at 403.51 MHz, 76.8 kbps (high baud rate)						
DEVIATIONS FROM TEST STANDARD						

None

RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.510	20.0	20.2	40.2	56.0	-15.8
0.166	20.3	20.2	40.5	65.2	-24.7
0.226	17.5	20.1	37.6	62.6	-25.0
0.208	17.1	20.1	37.2	63.3	-26.1
0.738	9.6	20.2	29.8	56.0	-26.2
1.049	8.1	20.2	28.3	56.0	-27.7

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.510	13.7	20.2	33.9	46.0	-12.1
0.226	14.0	20.1	34.1	52.6	-18.5
0.166	15.0	20.2	35.2	55.2	-20.0
0.738	3.3	20.2	23.5	46.0	-22.5
1.049	2.5	20.2	22.7	46.0	-23.3
0.208	3.5	20.1	23.6	53.3	-29.7

CONCLUSION

Pass

Trevor Buls Tested By