Boston Scientific Corporation

Programmer 3120

Report No. BSTN0245

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009Northwest EMC, Inc

Certificate of Test Last Date of Test: April 22, 2009

Boston Scientific Corporation

Model: Programmer 3120

Emissions						
Test Description	Specification	Test Method	Pass/Fail			
Field Strength of Fundamental	FCC 15.249:2009	ANSI C63.4:2003	Pass			
Field Strength of Harmonics	FCC 15.249:2009	ANSI C63.4:2003	Pass			

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-1).

Approved By:
Donald Manchant
2 mile marcan
Don Facteau, IS Manager

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2*)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

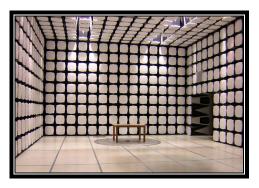
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157*)

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u>



Revision 03/18/05

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name: Boston Scientific Corporation			
Address:	4100 Hamline Avenue North		
City, State, Zip:	St. Paul, MN 55112-5798		
Test Requested By:	Pete Musto		
Model:	Programmer 3120		
First Date of Test:	April 22, 2009		
Last Date of Test:	April 22, 2009		
Receipt Date of Samples:	April 22, 2009		
Equipment Design Stage:	Production		
Equipment Condition:	No Damage		

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test): Programmer

Testing Objective:

These tests were selected to satisfy the EMC requirements requested by the client.

EUT Photo

CONFIGURATION 1 BSTN0245

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Programmer	Boston Scientific	3120	062654			
Antenna	Boston Scientific	357035-300	None			

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
USB Keyboard	Dell Corp.	SK-8125	None			

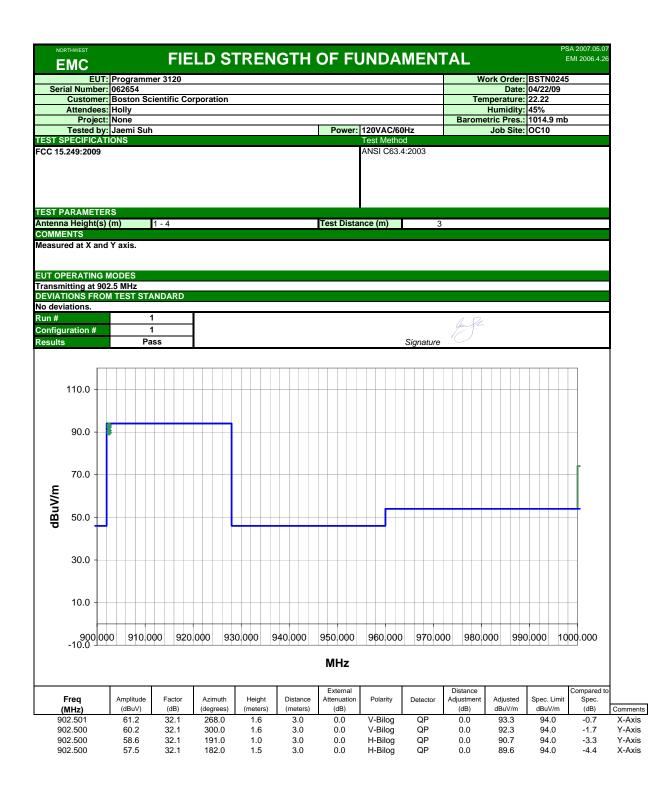
Cables									
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2				
AC Power	Yes	2.4m	No	Programmer	AC Mains				
USB	No	1.8m	No	USB Keyboard	Programmer				
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.									

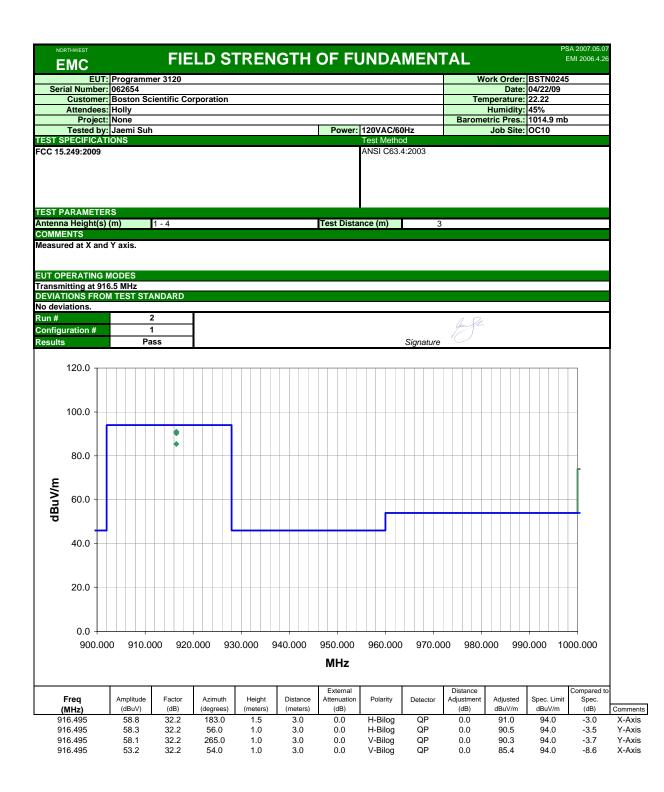
	Equipment modifications								
Item	Date	Test	Modification	Note	Disposition of EUT				
1	4/22/2009	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.				
2	4/22/2009	Field Strength of Harmonics	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was complete.				

FIELD STRENGTH OF FUNDAMENTAL EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPE Transmitting at 9	27.5 MHz							
Transmitting at 9 Transmitting at 9								
MODE USED FC	OR FINAL DATA							
Transmitting at 9	02.5 MHz							
Transmitting at 9								
Transmitting at 9	27.5 MHz							
	IGS INVESTIGATE	D						
120VAC/60Hz								
	IGS USED FOR FI	NAL DAT	A					
120VAC/60Hz								
FREQUENCY R	ANGE INVESTIGA	TED						
Start Frequency		902.5	5 MHz	Stop Fre	quency		927.5 MHz	
CLOCKS AND C								
	5 MHz, 927.5 MHz							
SAMPLE CALCU								
Radiated Emissions:	Field Strength = Measured L	evel + Antenr	a Factor + Cable Factor - Ar	nplifier Gain +	Distance Adjustment Factor	+ External Atte	enuation	
TEST EQUIPME	NT							
Desc	cription	Μ	anufacturer	Model		ID	Last Cal.	Interval
Antenna	, Biconilog		EMCO	3142		AXJ	2/25/2008	24
OC10	Cables		None	10kHz-	1GHz RE Cables	OCH	3/2/2009	13
Spectrun	n Analyzer		Agilent		E4446A	AAQ	12/20/2008	24
MEASUREMENT	FBANDWIDTHS							
	Frequency Ra	ange	Peak Data	a Quasi-Peak Data		Data	Average D	ata
	(MHz)		(kHz)		(kHz)		(kHz)	
	0.01 - 0.15		1.0		0.2		0.2	
	0.15 - 30.0		10.0		9.0		9.0	
	30.0 - 100		100.0		120.0		120.0	
1		Above 1000 1000.0			N/A	1000.0		

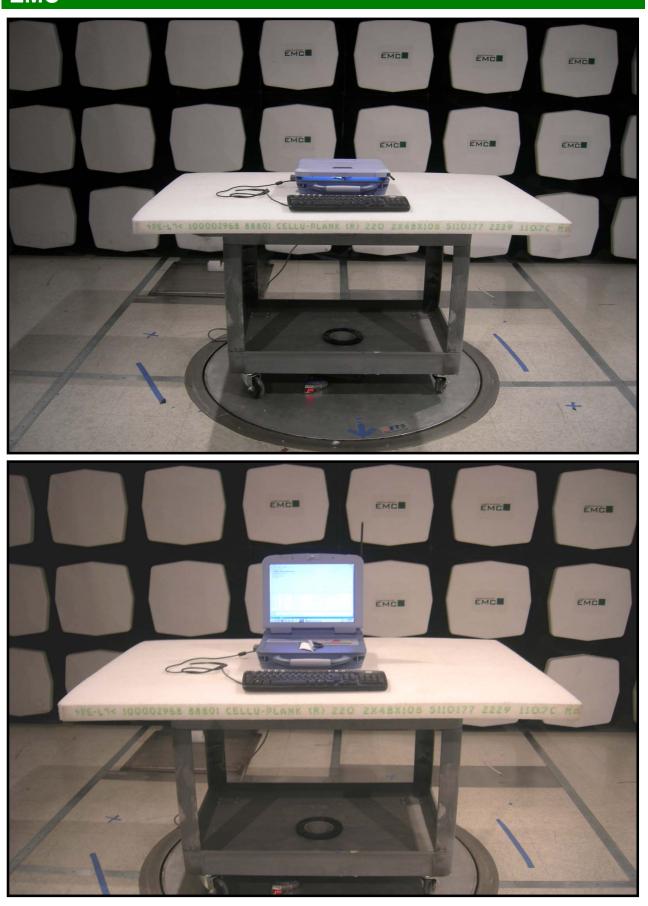

Measurements were made using the bandwidths and detectors specified. No video filter was used.

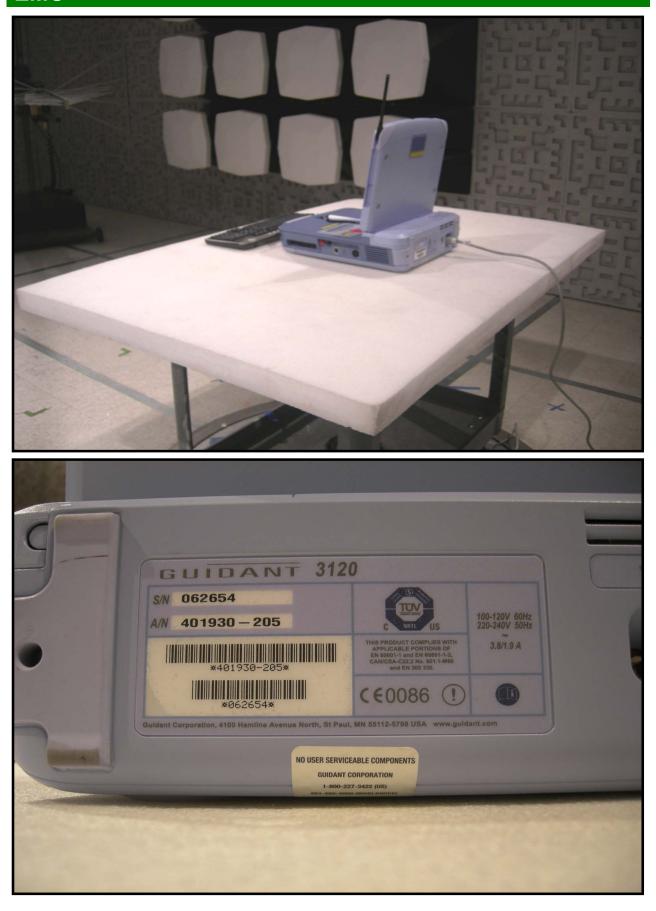

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).




EUC Work Order: BSTN0245 Berial Number: 02284 Description: Descriptin: Description: Description: Descriptin: Description: De	NORTHWEST		EIE	ם ה	TDEN	СТЦ							A 2007.05.07 EMI 2006.4.26	
Serial Number: Deck Deck <thdeck< th=""> Deck Deck</thdeck<>	EMC				IKEN	ЮТН		INDA						
Custome: Temperature: 22.22 Project: None Barometric Press: 1014.5% Project: None Barometric Press: 1014.5% TEST PARAMETERS Antendes: None Job Site: OC10			ner 3120							W				
Attendese: Holy Humidity: Holy: Humidity: Holy:										-				
Project: None Barometric Pres: 1014.3 mb Test ByZoHCATIONS Market Method Barometric Pres: 1014.3 mb Test SPZOHCATIONS Test Method Job Site: OC10 ANSI C63.4.2003 ANSI C63.4.2003 Test PARAMETERS Ansisten Height(0) (m) 1 - 4 Test Distance (m) 3 Commetry Ison Barometric Pres: 1004.3 mb Signature Barometric Pres: 1014.3 mb Test PARAMETERS Ansisten Height(0) (m) 1 - 4 Test Distance (m) 3 Contents Ison Barometric Pres: 1004.3 mb Barometric Pres: 1004.3 mb Barometric Pres: 1004.3 mb Results Test Distance (m) 3 Contents Barometric Pres: 1004.3 mb Operations Test Distance (m) 3 Contents Barometric Pres: 1004.3 mb Operations Test Distance (m) 3 Signature Barometric Pres: 1004.3 mb Operations Test Distance (m) 3 Signature Barometric Pres: 1004.3 mb Operations Signature Barometric Pres: 1004.3 mb Signature Barometric Pres: 1004.3 mb Operations Signature			ientific Co	rporation						Ter				
Tested by: Jaeni Suh Power 120/A060Hz Job Site: OC10 FEGT 15249-2009 ANSI C63.4:2003 ANSI C63.4:2003 TEST PARAMETERS Antenna Heipht(p) (m) 1.4 Test Distance (m) 3 COMMENTS Basured at X and Y axis. Signature Weither State										Denem				
TEST SPECIFICATIONS Test Method FCC 15.249:2009 ANSI C63.4:2003 TEST PARAMETERS Antenna Height(2) (m) 1 - 4 Test PARAMETERS Test Distance (m) 3 COMMENTS Transmitting at 327.5 MHz Test Distance (m) 3 OP OPERATING MODES Transmitting at 327.5 MHz Test Distance (m) 3 Optigration # 1 Test Distance (m) 3 Optigration # Pass Signature W 100.00 90.000							Devee	4001/40/00		Barome				
FCC 15.249:2009 ANSI C63.4:2003 TEST PARAMETERS Antenna Height(p)(m) 11-4 Test Distance (m) 3 COMMENTS Messured at X and Y axis. EUT OPERATING MODES Transmitting at 927,5 MHz Deviations From Test StatubaRob No deviations. Results Pases Signature Junct Statubard Musical Statubard Musical Statubard Optimizer Statubard <td colspa<="" td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td>Power:</td><td></td><td></td><td></td><td>Job Site:</td><td>0010</td><td></td></td>	<td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>Power:</td> <td></td> <td></td> <td></td> <td>Job Site:</td> <td>0010</td> <td></td>			1				Power:				Job Site:	0010	
		IONS												
Anstenna Height(s)(m) 1 - 4 Test Distance (m) 3 Measured at X and Y axis. EUT OPERATING MODES Transmitting at 327.5 MHz Signature Signature EUT OPERATING MODES Transmitting at 327.5 MHz Signature Signature Signature No deviations. Pass Signature Signature Signature Signature 120.0 0 0 0 0 90.000 900.000<		RS						ANOI 003.4	¥.2003					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1 - 4				Test Distar	nce (m)	3					
Measured at X and Y axis. EUT OPERATING MODES Transmitting at 227.5 MHz Bod eviations. No deviations. Configuration # 1 Configuration # 1 Signature Juit 100.0 100.0 0		(,						,						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EUT OPERATING Transmitting at 92 DEVIATIONS FROI No deviations.	MODES 7.5 MHz M TEST STA												
Results Pass Signature 120.0 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>An St</td><td><u> </u></td><td></td><td></td></t<>				_						An St	<u> </u>			
$\frac{1}{927.510} + \frac{1}{932} + $	Configuration #									171				
$\frac{100.0}{90.00} + \frac{100.0}{90.00} + \frac{100.0}{9$	Results	Pa	ISS						Signature					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
40.0 40.0													_	
20.0 20.00 20.00														
Freq Amplitude Factor Azimuth Height Distance External Polarity Detector Adjusted Spec. Limit Compared to 927.510 60.3 32.2 252.0 1.5 3.0 0.0 V-Bilog QP 0.0 91.0 91.0 11.5 94.0 -1.5 927.510 58.0 92.2 1.5 3.0 0.0 V-Bilog QP 0.0 92.5 94.0 -1.5 927.510 58.0 32.2 15.0 3.0 0.0 V-Bilog QP 0.0 91.5 94.0 -2.5 927.510 58.0 32.2 15.0 3.0 0.0 V-Bilog QP 0.0 91.5 94.0 -1.5 927.510 58.0 32.2 18.0 1.5 3.0 0.0 V-Bilog QP 0.0 91.5 94.0 -3.8	40.0													
900.000 910.000 920.000 930.000 940.000 950.000 960.000 970.000 980.000 990.000 1000.000 MHz MHz Freq (MHz) Amplitude (dBW) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Polarity (dB) Polarity (dB) Detector (dB) Distance (dB) Adjusted dBuV/m Spec. Limit dBuV/m Compared to Spec. (dB) 927.510 60.3 32.2 252.0 1.5 3.0 0.0 V-Bilog QP 0.0 92.5 94.0 -1.5 927.510 58.0 32.2 187.0 1.5 3.0 0.0 V-Bilog QP 0.0 91.5 94.0 -2.5 927.510 58.0 32.2 187.0 1.5 3.0 0.0 Heiling QP 0.0 91.2 94.0 -3.8	20.0													
Freq (MHz)Amplitude (dBuV)Factor (dB)Azimuth (degrees)Height (meters)Distance (dBuV)Folarity (dB)Polarity (dB)Distance (dB)Distance (dB)Adjusted (dB)Spec. Limit (dB)Compared to Spec.927.51060.332.2252.01.53.00.0V-Bilog 0.0QP0.092.594.0-1.5927.51059.332.2229.01.03.00.0V-Bilog 0.0QP0.091.594.0-2.5927.51058.032.2187.01.53.00.0H-Bilog 0.0QP0.090.294.0-3.8	0.0 -													
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjusted (dB) Adjusted (dB) Spec. Limit (dB) Spec. (dB) 927.510 60.3 32.2 229.0 1.5 3.0 0.0 V-Bilog QP 0.0 92.5 94.0 -1.5 927.510 58.0 32.2 187.0 1.5 3.0 0.0 V-Bilog QP 0.0 91.5 94.0 -2.5	900.00	00 910.0	00 920	0.000 93	30.000	940.000		960.000	970.00	00 980.0	000 990	0.000 10	00.000	
927.510 59.3 32.2 229.0 1.0 3.0 0.0 V-Bilog QP 0.0 91.5 94.0 -2.5 927.510 58.0 32.2 187.0 1.5 3.0 0.0 H-Bilog QP 0.0 90.2 94.0 -3.8	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	Attenuation (dB)			Adjustment (dB)	dBuV/m	dBuV/m	(dB)	
927.510 58.0 32.2 187.0 1.5 3.0 0.0 H-Bilog QP 0.0 90.2 94.0 -3.8														
	927.510 927.510	58.0 56.7	32.2 32.2	187.0 45.0	1.5 1.0	3.0 3.0	0.0 0.0	H-Bilog H-Bilog	QP QP	0.0 0.0	90.2 88.9	94.0 94.0	-3.8 -5.1	

EMC

FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION			
Transmitting at 902.5 MHz			
Transmitting at 916.5 MHz			
Transmitting at 927.5 MHz			
MODE USED FOR FINAL DA	ТА		
Transmitting at 902.5 MHz			
Transmitting at 916.5 MHz			
Transmitting at 927.5 MHz			
POWER SETTINGS INVESTI	GATED		
120VAC/60Hz			
POWER SETTINGS USED FO	OR FINAL DATA		
120VAC/60Hz			
FREQUENCY RANGE INVES	TIGATED		
Start Frequency	1 GHz	Stop Frequency	8 GHz
CLOCKS AND OSCILLATOR			
902.5 Mhz, 916.5 MHz, 927.5	MHz		
SAMPLE CALCULATIONS			
Radiated Emissions: Field Strength = Me	easured Level + Antenna Factor + Cable	Factor - Amplifier Gain + Distance Adjustment Fact	or + External Attenuation
TEOT FOUIDMENT			

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	2/27/2009	13
Antenna, Horn	ETS	3117	AHQ	7/18/2008	24
OC10 Cables	None	1-8GHz RE Cables	OCJ	2/27/2009	13
Spectrum Analyzer	Agilent	E4446A	AAQ	12/20/2008	24

Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
(MHz)	(kHz)	(kHz)	(kHz)				
0.01 - 0.15	1.0	0.2	0.2				
0.15 - 30.0	10.0	9.0	9.0				
30.0 - 1000	100.0	120.0	120.0				
Above 1000	1000.0	N/A	1000.0				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

EMC FIELD								REI	NGT	Ή	0	FH	IA	RI	MC	N	IC	S I	DA	ΓА	SI	IEE	T			F		2007.05.07 2006.4.26
		JT:	Prog	ramm	ner 3'	120																V	Vork	Order:	BST	N024	5	
Sei	rial Numb																							Date:	04/2	2/09		
	Custom	er:	Bost	on So	cienti	fic Co	rporat	ion														Te	empei	rature	22.2	22		
	Attende																						Hur	nidity:	45%	b		
	Proje																					Barom		Pres.:			b	
	Tested			ni Suł	۱									Pe	ower	: 12	20V	AC/6	0Hz				Jo	b Site:	001	10		
TEST S	SPECIFIC.	ATIC	DNS													Te	est I	Metho	bd									
FCC 15	5.249:200)														A	١SI	C63.	4:200	3								
TEST F	PARAMET	ERS	3																									
	na Height				1 - 4								Т	est	Dist	anc	e (r	m)	r	3								
COMM	ENTS																											
Y-Axis																												
Transn	PERATIN nitting at	927.	5 MH	lz																								
	TIONS FR /iations.	ОМ	TES	T ST/	AND/	ARD																						
Run #					4		I															10						
	uration #				1																	haift	-					
Result					iss														Sign	oturo	- 10	\mathcal{I}						
Result	5			1 6	133														Sign	ature	-							
	100.0																											
	ך 120.0																											
	100.0 -																-											
	80.0 -	_															_											
	_																											
_																												
<u>ج</u>																												
2	60.0 -											_																
dBuV/m														۲														
σ																												
														۲														
	40.0 -											_		-			_									-		
		•																										
	20.0 -	_										_	_				_											
	0.0 -																											
	1800	.000) 2	000.0	000	2200	0.000	240	00.000	2	600.	000	28	300	.000) 3	300	0.00	0 32	0.00	00	3400	0.000	360	0.00	0 3	800	.000
			_																									
														Mł	Ηz													
		Т			1				[1		Т	Ext	ernal	Т					D	istance	1				Co	mpared to
	Freq		Amp	litude	Fa	actor	Azim	nuth	Heig	ht	Dis	stance	. 4		uatior		Pola	arity	Dete	ector		ustment	Ad	justed	Spe	c. Limi		Spec.
	(MHz)			uV)		dB)	(degr		(mete			neters)			dΒ)							(dB)		BuV/m		8uV/m		(dB)
	782.907			9.7		5.8	61		1.2			3.0			0.0			lorn		V		0.0		15.5		54.0		-8.5
	782.901			8.8		5.8	359		1.2			3.0			0.0			lorn		V		0.0		14.6		54.0		-9.4
	710.453			3.3		9.2	1.		1.2			3.0			0.0			lorn		V		0.0		37.5		54.0		-16.5
	782.911			9.8		5.8	61		1.2			3.0			0.0			lorn		K		0.0		55.6		4.0		-18.4
	710.498			5.0		9.2	184		1.8			3.0			0.0			lorn		V		0.0		35.2		54.0		-18.8
	782.847).1 \.2		5.8	359		1.2			3.0			0.0			lorn		K		0.0		54.9		74.0		-19.1
	855.248 855.214			9.3 3.6		3.3 3.3	42 359		2.6 1.6			3.0 3.0).0).0			lorn Iorn		V V		0.0 0.0		82.6 81.9		54.0 54.0		-21.4 -22.1
	855.214 709.634			3.0 3.0		3.3 9.2	355 184		1.6			3.0 3.0).0).0			lorn		κ		0.0		17.2		4.0 4.0		-22.1
3	, 55.004		50				104		1.0			0.0		U				10111	- F	· · ·		0.0	-			Ŧ.U		20.0

38.0

43.4 40.2

3710.286 1855.381 1855.640

9.2

3.3

3.3

1.0

42.0

359.0

1.2

2.6

1.6

3.0

3.0

3.0

0.0

0.0

0.0

V-Horn

H-Horn V-Horn

ΡK

PK PK

0.0

0.0

0.0

47.2

46.7

43.5

74.0

74.0

74.0

-26.8

-27.3

-30.5

						LD	ST	RE	NGT	Ή	OF	H/	ARI	MO	NI	CS	D	ΑΤΑ	Sł	IEE.	Т)7.05.07)06.4.26
					ner 3	120														W			BSTN			
Ser	ial Numl																						04/22/	09		
	Custon				cienti	ific C	orpora	tion												Ter			22.22 45%			
	Attende		None																	Barome) mh		
	Tested				h								P	ower:	120	OVAC	/60H	z		Baronna			OC10	/		
	PECIFIC		Test Method																							
	5.249:200														AN	SI C6	3.4:2	2003								
	ARAME				L								Teet	Dista		()			0							
COMM	a Height	(s) (m)		1 - 4								Test	Dista	ance	(m)		,	3							
Y-Axis	ENTS																									
1-4712																										
EUT O	PERATIN	IG M	ODE	s																						
Transm	hitting at	916 20M	.5 MH	IZ T OT																						
No dev	iations	KUIV	IES	1 31	AND	AKU																				
Run #					5		1													1 0.						
	uration #	1			1		_												9	heit						
Results				Р	ass		_										0	ignature	, 70)						
Nesuna	5			-	400												0	iynature	,							
	120.0																									
	120.0																									
	100.0																									
	100.0																									
	80.0																									
	00.0	1																								
		t –															_								-	
3																										
≥	60.0																									
dBuV/m	00.0								•																	
Ъ									•																	
									•									*								
	40.0	<u> </u>							•																	
	10.0	•																•								
																		Ť								
	20.0	_								_															_	
	0.0	-								-																
	1800	0.00	0		2	300.	000		280	0.0	00		3	3300.	000			3800	0.000)		4300	0.000			
							-			5																
													IVI	Hz												
	_										_			ernal						stance			_			pared to
	Freq		Ampl (dB			actor (dB)		muth (rees)	Heigh (meter		Dista (met			nuation dB)	F	Polarity	'	Detector		ustment (dB)	Adju dBu		Spec. dBu\			pec. dB)
	(MHz) 748.777).8		ав) 5.7		1.0	1.3		(1110)			0.0	Ц	-Horr		AV		0.0	иви 46		54.			^{ав)} 7.5
	332.682			2.3		3.1		 7.0	1.0		3.).0).0		-Horn		AV		0.0	45		54.			7.5 8.6
	48.746		37			5.7		3.0	1.7		3.).0		-Horr		AV		0.0	42		54			1.2
	65.217		30	0.0	1	8.9		2.0	1.0		3.		0	0.0		-Horn		AV		0.0	38	.9	54.	0		15.1
27	48.731		50).7	!	5.7	(0.0	1.3		3.	0	0	0.0	н	l-Horr	า	PK		0.0	56	6.4	74.	0	-1	17.6
	332.587			2.8		3.1		4.0	2.4		3.			0.0		l-Horr		AV		0.0	35		54			18.1
	582.150			3.5		2.0		.0	2.3		3.			0.0		-Horn		AV		0.0	35		54			8.5
	582.885			8.5		2.0		.0	2.3		3.			0.0		-Horr		AV		0.0	35		54.			18.5
	65.166 332.577		26	5.1).5		8.9 3.1		8.0 17.0	1.0 1.0		3. 3.).0).0		l-Horr '-Horr		AV PK		0.0 0.0	35 53		54. 74.			19.0 20.4
	48.675			7.3		5.1 5.7		3.0	1.0		3. 3.).0).0		-Horr		PK		0.0	53		74.			20.4 21.0
	332.613			.5 6.5		3.1 3.1		4.0	2.4		3.).0).0		-Horr		PK		0.0	49		74.			24.4
	583.536			5.5		2.0		.0	2.3		3.			0.0		l-Horr		PK		0.0	47		74			26.5
	65.146			3.4		8.9	22	2.0	1.0		3.			0.0	V	-Horn	n	PK		0.0	47	.3	74.		-2	26.7
	580.887			5.3		2.0		.0	2.3		3.			0.0		-Horn		PK		0.0	47		74.			26.7
36	65.352		36	6.7	1	8.9	8	8.0	1.0		3.	0	0	0.0	Н	l-Horr	า	PK		0.0	45	6.6	74.	0	-2	28.4

				FIELD	STRE	NGTH	OF H	ARMO	NICS	DATA	SHEE	Г		GA 2007.05.07 EMI 2006.4.26
		JT:	Program	mer 3120							W	ork Order:	BSTN0245	5
Ser	ial Numb												04/22/09	
	Custom Attende			Scientific C	orporation						Ten	nperature: Humidity:		
			None								Barome		1014.9 mb	
			Jaemi S	uh				Power:	120VAC/6	0Hz	Baronne	Job Site:		
	SPECIFIC.		ONS						Test Metho					
	5.249:200								ANSI C63.	.4:2003				
	ARAMET			4 4				Test Dista	noo (m))			
COMM	ENTS	(S) (m)	1 - 4				Test Dista	nce (m)	3				
X-Axis.														
	PERATIN	с м	ODES											
Transm	nitting at	902	5 MHz											
DEVIA	TIONS FR	OM	TEST S	TANDARD										
	iations.													
Run #				6	_						Jacift			
	uration #			1	_					<u>.</u>	1			
Results	S			Pass						Signature				
	120.0 _г													
	120.0 T													
	100.0 -													
	80.0 -													
_	1													-
dBuV/m														
2	60.0 -													
<u>a</u>	-													
0	1					•								
	40.0 -													
	40.0 -									•			•	
						•								
	20.0 -													_
	0.0													
	1800	00	0	2300	000	2800.0	200	3300.	000	3800	.000	1300	0.000	
	1000	.00	0	2300.	000	2000.0	500		000	3000	.000	4300	5.000	
								MHz						
	Freq	Π	Amplitude	e Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
	(MHz)		(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	Polarity	Detector	(dB)	dBuV/m	dBuV/m	(dB)
	304.697		41.3	2.9	124.0	1.0	3.0	0.0	V-Horn	AV	0.0	44.2	54.0	-9.8
	304.707		40.8	2.9	138.0	1.0	3.0	0.0	H-Horn	AV	0.0	43.7	54.0	-10.3
	706.768 609.227		34.9 26.7	5.5 8.8	359.0 279.0	1.5 1.0	3.0 3.0	0.0 0.0	V-Horn V-Horn	AV AV	0.0 0.0	40.4 35.5	54.0 54.0	-13.6 -18.5
	516.124		20.7	o.o 11.8	279.0	1.0	3.0	0.0	H-Horn	AV	0.0	35.5 35.5	54.0 54.0	-18.5
	514.703		23.6	11.8	50.0	2.7	3.0	0.0	V-Horn	AV	0.0	35.4	54.0	-18.6
	609.151		25.5	8.8	346.0	1.0	3.0	0.0	H-Horn	AV	0.0	34.3	54.0	-19.7
	304.709		49.7	2.9	124.0	1.0	3.0	0.0	V-Horn	PK	0.0	52.6	74.0	-21.4
	706.674 706 588		26.2 45.5	5.5 5.5	1.0 359.0	2.4 1.5	3.0 3.0	0.0 0.0	H-Horn V-Horn	AV PK	0.0 0.0	31.7 51.0	54.0 74.0	-22.3 -23.0
2706.588 1804.593			45.5	2.9	138.0	1.0	3.0	0.0	H-Horn	PK	0.0	50.3	74.0	-23.7

36.0

35.5

37.0

36.8 38.1

4510.211

4510.373

3610.168 3608.117 2706.567

11.8

11.8

8.8

8.8

5.5

50.0

237.0

279.0

346.0

1.0

2.7

1.0

1.0

1.0

2.4

3.0

3.0

3.0

3.0

3.0

V-Horn

H-Horn

V-Horn

H-Horn H-Horn

ΡK

ΡK

ΡK

PK PK

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0 0.0

47.8

47.3

45.8

45.6

43.6

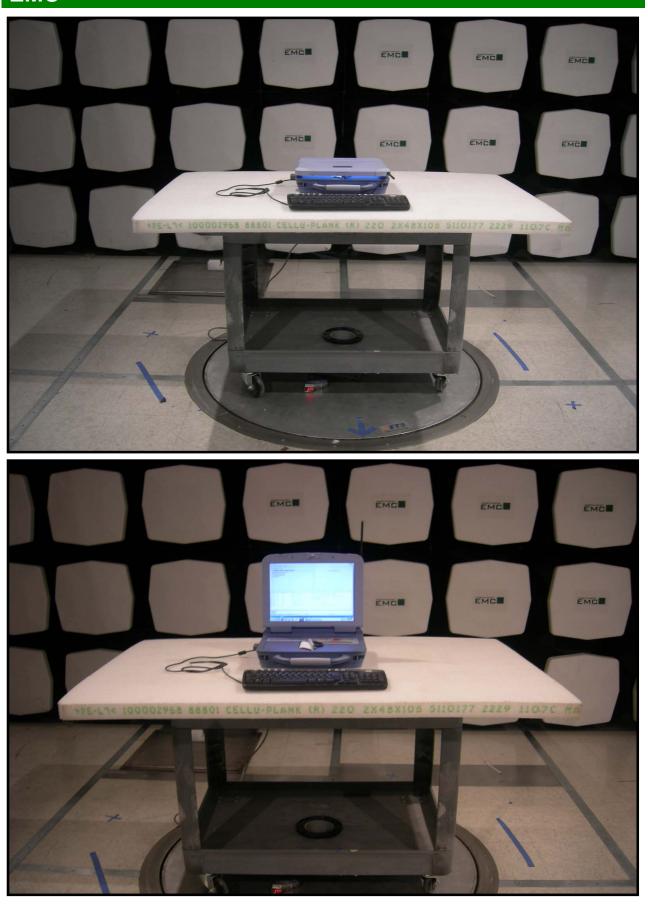
74.0

74.0

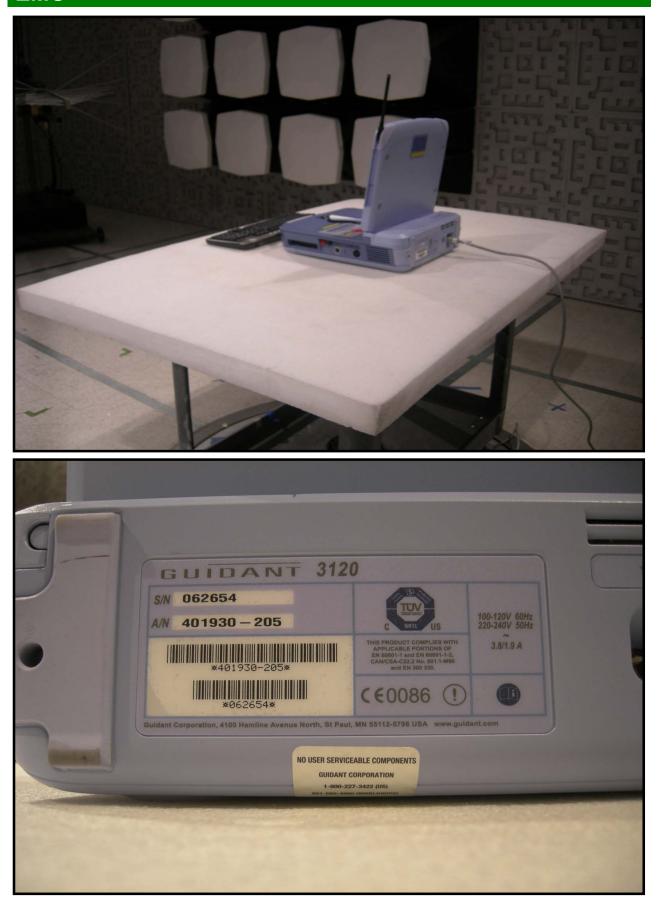
74.0

74.0 74.0

-26.2


-26.7

-28.2


-28.4 -30.4

EMC

FIELD STRENGTH OF HARMONICS

FIELD STRENGTH OF HARMONICS

FIELD STRENGTH OF HARMONICS

