DAYTON T. BROWN	ENGINEE CHURCH ST	ERING AND TEST DIVISION (REET, BOHEMIA, LONG ISLAND, NEW YORI	K 11716 (631) 589-63		
TEST REPORT N	O.: DTB0	91R01-0548			
DAYTON T. BRO	WN, INC. JOB NO	402394-01-000			
CUSTOMER:	CRESTRON ELECT 15 VOLVO DRIVE ROCKLEIGH, NJ 07	RONICS, INC. 7647			
SUBJECT:	SUBJECT: FCC CODE OF FEDERAL REGULATIONS, 47 CFR, PART 15, SUB-PART B AND SUB-PART C TESTING PERFORMED ON ONE GATEWAY, MODEL NO. STRFGWX, SERIAL NO. C568212; AND ONE POWER PACK WITH AC ADAPTER, MODEL NO. D7-10-01				
PURCHASE ORD	ER NO.: 42840				
ATTENTION:	MR. SAM YOC	JASUNTHARM			
THIS REPOR	T CONTAINS:	SIX PAGES AND FIVE ENCLOSURES			
	TEST ENGINEER	J. him .	SMRK		
	DEPARTMENT				
	SUPERVISOR	T. ZIA	IOULIS		
	SUPERVISOR OPERATIONS MANAGER	T. ZIA	KOULIS		
	SUPERVISOR OPERATIONS MANAGER QUALITY DEPARTMENT	T. ZIN T. ZIN M. Der Aris	IOULIS		
	SUPERVISOR OPERATIONS MANAGER QUALITY DEPARTMENT DATE	T. ZIN T. ZIN T. ZIN M. D. Aris 4 SEPTEMBER 2001	IOULIS		

.

TABLE OF CONTENTS

<u>Subject</u>	Paragraph	<u>Page No.</u>
Abstract	1.0	2
References	2.0	3
Administrative Information	3.0	4
Test Program Outline	4.0	5
General Test Information	5.0	6

Enclo	<u>osures</u>	Number <u>of Pages</u>	Number <u>of Photos</u>
(1)	Test Equipment List	2	-
(2)	Radiated Emission, Intentional Radiator, 30 MHz to 10 GHz	7	1
(3)	Occupied Bandwidth	2	1
(4)	Conducted Emission, 450 kHz to 30 MHz	3	1
(5)	A2LA Scope of Accreditation	2	-

<u>1.0</u> <u>ABSTRACT</u>

This report details the results of the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part B and Sub-Part C testing on one Gateway, Model No. STRFGWX, Serial No. C568212, manufactured by Crestron Electronics, Inc. operated with one Power Pack with AC Adapter, Model No. D7-10-01, manufactured by Candor, Inc.

The Gateway and the Power Pack with AC Adapter were found to be in compliance with the radiated portions of the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part B for Class B equipment.

The Gateway and the Power Pack with AC Adapter were found to be in compliance with the radiated portions of the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part C.

The Gateway and the Power Pack with AC Adapter were found to be in compliance with the conducted portions of the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part B, specification limits Class B.

The Gateway and the Power Pack with AC Adapter were found to be in compliance with the conducted portions of the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part C.

Detailed test results can be observed in Enclosures 2, 3, and 4 of this report.

The test results recorded in this report relate only to those items tested.

This report shall not be reproduced, except in full, without the written approval of Dayton T. Brown, Inc.

2.0 <u>REFERENCES</u>

(a)	Customer Purchase Ord	der No.:	42840
(b)	Dayton T. Brown, Inc.	Job No.:	402394-01-000
(c)	Test Specifications:	Code of Federa Code of Federa	l Regulations, 47 CFR, Part 15, Sub-Part C l Regulations, 47 CFR, Part 15, Sub-Part B, Class B
(d)	Test Procedure:	American Natio Emissions from Range of 9 kHz	nal Standard for Methods of Measurement of Radio-Noise Low-Voltage Electrical and Electronic Equipment in the to 40 GHz, ANSI C63.4-1992, dated 17 July 1992

3.0 ADMINISTRATIVE INFORMATION

Customer: Crestron E 15 Volvo Rockleigh	Electronics, Inc. Drive , NJ 07647
<u>Test Items</u> :	Gateway, Model No. STRFGWX, Serial No. C568212, manufactured by Crestron Electronics, Inc. operated with one Power Pack with AC Adapter, Model No. D7-10-01, manufactured by Candor, Inc.
Quantity Received:	One of Each
Test Start Date:	16 August 2001
Test Completion Date:	17 August 2001
Disposition of Test Items:	The test samples were returned to Crestron Electronics, Inc. on 17 August 2001.

4.0 TEST PROGRAM OUTLINE

Description of Test Method

Results

Radiated Emission, Intentional Radiator, 30 MHz to 10 GHz

Occupied Bandwidth

Conducted Emission, 450 kHz to 30 MHz

Met the specification requirements.

Met the specification requirements.

Met the specification requirements.

5.0 GENERAL TEST INFORMATION

<u>Setup</u>

For the radiated emission test, in the frequency range of 30 to 1000 MHz, the test sample was set up in a climate controlled open field site that measures 44 feet long by 24 feet wide by 24 feet high.

For the radiated emission test, in the frequency range of 1 to 10 GHz, the test sample was set up in an anechoic chamber that measures 20 feet wide by 20 feet long by 12 feet high.

For the conducted emission test, the test sample was set up within a shielded enclosure which is 20 feet wide by 20 feet long by 12 feet high.

All lines carrying power into the shielded enclosure passed through RF suppression filters suitably bonded to the enclosure and capable of 100-dB attenuation over a spectrum of 14 kHz to 10,000 MHz.

Unit Operation:

Operational Mode Tested - Transmit Mode - The Gateway was transmitting at 418.140 MHz.

Test Equipment List

Test equipment utilized for the program reported herein was within its assigned interval of calibration. Details are on file at Dayton T. Brown, Inc. and will be made available upon request.

<u>TEST</u>	ITEM	MANUFACTURER	<u>DTB NO.</u>	EQUIPMENT <u>CHARACTERISTIC</u>	MODEL	SERIAL <u>NO.</u>	CALIBRATION <u>DUE DATE</u>
CE	20-Foot RG-214 BNC Cable	Pasternack	7-9	DC - 1.0 GHz ±1.0 dB	RG214/U	9	7/2/2002
RE	Cable	Dayton T. Brown, Inc.	7-17	DC – 1 GHz ±6 dB	30 Ft	-	1/27/2002
RE	SMA Cable	Insulated Wire, Inc.	7-26	1 – 22 GHz	2505	26	2/24/2002
RE	Cable	Insulated Wire, Inc.	7-30	900 MHz – 6.5 GHz	-	30	3/3/2002
RE	BiLog Antenna	Chase-York	27-1	30 - 2000 MHz	CBL 6112	2055	2/10/2002
RE/OCB	Double Ridge Waveguide Antenna	Electro-Mechanics Co.	27-41	200 - 2000 MHz	3106	2036	2/24/2002
RE	Double Ridge Waveguide Antenna	Electro-Mechanics Co.	27-55	1.0 - 18 GHz	3115	2072	12/8/2002
RE	Interference Analyzer	Electro-Metrics	65-203	9 kHz - 1.0 GHz	EMC-30 Mk IV	44137	11/25/2001
CE	Interference Analyzer	Electro-Metrics	65-206	9 kHz - 1.0 GHz	EMC-30 Mk IV	44162	10/7/2001
RE	Preamplifier	Hewlett-Packard	71-11	1 - 26.5 GHz 30 dB Gain	8449B	3008A- 00284	9/29/2002
CE	Line Impedance Stabilization Network	Solar Electronics	73-92	10 kHz - 30 MHz 50 μh, 24 Amps Dual LISN	9252-50-R- 24-BNC	951302	10/14/2001
CE	Screen Room	Ace Engineering and Machine Company	-	20 ft x 20 ft 10 ft High	-	Screen Room 1	-

Test equipment utilized for the program reported herein was within its assigned interval of calibration. Details are on file at Dayton T. Brown, Inc. and will be made available upon request.

<u>TEST</u>	<u>ITEM</u>	MANUFACTURER	<u>DTB NO.</u>	EQUIPMENT <u>CHARACTERISTIC</u>	MODEL	SERIAL <u>NO.</u>	CALIBRATION DUE DATE
RE	Anechoic Facility	Rayproof	-	20 ft x 20 ft 12 ft High	-	Solid Room 1	-
RE	FCC Facility	Dayton T. Brown, Inc.	-	44 ft x 24 ft 24 ft High	-	FCC Site	-
RE/OCB	Spectrum Analyzer	Hewlett-Packard	376636A	9 kHz - 26.5 GHz	8563E	3635A- 05798	1/12/2002

Radiated Emission, Intentional Radiator, 30 MHz to 10 GHz

RADIATED EMISSION, INTENTIONAL RADIATOR, 30 MHz to 10 GHz

Test Procedure

A radiated emission test, in the frequency range of 30 to 1000 MHz, was performed with the test item while it was mounted on a wooden table that was standing on a conductive turntable.

For the frequency range of 30 to 1000 MHz, measurements were made utilizing a manually tuned interference measurement receiver which was located in the instrumentation room below the ground plane.

The receiver was connected to the measurement antenna which was located 3 meters from the turntable for the frequency range of 30 to 1000 MHz.

A linear polarized antenna was utilized for the measurements. The antenna height was varied between 1 and 4 meters, and the test sample was rotated 360° to ensure maximum pickup from the test sample.

A radiated emission test, in the frequency range of 1 to 10 GHz, was performed on the test item while it was mounted on a wooden table in an anechoic chamber.

For the frequency range of 1 to 10 GHz, measurements were made utilizing a spectrum analyzer.

The receiver was connected to the measurement antenna, which was located 1 meter from the table for the frequency range of 1 to 10 GHz, with a length of 50Ω coaxial cable.

The test item utilizes pulse modulation with a 50 percent duty cycle.

Measurements were made utilizing the following bandwidth and detector function:

Frequency Range	CISPR Bandwidth	Detector Function
30 to 1000 MHz	120 kHz	Quasi-Peak
1 to 10 GHz	100 kHz	Peak

The antenna per meter factors of the antenna utilized are depicted in the figure contained in this enclosure.

The test setup employed is depicted in the photograph contained in this enclosure.

RADIATED EMISSION, INTENTIONAL RADIATOR, 30 MHz to 10 GHz (Continued)

Test Results

No emission levels above the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part B, specification limits for Class B equipment were observed between 30 and 1000 MHz excluding the transmit frequency of 418 MHz.

No emission levels above the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part C, specification limits for intentional radiating equipment transmitting at 418 MHz were observed. Emission levels at 418 MHz were below the maximum specification limit of 80.2 dBuV/m (10,232 microvolts per meter) and spurious emissions between 30 MHz and 10 GHz were below the maximum limit of 51.5 dBuV/m (375 microvolts per meter).

Detailed test results for the radiated emission test for Intentional Radiators can be observed on pages 3 through 7 of this enclosure.

Test Item:	Gateway STRFGWX
Customer:	Crestron Electronics
Test Condit	ion: Transmitting
Specificatio	n: FCC Part 15 Sub-Part B, Class B; Sub-Part C
Detector Fu	nction: Quasi-Peak Units: dBuV/m

Serial No.:C568212Job No.:402934-01-000Distance:3 MetersAntenna Polarization:VerticalBandwidth:120 kHz (CISPR)

Met Requirement Yes X

17-Aug-01

No

Radiated Field Strength Measurements

Freq.	Meter Indicated	Antenna Factor	Cable Loss	Pre-Amp Gain	Total Indicated	Spec. Limit	Level	Notes
(MHz)	(dBuV)	(dB)	(dB)	# (dB)	(dBuV/m)	(dBuV/m)	Spec. Limit	
30	1	18.1	0.32		19.4	40		Ambient
418	31	17.0	1.40		49.4	80.2		TX Frequency
1000	15	21.3	2.30	25.0	13.6	54		Ambient
		- 1	ور و المالية اليور و المالية اليور					
								· ·
								ar in General sector of a sector of the sect
ļ								
								a di Manga di Manga ng Palingga ng Salayan ng

Remarks: * Indicates above Specification Limit; A - Indicates Ambient; Total Indicated = Meter Indicated + Antenna Factor + Cable Loss - Pre-Amp Gain Antenna Factor is for BiLog Antenna, DTB No. 27-1; Calibration Due: 26-Feb-02

Reviewed By:

Test Performed By:

Sa litts

01-0548 Enc 2 Pg 3

Test Item:	Gateway STRFGWX					
Customer:	Crestron Electronics					
Test Condif	tion: Transmitting					
Specificatio	on: FCC Part 15 Sub-Part B, Class B; Sub-Part C					
Detector Fu	mction: Quasi-Peak Units: dBuV/m					

Date:	17-Aug-01				
Serial No.:	C568212				
Job No.:	402934-01-000				
Distance:	3 Meters				
Antenna Polarization: Horizontal					
Bandwidth:	120 kHz (CISPR)				

Radiated Field Strength Measurements

Radiated	Field Stre	ngth Mea	surements	Met Requirement Yes X No					
Freq.	Meter Indicated	Antenna Factor	Cable Loss	Pre-Amp Gain	Total Indicated	Spec. Limit	Level Above	Notes	
(MHz)	(dBuV)	(dB)	(dB)	# (dB)	(dBuV/m)	(dBuV/m)	Spec. Limi		
30	1	19.7	0.32		21.0	40		Ambient	
418	39	17.4	1.40		57.8	80.2		TX Frequency	
1000	15	22.2	2.30	25.0	14.5	54		Ambient	
		4. <u></u>			and the second se				
		*							
				1					
								,	
				مر آبانی و بری شده وی وی ایک این و برای و برای ایک وی وی و برای ایک وی	الله بين المستقلف الانتخاص بي من عمر المستقل . الاستقرار 10% النسبي الكلال الذكر بيا المستقل بي		المادي المحاصي والمراجع المحاصي المحاصي والمحاصي والمحاصي والمحاصي والمحاصي والمحاصي والمحاصي والمحاص وا	Distance in the second s	

Remarks: * Indicates above Specification Limit; A - Indicates Ambient; Total Indicated = Meter Indicated + Antenna Factor + Cable Loss - Pre-Amp Gain Antenna Factor is for BiLog Antenna, DTB No. 27-1; Calibration Due: 26-Feb-02

Reviewed By:

Test Performed By:

Daretz_

01-0548 Enc 2 Pg 4

01-0548 Enc 2 Pg 5

CORRECTION FACTOR

Occupied Bandwidth

OCCUPIED BANDWIDTH

Test Procedure

The occupied bandwidth of the test item was measured using a spectrum analyzer with a bandwidth setting of 100 kHz. The spectrum analyzer was operated in the "Max Hold" mode.

The test item has an operating frequency of 418.140 MHz. The maximum allowed bandwidth for devices operating above 70 MHz and below 900 MHz is 0.25 percent of the center frequency.

The maximum allowed bandwidth is calculated as follows:

418.140 MHz X 0.0025 = 1.0453 MHz

The occupied bandwidth was determined at the points 20 dB down from the carrier.

The test item employed is depicted in the photograph contained in this enclosure.

Test Results

The test item met the occupied bandwidth test. The measured occupied bandwidth from the test item was 473 kHz at the 20-dB down point.

Detailed test results for the occupied bandwidth test can be observed on page 2 of this enclosure.

CENTER 418.135MHz

SPAN 1.500MHz Ookhz *SWP 50.0ms

*RBW 100KHz *VBW 100KHz *SWP 50.0ms

3h

01-0548 Enc 3 Pg 2

Founded 1950

Conducted Emission, 450 kHz to 30 MHz

CONDUCTED EMISSION, 450 kHz to 30 MHz

Test Procedure

A conducted emission test, in the frequency range of 450 kHz to 30 MHz, was performed on the test sample while mounted on a nonconductive table. The table measured 1 meter by 1.5 meters with its top surface 80 cm above the ground plane.

Power was supplied to the test sample via LISNs which were bonded to the ground plane below and to the side of the nonconductive table. The unused 50Ω connector on the LISN was terminated in 50Ω .

Measurements were made utilizing the following bandwidth and detector function:

Frequency Range	CISPR Bandwidth	Detector Function
450 kHz to 30 MHz	9 kHz	Quasi-Peak

The test setup employed is depicted in the photograph contained in this enclosure.

Test Results

No emission levels above the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part B, specification limits for Class B equipment were observed between 450 kHz and 30 MHz.

No emission levels above the FCC Code of Federal Regulations, 47 CFR, Part 15, Sub-Part C, specification limits for intentional radiating equipment were observed between 450 kHz and 30 MHz.

Detailed test results for the conducted emission test can be observed on pages 2 and 3 of this enclosure.

A2LA Scope of Accreditation

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025-1999

DAYTON T. BROWN, INC Church Street, DKC, Church Street, DKC, Church Street, NY, 11716-5031 Bohemia, NY, 11716-5031 Charles Gortakowski – Phone: 40124 63157, 1800 TEST456 – Fax: 631589 4046 Fmail: <u>Lost@daytontbrown.com</u> / www.caytontbrown.com

MECHANICAL

Valid To: December 31, 2002 Certificate Number: 0767-03

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following mechanical tests:

Altilude - 14.1 meters (-282 feet to 122,000 meters); 400,000 feet or 1x10F⁶ TORR Chamber volumes up to 745 cubic ft Bust Test - High Pressure Air to 5000psi Coating/Plating Thickness Combined Environments - Vibration and Temperature Dimensional - CMM - X-1200mm (±0.001mm); Y-100mm (±0.001mm); Z-600mm (±0.001mm) Durability Durometer Hardness Dye Penetrant Explosive Environment - Chamber Volume 75 cubic ft, Altitudes up-to 50,000ft Fungus Test Area Size 36" x 36" Hardness Fungus Fest Area Size 3 or 3 or Hardness Humidity - Relative humidity range from desert (2%) to a tropical forest (100%). Chamber volumes up-to 3500 cubic ft Magnetic Particle Inspection Material Cleanliness Metallographic Analysis Microhardness Sail Fog/Spray Chamber up-to a Chamber volume of 2500 cubic ft Sand & Dust Chamber volumes up-to 200 cubic ft; velocities up-to 57000/min Seat: Belt Assembly testing Thermal Shock SumSociar Radiation SumSe Testing Water Immersion Wind & Rain

(A2LA Certificate No. 76703) 01/12/01 5301 Buckeystown Pike, Suite 350 + Frederick, MD 21704-8373 + Phone: 301-644 3248 + Fax: 301-662 2974

SCOPE OF ACCREDITATION TO (SO/IEC 17025-1999

DAYTON T. BROWN, INC. Church Street Bohemia, NY 11716-5031 Charles Gortakowski – Phone: 631 244 6315 / 1 800 TEST456 – Fax: 631 589 4046 Email: test@daytontbrown.com / www.daytontbrown.com

ACOUSTICS & VIBRATION

Valid To: December 31, 2002

Sinusoi

Classic

Pyroshock

Displacement

Certificate Number: 0767-01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following acoustics & vibration tests:

Vibration (Sine, Random, Sine on Random, Gunfire, Shipboard), Buzz, Squeak and Rattle, Combined Environments and Reliability (Temperature, Humidity and Vibration), Classical Shock (HAIr Sine, Sawtouth, Square Wave), Pyroshock, Airborne and Structureborne Noise Measurements.

VIBRATION/SHOCK CAPABILITIES UP TO THE FOLLOWING:

Force Dating	40.000 IL		
Force Rating	40,000 ID/		
Frequency Range	4 to 3000 Hertz		
Maximum Level	200 grms		
Displacement	2 inches Peak-to-Peak		
Sinusoidal			
Force Rating	40,000 lbr		
Frequency Range	4 to 3000 Hertz		
Sine Velocity Continuous Duty	125 in/sec		
Sine Velocity Intermittent Duty	135 in/sec		
Maximum Level	200 g's		
Displacement	2 inches Peak-to-Peak		
Classical Shock			
Eoroa	80.000 lb.		

Vaveforms Maximum Level

Level Frequency Range

Sine, Sawtooth, Trapazoid 600 to 3000 g's

5000 to 32,00 g's 100 to 10,000 Hertz 2 inches Peak-to-Peak

Airborne and Structureborne Noise Measurements

Peter Albage Page 1 of 2 (A2LA Certificate No. 767.01) 01/12/01 5301 Buckeystown Pike, Suite 350 • Frederick, MD 21704-8373 • Phone: 301-644 3248 • Fax: 301-662 2974 🛞

Using the following specifications directly related to the above listed testing technologies: directly related to the above listed testing technologies: Test Method(s) MIL-STD-810; C (500.1), D (500.2), E (500.3), F (500.4) MIL-STD-810; C (500.1), D (501.2), E (501.3), F (501.4); GR-63-CORE (51.1.2) MIL-STD-810; C (502.1), D (502.2), E (502.3), F (502.4); GR-63-CORE (51.1.1), MIL-STD-810; C (503.1), D (503.2), E (503.3), F (503.4); GR-63-CORE (51.1.1, S1.1.2), MIL-STD-202 (107G) MIL-STD-810; C (503.1), D (505.2), E (505.3), F (505.4); MIL-STD-810; C (503.1), D (505.2), E (505.3), F (505.4); MIL-STD-810; C (503.1), D (505.2), E (505.3), F (505.4); MIL-STD-810; C (503.1), D (505.2), E (505.3), F (505.4); MIL-STD-810; C (503.1), D (507.2), E (507.3), F (507.3), F (507.4); GR-63-CORE (51.1.3), MIL-STD-202 (103B); RTCA/D0-160C (60.6)
Test Technology Low Pressure (Altitude) High Temperature Low Temperature Temperature Shock Temperature/Altitude Temperature Variation Solar Radiation (Sunshine) Humidity GR-63-CORE (51.1.3); MILSTD-202 (103B); RTCA/D0-160C (6.0) MIL-STD-810: C (508.1); D (508.2); E (508.4); F (508.5); RTCA/D0-160C (13.0) MIL-STD-810: C (509.1); D (509.2); E (509.3); F (509.4); MIL-STD-202 (101D) MIL-STD-810: C (510.1); D (510.2); E (510.3); F (510.4); MIL-STD-810: C (510.1); D (510.2); E (510.3); F (510.4); MIL-STD-810: C (510.1); D (510.2); E (511.3); F (511.4); MIL-STD-810: C (510.1); D (512.2); E (512.3); F (512.4) MIL-STD-810: C (513.1); MIL-STD-810: C (513.1); MIL-STD-810: C (513.1); MIL-STD-810: C (512.2); MIL-STD-810: C (512.2); MIL-STD-810: C (512.2); MIL-STD-810: C (512.2); GR-63-CORE (53.2) Fungus Salt Fog Dust (Fine Sand) Explosive Atmosphere Leakage (Immersion) Space Simulation (Unmanned Test) Temperature/Humidity/Altitude Temperature/Humidity/Vibration Temperature/Humidity/Vibrate lcing/Freezing Rain Packaged Drop Test Unpackaged Equipment Drop Coating/Plating Thickness Tensile Testing Material Cleanliness Material Retrialo GR-63-CORE (5.3.1) GR-63-CORE (5.3.2) ASTM E376 ASTM B557, E8 ASTM E45 ASTM E1444 Material Cleanliness Magnetic Particle Dye Penetrant Microhardness Hardness Dimensional – CMM ASTM £1417 ASTM E3814-89 ASTM 125014-97 ASTM D2240, E18 ASME Y14,5M, B46.1 Customer Supplied Procedure ETS 300 019 Part: 1-1 Storage, 1-2 Transportation, 2-1 Storage Durability Environmental Tests Environmental Tests Durometer Hardness Shock & Crash Safety Waterproofness Fluid Susceptibility Salt Spray Seat Belt Testing ASTM D2240 RTCA/DO-160C (7.0) RTCA/DO-160C (7.0) RTCA/DO-160C (10.0) RTCA/DO-160C (11.0) RTCA/DO-160C (14.0) RTCA/DO-160C (14.0) FMVSS 209: 541. (Paragraphs (d) Hardware, (h) Webbing, (i) Strap, (j) Marking and (m) Workmashing), S4.2 (Requirements For Webbing, excluding paragraph (d) Resistance to Micro-Organisms), S4.3 (Requirements for Hardware, all paragraphs), S4.4 (Requirements for Assembly Performance, all paragraphs) S4.4 (Requirements for Assembly Performance, all paragraphs)

Peter Mbyen Page 2 of 2

Specification (s) MIL-STD-740-1-2 MIL-STD-740-1-2 MIL-STD-810C 513.2, 810D 513.3, 810E 513.4 810F 513.5, 8TCA/DO-160 Automotive Requirements MIL-STD-1540, MIL-STD-810F 517 ANISIS17_513.5

MIL-STD-781, NAVMAT P-9492, FORD: DVTI:12.00.007-AC, ES-F5vb-54043B13-AA, GM-9105P, 9104P, 91010, 9125P, 9140P, 9144P, 9154P, 9163P, 9175P, CHRVSLER: PF-007, PF-9531, PF-6897, PF-2843, PF-9164 Belleter GR-13, GR-63, GR-487, GR-2834

ANSI:S1.2, S1.35 MIL-S-901D LWH and MWH

TR-NWT-000063

Testing Criteria Airborne And Structure Borne Noise Measurement Acceleration (Centrifuge) Buzz, Squeak And Rattle

(A21.A Certificate No. 767.03) 01/12/01

ryto Shock Sound And Power Shock Test. High Impact on Shipboard Machinery. Equipment And Systems Reliability Automotive Pyro Shock

Telephony

Rain

ANSI S12.35 - Precision Methods for the Determination of Sound Power Levels of Noise Sources in

ANSI 512.35 - Precision Methods for the Determination of Sound Power Levels of Noise Sources in Anechoic and Semi-Anechoic Rooms ANSI 51.2 - Method for the Physical Measurement of Sound ANSI 51.3 - Sound Power Levels of Noise Sources in Anechoic and Semi-Anechoic Rooms. MIL-STD-810 (Vibration: 810C 514.2, 810D 5114.3, 810E 513.4, 810F 514.5; Acoustical Noise: 810C 515.2, 810D 515.3, 810E 515.4, 810F 515.5; Gunfire Vibration, Aircraft: 810C 519.2, 810D 519.3, 810E 519.4, 810F 519.5) Bellcore GR-63-Core (Office Vibration 5.4.2; Transportation Vibration 5.4.3)

MIL-STD-202 OlA Vibration 34.2: Iransportation Vioration 34.3: MIL-STD-202 OlA Vibration 2020, 2038 Random Drop, 204D Vibration High frequency, 205E, 207A high-impact shock, 212A Acceleration, 213B Shock (specified pulse), 214A Random Vibration RTCA/D0-160C (Sections 7.0 Operational Shocks and Crash Safety, 8.0 Vibration) MIL-STD-167-1 Shipboard vibration NAVMAT P-9492 Environmental Stress Screening for Navy Components

(A2LA Certificate No. 767.01) 01/12/01

Peter Mbryen Page 2 of 2

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025-1999

DAYTON T. BROWN, INC. Church Street Bohemia, NY 11716-5031 Charles Gortakowski – Phone: 631 244 6315 / 1800 TEST456 – Fax: 631 589 4046 Email: <u>test@daytontbrown.com</u> / <u>www.daytontbrown.com</u>

ELECTRICAL (AEMCLAP/EMC)

Valid To: December 31, 2002

Certificate Number: 0767-02

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following electrical, electromagnetic compatibility (EMC), and telecommunications tests:

Capacitance AC Capacitance AC Loss Characteristics Conductivity Current (AC/DC)

Impedance Inductance Power Factor Resistance (Dielectric Constant, Insulation Resistance) Voltage (AC/DC)

EMILREI Conducted Emissions Conducted Transient Susceptibility Conducted Immunity Radiated Emissions 3 Mail 10 Nites) Radiated Acom, Mode Stirring Radiated Acom, Mode Stirring Radiated Susceptibility Radiated Transient Susceptibility Electrostatic Discharge (ESD) Electromagnetic Pulse (EMP) <u>EMI/RFI</u>

Surge Immunity Input Power Variations Magnetic Field Ernission Magnetic Field Susceptibility Harmonics – Powerline & RF RF Power Handling Shielding Effectiveness Electrical Fast Transient (EFT) Transmissibility Electromagnetic Site Survey

<u>Automotive EMC (AEMCLAP)</u> Electrostatic Discharge (ESD) Transverse Electromagnetic (TEM) Cell Audio Frequency Conducted Immunity Absorption Chamber Conducted Emissions

On the following types of materials and products: Aerospace Components & Systems; Automotive Components & Systems; Shipboard Components & Systems; Railroad & Industrial Vehicle Components & Systems; Information Technology & Telecommunication Equipment & Systems; Electrical & Electronic Components & Systems; Medical Electronic Equipment; Military Equipment & Hardware.

(A2LA Cert. No. 0767.02) 07/17/01

Peter Dilage - Page 1 of 3 5301 Buckeystown Pike, Suite 350 • Frederick, MD 21704-8373 • Phone: 301-644 3248 • Fax: 301-662 2974

In recognition of the successful completion of the A2LA and the Automotive EMC Laboratory Accreditation Program (AEMCLAP) evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic compatibility tests</u>:

Test Technology	Test Method(s)
Electrostatic Discharge (ESD)	ISO 10605; SAE J1113-13, ES-XW7T-1A278-AB
Absorption Chamber	SAE J1113-21; ISO 11452-2, ES-XW7T-1A278-AB
Transverse Electromagnetic (TEM) Cell	ISO 11452-3; SAE J1113-24
Conducted Emissions	DaimlerChrysler LP-388C-41
Audio Frequency Conducted Immunity	SAE J1113-2

Using the following sources of standards: Test Technology Test Method(s) EMC Emissions and EN 50091-2, EN 60601-1-2, IEC 601-1-2 Immunity EMC Emissions Code of Federal Regulations (CFR) 47, FCC Method Part 15 using Harmonic Current Emissions IEC 1000-3-2.EN 60555-2 Voltage Fluctuation and Flicker IEC1000-3-3, EN 60555-3 EMC Immunity EN 50082-1, EN 50082-2 Electrostatic Discharge EN 61000-4-2, IEC 1000-4-2, IEC 801-2 Radiated Field Immunity IEC 1000-4-3, IEC801-3, ENV 50141, ENV 50140, ENV 50204 Electrical Fast Transient EN 61000-4-4, IEC 1000-4-4, IEC 801-4 EN 61000-4-5, IEC 1000-4-5, IEC 801-5, ENV 50124 IEEE-587-1980, ANSI C62.41, ANSI C62.32 Surge Immunity Conducted Immunity EN 61000-4-6, IEC 1000-4-6, IEC 801-6 Harmonic Immunity EN 61000-4-7, IEC 1000-4-7 Magnetic Field Immunity EN 61000-4-8, IEC 1000-4-8 VoltageDips, Interruptions and Variations EN61000-4- , IEC 1000-4-Telecom Code of Federal Regulations (CFR) 47, FCC Method Part 68 RTCA/DO-160, FAA Advisory Circular 20-136, Boeing D200Z001, Boeing WZZ7000 Commercial Aviation Military: MIL-STD-461 (A, B, C & D), MIL-STD-462, MIL-STD-1399, MIL-STD-704, MIL-E-16400, MIL-STD-2036, MIL-STD-1275A (AT), MIL-STD-202 GM: 9100P, 9105P, 9109P, 9110 P, 9112 P, 9113 P, 9114 P, 9115 P, 9116 P, 9117 P, 9119 P, 9120 P, 9103-P, 9104-P, 9125P, 9128P, 9140P, 9144P, 9154P, 9163P, 9175P Chrysler: PF-9164M, PF-9326 Automotive Safety EN 50091-1

(A2LA Cert. No. 0767.02) 07/17/01

Peter Mlnye- Page 2 of 3

(A2LA Cert. No. 0767.02) 07/17/01

Peter Minge- Page 3 of 3