

# **EMISSIONS TEST REPORT**

Report Number: 100961088BOX-008 Project Number: G100961088

Report Issue Date: 11/28/2012

**Product Designation:** M010

Standards: CFR47 FCC Part 15:2012 Subpart C Section 15.209

Industry Canada RSS-210 Issue 8 December 2010

IC RSS-Gen Issue 3 December 2010 Section 7.2.5 Table 6+Notice DRS

2012-DRS0126

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719

Client: Timex Group USA Inc 555 Christian Road Middlebury, CT 06762

Report prepared by

Report reviewed by

Kouma Sinn / Senior Project Engineer, EMC

Nicholas Abbondante / Transmitter Staff Engineer, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

#### 1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

# 2 Test Summary

| Section | Test full name                                                                                                                                                                       | Result |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 3       | Client Information                                                                                                                                                                   |        |
| 4       | Description of Equipment Under Test                                                                                                                                                  |        |
| 5       | System Setup and Method                                                                                                                                                              |        |
| 6       | Fundamental Radiated Emissions<br>FCC Part 15:2012 Subpart C 15.209(a)<br>IC RSS-210 Issue 8 December 2010 and IC RSS-Gen Issue 3<br>December 2010 Section 7.2.5 Table 6             | Pass   |
| 7       | Transmitter Spurious Emissions Below 30MHz<br>FCC Part 15:2012 Subpart C 15.209(a)<br>IC RSS-210 Issue 8 December 2010 and IC RSS-Gen Issue 3<br>December 2010 Section 7.2.5 Table 6 | Pass   |
| 8       | Transmitter Spurious Emissions Above 30MHz<br>FCC Part 15:2012 Subpart C 15.209(a)<br>IC RSS-210 Issue 8 December 2010 and IC RSS-Gen Issue 3<br>December 2010 Section 7.2.5 Table 6 | Pass   |
|         | Receiver Spurious Emissions Below 30MHz<br>FCC Part 15:2012 Subpart B 15.109,<br>IC RSS-Gen Issue 3 December 2010: Section 6.0                                                       | N/A*   |
|         | Receiver Spurious Emissions Above 30MHz<br>FCC Part 15:2012 Subpart B 15.109,<br>IC RSS-Gen Issue 3 December 2010: Section 6.0                                                       | N/A*   |
| 9       | 20dB Bandwidth<br>FCC Part 15:2012 Subpart C 15.215<br>IC RSS-Gen Issue 3 December 2010 Section 4.6                                                                                  | Pass   |
| 10      | Revision History                                                                                                                                                                     |        |

<sup>\* -</sup> The device is a transmitter only

## 3 Client Information

This EUT was tested at the request of:

Company: Timex Group USA Inc

555 Christian Road Middlebury, CT 06762

 Contact:
 Sam Everett

 Telephone:
 (203) 346-5603

 Fax:
 (203) 573-5139

**Email:** severett@timexgroup.com

# 4 Description of Equipment Under Test

| Equipment Under Test                                |  |      |     |  |  |  |  |
|-----------------------------------------------------|--|------|-----|--|--|--|--|
| Description Manufacturer Model Number Serial Number |  |      |     |  |  |  |  |
| Heart Rate Monitor Timex                            |  | M010 | 204 |  |  |  |  |
|                                                     |  |      |     |  |  |  |  |

| Receive Date:       | 11/19/2012 |
|---------------------|------------|
| Received Condition: | Good       |
| Type:               | Production |

# Description of Equipment Under Test (provided by client)

The device is a Heart Rate Monitor. It utilizes an integrated antenna.

| Equipment Under Test Power Configuration                     |     |     |     |  |  |  |
|--------------------------------------------------------------|-----|-----|-----|--|--|--|
| Rated Voltage Rated Current Rated Frequency Number of Phases |     |     |     |  |  |  |
| 3V Lithium Battery                                           | N/A | N/A | N/A |  |  |  |

| Ope | Operating modes of the EUT:                                                                        |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------|--|--|--|--|
| No. | Descriptions of EUT Exercising                                                                     |  |  |  |  |
| 1   | During testing, the 137.5-141 kHz transmitter was operating as near to continuously as possible. A |  |  |  |  |
|     | modulated carrier was used.                                                                        |  |  |  |  |

# 5 System Setup and Method

|    | Cables      |               |           |          |             |  |  |
|----|-------------|---------------|-----------|----------|-------------|--|--|
| ID | Description | Length<br>(m) | Shielding | Ferrites | Termination |  |  |
|    | None        |               |           |          |             |  |  |
|    |             |               |           |          |             |  |  |

| Support Equipment                                   |  |  |  |  |  |  |
|-----------------------------------------------------|--|--|--|--|--|--|
| Description Manufacturer Model Number Serial Number |  |  |  |  |  |  |
| None                                                |  |  |  |  |  |  |
|                                                     |  |  |  |  |  |  |

# 5.1 Method:

Configuration as required by ANSI C63.4-2009.

# 5.2 EUT Block Diagram:

M010

# 6 Fundamental Frequency Radiated Emissions

#### 6.1 Method

Tests are performed in accordance with FCC Part 15:2012 Subpart C 15.209(a) IC RSS-210 Issue 8 December 2010 and IC RSS-Gen Issue 3 December 2010 Section 7.2.5 Table 6, and ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

#### **Measurement Uncertainty**

For radiated emissions,  $U_{\it lab}$  (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) <  $U_{\it CISPR}$  (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

### **Sample Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where  $FS = Field Strength in dB\mu V/m$ 

RA = Receiver Amplitude (including preamplifier) in  $dB\mu V$ 

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$  AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 \text{ dB}_{\mu}V/m$ 

To convert from  $dB\mu V$  to  $\mu V$  or mV the following was used:

UF = 
$$10^{(NF/20)}$$
 where UF = Net Reading in  $\mu$ V  
NF = Net Reading in dB $\mu$ V

#### **Example:**

FS = RA + AF + CF - AG = 
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
  
UF =  $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$ 

# 6.2 Test Equipment Used:

| Asset    | Description                            | Manufacturer      | Model             | Serial      | Cal Date   | Cal Due    |
|----------|----------------------------------------|-------------------|-------------------|-------------|------------|------------|
| DAV004'  | Weather Station                        | Davis Instruments | 7400              | PE80529A61A | 09/25/2012 | 09/25/2014 |
| LOOP1'   | LOOP ANTENNA                           | Empire            | LG-105            | 61          | 08/18/2012 | 08/18/2013 |
| 145-416' | Cables 145-400 145-402 145-404 145-408 | Huber + Suhner    | 3m Track B cables | multiple    | 10/04/2012 | 10/04/2013 |
| 145128'  | EMI Receiver 40 GHz (20 Hz - 40 Ghz)   | Rohde & Schwarz   | ESI               | 8392831001  | 09/28/2012 | 09/28/2013 |

### **Software Utilized:**

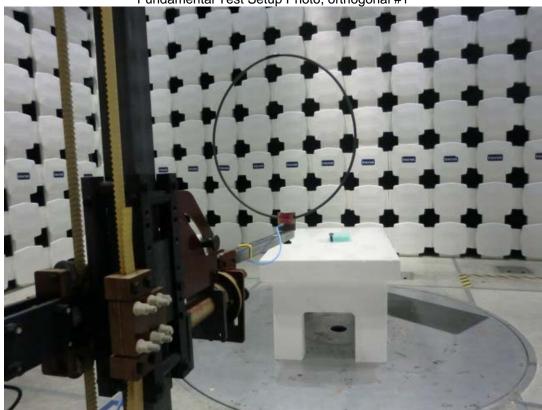
| Name               | Manufacturer | Version  |
|--------------------|--------------|----------|
| EMI Boxborough.xls | Intertek     | 08/27/10 |

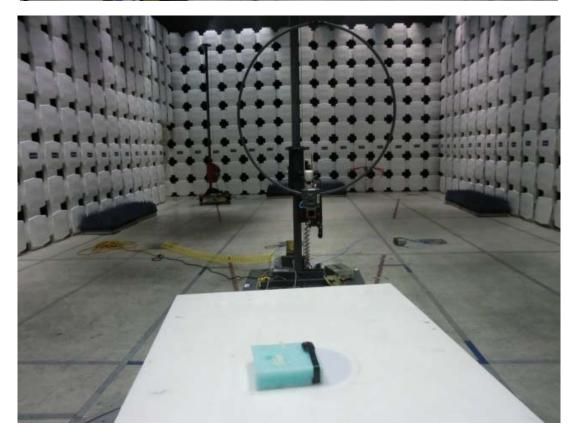
#### 6.3 Results:

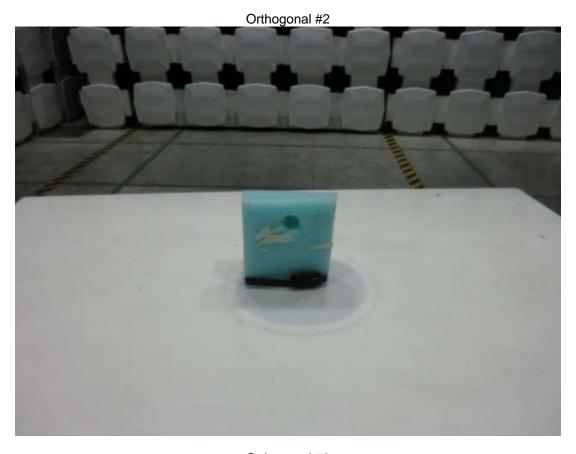
The sample tested was found compliant.

The field strength of any emissions shall not exceed the limits as follows:

### § 15.209 Radiated emission limits; general requirements.


(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


| Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009-0.490     | 2400/F(kHz)                       | 300                           |
| 0.490-1.705     | 24000/F(kHz)                      | 30                            |
| 1.705-30.0      | 30                                | 30                            |
| 30-88           | 100 **                            | 3                             |
| 88-216          | 150 **                            | 3                             |
| 216-960         | 200 **                            | 3                             |
| Above 960       | 500                               | 3                             |


<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

# 6.4 Setup Photographs:











#### 6.5 Test Data:

#### **Radiated Emissions**

Company: Timex Group USA Inc Antenna & Cables: N Bands: N, LF, HF, SHF

Model #: M010 Antenna: Loop1 08-18-13 1m E.txt Loop1 08-18-13 1m H.txt

Serial #: 204 Cable(s): 145-416 3mTrkB 10-04-2013.txt NONE.

Engineers: Vathana Ven Location: 10M Barometer: DAV004 Filter: NONE

Project #: G100961088 Date(s): 11/20/12

Standard: FCC Part 15 Subpart C 15.209/RSS-210 Temp/Humidity/Pressure: 22 deg C 23% 1011mB

PreAmp Used? (Y or N): Y Voltage/Frequency: Fresh battery Frequency Range: Frequencies

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS; RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

|          | Ant.                                  |           |         | Antenna | Cable        | Pre-amp       | Distance |          |          |        |            |     |
|----------|---------------------------------------|-----------|---------|---------|--------------|---------------|----------|----------|----------|--------|------------|-----|
| Detector | Pol.                                  | Frequency | Reading | Factor  | Loss         | Factor        | Factor   | Net      | Limit    | Margin | Bandwidth  |     |
| Туре     | (V/H)                                 | MHz       | dB(uV)  | dB(1/m) | dB           | dB            | dB       | dB(uV/m) | dB(uV/m) | dB     |            | FCC |
|          |                                       |           |         | Ort     | hogonal #1   | (EUT was F    | lat)     |          |          |        |            |     |
| PK       | V                                     | 0.1375    | 39.64   | 48.68   | 0.09         | 25.79         | 93.24    | -30.62   | 24.84    | -55.46 | 30/100 kHz |     |
| PK       | V                                     | 0.1410    | 40.43   | 48.71   | 0.09         | 25.85         | 93.24    | -29.86   | 24.62    | -54.48 | 30/100 kHz |     |
|          |                                       |           |         | Orthog  | jonal #2 (EL | JT on its lon | g side)  |          |          |        |            |     |
| PK       | V                                     | 0.1375    | 40.38   | 48.68   | 0.09         | 25.79         | 93.24    | -29.88   | 24.84    | -54.72 | 30/100 kHz |     |
| PK       | V                                     | 0.1410    | 40.22   | 48.71   | 0.09         | 25.85         | 93.24    | -30.07   | 24.62    | -54.69 | 30/100 kHz |     |
|          | Orthogonal #3 (EUT on its short side) |           |         |         |              |               |          |          |          |        |            |     |
| PK       | V                                     | 0.1375    | 40.40   | 48.68   | 0.09         | 25.79         | 93.24    | -29.86   | 24.84    | -54.70 | 30/100 kHz |     |
| PK       | V                                     | 0.1410    | 40.47   | 48.71   | 0.09         | 25.85         | 93.24    | -29.82   | 24.62    | -54.44 | 30/100 kHz |     |

Test Personnel(s): Test Date(s): \_\_11/20/2012 Supervising Engineer: (Where Applicable) N/A Test Levels: See test results Product Standard: FCC Part 15.209(a) and IC RSS-210 Ambient Temperature: 22 °C Input Voltage: 3V Lithium Battery Relative Humidity: 23 % Pretest Verification w/ Atmospheric Pressure: 1011 mbars Ambient Signals or BB Source: Ambient Signals

Deviations, Additions, or Exclusions: None

# 7 Transmitter Spurious Emissions Below 30 MHz

#### 7.1 Method

Tests are performed in accordance with FCC Part 15:2012 Subpart C 15.209(a) IC RSS-210 Issue 8 December 2010 and IC RSS-Gen Issue 3 December 2010 Section 7.2.5 Table 6, ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

#### **Measurement Uncertainty**

For radiated emissions,  $U_{\it lab}$  (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) <  $U_{\it CISPR}$  (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

### **Sample Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where  $FS = Field Strength in dB_{\mu}V/m$ 

RA = Receiver Amplitude (including preamplifier) in  $dB\mu V$ 

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $_{\mu}V$  is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $_{\mu}V/m$ . This value in dB $_{\mu}V/m$  was converted to its corresponding level in  $_{\mu}V/m$ .

 $RA = 52.0 dB\mu V$  AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$ 

To convert from  $dB\mu V$  to  $\mu V$  or mV the following was used:

UF = 
$$10^{(NF/20)}$$
 where UF = Net Reading in  $\mu$ V  
NF = Net Reading in dB $\mu$ V

#### **Example:**

FS = RA + AF + CF - AG = 
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
  
UF =  $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$ 

# 7.2 Test Equipment Used:

| Asset    | Description                            | Manufacturer      | Model             | Serial      | Cal Date   | Cal Due    |
|----------|----------------------------------------|-------------------|-------------------|-------------|------------|------------|
| DAV004'  | Weather Station                        | Davis Instruments | 7400              | PE80529A61A | 09/25/2012 | 09/25/2014 |
| LOOP1'   | LOOP ANTENNA                           | Empire            | LG-105            | 61          | 08/18/2012 | 08/18/2013 |
| 145-416' | Cables 145-400 145-402 145-404 145-408 | Huber + Suhner    | 3m Track B cables | multiple    | 10/04/2012 | 10/04/2013 |
| 145128'  | EMI Receiver 40 GHz (20 Hz - 40 Ghz)   | Rohde & Schwarz   | ESI               | 8392831001  | 09/28/2012 | 09/28/2013 |
| LOOP2'   | LOOP ANTENNA                           | Empire            | LP-105            | 905         | 10/26/2011 | 10/26/2013 |

#### **Software Utilized:**

| Name               | Manufacturer | Version  |  |  |
|--------------------|--------------|----------|--|--|
| EMI Boxborough.xls | Intertek     | 08/27/10 |  |  |

#### 7.3 Results:

The sample tested was found compliant.

The field strength of any emissions shall not exceed the limits as follows:


## § 15.209 Radiated emission limits; general requirements.

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009-0.490     | 2400/F(kHz)                       | 300                           |
| 0.490-1.705     | 24000/F(kHz)                      | 30                            |
| 1.705-30.0      | 30                                | 30                            |
| 30-88           | 100 **                            | 3                             |
| 88-216          | 150 **                            | 3                             |
| 216-960         | 200 **                            | 3                             |
| Above 960       | 500                               | 3                             |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

# 7.4 Setup Photographs:







#### 7.5 **Test Data:**

#### Radiated Emissions (14-150kHz)

Company: Timex Group USA Inc Antenna & Cables: Ν Bands: N, LF, HF, SHF

Model #: M010 Antenna: Loop1 08-18-13 1m E.txt Loop1 08-18-13 1m H.txt

Serial #: 204 Cable(s): 145-416 3mTrkB 10-04-2013.txt NONE.

Engineers: Vathana Ven Location: 10M Barometer: DAV004 NONE Project #: G100961088 Date(s): 11/20/12

Standard: FCC Part 15.209(a) and IC RSS-210 Temp/Humidity/Pressure: 22 deg C 23% 1011mB

Receiver: R&S ESI (145-128) 09-18-2013 Limit Distance (m): 300 PreAmp: PRE145003 10-04-2013.txt Test Distance (m): 1.4

PreAmp Used? (Y or N): Voltage/Frequency: Fresh battery Frequency Range: 14-150kHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

| - 1 |                           | Ant.  |           |         | Antenna | Cable | Pre-amp | Distance |          |          |        |           |     |    |           |
|-----|---------------------------|-------|-----------|---------|---------|-------|---------|----------|----------|----------|--------|-----------|-----|----|-----------|
| -   | Detector                  | Pol.  | Frequency | Reading | Factor  | Loss  | Factor  | Factor   | Net      | Limit    | Margin | Bandwidth |     |    |           |
| -   | Type                      | (V/H) | MHz       | dB(uV)  | dB(1/m) | dB    | dB      | dB       | dB(uV/m) | dB(uV/m) | dB     |           | FCC | IC | Harmonic? |
| [   | Spurious from 14 - 150kHz |       |           |         |         |       |         |          |          |          |        |           |     |    |           |
| ſ   | PK                        | V     | 0.0676    | 9.13    | 50.94   | 0.07  | 0.00    | 93.24    | -33.09   | 31.00    | -64.09 | 200/1 kHz |     |    | No pre-am |

#### Radiated Emissions (150kHz-30MHz)

Company: Timex Group USA Inc Antenna & Cables: LF Bands: N, LF, HF, SHF Model #: M010 Antenna: LOOP2 E-Field 10-26-13.txt LOOP2 H-Field 10-26-13.txt

Serial #: 204 Cable(s): 145-416 3mTrkB 10-04-2013.txt NONE. Engineers: Vathana Ven Barometer: DAV004 Location: 10M

NONE Project #: G100961088 Date(s): 11/20/12

Standard: FCC Part 15 Subpart C 15.209

Temp/Humidity/Pressure: 22 deg C 23% 1011mB

Receiver: R&S ESI (145-128) 09-18-2013 Limit Distance (m): 300 PreAmp: PRE145003 10-04-2013.txt Test Distance (m): 1.4

PreAmp Used? (Y or N): Voltage/Frequency: Fresh battery Frequency Range: 0.150-30MHz Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

| Peak: P  | K Quasi-P | eak: QP Ave | rage: AVG | RMS: RMS | S; NF = Noise | se Floor, RE | 3 = Restricte | ed Band; Ba | ndwidth der | oted as R | BW/VBW    |   |
|----------|-----------|-------------|-----------|----------|---------------|--------------|---------------|-------------|-------------|-----------|-----------|---|
|          | Ant.      |             |           | Antenna  | Cable         | Pre-amp      | Distance      |             |             |           |           | l |
| Detector | Pol.      | Frequency   | Reading   | Factor   | Loss          | Factor       | Factor        | Net         | Limit       | Margin    | Bandwidth | l |
| Туре     | (V/H)     | MHz         | dB(uV)    | dB(1/m)  | dB            | dB           | dB            | dB(uV/m)    | dB(uV/m)    | dB        |           | F |
|          |           |             |           | Spu      | rous from 1   | 50kHz - 30ľ  | ИНz           |             |             |           |           |   |
| PK       | V         | 0.2751      | -2.07     | 57.40    | 0.07          | 26.77        | 93.24         | -64.61      | 18.81       | -83.42    | 9/30 kHz  |   |
| PK       | V         | 0.2824      | -7.55     | 57.37    | 0.07          | 26.78        | 93.24         | -70.13      | 18.59       | -88.72    | 9/30 kHz  |   |
| PK       | V         | 0.4126      | -6.40     | 55.46    | 0.05          | 27.03        | 93.24         | -71.15      | 15.29       | -86.44    | 9/30 kHz  |   |
| PK       | V         | 0.4232      | -8.19     | 55.34    | 0.05          | 27.03        | 93.24         | -73.07      | 15.09       | -88.16    | 9/30 kHz  | ı |
| PK       | V         | 0.5501      | 26.93     | 54.10    | 0.07          | 27.11        | 53.24         | 0.74        | 12.80       | -12.06    | 9/30 kHz  |   |
| PK       | V         | 0.5642      | 26.71     | 53.99    | 0.07          | 27.12        | 53.24         | 0.40        | 12.58       | -12.18    | 9/30 kHz  |   |
| PK       | V         | 0.6876      | 22.90     | 53.35    | 0.09          | 27.15        | 53.24         | -4.06       | 10.86       | -14.92    | 9/30 kHz  |   |
| PK       | V         | 0.7048      | 22.71     | 53.29    | 0.09          | 27.16        | 53.24         | -4.31       | 10.64       | -14.95    | 9/30 kHz  |   |
| PK       | V         | 0.8261      | 19.83     | 52.89    | 0.03          | 27.17        | 53.24         | -7.67       | 9.26        | -16.93    | 9/30 kHz  |   |
| PK       | V         | 0.8459      | 21.32     | 52.80    | 0.05          | 27.18        | 53.24         | -6.24       | 9.06        | -15.30    | 9/30 kHz  |   |
| PK       | V         | 0.9874      | 6.28      | 51.85    | 0.04          | 27.20        | 53.24         | -22.27      | 7.71        | -29.98    | 9/30 kHz  |   |
| PK       | V         | 1.2690      | 19.90     | 51.10    | 0.04          | 27.21        | 53.24         | -9.41       | 5.53        | -14.94    | 9/30 kHz  |   |
| PK       | V         | 1.3760      | 18.88     | 50.82    | 0.04          | 27.22        | 53.24         | -10.71      | 4.83        | -15.54    | 9/30 kHz  | L |

IC

# **Intertek**

Report Number: 100961088BOX-008 Issued: 11/28/2012

Vathana Ven V Test Personnel(s): Test Date(s): 11/20/2012 Supervising Engineer: (Where Applicable)
Product Standard: Test Levels: See test results FCC Part 15.209(a) and IC RSS-210 22 °C Ambient Temperature: Input Voltage: 3V Lithium Battery Relative Humidity: 23 % Pretest Verification w/ Atmospheric Pressure: 1011 mbars Ambient Signals or BB Source: Ambient Signals

Deviations, Additions, or Exclusions: None

### 8 Transmitter Spurious Above 30 MHz

#### 8.1 Method

Tests are performed in accordance with FCC Part 15:2012 Subpart C 15.209(a) IC RSS-210 Issue 8 December 2010 and IC RSS-Gen Issue 3 December 2010 Section 7.2.5 Table 6, ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

#### **Measurement Uncertainty**

For radiated emissions,  $U_{\it lab}$  (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) <  $U_{\it CISPR}$  (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

### **Sample Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where  $FS = Field Strength in dB_{\mu}V/m$ 

RA = Receiver Amplitude (including preamplifier) in  $dB\mu V$ 

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $_{\mu}V$  is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $_{\mu}V/m$ . This value in dB $_{\mu}V/m$  was converted to its corresponding level in  $_{\mu}V/m$ .

 $RA = 52.0 dB\mu V$  AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$ 

To convert from  $dB\mu V$  to  $\mu V$  or mV the following was used:

UF = 
$$10^{(NF/20)}$$
 where UF = Net Reading in  $\mu$ V  
NF = Net Reading in dB $\mu$ V

#### **Example:**

FS = RA + AF + CF - AG = 
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
  
UF =  $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$ 

# 8.2 Test Equipment Used:

| Asset    | Description                                    | Manufacturer      | Model              | Serial      | Cal Date   | Cal Due    |
|----------|------------------------------------------------|-------------------|--------------------|-------------|------------|------------|
| DAV003'  | Weather Station                                | Davis Instruments | 7400               | PE80529A39A | 09/25/2012 | 09/25/2014 |
| 145106'  | Bilog Antenna (30MHz - 5GHz)                   | Sunol Sciences    | JB5                | A111003     | 09/04/2012 | 09/04/2013 |
| 145128'  | EMI Receiver 40 GHz (20 Hz - 40 Ghz)           | Rohde & Schwarz   | ESI                | 8392831001  | 09/28/2012 | 09/28/2013 |
| 145-410' | Cables 145-400 145-403 145-405 145-406 145-407 | Huber + Suhner    | 10m Track A Cables | multiple    | 10/04/2012 | 10/04/2013 |
| 145003'  | Preamplifier (150 KHz to 1.3 GHz)              | Hewlett Packard   | 8447D              | 2443A04077  | 10/04/2012 | 10/04/2013 |

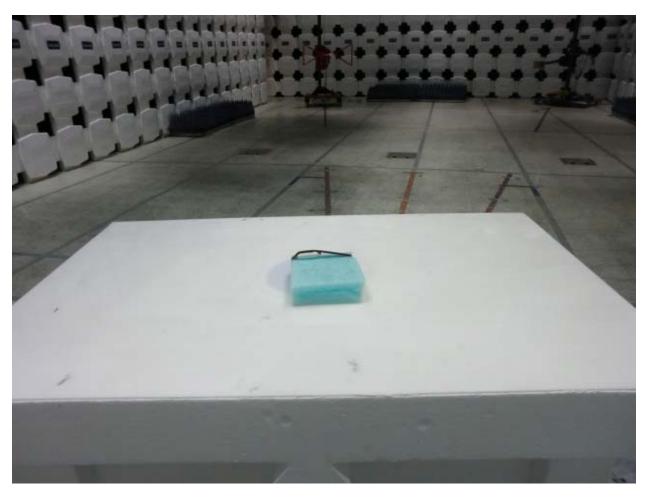
#### **Software Utilized:**

| Name | Name Manufacturer |            |
|------|-------------------|------------|
| C5   | Teseq             | 5.26.46.46 |

### 8.3 Results:

The sample was tested found compliant.

The field strength of any emissions shall not exceed the limits as follows:


### § 15.209 Radiated emission limits; general requirements.

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009-0.490     | 2400/F(kHz)                       | 300                           |
| 0.490-1.705     | 24000/F(kHz)                      | 30                            |
| 1.705-30.0      | 30                                | 30                            |
| 30-88           | 100 **                            | 3                             |
| 88-216          | 150 **                            | 3                             |
| 216-960         | 200 **                            | 3                             |
| Above 960       | 500                               | 3                             |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

# 8.4 Setup Photograph:

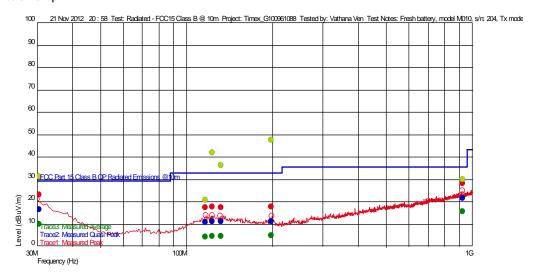


#### 8.5 Test Data:

#### **Transmit Mode**

Additional Information

**Test Information** 


User Entry Radiated - FCC15 Class B @ 10m Timex\_G100961088 Test Details

Test: Project:

Fresh battery, model M010, s/n: 204, Tx mode 21 deg C 26%, 1014mB Test Notes: Temperature: Humidity:

Tested by: Test Started: Vathana Ven 21 Nov 2012 20 : 58

### Prescan Emission Graph



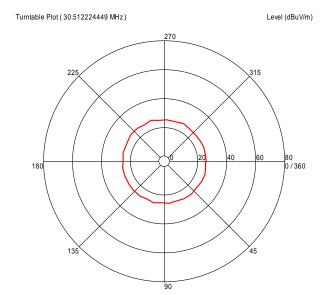
Measured Peak Value

Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

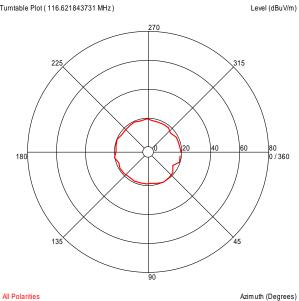
Swept Peak Data

Swept Quasi Peak Data

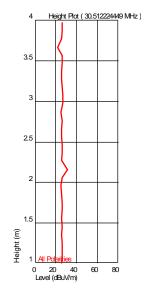

\_\_ Swept Average Data

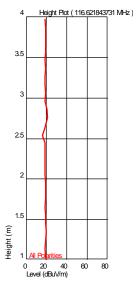
#### **Emissions Test Data**

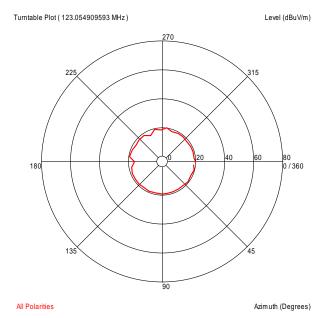
Trace2: Measured Quasi Peak

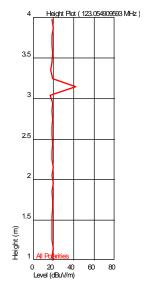

| Frequency<br>(Hz) | Level<br>(dBuV/m) | AF     | PA+CL   | Limit<br>(dBuV/m) | Margin<br>(dBuV/m) | Hor ( ),<br>Ver (   ) | Azimuth (deg)<br>(Deg) | Mast Height (m) | RBW<br>(Hz) |
|-------------------|-------------------|--------|---------|-------------------|--------------------|-----------------------|------------------------|-----------------|-------------|
| 116.621843731 M   | 10.90             | 13.624 | -25.330 | 33.040            | -22.14             |                       | 160                    | 2.87            | 120 k       |
| 123.054909593 M   | 11.11             | 13.995 | -25.273 | 33.040            | -21.93             |                       | 267                    | 3.25            | 120 k       |
| 131.953707142 M   | 11.20             | 13.900 | -25.192 | 33.040            | -21.84             |                       | 170                    | 1.14            | 120 k       |
| 198.369339148 M   | 11.23             | 12.737 | -24.430 | 33.040            | -21.81             | İ                     | 147                    | 1.04            | 120 k       |
| 922.915831798 M   | 21.60             | 22.458 | -22.796 | 35.540            | -13.94             |                       | 332                    | 3.78            | 120 k       |
| 30.512224449 M    | 16.44             | 20.839 | -26.452 | 29.540            | -13.10             |                       | 263                    | 2.27            | 120 k       |

### **Azimuth Plots**



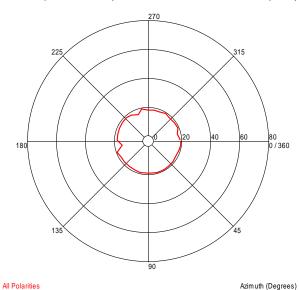


All Polarities Azimuth (Degrees)

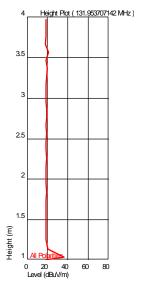

Turntable Plot ( 116.621843731 MHz )

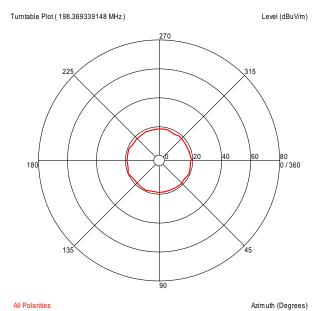



### **Turntable Plots**





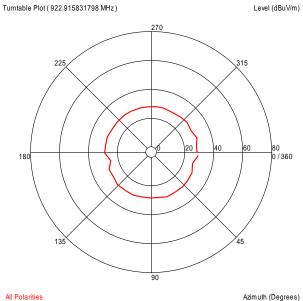



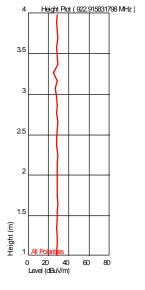















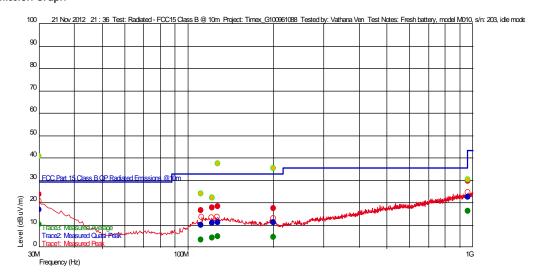

Level (dBuV/m)





#### Idle Mode

Additional Information


**Test Information** 

Test Details Test:

User Entry Radiated - FCC15 Class B @ 10m Timex\_G100961088 Fresh battery, model M010, s/n: 203, idle mode

Project: Test Notes: Temperature: Humidity: 21 deg C 26%, 1014mB Vathana Ven 21 Nov 2012 21 : 36 Tested by: Test Started:

### Prescan Emission Graph



Measured Peak Value

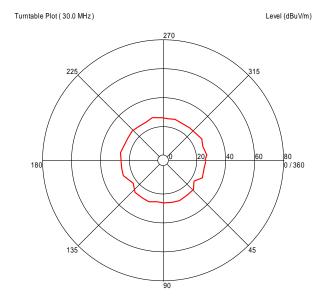
Measured Quasi Peak Value

Measured Average Value

Maximum Value of Mast and Turntable

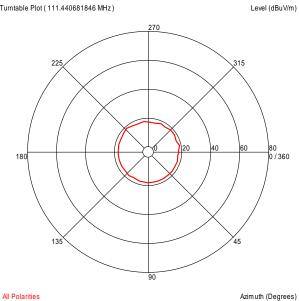
Swept Peak Data

Swept Quasi Peak Data

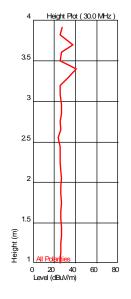

\_\_ Swept Average Data

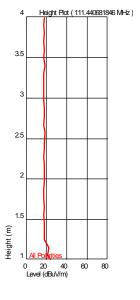
#### **Emissions Test Data**

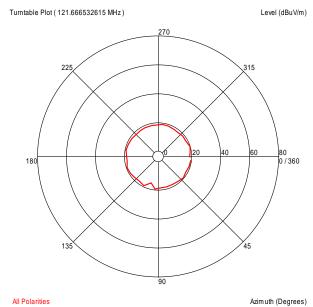
Trace2: Measured Quasi Peak

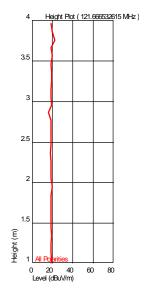

| Frequency<br>(Hz) | Level<br>(dBuV/m) | AF     | PA+CL   | Limit<br>(dBuV/m) | Margin<br>(dBuV/m) | Hor ( ),<br>Ver (   ) | Azimuth (deg)<br>(Deg) | Mast Height (m) | RBW<br>(Hz) |
|-------------------|-------------------|--------|---------|-------------------|--------------------|-----------------------|------------------------|-----------------|-------------|
| 111.440681846 M   | 9.90              | 12.888 | -25.377 | 33.040            | -23.14             | 1                     | 238                    | 1.05            | 120 k       |
| 121.666532615 M   | 11.00             | 13.900 | -25.285 | 33.040            | -22.04             | <u></u>               | 149                    | 3.86            | 120 k       |
| 199.828055752 M   | 11.29             | 12.883 | -24.412 | 33.040            | -21.75             |                       | 13                     | 1.66            | 120 k       |
| 127.411423012 M   | 11.32             | 14.059 | -25.233 | 33.040            | -21.72             | İ                     | 354                    | 1.04            | 120 k       |
| 962.714628882 M   | 22.56             | 22.854 | -22.678 | 43.540            | -20.98             | <u></u>               | 360                    | 1.76            | 120 k       |
| 30.0 M            | 16.78             | 21.300 | -26.460 | 29.540            | -12.76             |                       | 320                    | 3.50            | 120 k       |

### **Azimuth Plots**

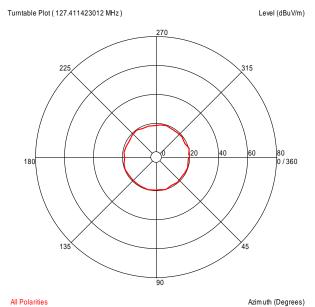


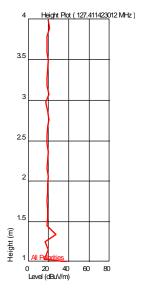


All Polarities Azimuth (Degrees)

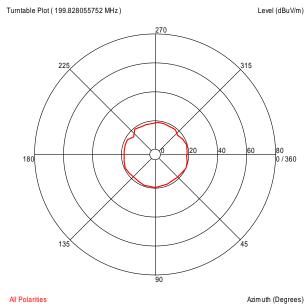

Turntable Plot ( 111.440681846 MHz )

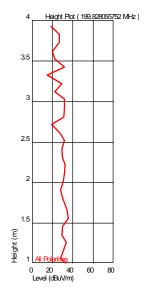



### **Turntable Plots**

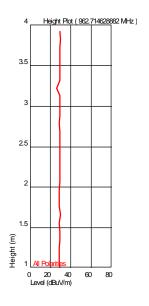



. .










7411 Old 1805



Test Personnel(s):
Supervising Engineer:
(Where Applicable)
Product Standard:
Input Voltage:
Pretest Verification w/
Ambient Signals or
BB Source:

Vathana Ven

Viv

Vathana Ven

Vathana Ven

Vathana Ven

Vathana Ven

Vathana Ven

N/A

FCC Part 15.209(a) and IC RSS-210

3V Lithium Battery

Ambient Signals

Test Date(s): 11/21/2012

Test Levels: See test results

Ambient Temperature: 21 °C

Relative Humidity: 26 %

Atmospheric Pressure: 1014 mbars

Deviations, Additions, or Exclusions: None

#### 9 20 dB Bandwidth

#### 9.1 Method

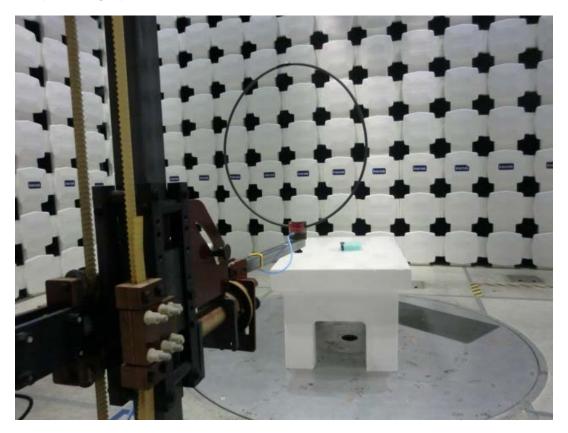
Tests are performed in accordance with FCC Part 15:2012 Subpart C 15.215, IC RSS-Gen Issue 3 December 2010 Section 4.6, ANSI C63.4-2009.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

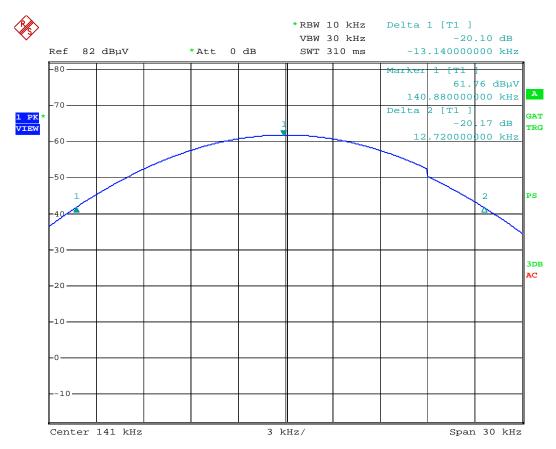
9.2 Test Equipment Used:

| Asset    | Description                            | Manufacturer      | Model             | Serial      | Cal Date   | Cal Due    |
|----------|----------------------------------------|-------------------|-------------------|-------------|------------|------------|
| DAV004'  | Weather Station                        | Davis Instruments | 7400              | PE80529A61A | 09/25/2012 | 09/25/2014 |
| LOOP1'   | LOOP ANTENNA                           | Empire            | LG-105            | 61          | 08/18/2012 | 08/18/2013 |
| 145-416' | Cables 145-400 145-402 145-404 145-408 | Huber + Suhner    | 3m Track B cables | multiple    | 10/04/2012 | 10/04/2013 |
| 145128'  | EMI Receiver 40 GHz (20 Hz - 40 Ghz)   | Rohde & Schwarz   | ESI               | 8392831001  | 09/28/2012 | 09/28/2013 |


#### **Software Utilized:**

| Name | Manufacturer | Version |
|------|--------------|---------|
| None |              |         |

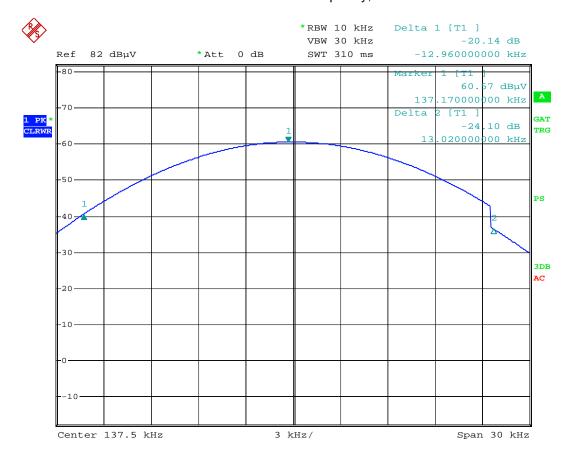
#### 9.3 Results:


The sample tested was found compliant. The 20 dB bandwidth remains within the assigned band.

# 9.4 Setup Photograph:



### 9.5 Test Data:


# Fundamental Frequency, 137.5 kHz



Date: 21.NOV.2012 22:08:00

20 dB Bandwidth = 25.86 kHz

## Fundamental Frequency, 141 kHz



Date: 21.NOV.2012 22:14:05

### 20 dB Bandwidth = 25.98 kHz

| Test Personnel(s):      | Vathana Ven V5V                   | Test Date(s):         | 11/20/2012       |
|-------------------------|-----------------------------------|-----------------------|------------------|
| Supervising Engineer:   |                                   |                       |                  |
| (Where Applicable)      | N/A                               | Test Levels:          | See test results |
| Product Standard:       | FCC Part 15.209(a) and IC RSS-210 | Ambient Temperature:  | 22 °C            |
| Input Voltage:          | 3V Lithium Battery                | Relative Humidity:    | 23 %             |
| Pretest Verification w/ |                                   | Atmospheric Pressure: | 1011 mbars       |
| Ambient Signals or      |                                   |                       |                  |
| BB Source:              | Ambient Signals                   | <u></u>               |                  |

Deviations, Additions, or Exclusions: None

# Intertek

Report Number: 100961088BOX-008 Issued: 11/28/2012

# 10 Revision History

| Revision<br>Level | Date     | Report Number    | Notes          |
|-------------------|----------|------------------|----------------|
| 0                 | 11/28/12 | 100961088BOX-008 | Original Issue |
|                   |          |                  |                |
|                   |          |                  |                |
|                   |          |                  |                |
|                   |          |                  |                |
|                   |          |                  |                |