

Test Report

FCC Part 15, Subpart C, Section 15.247 Industry Canada RSS-210, Issue 8

Report Number: CWDHR-Cert

Model: CWDHR

FCC ID: EROCWDHR IC: 5683C-CWDHR

Date: October 30, 2014 (Revised Nov. 4, 2014)

Prepared by:	Grace Lin	Date:	Oct. 30, 2014
	Grace Lin, Sr. Compliance Engineer		
Reviewed by:	Wayne Owens	Date:	Oct. 30, 2014
	Wayne Owens, Director of Program Management		

Table of Contents

1. GE	NERAL DESCRIPTION	3
1.1	PRODUCT DESCRIPTION	3
1.2	Test Methodology	3
1.3	TEST FACILITY	3
1.4	Test Equipment	
1.5	EVALUATION SUMMARY	5
2. SY	STEM TEST CONFIGURATION	5
2.1	JUSTIFICATION	5
2.2	BLOCK DIAGRAM	5
2.3	EUT EXERCISE SOFTWARE AND MODE(S) OF OPERATION	5
2.4	CABLES	
2.5	SPECIAL ACCESSORIES	7
2.6	SUPPORT EQUIPMENT	7
2.7	EQUIPMENT MODIFICATIONS	7
3. EV	ALUATION	3
3.1	ANTENNA REQUIREMENTS	3
3.2	DTS BANDWIDTH)
3.3	99% Bandwidth	
3.4	POWER OUTPUT 14	1
3.5	BAND EDGE	3
3.6	CONDUCTED SPURIOUS EMISSIONS)
3.7	POWER SPECTRAL DENSITY	1
3.8	RADIATED SPURIOUS EMISSIONS	
3.9	TRANSMITTER AC POWER LINE CONDUCTED EMISSIONS)

1. General Description

1.1 Product Description

The equipment under test (EUT) is a Crestron 2.4GHz two-way RF transceiver module, model: CWDHR, serial numbers: CNA8463170 SE (PA07424) and CNA8606559 SE B3 (PA07414).

1.2 Test Methodology

Measurements were performed according to the following procedures and standards:

- 1) ANSI C63.4: 2009
- 2) FCC Publication, "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247", June 5, 2014
- 3) Industry Canada RSS-Gen Issue 3
- 4) Industry Canada RSS-210 Issue 8

All measurements were performed in a 3-meter semi-anechoic chamber and the control room.

1.3 Test Facility

Test data in this report were taken by UL LLC, located at 1285 Walt Whitman Road, Melville, New York 11747.

FCC:

Designation Number: US5155 Test Firm Registration Number: 608404

IC:

Test Site Number: 2180B-1 IC Assigned Company Code:2180B

Duty cycle measurement was performed at the Crestron's 3-meter semi-anechoic chamber facility located at 22 Link Drive, Rockleigh, New Jersey. This test facility has been placed on file with the FCC, Registration Number: 412871, and Industry Canada, Site Number: 5683C-1.

1.4 Test Equipment

Description	Manufacturer	Model	Identifier	Cal Date	Cal Due
Spectrum Analyzer	Agilent	E4446A	72823	2014-06-13	2015-06-13
Horn Antenna	EMCO	RGA-180 (50°)	5565	2014-09-17	2015-09-17
Horn Antenna (2-4 GHz)	ETS-Lindgren	3161-02 (22°)**	48107	2007-09-27	See * below
Horn Antenna (4-8 GHz)	ETS-Lindgren	3161-03 (22°)**	48106	2007-09-27	See * below
Horn Antenna (8-12 GHz)	ETS-Lindgren	3160-07 (26°)**	8933	2008-11-24	See * below
Horn Antenna (12-18 GHz)	ETS-Lindgren	3160-08 (26°)**	8932	2007-09-27	See * below
Horn Antenna (18-26.5				2007-09-26	See * below
GHz)	ETS-Lindgren	3160-09 (27°)**	8947		
Horn Antenna (26.5-40				2007-09-26	See * below
GHz)	ETS-Lindgren	3160-10 (27°)**	73004		
Signal Path Controller	HP	11713A	50250	N/A	N/A
Gain Controller	HP	11713A	50251	N/A	N/A
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A
System Controller	UL	BOMS2	50252	N/A	N/A
Measurement Software	UL	Version 9.5	44740	N/A	N/A

Test Equipment Used (UL LLC - Melville, NY)

* - Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

** - Number in parentheses denotes antenna beam width.

Test Equipment for Duty Cycle Measurement (Crestron)

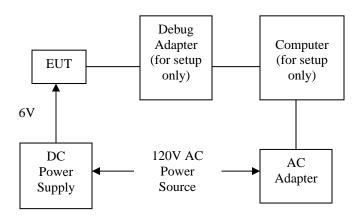
Description	Model	Serial No.	Frequency Range	Calibration Date
R&S EMI Receiver	ESU40	100076	20 Hz – 40 GHz	Dec. 13, 2013

1.5 Evaluation Summary

Rule Section		Description / Demonstrant	Descrites	
FCC	IC	Description/Parameters	Results	
§15.203	N/A	Antenna Requirement	Complies	
§15.247(a)(2)	§A8.2(a) of RSS-210	6 dB Bandwidth, 500 kHz	Complies	
N/A	§4.6.1 of RSS-Gen	99% Occupied Bandwidth	(for reporting purpose)	
§15.247(b)(3)	§A8.4(4) of RSS-210	Power Output, conducted, 1 Watt (30dBm)	Complies	
§15.247(d)	§2.1, §A8.5 of RSS- 210	Band Edge	Complies	
§15.247(d)	§A8.5 of RSS-210	Conducted Spurious Emissions, 20 dBc	Complies	
§15.247(e)	§A8.2(b) of RSS-210	Power Spectral Density (PSD), 8 dBm in any 3 kHz band.	Complies	
\$15.205, \$15.209, \$15.247(d)	§2.2, §A8.5 of RSS- 210	Radiated Spurious Emissions	Complies	
§15.207	§7.2.4 of RSS-Gen	Transmitter AC Power Line Conducted Emissions	Not Applicable	

Note:

The channels selected for test were 11, 18, and 26.


2. System Test Configuration

2.1 Justification

A DC power supply supplied power to the EUT. A computer supplied test commands through a debug adapter.

2.2 Block Diagram

Block diagram is shown below.

2.3 EUT Exercise Software and Mode(s) of Operation

The EUT was configured to transmit continuously with "*em3588-NewFEM_nodetest-with-bootloader.hex*" firmware loaded. Channels 11 (2405 MHz), 18 (2440 MHz), and 26 (2480 MHz) were selected for test.

2.4 Cables

Qty	Description	Length (m)	From - To	Shielded/ Unshielded
1	Cat5 (Crossover)	06	Computer – Debug Adapter	Unshielded
1	USB	2.0	Computer – Debug Adapter	Unshielded
1	AWG#18	1.0	DC Power Supply – EUT	Unshielded
1	10-conductor Ribbon Cable	0.3	Debug Adapter – EUT	Unshielded

2.5 Special Accessories

There are no special accessories for compliance of this EUT.

2.6 Support equipment

No	Description	Manufacturer	Model No	Serial No
1	Computer	DELL	Latitude E6510	F1CQ4Q1 (Service Tag)
2	AC Adapter	DELL	DA90PE3-00	CN-0WTC0V-48661-0AN- 9BB4-A00
3	DC Power Supply (owned by UL LLC)	Circuit Specialists Inc.	CSI3005X5	Not Labeled
4	Debug Adapter	Ember	ISA3	EM-ISA3-461

2.7 Equipment Modifications

There were no modifications installed during compliance measurements.

3. Evaluation

3.1 Antenna Requirements

This module is validated with a SMD antenna. Antenna gain is 2.5 dBi.

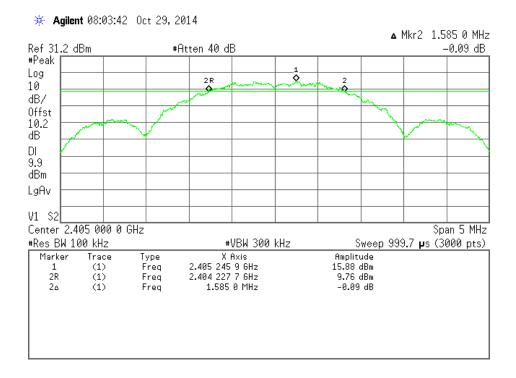
The antenna connector of the SMD antenna is unique in the sense of complying with FCC \$15.203, \$15.204(b), and \$15.204(c).

3.2 DTS Bandwidth

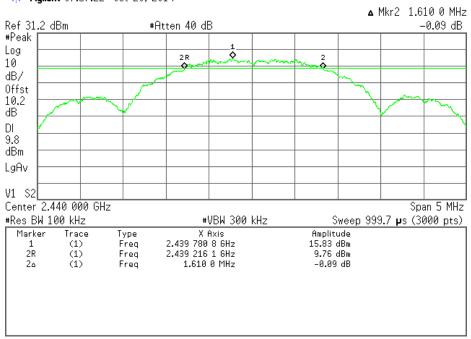
Performance Criterion: The minimum DTS bandwidth shall be at least 500 kHz.

Test Results: Complies

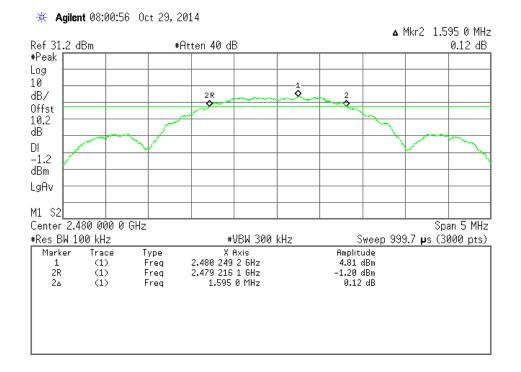
Test Details: Refers to the following block diagram, data table, and receiver screen captures. The EUT was tested in a continuous transmit mode at the maximum power level at the boost mode.


Spectrum Analyzer	EUT	DC Powe Supply	er
----------------------	-----	-------------------	----

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)
11	2405	1585
18	2440	1610
26	2480	1595


Note: The RF level in the plots is relative and is not the indication of RF output power.

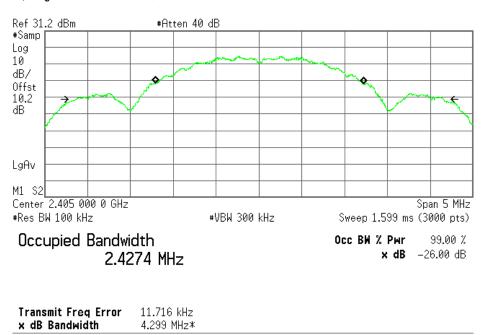
DTS Bandwidth, Channel 11:


DTS Bandwidth, Channel 18:

★ Agilent 07:57:22 Oct 29, 2014

DTS Bandwidth, Channel 26:

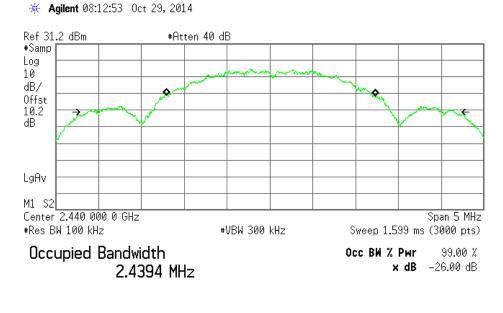
3.3 99% Bandwidth


Test Details: Refers to the following block diagram, data table, and receiver screen captures. The EUT was tested in a continuous transmit mode at the maximum power level at the boost mode.

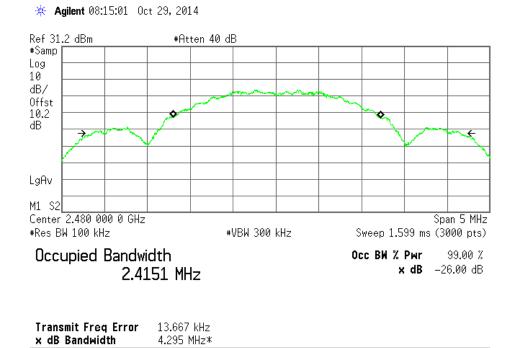
Spectrum Analyzer	EUT		DC Power Supply	
----------------------	-----	--	--------------------	--

Channel	Frequency (MHz)	99% Bandwidth (MHz)	
11	2405	2.427	
18	2440	2.439	
26	2480	2.415	

Note: The RF level in the plots is relative and is not the indication of RF output power.


99% Bandwidth, Channel 11:

🔆 Agilent 08:08:11 Oct 29, 2014



99% Bandwidth, Channel 18:

Transmit Freq Error	9.425 kHz
x dB Bandwidth	4.281 MHz*

99% Bandwidth, Channel 26:

3.4 Power Output

Performance Criterion: The maximum peak conducted output power shall not exceed 1 Watt.

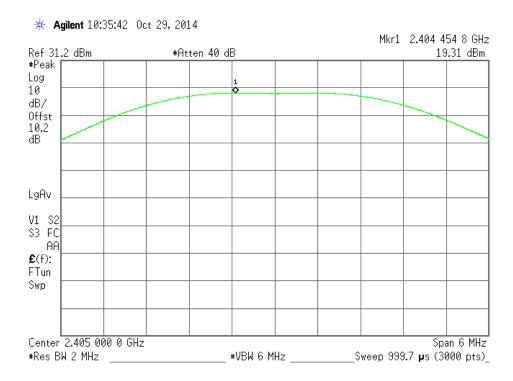
Test Results: Complies

Test Details: The EUT was tested in a continuous transmit mode with maximum power levels at the boost mode. Refers to the following block diagram, data table, and receiver screen captures.

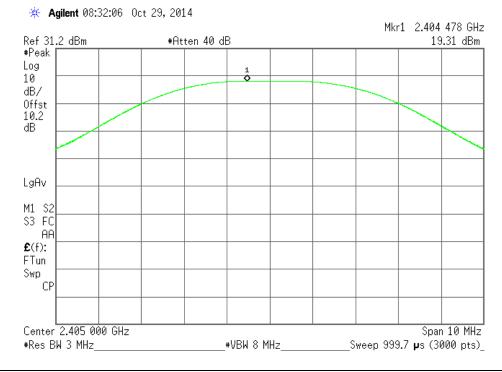
Spectrum Analyzer	[EUT		DC Power Supply
----------------------	---	-----	--	--------------------

FCC:

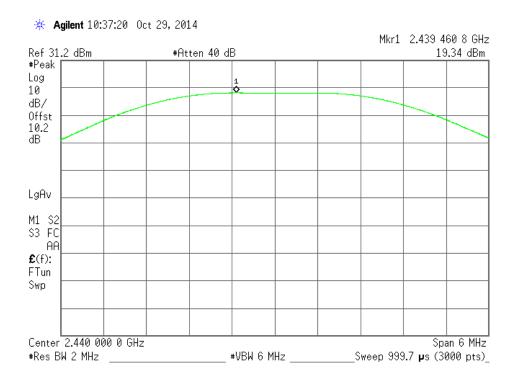
Channel	Frequency	Power Level	Power			
Channel	(MHz)	Fower Level	dBm	mW		
11	2405	0	19.31	85.31		
18	2440	0	19.34	85.90		
26	2480	-е	8.31	6.78		


Industry Canada:

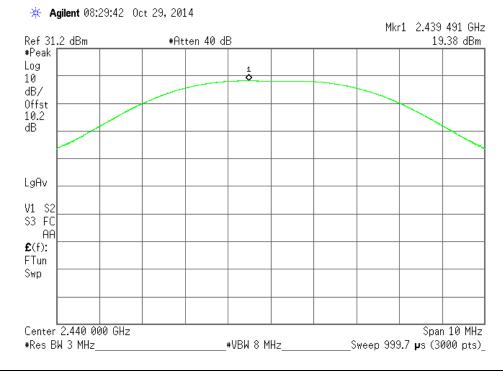
Channel	Frequency	Power Level	Power			
Channel	(MHz)	Power Lever	dBm	mW		
11	2405	0	19.31	85.31		
18	2440	0	19.38	86.70		
26	2480	-е	8.31	6.78		


Note: The insertion loss was compensated for in the instrument.

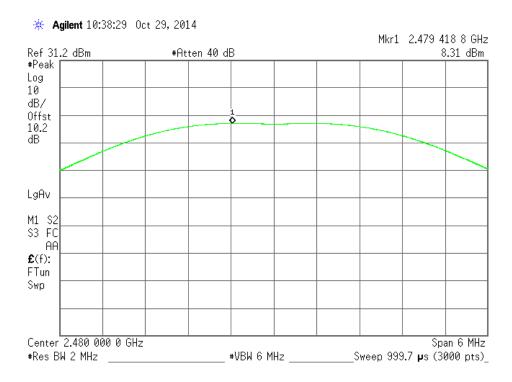
Power Output, Channel 11 (FCC):



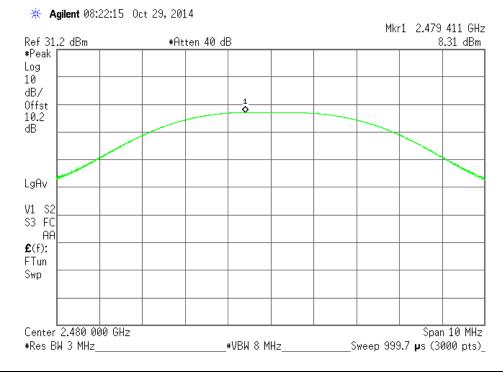
Power Output, Channel 11 (Industry Canada):



Power Output, Channel 18 (FCC):



Power Output, Channel 18 (Industry Canada):



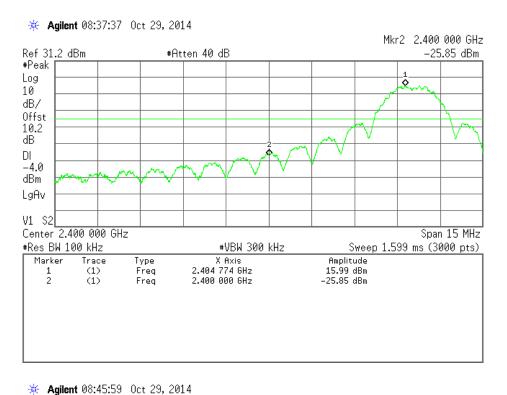
Power Output, Channel 26 (FCC):

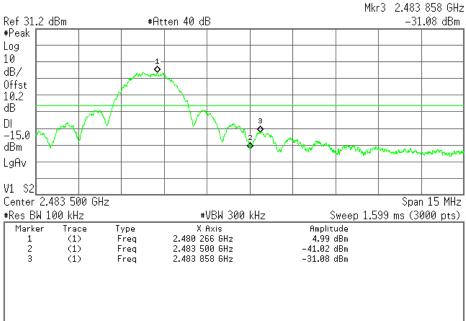
Power Output, Channel 26 (Industry Canada):

FCC ID: EROCWDHR IC: 5683C-CWDHR

3.5 Band Edge

Performance Criterion: In any 100 kHz bandwidth outside the frequency band, the RF power shall be at least 20 dB below that in the 100 kHz bandwidth within the band.


Test Results: Complies

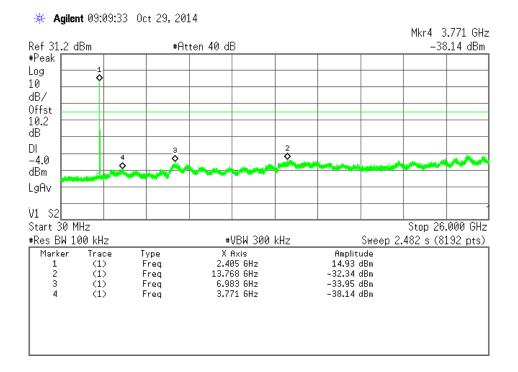

Test Details: Refers to the following block diagram and receiver screen captures

Band Edge:

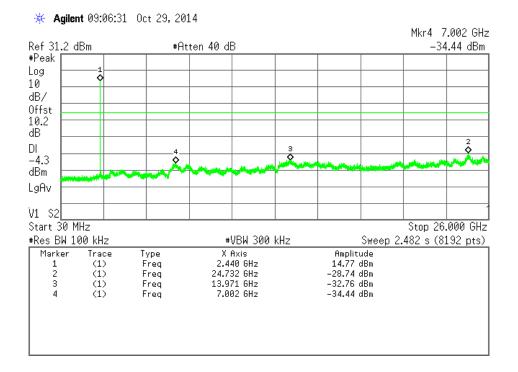
3.6 Conducted Spurious Emissions

Performance Criterion: In any 100 kHz bandwidth outside the frequency band, the radio frequency power shall be at least 20 dB below that in the 100 kHz bandwidth within the band.

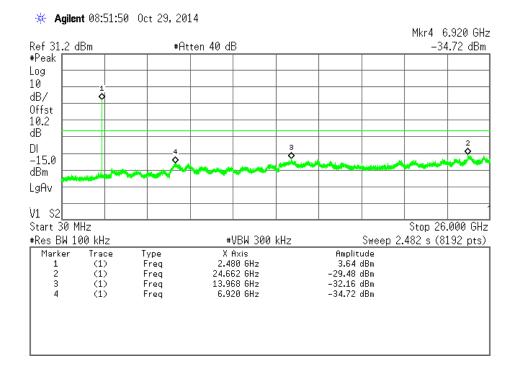
Test Results: Complies


Test Details: Refers to the following block diagram and receiver screen captures

Note: The EUT was tested in a continuous transmit mode at the maximum power level at the boost mode. The RF level in the screen captures is relative and is not the indication of RF output power.



Conducted Spurious Emission – Channel 11



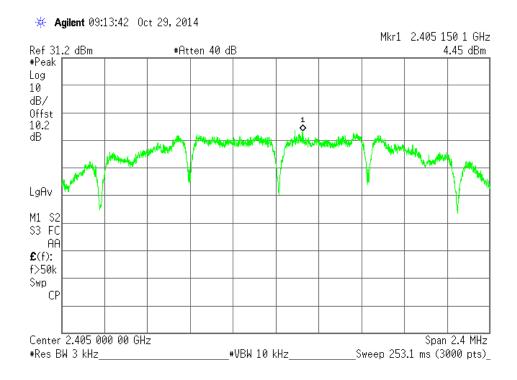
Conducted Spurious Emission – Channel 18

Conducted Spurious Emission – Channel 26

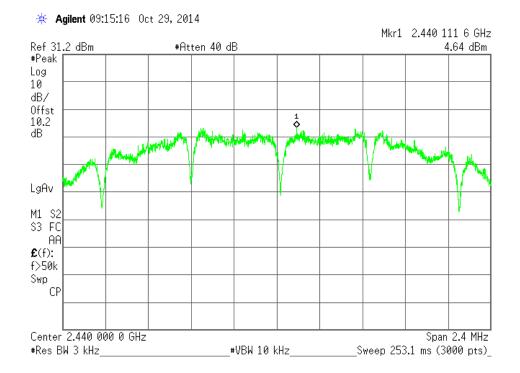
3.7 Power Spectral Density

Performance Criterion: The power spectral density shall not be greater than 8 dBm in any 3 kHz band.

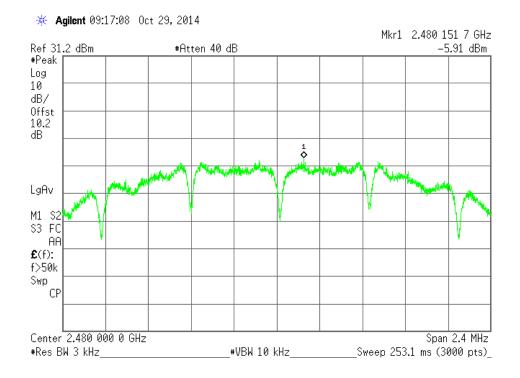
Test Results: Complies


Test Details: The EUT was tested in a continuous transmit mode with maximum power levels. Refers to the following table and receiver screen captures. The insertion loss was compensated for in the instrument.

Spectrum	EUT	DC Power
Analyzer	LUI	Supply


Channel	Frequency (MHz)	Power Spectral Density (dBm)
11	2405	4.45
18	2440	4.64
26	2480	-5.91

Power Spectral Density, Channel 11:

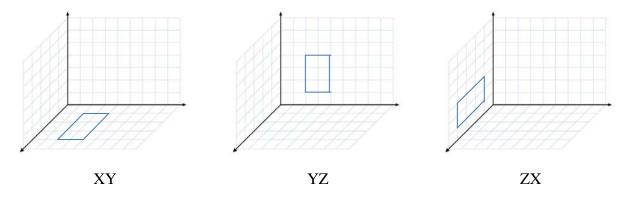

Power Spectral Density, Channel 18:

FCC ID: EROCWDHR IC: 5683C-CWDHR

Power Spectral Density, Channel 26:

3.8 Radiated Spurious Emissions

Performance Criterion: Radiated spurious emissions which fall in the restricted bands must comply with the radiated emission limits specified in FCC § 15.209(a) and Table 2 of IC RSS-Gen.


Test Results: Complies

Test Details: Radiated spurious emission was performed from 30 MHz to the tenth harmonics of the carrier. For each scan of radiated emission measurement, the procedures for maximizing emissions were followed. The EUT was rotated and antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. All radiated emission measurements, up to 25 GHz, were performed at 3-meter distance between an antenna and the EUT. All radiated emission measurements, above 18 GHz, were performed at 0.3-meter distance between an antenna and the EUT.

The peak level of radiated emissions above 1 GHz was measured with a resolution bandwidth (RBW) of 1 MHz and a video bandwidth (VBW) of 3 MHz.

For harmonics/spurs that fall in the restricted band, the radiated spurious emissions above 1 GHz were measured with RBW of 1 MHz, VBW of 10 Hz, and Sweep of Auto. The unit was configured for continuous operation.

EUT was tested in three orthogonal orientations (XY, YZ, and ZX planes). Worst-case data taken in XY orientation were recorded.

Refers to the following block diagram and data table for test data. Antenna factor, cable loss, and preamplifier gain were compensated for in the instrument. Calculation of duty cycle correction factor is included in the Theory of Operation.

Ī	Spectrum Analyzer	Preamplifier	Antenna	EUT	DC Power Supply
	-				

3m or	1m Se	paration
5 III OI	1111 30	paration

Antenna Polarization	Frequency (MHz)	Channel No.	Pow er Setting (Level)	EUT Orientation	Measured Data (dBuV/m)	Duty Cycle Correction Factor (dB)	Corrected Data	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Turntable Degree	Detector
Н	2390	11	0	XY	52.2	20	32.20	54	21.80	*	*	AVE
Н	2390	11	0	XY	59.48	0	59.48	74	14.52	*	*	PK
Н	4810	11	0	XY	46.28	20	26.28	54	27.72	98.0	268.0	AVE
Н	4810	11	0	XY	53.03	0	53.03	74	20.97	98.0	268.0	PK
V	12025	11	0	XY	58.43	20	38.43	54	15.57	202.0	201.0	AVE
V	12025	11	0	XY	64.04	0	64.04	74	9.96	202.0	201.0	PK
V	4880	18	0	XY	40.11	20	20.11	54	33.89	138.0	367.0	AVE
V	4880	18	0	XY	48.91	0	48.91	74	25.09	138.0	367.0	PK
Н	7320	18	0	XY	51.83	20	31.83	54	22.17	159.0	346.0	AVE
Н	7320	18	0	XY	58.00	0	58.00	74	16.00	159.0	346.0	PK
V	12200	18	0	XY	60.74	20	40.74	54	13.26	106.0	305.0	AVE
V	12200	18	0	XY	65.96	0	65.96	74	8.04	106.0	305.0	PK
Н	2483.5	26	-е	XY	67.09	20	47.09	54	6.91	*	*	AVE
Н	2483.5	26	-е	XY	73.58	0	73.58	74	0.42	*	*	PK
Н	2483.5	25	0	XY	62.58	20	42.58	54	11.42	*	*	AVE
Н	2483.5	25	0	XY	69.68	0	69.68	74	4.32	*	*	PK
Н	4960	26	-е	XY	33.51	20	13.51	54	40.49	176.0	200.0	AVE
Н	4960	26	-е	XY	45.93	0	45.93	74	28.07	176.0	200.0	PK
Н	7440	26	-е	XY	34.78	20	14.78	54	39.22	230.0	192.0	AVE
Н	7440	26	-е	XY	46.88	0	46.88	74	27.12	230.0	192.0	PK
Н	12400	26	-е	XY	35.25	20	15.25	54	38.75	193.0	320.0	AVE
Н	12400	26	-е	XY	47.09	0	47.09	74	26.91	193.0	320.0	PK

Tested by: Christopher Locke of UL LLC

Antenna Polarization	Frequency (MHz)	Channel No.	Pow er Setting (Level)	EUT Orientation	Measured Data (dBuV/m)	Duty Cycle Correction Factor (dB)	Corrected Data	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Turntable Degree	Detector
Н	2390	11	0	XY	47.57	20	27.57	54	26.43	*	*	AVE
Н	2390	11	0	XY	56.42	0	56.42	74	17.58	*	*	PK
V	4810	11	0	XY	36.72	20	16.72	54	37.28	98.0	285.0	AVE
V	4810	11	0	XY	47.04	0	47.04	74	26.96	98.0	285.0	PK
V	12025	11	0	XY	46.56	20	26.56	54	27.44	100.0	242.0	AVE
V	12025	11	0	XY	55.10	0	55.10	74	18.90	100.0	242.0	PK
Н	4880	18	0	XY	32.53	20	12.53	54	41.47	54.0	373.0	AVE
Н	4880	18	0	XY	44.44	0	44.44	74	29.56	54.0	373.0	PK
Н	7320	18	0	XY	38.75	20	18.75	54	35.25	221.0	198.0	AVE
Н	7320	18	0	XY	49.37	0	49.37	74	24.63	221.0	198.0	PK
V	12200	18	0	XY	57.72	20	37.72	54	16.28	104.0	289.0	AVE
V	12200	18	0	XY	63.29	0	63.29	74	10.71	104.0	289.0	PK
Н	2483.5	26	-e	XY	66.19	20	46.19	54	7.81	*	*	AVE
Н	2483.5	26	-е	XY	72.87	0	72.87	74	1.13	*	*	PK
Н	2483.5	25	0	XY	59.58	20	39.58	54	14.42	*	*	AVE
Н	2483.5	25	0	XY	66.64	0	66.64	74	7.36	*	*	PK
V	4960	26	-е	XY	32.38	20	12.38	54	41.62	187.0	352.0	AVE
V	4960	26	-е	XY	44.25	0	44.25	74	29.75	187.0	352.0	PK
Н	7440	26	-е	XY	34.84	20	14.84	54	39.16	288.0	138.0	AVE
Н	7440	26	-е	XY	46.79	0	46.79	74	27.21	288.0	138.0	PK
V	12400	26	-е	XY	35.41	20	15.41	54	38.59	82.0	274.0	AVE
V	12400	26	-е	XY	47.81	0	47.81	74	26.19	82.0	274.0	PK
*: based on f	ull maximizatio	on search of h	eight and az	muth						Date of	Test: Octob	er 28, 20
										Tested I	y: Ray May	er of UL L

3.9 Transmitter AC Power Line Conducted Emissions

Performance Criterion: AC power line conducted emissions shall not exceed the limits specified in FCC § 15.207 and Table 4 of IC RSS-Gen.

Test Results: Not Applicable. EUT is battery powered.