

Engineering Test Report for the SDR-T-001 UHF 403-477 MHz 0.4W Exciter Modules for the BDP4 Digital Base Station

Report Number:	156-90000-920
Apparatus:	SDR-T-001 UHF 403-477 MHz exciter module
Model Number:	SDR-T-001-403
Support Equipment:	P4 base station controller/modem module (BSC2) P4_PD+ base data link controller/modem module (BDLCslim)
Applicant:	CalAmp Corporation 5540 Ferrier Street, Suite 101 Town of Mount Royal, QC H4P 1M2, Canada
IC ID:	EOTBDP4-EXCT403
Test Specification:	Title 47 - Telecommunication Part 90 - Private Land Mobile Radio Services Subpart I - General Technical Standards
Prepard by:	CalAmp Corporation Montreal R/D Department 5540 Ferrier Street, Suite 101 Town of Mount Royal, QC H4P 1M2, Canada
Submitted by:	Richard Vollee Richard Vallée: Senior Hardware Engineer
Approved by:	BG-

Pierre Olivier: R/D Engineering Manager

Section A0: General

All applicable test data according to:

- Part 2: 2.1046, 2.1047, 2.1049 and 2.1057

- Part 90, Subpart I: 90.205, 90.207, 90.209, 90.213 and 90.214

are provided in this report, while other applicable test data according to Part 2.1051, 2.1053 and Part 90.210 (d)(3) are provided in another report, as shown below:

Section- # of Pages	Data Contents	FCC parts	Laboratory
A0-1	General.		
A1-3	Transmitter Rated Power Output	2.1046 (a) (c), 90.205	CalAmp Corp, Montreal R&D
A1-2	Frequency Stability vs Variation in Supply Voltage	2.1055 (d)(1), 90.213	CalAmp Corp, Montreal R&D
A1-2	Frequency Stability vs Variation in Ambient Temperature	2.1055 (a) (b), 90.213	CalAmp Corp, Montreal R&D
A2-3	P4 BSC2 Modulation Source: Modulation Characteristics - Digital Modulation Techniques - Spectrum Efficiency	2.1047, 90.207 - 2.1033 (c)(13) - 90.203 (j)(3)	CalAmp Corp, Montreal R&D
A3-3	P4_PD+ BDLCslim Modulation Source: Modulation Characteristics - Digital Modulation Techniques - Spectrum Efficiency	2.1047, 90.207 - 2.1033 (c)(13) - 90.203 (j)(3)	CalAmp Corp, Montreal R&D
A4-28	P4 BSC2 and P4_PD+ BDLCslim Modulation Sources: Occupied bandwidth – Emission Designator – Mask Compliance	2.201, 2.202, 2.1033(c) (14), 2.1041, 2.1049 (h), 90.209 (b)(5), 90.210 (c)(d)	CalAmp Corp, Montreal R&D
A5- 5	Transient Frequency Behavior	90.214	CalAmp Corp, Montreal R&D
B1-24	Transmitter Unwanted Emissions	2.1051, 90.210 (d)(3) 2.1053, 90.210 (d)(3)	Nemko Canada Inc, Ottawa Laboratories
71	Total number of report pages		

Section A1: Transmitter Power and Frequency Stability

Summary

These tests were conducted on a sample of equipment for the purpose of demonstrating compliance with the restrictions related to the RF power and the frequency stability of the equipment operating in the 406.1-512 MHz range, as defined by the rules found in FCC Part 90. These tests were performed in accordance with ANSI TIA-603 B.

The assessment summary is:

EQUIPMENT UNDER TEST:	SDR-T-001UHF 403-477MHz exciter module (model name SDR-T-001-403)
SERIAL NUMBER (S):	Pre-production sample
SUPPORT EQUIPMENT:	P4 base station controller/modem module, pre- production sample (model name BSC2)
SPECIFICATIONS:	FCC Part 90 Private Land Mobile Radio Services
COMPLIANCE STATUS:	Compliant
EXCLUSIONS:	None
NON-COMPLIANCES:	None

TEST RESULTS SUMMARY:

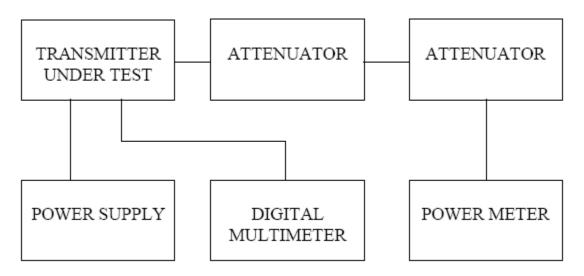
Test name	Page No	Worst case data	Margin	Assessment
Transmitter Rated Output Power		400mW	NA	Pass
Frequency Stability over voltage		101Hz or 0.22ppm	1.28ppm	Pass
Frequency stability over temperature		400Hz or 0.96 ppm	0.54ppm	Pass

The technical data included in this report has been accumulated through tests that were performed by me or under my direction. To the best of my knowledge, all of the data is true and correct

Richard Vallee

Richard Vallée

PERFORMED BY:



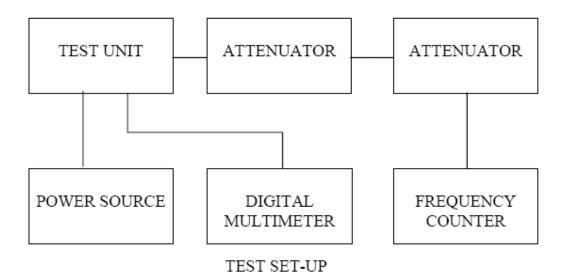
CalAmp

DATE: 13/04/10

NAME OF TEST:	Transmitter Rated Power Output
RULE PART NUMBER:	FCC 2.1046 (a) (c), 90.205
TEST RESULTS:	0.4W adjustable down to 4mW see data below
TEST CONDITIONS:	Standard Test Conditions
TEST EQUIPMENT:	50-Ohm Attenuators, 30dB 150W, Bird Model 150-A-MFN-30 50-Ohm Attenuators, 6dB 50W, Bird Model 50-A-MFN-06 Variable DC Power Supply, Astron VS-20M Power Meter, IFR COM-120B Comm. Monitor, DR612B Digital Voltmeter, Fluke 77 series II multimeter True RMS Clamp multimeter, Extech model 380947

TEST SET-UP:

PERFORMED BY: Date: 05/04/10


TEST RESULTS:

Band	Frequency	DC	DC	DC	RF
	(MHz)	Voltage	Current	Power	Power
		at	into	into	Output
		Exciter	Exciter	Exciter	(mW)
		(Vdc)	(Adc)	(W)	
	406.05	13.8	1.1	15.18	387
	418.05	13.8	0.4	5.52	0
UHF LOW	418.05	13.8	1	13.8	4
2011	418.05	13.8	1.11	15.32	388
	429.9875	13.8	1.1	15.18	397
	450.0125	13.8	1.1	15.18	394
UHF MID	460	13.8	1.11	15.32	400
	469.9875	13.8	1.11	15.32	390

Engineering Test Report	EUT: EOTBDP4-EXCT403	FCC submission
NAME OF TEST:	Frequency Stability with Variation in Supply Voltage	e
RULE PART NUMBER:	FCC 2.1055 (d)(1), 90.213	
MINIMUM STANDARD:	For 12.5KHz channel bandwidths, shall not exceed $\frac{1}{2}$ test frequency, or ± 1.50 ppm for $\pm 15\%$ change in su	
TEST RESULTS:	Meets minimum standard, see data on following page	e
TEST CONDITIONS:	Standard Test Conditions, 25 C	
TEST EQUIPMENT:	50-Ohm Attenuators, 30dB 150W, Bird Model 150- 50-Ohm Attenuators, 6dB 50W, Bird Model 50-A Variable DC Power Supply, Astron VS-20M Frequency meter, IFR COM-120B, DR612B Digital Voltmeter, Fluke 77 series II multimeter	
PERFORMED BY:	Richard Vellee Date: 05	5/04/10

TEST SET-UP:

Channel Frequency:418.05000 MHzPower level:0.4WHighest Variation:0.22

Input Voltage	Frequency	Delta Freq	Ppm from assigned
(Vdc)	(MHz)	(Hz)	Frequency
11.7	418.050090	90	0.22
13.8	418.050082	82	0.20
15.9	418.050064	64	0.15

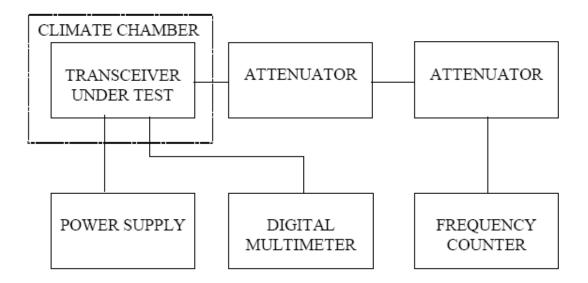
Spec. limit <u>+</u>1.50 ppm

UHF MID:

Channel Frequency:460.0000 MHzPower level:0.4WHighest Variation:0.22

Input Voltage	Frequency	Delta Freq	Ppm from assigned
(Vdc)	(MHz)	(Hz)	Frequency
11.7	460.000098	98	0.21
13.8	460.000101	101	0.22
15.9	460.000091	91	0.2

Spec. limit ± 1.50 ppm



Engineering Test Report	EUT: EOTBDP4-EXCT403	FCC submission
NAME OF TEST:	Frequency Stability with Variation in Ambient Temp	perature
RULE PART NUMBER:	FCC 2.1055 (a) (b), 90.213	
MINIMUM STANDARD:	For 12.5KHz channel bandwidths, shall not exceed $\frac{1}{2}$ test frequency, or $\frac{+1}{50}$ ppm	<u>+</u> 0.000150 % from
TEST RESULTS:	Meets minimum standard, see data on following pag	e
TEST CONDITIONS:	Standard Test Conditions	
TEST EQUIPMENT:	50-Ohm Attenuators, 30dB 150W, Bird Model 150- 50-Ohm Attenuators, 6dB 50W, Bird Model 50- Variable DC Power Supply, Astron VS-20M Frequency meter, IFR COM-120B, DR612B Digital Voltmeter, Fluke 77 series II multimeter Climate Chamber, TempGard III, Tenney Jr.	
	Richard Vollee	

PERFORMED BY:

Date: 07/04/10

TEST SET-UP:

UHF LOW

Channel Frequency: Voltage & Power Level: Highest Variation (ppm) 418.0500MHz 13.8V @ 0.4 Watts 0.957

Temperature (Deg C)	Measured Frequency (Mhz)	Frequency Error (Hz)	Frequency Error (ppm)
-30	418.05029	290	0.694
-20	418.05035	350	0.837
-10	418.05010	100	0.239
0	418.05007	70	0.167
10	418.05003	30	0.072
20	418.04998	-20	-0.048
30	418.04989	-110	-0.263
40	418.04979	-210	-0.502
50	418.04972	-280	-0.670
60	418.04960	-400	-0.957

Spec. limit ± 1.50 ppm

UHF MID

Channel Frequency: Voltabe & Power Level: Highest Variation (ppm) 460.0000MHz 13.8V @ 0.4 Watts 0.834

Temperature (Deg C)	Measured Frequency (Mhz)	Frequency Error (Hz)	Frequency Error (ppm)
-30	460.00027	270	0.587
-20	460.00032	320	0.696
-10	460.00008	80	0.174
0	460.00005	50	0.109
10	460.00004	40	0.087
20	460.00000	0	0
30	459.99992	-80	-0.174
40	459.99981	-190	-0.413
50	459.99975	-250	-0.543
60	459.99962	-380	-0.826

Spec. limit ± 1.50 ppm

Section A2 P4 BSC2 Modulation Source: Modulation Characteristics - Digital Modulation Techniques – Spectrum Efficiency

This section contains the following required data:

-	Modulation Characteristic	FCC 2.1047 (d)
-	Digital Modulation Techniques	FCC 2.1033 (c)(13)
-	Spectrum Efficiency Standard	FCC 90.203 (j)(3)

MODULATION CHARACTERISTIC FCC 2.1047 (d)

Other types of equipment: this equipment is not provided with hardware audio low-pass filters, the filtering is entirely the result of the DSP-based digital filter controlled by firmware in the modulation source.

DIGITAL MODULATION TECHNIQUES FCC 2.1033 (c)(13)

The Paragon 4 digital base station comprises the controller/modem (BSC2) which generates a digitized multi-level frequency shift keying modulating signal. This digital modulation scheme is produced by the main PowerPC central processing unit (CPU) in conjunction with a DSP processor, and the resulting analog differential output signals are DC-coupled to the baseband differential inputs of the SDR-001-T-UHF exciter.

This modulation scheme is used in conjunction with the Dataradio Next Generation highefficiency Enhanced DBA over-the-air protocol. The protocol has provisions to have the 16FSK modulation scheme use only a subset of the 16 levels to generate 8FSK or 4FSK subsets, reducing the bit rate to $\frac{3}{4}$ or $\frac{1}{2}$ of the full 16FSK bit rate while keeping the baud (signalling) rate and deviation setting constant. Reducing the number of signalling levels allows the data rate to be traded off for increased decode sensitivity (range) without changing the transmitter emission. Because only intermediate signalling levels are deleted, the overall emission bandwidth is virtually unchanged.

In detail, the main CPU processes incoming data to comply with data-link layer requirements, then feeds this binary stream to the DSP which performs Forward Error Correction (FEC) coding, interleaving and scrambling, then generates an NRZ stream for encoding and pulse shaping. The digital processing computes the binary differential and maps the binary bit stream into a symbol (baud) stream. The result is processed as stream of symbols of multiple-bits as required by the multiple-level FSK type of modulation. The number of levels of the digital symbol stream corresponds to the numbers of levels (N) of NFSK modulation.

The DSP processes the digital symbol stream using a Squared Root Raised Cosine filter (SRRC) whose coefficients determine the filter characteristic and its 3dB cutoff frequency. The equation trim factor, which for the SRRC family is the cosine weight " α ", is set according to the bit/baudrate rate selected and channel bandwidth. For each bit rate, the filter coefficients are obtained from a Inverse Fourier Transform of the desired SRRC filter response curve. The three proposed baud rates and their corresponding bit rates (16FSK, 8FSK and 4FSK) are shown in the following table:

	Chn. BW (KHz)	Bit rate (Kbps)	Symbol rate (baud)	FSK levels	Pulse shape and modulation type	Acronyms / factor / 3dBcutoff freq.
		32	8000	16	SRRC 16-lvl FSK	SRRC16FSK, α=0.4, 4000Hz
	12.5	24	8000	8	SRRC 8-lvl FSK	SRRC8FSK, α=0.4, 4000Hz
		16	8000	4	SRRC 4-lvl FSK	SRRC4FSK, α=0.4, 4000Hz
		64	16000	16	SRRC 16-lvl FSK	SRRC16FSK, α=0.4, 8000Hz
	25	48	16000	8	SRRC 8-lvl FSK	SRRC8FSK, α=0.4, 8000Hz
	23	43.2	14400	8	SRRC 8-lvl FSK	SRRC8FSK, α=0.4, 7200Hz
		32	16000	4	SRRC 4-lvl FSK	SRRC4FSK, α=0.4, 8000Hz

The pulse-shaped signal is then subject to an amplification constant to adjust the transmitter deviation level, then fed to the CODEC for digital-to-analog conversion. The transmitter deviation level and digital filter cutoff frequency are set according to the bit rate selected and channel bandwidth as follows:

Chn. BW (KHz)	Bit Rate (Kbps)	Modulation type / trim factor / 3dB cutoff freq.	Reference deviation for 1kHz tone (Hz)	Maximum Digital Deviation (Hz)	Occupied Bandwidth (Hz)	Emission designator
	32	SRRC16FSK, α=0.4, 4000Hz	2200	2700	8167	8K30F1D
12.5	24	SRRC8FSK, α=0.4, 4000Hz	2100	2700	8167	8K30F1D
	16	SRRC4FSK, α=0.4, 4000Hz	1500	2000	7667	7K80F1D
	64	SRRC16FSK, α=0.4, 8000Hz	4200	5300	16000	16K1F1D
25	48	SRRC8FSK, α=0.4, 8000Hz	4100	5200	15670	15K8F1D
25	43.2	SRRC8FSK, α=0.4, 7200Hz	4200	5400	15670	15K8F1D
	32	SRRC4FSK, α=0.4, 8000Hz	3500	4700	16000	16K1F1D

The resulting wave shape is applied to the analog-to-digital I & Q FM modulator inside the exciter, which will then produce a compact RF spectrum, which when using the correct frequency

deviation, fits within the restrictive limits inherent to the intended channel bandwidth. The receiver performs the same processes in reverse to demodulate the received symbols into a digital data stream

SPECTRUM EFFICIENCY STANDARD DATA FCC 90.203 (j)(3)

The Paragon 4 SRRC16FSK modulation source transmits 64000 bps in 25 kHz channel bandwidth. This represents more than 4800*4=19200bps required for 6.25*4=25kHz channel bandwidth The Paragon 4 16FSK modulation source transmits 32000 bps in 12.5 kHz channel bandwidth. This represents more than 4800*2=9600bps required for 6.25*2=12.5kHz channel bandwidth

Section A3 P4_PD+ BDLCslim Modulation Source: Modulation Characteristics – Digital Modulation Techniques – Spectrum Efficiency

This section contains the following required data:

-	Modulation Characteristic	FCC 2.1047 (d)
-	Digital Modulation Techniques	FCC 2.1033 (c)(13)
-	Spectrum Efficiency Standard	FCC 90.203 (j)(3)

MODULATION CHARACTERISTIC FCC 2.1047 (d)

Other types of equipment: this equipment is not provided with hardware audio low-pass filters, the filtering is entirely the result of the DSP-based digital filter controlled by firmware in the modulation source.

DIGITAL MODULATION TECHNIQUES FCC 2.1033 (c)(13)

The Paragon 4 PD+ digital base station supports DBA (Dynamic Bandwidth Allocation), a Calamp proprietary protocol. DBA is a 5:1 TDMA protocol optimized for public utilities and public safety markets.

The controller part of the BDLCslim module generates the digital stream characteristic of this wireless network protocol. Its frame sizes and block format are not dependent of the network speed. Each frame consists of a frame recognition pattern and a data packet (block). DBA protocol requires transmission of the frame recognition pattern from the base to maintain the synchronization at the mobile end of the network. The system transmits "idle" packets as message terminators to schedule mobile acknowledgements. Both "idle" and "data " packets undergo FEC encoding and scrambling by the CPU to preserve the characteristics of random data.

The slot recognition pattern for frames are ¹/₄ network symbol rate filtered data symbols. The idle

packet slots follow an idle pattern. This pattern is generated by the internal software using the polynomial

 $X^{11}+X^9+1$ form and a 12-bit shift register. Initial value of the register is 111111111110 (FFE hex). The

2047 bit sequence is repeated thereafter as long is necessary to complete the idle duration. This pattern is

applied to the DSP processor data input for encoding and pulse shaping.

The modem part of the BDLCslim module generates N-level filtered FSK type modulation signals. The N-level voltages and the filtering control are a DSP implementation which establishes the modulation limits and is not subject to aging or drift. The hardware-based low-pass filtering has been replaced by the DSP filtering and complies with the RF mask compliance requirements found in FCC Part 90.210 (c) for mask C and D.

The DBA protocol as described above is implemented using various digital modulation schemes. The measurement in this report concerns the 2, 4 and 8-level FSK schemes combined with one of the three following pulse shaping filters:

156-90000-920

- Square Root Raised Cosine (SRRC) with an $\alpha = 0.4$ for cut-off frequency.
- Raised Cosine (RC) with an $\alpha = 04$ for cut-off frequency.
- Gaussian filter (DGMSK) with a BT = 0.3 for cut-off frequency. Note: The term DGMSK, differential gaussian minimum shift keying, is loosely used here and throughout the industry to represent the generic modulation scheme DGFSK.

The DSP processes the digital symbol stream using one of these pulse shaping filters whose coefficients determine the filter characteristic and its 3dB cutoff frequency. The equation trim factor, which for the SRRC and RC families is the cosine weight " α ", is set according to the bit/baudrate rate selected and channel bandwidth. For each bit rate, the filter coefficients are obtained from a Inverse Fourier Transform of the desired SRRC or RC filter response curve. Similarly for the gaussian filter, the filter characteristic and 3dB cutoff frequency is set by the "BT" value and the bit rate.

The various bit rates and filtered FSK modulation schemes proposed for 12.5 and 25KHz channels BWs are shown in the following table:

Chn. BW (KHz)	Bit Rate (Kbps)	Symbol rate (baud)	FSK levels	Pulse shape filter	Acronyms / factor / 3dBcutoff freq.
	21.6	7200	8	SRRC	SRRC8FSK, α=0.4, 3600Hz
	16	8000	4	SRRC	SRRC8FSK, α=0.4, 4000Hz
12.5	14.4	7200	4	SRRC	SRRC8FSK, α=0.4, 3600Hz
	9.6	9600	2	DGMSK	DGMSK2FSK, BT = 0.3, 2880Hz
	8	8000	2	DGMSK	DGMSK2FSK, BT = 0.4, 3200Hz
	43.2	14400	8	SRRC	SRRC8FSK, α=0.4, 7200Hz
	32	16000	4	RC	RC4FSK, α=0.4, 8000Hz
25	25.6	12800	4	SRRC	SRRC8FSK, α=0.4, 6400Hz
25	19.2	9600	4	SRRC	SRRC8FSK, α=0.4, 4800Hz
	19.2	19200	2	DGMSK	DGMSK2FSK, BT = 0.3, 5760Hz
	9.6	9600	2	DGMSK	DGMSK2FSK, BT = 0.3, 2880Hz

Both network speed and digital modulation scheme are produced by the main CPU in conjunction with the DSP. The main CPU processes incoming binary data to make it fit the DBA protocol as described above. Then the process continues on the DBA formatted data applying Forward Error Correction (FEC), interleaving and scrambling, and from it generates an NRZ signal that is fed to the DSP processor for encoding and pulse shaping at network speed. The DSP processor assigns to every incoming bit/ 2-bit/ 3-bit set, a symbol recorded in a level of frequency shift. The mapping follows a differential encoding scheme for DGMSK2FSK and a Gray encoding scheme for RC4FSK, SRRC4FSK and SRRC8FSK modulation types.

The pulse-shaped signal is then subject to an amplification constant to adjust the transmitter deviation level, then fed to the CODEC for digital-to-analog conversion. The transmitter deviation level and digital filter cutoff frequency are set according to the bit rate selected and channel bandwidth as follows:

Chn. BW (KHz)	Bit Rate (Kbps)	Modulation type / trim factor / 3dB cutoff freq.	Reference deviation for 1kHz tone (Hz)	Maximum Data Deviation (Hz)	Occupied Bandwidth (Hz)	Emission designator
	21.6	SRRC8FSK, α=0.4, 3600Hz	2200	2700	8000	8K10F1D
	16	SRRC8FSK, α=0.4, 4000Hz	1900	2200	7333	7K50F1D
12.5	14.4	SRRC8FSK, α=0.4, 3600Hz	2300	2900	8000	8K10F1D
	9.6	DGMSK2FSK, BT = 0.3, 2880Hz	2000	2200	8000	8K10F1D
	8	DGMSK2FSK, BT = 0.4, 3200Hz	2100	2300	8167	8K30F1D
	43.2	SRRC8FSK, α=0.4, 7200Hz	4300	5300	15843	16K0F1D
	32	RC4FSK, α=0.4, 8000Hz	4300	5200	15456	15K6F1D
25	25.6	SRRC8FSK, α=0.4, 6400Hz	3900	4400	14588	14K7F1D
25	19.2	SRRC8FSK, α=0.4, 4800Hz	4300	5500	15799	15K9F1D
	19.2	DGMSK2FSK, BT = 0.3, 5760Hz	3700	3800	14443	14K6F1D
	9.6	DGMSK2FSK, BT = 0.3, 2880Hz	4200	4300	13613	13K8F1D

The resulting wave shape is applied to the analog-to-digital I& Q FM modulator inside the exciter, which will then produce a compact RF spectrum, which when using the correct frequency deviation, fits within the restrictive limits inherent to the intended channel bandwidth. The receiver performs the same processes in reverse to demodulate the received symbols into a digital data stream

SPECTRUM EFFICIENCY STANDARD DATA FCC 90.203 (j)(3)

The Paragon 4 PD+'s SRRC8FSK modulation source transmits 43200 bps in 25 kHz channel bandwidth.

This represents more than 4800*4 = 19200 bps required for 6.25*4 = 25kHz channel bandwidth. The Paragon 4 PD+'s SRRC8FSK modulation source transmits 21600 bps in 12.5 kHz channel bandwidth. This represents more than 4800*2 = 9600 bps required for 6.25*2 = 12.5kHz channel bandwidth.

Section A4: Occupied bandwidth - Emission Designator - Mask Compliance

Summary

These tests were conducted on a sample of equipment for the purpose of demonstrating compliance with the occupied bandwidth and the RF spectrum mask restrictions of the 12.5 KHz and 25.0 KHz channels in the 406.1-512 MHz range, as defined in the rules of FCC Part 90 at the testing date. The tests were performed in accordance with ANSI TIA-603 B.

The assessment summary is:

EQUIPMENT UNDER TEST:	SDR-T-001UHF 403-477MHz exciter module (model name SDR-T-001-403)
SERIAL NUMBER (S):	Pre-production sample
SUPPORT EQUIPMENT:	P4 base station controller/modem module, pre- production sample (model name BSC2)
	P4_PD+ base data link controller/modem module, pre- production sample (model name BDLCslim)
SPECIFICATIONS:	FCC Part 90 Private Land Mobile Radio Services
COMPLIANCE STATUS:	Compliant
EXCLUSIONS:	None
NON-COMPLIANCES:	None

TEST RESULTS SUMMARY: For the BSC2 module, the modulation's pulse shaping filter is a square-root raised cosine (SRRC) related to the symbol rate. There are 4, 8 and 16-Level FSK options for the symbol rates, 8000 and 16000 baud, and only the 8-Level FSK option for the symbol rate 14400 baud.

Chn. BW (KHz)	Bit rate (Kbps)	Symbol rate (baud)	Pulse shape and modulation type	Occupied Bandwidth (Hz)	Emission designator	Limit mask	
	32	8000	SRRC 16-lvl FSK	8167	8K30F1D	D	Pass
12.5	24	8000	SRRC 8-lvl FSK	8167	8K30F1D	D	Pass
	16	8000	SRRC 4-lvl FSK	7667	7K80F1D	D	Pass
	64	16000	SRRC 16-lvl FSK	16000	16K1F1D	С	Pass
25	48	16000	SRRC 8-lvl FSK	15670	15K8F1D	С	Pass
25	43.2	14400	SRRC 8-lvl FSK	15670	15K8F1D	С	Pass
	32	16000	SRRC 4-lvl FSK	15670	15K8F1D	С	Pass

For the BDLCslim module, there are three types of pulse shaping filters used in the Paragon 4 PD+ modem. The square-root raised cosine (SRRC) pulse shaping filter is used on all speeds with 4 and 8-level FSK modulation, except for the 32Kbps speed, which uses a raised cosine (RC) pulse shaping filter. The differential gaussian minimum shift keing (DGMSK) pulse shaping filter is used on all speeds with 2-level FSK modulation.

Chn. BW (KHz)	Bit rate (Kbps)	Symbol rate (baud)	Pulse shape and modulation type	Occupied Bandwidth (Hz)	Emission designator	Limit mask	Result
	21.6	7200	SRRC 8-lvl FSK	8000	8K10F1D	D	Pass
	16	8000	SRRC 4-lvl FSK	7333	7K50F1D	D	Pass
12.5	14.4	7200	SRRC 4-lvl FSK	8000	8K10F1D	D	Pass
	9.6	9600	DGMSK 2-lvl FSK	8000	8K10F1D	D	Pass
	8	8000	DGMSK 2-lvl FSK	8167	8K30F1D	D	Pass
	43.2	14400	SRRC 8-lvl FSK	15843	16K0F1D	С	Pass
	32	16000	RC 4-lvl FSK	15456	15K6F1D	С	Pass
	25.6	12800	SRRC 4-lvl FSK	14588	14K7F1D	С	Pass
25	19.2	9600	SRRC 4-lvl FSK	15799	15K9F1D	С	Pass
	19.2	19200	DGMSK 2-lvl FSK	14443	14K6F1D	С	Pass
	9.6	9600	DGMSK 2-lvl FSK	13613	13K8F1D	С	Pass

ATTESTATION: The technical data included in this report has been accumulated through tests that were performed by me or under my direction. To the best of my knowledge, all of the data is true and correct

PERFORMED BY:

DATE: 21/04/10

156-90000-920

Richard Vallée

NAME OF TEST: Emission Designator for the BSC2 Modulation Source

RULE PART NUMBER: FCC 2.201, 2.202, 2.1033 c (14), 2.1041, 2.1049 (h), 90.207, 90.209(b)(5)

For the SRRC N-level FSK type of emissions, a Paragon 4 base station controller/modem module (BSC2) was the source of the digital modulation signals. The random signal generator passes the test sequence through a DSP-based digital SRRC filter to feed the FM modulator. The necessary bandwidth calculation for this type of modulation (SRRC16FSK) is not covered by paragraphs (1), (2) or (3) from 2.202(c), the result exceeding by far the real necessary bandwidth obtained through measurement of the 99% of the occupied bandwidth.

Therefore, the approach outlined in (2.202(c)(4)) is applicable in this case.

Channel BW (KHz)	Bit Rate (Kbps)	Pulse shape and modulation type	Reference deviation for 1kHz tone (Hz)	Maximum Digital Deviation (Hz)	Occupied Bandwidth (Hz) ¹⁾	Emission designator
	32	SRRC 16-lvl FSK	2200	2700	8167	8K30F1D
12.5	24	SRRC 8-lvl FSK	2100	2700	8167	8K30F1D
	16	SRRC 4-lvl FSK	1500	2000	7667	7K80F1D
	64	SRRC 16-lvl FSK	4200	5300	16000	16K1F1D
25	48	SRRC 8-lvl FSK	4100	5200	15670	15K8F1D
25	43.2	SRRC 8-lvl FSK	4200	5400	15670	15K8F1D
	32	SRRC 4-lvl FSK	3500	4700	15670	15K8F1D

Necessary Bandwidth Measurement (90.209.(b)) The results of 99% Occupied Bandwidth measurement are:

 $^{1)}$ – Supporting plots for these values are shown in the mask compliance test to follow. The deviation meter has an IF filter bandwidth of 30kHz. The measurement setup is explained below.

Occupied Bandwidth Measurement

The Occupied Bandwidth measurement option of the instrument (8563EC spectrum analyzer from Agilent) calculates and provides the values used above for the emission designator.

The percentage setting of the measurement has been set to 99% following the definition of the *Occupied Bandwidth* as "the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission" (FCC 2.202).

The measurement has been performed during the tests for compliance with mask C or D, the highest resulting value was recorded for the Occupied Bandwidth. The measurement set-up is detailed along with mask compliance test reports.

TX Data Test Pattern:

The transmit "test data" pattern command produces an 8,388,607 bit pseudo- random pattern. This pattern is generated by the DSP using the polynomial X23+X5+1 form and a 23-bit shift register with an initial

value of 1. The 8,388,607 bit sequence is repeated thereafter as long is necessary to complete the test duration. This pattern is applied to the DSP modulator for mapping to 16-FSK (8-FSK or 4-FSK) with a Squared Root Raised Cosine pulse shaping with $\alpha = 0.4$.

NAME OF TEST: Emission Designator for the BDLCslim Modulation Source

RULE PART NUMBER: FCC 2.201, 2.202, 2.1033 c (14), 2.1041, 2.1049 (h), 90.207, 90.209(b)(5)

For the N-level FSK type of emissions, a PD+ base data link controller/modem module (BDLCslim) was the source of the digital modulation signals. The test data pattern passes through a DSP-based digital low-pass/pulse shaping filters to feed the FM modulator. The necessary bandwidth calculation for this type of modulation (SRRC8FSK) is not covered by paragraphs (1), (2) or (3) from 2.202(c), the result exceeding by far the real necessary bandwidth obtained through measurement of the 99% of the occupied bandwidth.

Therefore, the approach outlined in (2.202(c)(4)) is applicable in this case.

Necessary Bandwidth Measurement (90.209.(b))

The results of 99% Occupied Bandwidth measurement are:

Chn. BW (KHz)	Bit Rate (Kbps)	Pulse shape and modulation type	Reference deviation for 1kHz tone (Hz)	Maximum Digital Deviation (Hz)	Occupied Bandwidth (Hz) ¹⁾	Emission designator
	21.6	SRRC 8-lvl FSK	2200	2700	8000	8K10F1D
	16	SRRC 4-lvl FSK	1900	2200	7333	7K50F1D
12.5	14.4	SRRC 4-lvl FSK	2300	2900	8000	8K10F1D
12.3	9.6	DGMSK 2-lvl FSK	2000	2200	8000	8K10F1D
	8	DGMSK 2-lvl FSK	2100	2300	8167	8K30F1D
	43.2	SRRC 8-lvl FSK	4300	5300	15843	16K0F1D
	32	RC 4-lvl FSK	4300	5200	15456	15K6F1D
	25.6	SRRC 4-lvl FSK	3900	4400	14588	14K7F1D
25	19.2	SRRC 4-lvl FSK	4300	5500	15799	15K9F1D
	19.2	DGMSK 2-lvl FSK	3700	3800	14443	14K6F1D
	9.6	DGMSK 2-lvl FSK	4200	4300	13613	13K8F1D

 $^{1)}$ – Supporting plots for these values are shown in the mask compliance test to follow. The deviation meter has an IF filter bandwidth of 30kHz. The measurement setup is explained below.

Occupied Bandwidth Measurement

The Occupied Bandwidth measurement option of the instrument (8563EC or E4401B spectrum analyzer from Agilent) calculates and provides the values used above for the emission designator.

The percentage setting of the measurement has been set to 99% following the definition of the *Occupied Bandwidth* as "the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission" (FCC 2.202).

The measurement has been performed during the tests for compliance with mask C or D, the highest resulting value was recorded for the Occupied Bandwidth. The measurement set-up is detailed along with mask compliance test reports.

TX Data Test Pattern:

The transmit data pattern is DBA protocol- type of "idle" packets data pattern as described in Annex A "Digital Modulation Techniques" of this application. After this data follows the modulation process described, the resulting base band signal feeds the modulator's input of the Exciter.

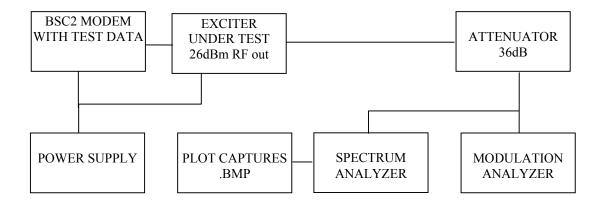
NAME OF TEST: Mask compliance data NAME OF TEST: Mask Compliance data for Paragon4 BSC2 Modem Mask compliance data in support of 8000 baud 4/8/16-FSK for mask D, 16000 baud 4/8/16-FSK and 14400 baud 8-FSK for mask C. RULE PART NUMBER: FCC 2.201, 2.202, 2.1033(c) (14), 2.1041, 2.1049 (h), 90.209 (b)(5), 90.210(c)(d)IC RSS-Gen section 4.6.1, RSS 119 section 5.5 MINIMUM STANDARD: Mask D Sidebands and Spurious [Rule FCC 90.210 (d) & IC RSS 119 (5.8.3)] Authorized Bandwidth = 11.25 kHz [Rule 90.209(b) (5) & IC RSS 119 (5.5)] Fo to 5.625 kHz Attenuation = 0 dB>5.625 kHz to 12.5 kHz Attenuation= $7.27(f_d - 2.88 \text{kHz}) \text{ dB}$ >12.5kHz Lesser of $50 + 10 \log(P) dB$ or 70dB **Corner Points:** Fo to 5.625 kHz Attenuation = 0 dB>5.625 kHz to 12.5 kHz Attenuation=20 dB to 70 dB >12.5 kHz Attenuation =70dB (100W) Mask C Sidebands and Spurious [Rule 90.210 (c) & IC RSS 119 (5.8.2)] Authorized Bandwidth = 20 kHz [Rule 90.209(b) (5) & IC RSS 119 (5.5)] Fo to 5.0 kHz Attenuation = 0 dB>5.0 kHz to 10.0 kHz Attenuation= $83 \times \log(f_d \text{ KHz}/5) \text{ dB}$ >10.0 kHz to 250% Auth BW Attenuation = Lesser of: 50dB or 29 log (fd2/11)dB. 250% Auth BW $43 + 10 * \log(P)$ **Corner Points:** f_0 to 5.0 kHz Attenuation $= 0 \, dB$ >5.0 kHz to 10.0 kHz Attenuation= 0 dB to 25 dB >10.0 kHz to 15.0 KHz Attenuation = 27.8 dB to 38 dB>15.0 kHz to 20.0 KHz Attenuation = 38 dB to 45.2 dB>20.0 kHz to 24.0 KHz Attenuation = 45.2 dB to 50 dB>24.0 kHz to 50.0 KHz Attenuation = 50 dB>250% Auth BW Attenuation = min. 63 dB (100 W) TEST RESULTS: Meets minimum standard (see data on the following pages)

TEST CONDITIONS:

The test ran in standard environmental test conditions, at 22^oC, 30-50% RH.

TEST EQUIPMENT:

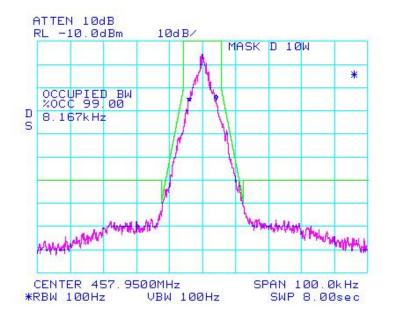
Equipment	Manufacturer	Model	Asset #	Last cal	Next Cal
P4 Base Station	Calamp	BSC2	RD pilot	COU	-
Controller/modem			unit		
Variable DC	Astron	VS-20M	S/N:970	COU	-
Power supply			10044		
Modulation meter	IFR	COM-120B	DR612	10/2009	10/2010
Spectrum	Agilent	8563EC	DR231	03/2010	03/2011
Analyzer					
Fixed Attenuator	Pasternack	PE7015-6	-	COU	-
6dB 10W					
Fixed Attenuator	Pasternack	PE7015-30	-	COU	-
30dB 10W					

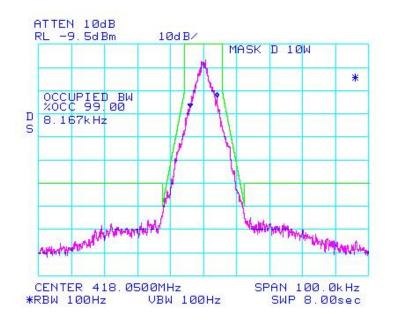

COU = Calibrate On Use

Richard Vallee

PERFORMED BY:

DATE: 21/04/10

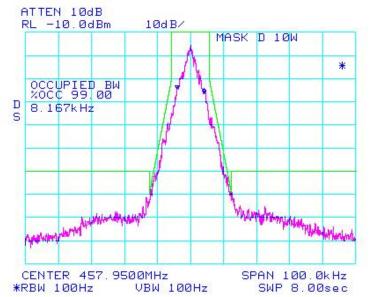

TEST SET-UP:

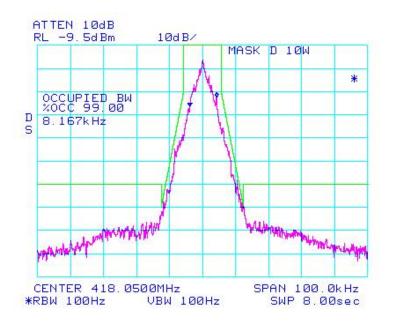


Mask compliance data (Continued) Paragon4 Modem at 32000 bps 16FSK

MASK: D, 8000baud, 2.2KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 32000 bps, 16 level FSK PEAK DEVIATION = 2700 Hz SPAN = 100 KHz

UHF MID:

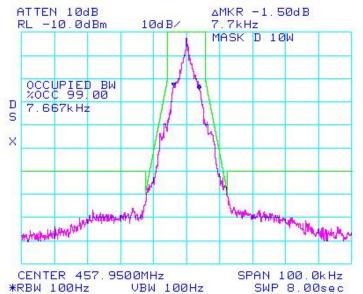


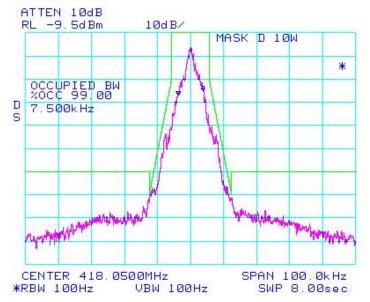


Mask compliance data (Continued) Paragon4 Modem at 24000 bps 8FSK

MASK: D, 8000baud, 2.1KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 24000 bps, 8 level FSK PEAK DEVIATION = 2700 Hz SPAN = 100 KHz

UHF MID:

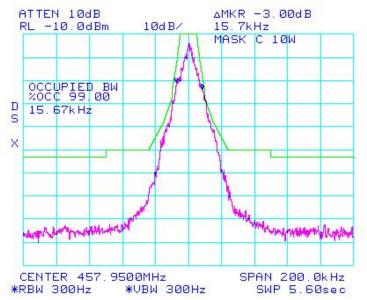


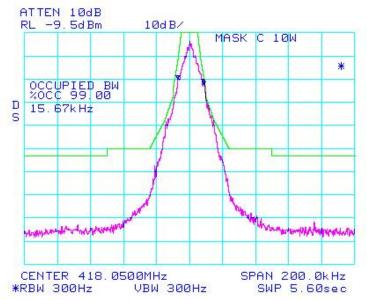


Mask compliance data (Continued) Paragon4 Modem at 16000 bps 4FSK

MASK: D, 8000baud, 1.5KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 16000 bps, 4 level FSK PEAK DEVIATION = 2000 Hz SPAN = 100 KHz

UHF MID:

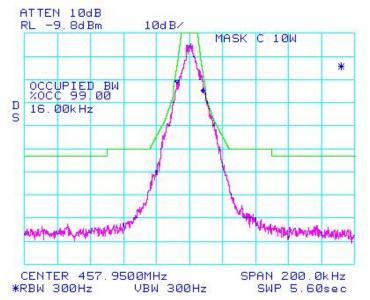


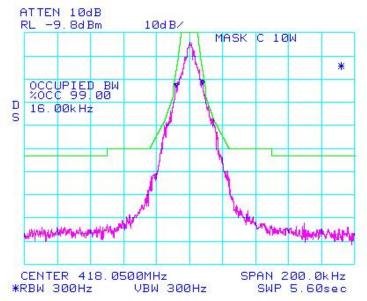

Mask compliance data (Continued) Paragon4 Modem at 43200 bps 8FSK

MASK: C, 14400baud, 4.2KHz reference deviation on 1000Hz tone

OUTPUT POWER: 400mWatts 43200 bps, 8 level FSK PEAK DEVIATION = 5400 Hz SPAN = 200 KHz

UHF MID:

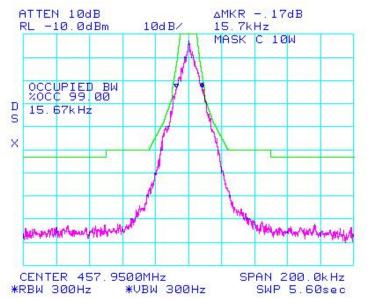


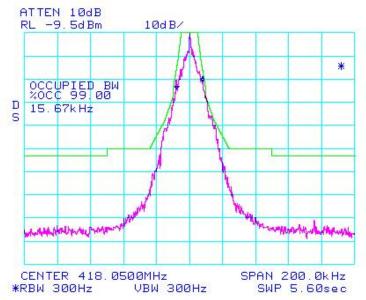

Mask compliance data (Continued) Paragon4 Modem at 64000 bps 16FSK

MASK: C, 16000baud, 4.2KHz reference deviation on 1000Hz tone

OUTPUT POWER: 400mWatts 64000 bps, 16 level FSK PEAK DEVIATION = 5300 Hz SPAN = 200 KHz

UHF MID:

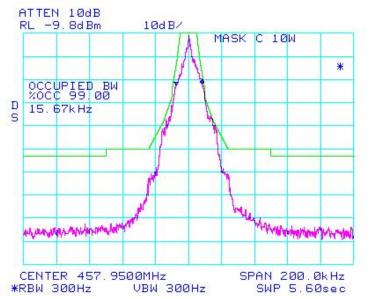


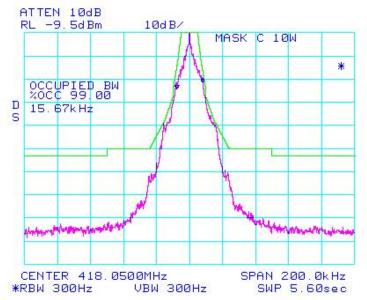

Mask compliance data (Continued) Paragon4 Modem at 48000 bps 8FSK

MASK: C, 16000baud, 4.1KHz reference deviation on 1000Hz tone

OUTPUT POWER: 400mWatts 48000 bps, 8 level FSK PEAK DEVIATION = 5200 Hz SPAN = 200 KHz

UHF MID:




Mask compliance data (Continued) Paragon4 Modem at 32000 bps 4FSK

MASK: C, 16000baud, 3.5KHz reference deviation on 1000Hz tone

OUTPUT POWER: 400mWatts 32000 bps, 4 level FSK PEAK DEVIATION = 4700 Hz SPAN = 200 KHz

UHF MID:

NAME OF TEST: Mask Compliance data for Paragon4 PD+ BDLCslim Modem

Mask compliance data in support of 7200 baud 4/8-FSK, 8000 baud 2/4-FSK and 9600 baud 2-FSK for mask D. Mask compliance data in support of 9600 baud 2/4-FSK, 12800 baud 4-FSK, 14400 baud 8-FSK, 16000 baud 4-FSK and 19200 baud 4-FSK for mask C.

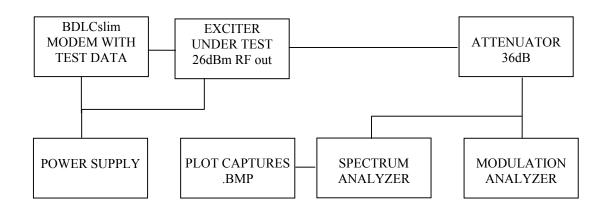
RULE PART NUMBER:	FCC 2.201, 2.202, 2.1033(c) (14), 2.1041, 2.1049 (h), 90.209 (b)(5), 90.210 (c)(d) IC RSS-Gen section 4.6.1, RSS 119 section 5.5			
MINIMUM STANDARD:	Mask D Sidebands and Spurious [Rule 90.210 (d) & IC RSS 119 (5.8.3)] Authorized Bandwidth = 11.25 kHz [Rule 90.209(b) (5) & IC RSS 119 (5.5)]			
	Fo to 5.625 kHz >5.625 kHz to 12.5 kHz >12.5kHz 70dB Corner Points:	Attenuation = 0 dB Attenuation= $7.27(f_d - 2.88kHz) dB$ Lesser of $50 + 10*log(P) dB$ or		
	Fo to 5.625 kHz >5.625 kHz to 12.5 kHz >12.5 kHz	Attenuation = 0 dB Attenuation=20 dB to 70 dB Attenuation =70dB (100W)		
	Mask C Sidebands and Spurious [Rule 90.210 (c) & IC RSS 119 (5.8.2 Authorized Bandwidth = 20 kHz [Rule 90.209(b) (5) & IC RSS (5.5)]			
	Fo to 5.0 kHz >5.0 kHz to 10.0 kHz >10.0 kHz to 250% Auth BW	Attenuation = 0 dB Attenuation= $83*\log(f_d \text{ KHz }/5) \text{ dB}$ Attenuation = Lesser of: 50dB or 29 log (fd2/11)dB,		
	250% Auth BW Corner Points:	$43 + 10*\log(P)$		
	f_0 to 5.0 kHz	Attenuation $= 0 \text{ dB}$		
	>5.0 kHz to 10.0 kHz	Attenuation= 0 dB to 25 dB		
	>10.0 kHz to 15.0 KHz	Attenuation = 27.8 dB to 38 dB		
	>15.0 kHz to 20.0 KHz	Attenuation = 38 dB to 45.2 dB		
	>20.0 kHz to 24.0 KHz	Attenuation = 45.2 dB to 50 dB		
	>24.0 kHz to 50.0 KHz	Attenuation = 50 dB		
	>250% Auth BW	Attenuation = min. 63 dB (100 W)		
TEST RESULTS:	Meets minimum standard (see data on the following pages)			

TEST CONDITIONS:

The test ran in standard environmental test conditions, at 22^oC, 30-50% RH.

TEST EQUIPMENT:

Equipment	Manufacturer	Model	Asset #	Last cal	Next Cal
PD+ Base DataLink Controller/Modem	Calamp	BDLCslim	RD pilot unit	COU	-
Variable DC Power supply	Astron	VS-20M	S/N:97010044	COU	-
Modulation meter	IFR	COM- 120B	DR612	10/2009	10/2010
Spectrum Analyzer	Agilent	8563EC	DR231	03/2010	03/2011
Spectrum Analyzer	Agilent	E4401B	DR624	03/2010	03/2011
Fixed Attenuator 6dB 10W	Pasternack	PE7015-6	-	COU	COU
Fixed Attenuator 30dB 10W	Pasternack	PE7015- 30	-	COU	COU

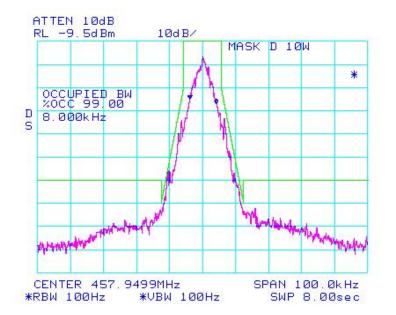

COU = Calibrate On Use

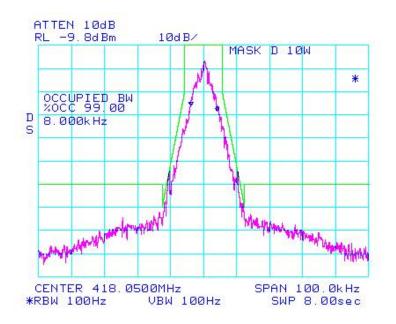
Richard Vallee

PERFORMED BY:

e DATE: 22/04/10

TEST SET-UP:

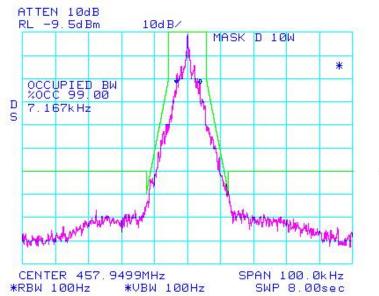


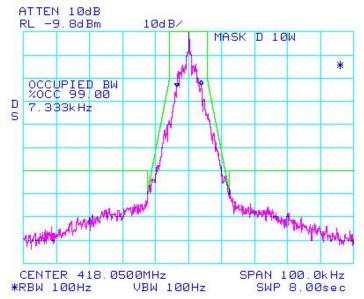


Mask compliance data (Continued) Paragon4 PD+ Modem at 21600 bps 8FSK

MASK: D, 7200 baud, 2.2KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 21600 bps, 8 level FSK PEAK DEVIATION = 2700 Hz SPAN = 100 KHz

UHF MID:

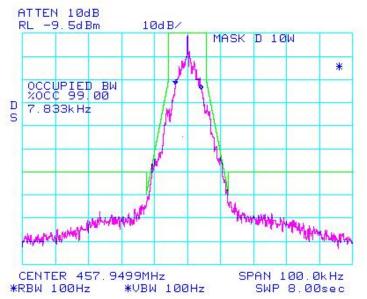


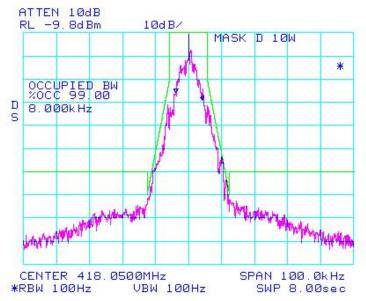

Mask compliance data (Continued) Paragon4 PD+ Modem at 16000 bps 4FSK

MASK: D, 8000 baud, 1.9KHz reference deviation on 1000Hz tone

OUTPUT POWER: 400mWatts 16000 bps, 4 level FSK PEAK DEVIATION = 2200 Hz SPAN = 100 KHz

UHF MID:

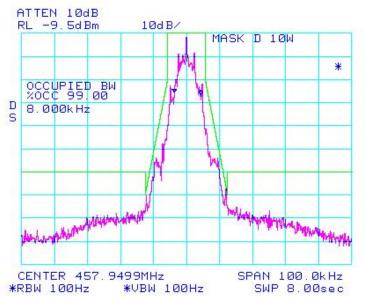


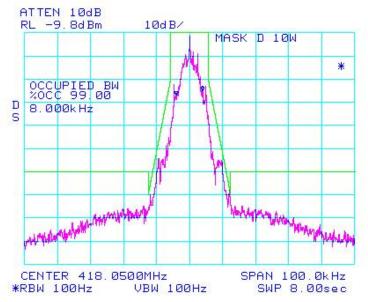


Mask compliance data (Continued) Paragon4 PD+ Modem at 14400 bps 4FSK

MASK: D, 7200 baud, 2.3KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 14400 bps, 4 level FSK PEAK DEVIATION = 2900 Hz SPAN = 100 KHz

UHF MID:

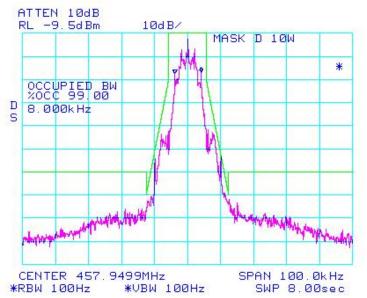


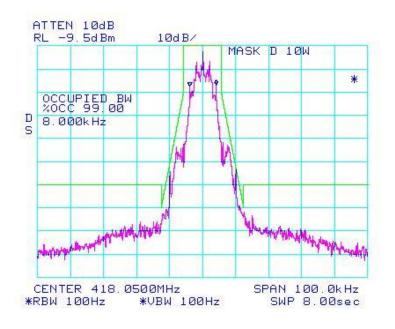


Mask compliance data (Continued) Paragon4 PD+ Modem at 9600 bps 2FSK

MASK: D, 9600 baud, 2.0KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 9600 bps, 2 level FSK PEAK DEVIATION = 2200 Hz SPAN = 100 KHz

UHF MID:

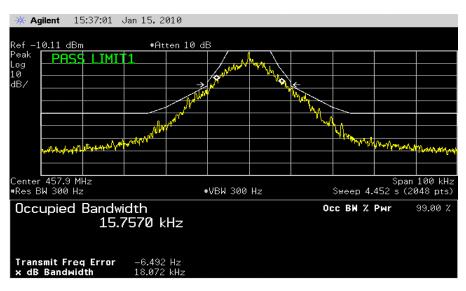


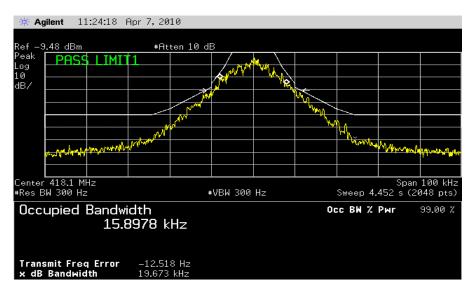


Mask compliance data (Continued) Paragon4 PD+ Modem at 8000 bps 2FSK

MASK: D, 8000 baud, 2.1KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 8000 bps, 2 level FSK PEAK DEVIATION = 2300 Hz SPAN = 100 KHz

UHF MID:

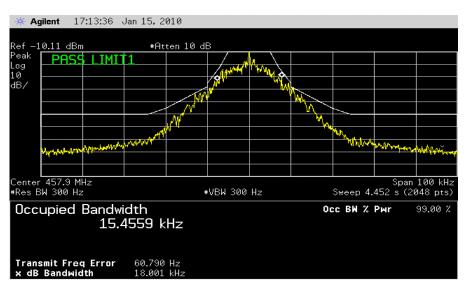


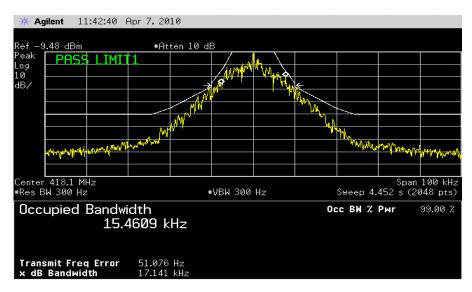


Mask compliance data (Continued) Paragon4 PD+ Modem at 43200 bps 8FSK

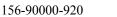
MASK: C, 14400 baud, 4.3KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 43200 bps, 8 level FSK PEAK DEVIATION = 5300 Hz SPAN = 100 KHz

UHF MID:



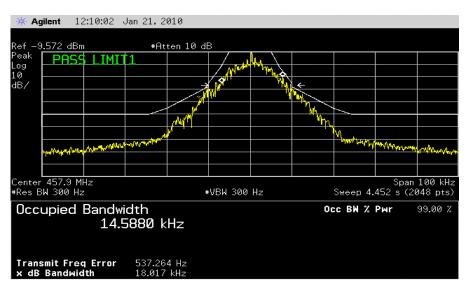

NAME OF TEST: Mask compliance data (Continued) Paragon4 PD+ Modem at 32000 bps 4FSK

MASK: C, 16000baud, 4.3KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 32000 bps, 4 level FSK PEAK DEVIATION = 5200 Hz SPAN = 100 KHz

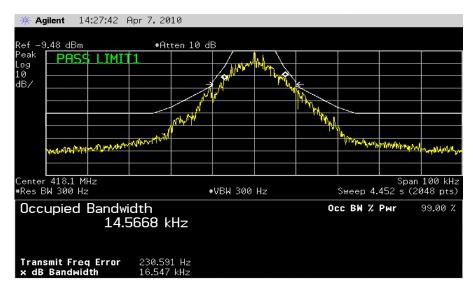

UHF MID:

UHF LOW:

CalAmp



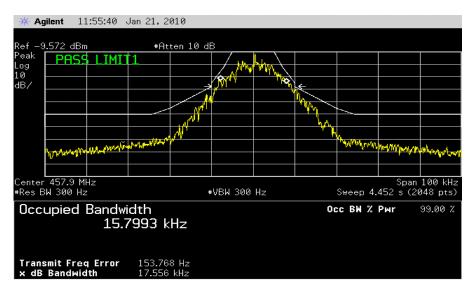
Mask compliance data (Continued) Paragon4 PD+ Modem at 25600 bps 4FSK


MASK: C, 12800baud, 3.9KHz reference deviation on 1000Hz tone

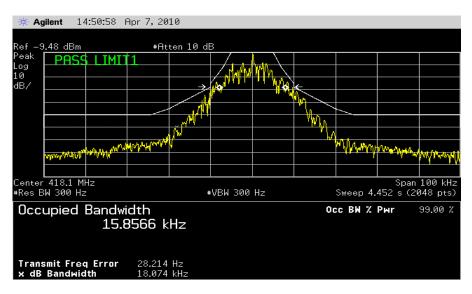
OUTPUT POWER: 400mWatts 25600 bps, 4 level FSK PEAK DEVIATION = 4400 Hz SPAN = 100 KHz

UHF MID:

UHF LOW:

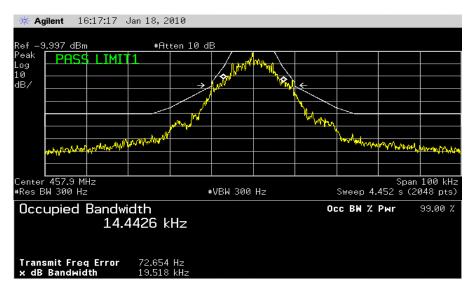


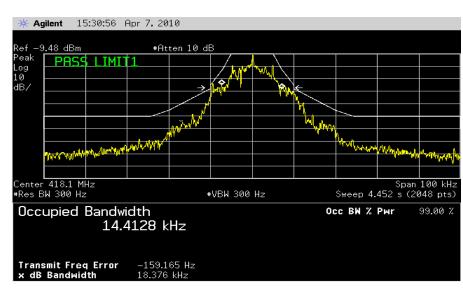
CalAmp


Mask compliance data (Continued) Paragon4 PD+ Modem at 19200 bps 4FSK

MASK: C, 9600baud, 4.3KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 19200 bps, 4 level FSK PEAK DEVIATION = 5500 Hz SPAN = 100 KHz

UHF MID:

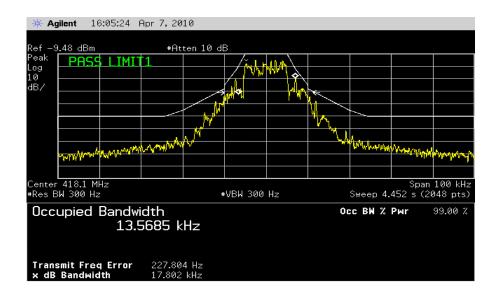




Mask compliance data (Continued) Paragon4 PD+ Modem at 19200 bps 2FSK

MASK: C, 19200baud, 3.7KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 19200 bps, 2 level FSK PEAK DEVIATION = 3800 Hz SPAN = 100 KHz

UHF MID:



Mask compliance data (Continued) Paragon4 PD+ Modem at 9600 bps 2FSK

MASK: C, 9600baud, 4.2KHz reference deviation on 1000Hz tone OUTPUT POWER: 400mWatts 9600 bps, 2 level FSK PEAK DEVIATION = 4300 Hz SPAN = 100 KHz

UHF MID:

Section A5: Transmitter Frequency Behavior

Summary

These tests were conducted on a sample of equipment for the purpose of demonstrating its compliance with the restrictions for the transient frequency behavior of the transmitter in both the turned on and turned off cases. This test is required for equipment operating in the 406.1-512 MHz range, as defined by the rules found in FCC Part 90. These tests were performed in accordance with ANSI TIA-603 B.

The assessment summary is:

EQUIPMENT UNDER TEST:	SDR-T-001UHF 403-477MHz exciter module (model name SDR-T-001-403)
SERIAL NUMBER (S):	Pre-production sample
SUPPORT EQUIPMENT:	P4 base station controller/modem module, pre- production sample (model name BSC2)
SPECIFICATIONS:	FCC Part 90 Private Land Mobile Radio Services
COMPLIANCE STATUS:	Compliant
EXCLUSIONS:	None
NON-COMPLIANCES:	None
TEST RESULTS SUMMARY:	Pass

The technical data included in this report has been accumulated through tests that were performed by me or under my direction. To the best of my knowledge, all of the data is true and correct

Richard Vallee

PERFORMED BY:

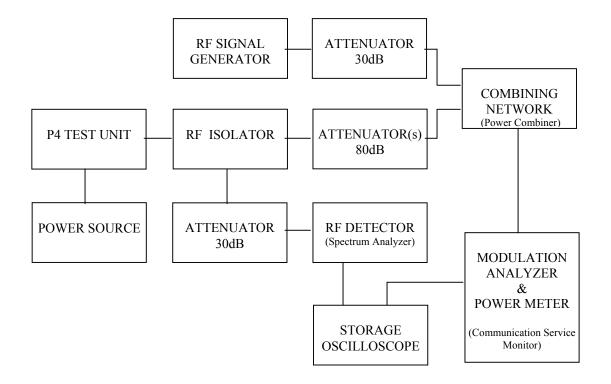
DATE: 17/10/09

NAME OF TEST:	Transient Frequency Behavior
RULE PART NUMBER:	FCC Part 90.214
MINIMUM STANDARD:	12.5 kHz channel (used worst case numbers from 406.1 to 477 MHz) 25 kHz channel (used worst case numbers from 406.1 to 477 MHz)
	NOTE: The following plots were done using method TIA/FIA 603-B

NOTE: The following plots were done using method TIA/EIA 603-B, 2.2.19. The transient time duration and frequency difference limits shown in these plots are for a 12.5KHz channel minimum standard. The 25KHz channel minimum standard is also met, since the 12.5KHz channel minimum standard is the more strict standard.

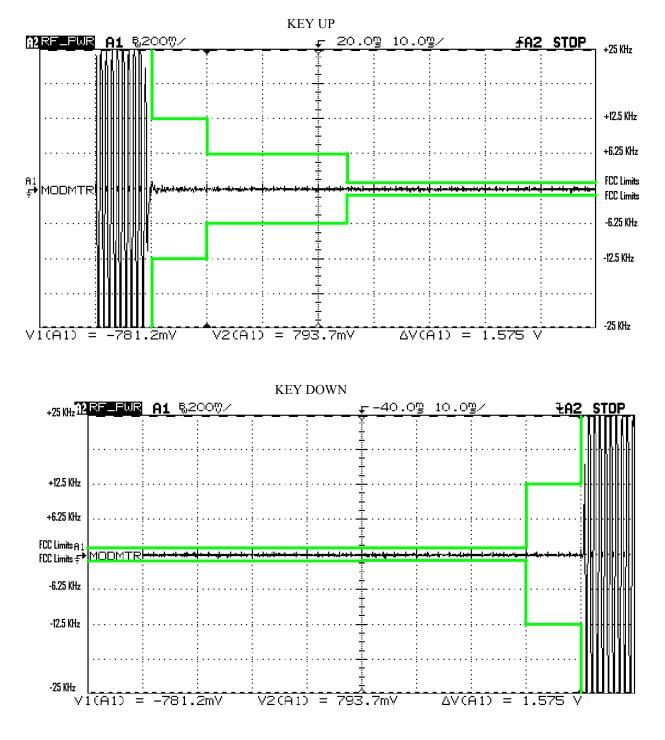
TIME INTERVAL	MAX FREQ DIFFERENCE (KHz)	MAX FREQ DIFFERENCE (KHz)	TIME (mSec)
	12.5KHz CHN	25 kHz CHN	
T1	+/- 12.5	+/- 25	10
T2	+/- 6.25	+/- 12.5	25
Т3	+/- 12.5	+/- 25	10
T2 to T3	+/-1.5ppm of fc (MHz)	+/-2.5ppm of fc (MHz)	-

TEST RESULTS:	Meets minimum standards, see data on following pages
TEST CONDITIONS:	RF Power Level = 400 mWatts and 4mWatts (see following plots) The test ran in standard environmental test conditions at 22° C, $30-50\%$ RH.
TEST PROCEDURE:	TIA/EIA - 603, 2.2.19

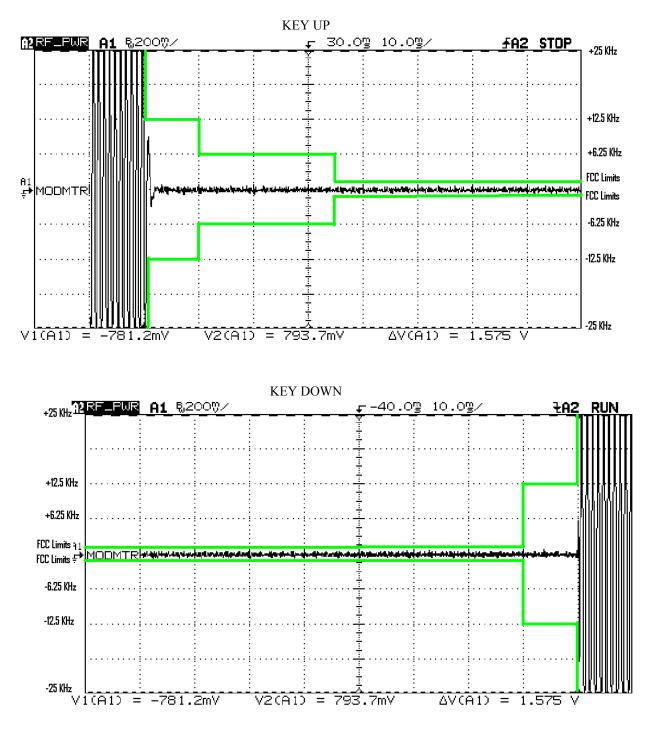

TEST EQUIPMENT:

Equipment	Manufacturer	Model	Asset #	Last cal	Next Cal
P4 Base Station	Calamp	BSC2	RD pilot	COU	-
Controller/modem			unit		
Variable DC Power supply	Astron	VS-20M	DR1402	COU	-
Comm. Monitor: Modulation	IFR	COM-120B	DR612B	10/2009	10/2010
Analyzer & Power Meter					
Spectrum Analyzer: RF	Agilent	8563EC	DR231	03/2010	03/2011
Detector	_				
RF Signal Generator	Hewlett Packard	HP8642A	DR326	COU	-
Storage Oscilloscope	Hewlett Packard	HP54645D	DR223	COU	-
RF Isolator	EMC Corp	7550/4A	-	COU	-
Power Combiner	Mini-Circuits	ZAPD-1	-	NCR	-
Fixed Attenuator 20dB 10W	Pasternack	PE7015-20	-	NCR	-
Fixed Attenuators 30dB 10W	Pasternack	PE7015-30	-	NCR	-

COU = Calibrate On Use, NCR = No Calibration Required


TEST SET-UP:

Richard Vallee


PERFORMED BY:

DATE:17/10/09

TRANSIENT FREQUENCY RESPONSE UHF LOW Exciter : Unmodulated 400 mWatts

TRANSIENT FREQUENCY RESPONSE UHF LOW Exciter : Unmodulated 4 mWatts

