

TEST REPORT

Report Number: 102714365MIN-001 Project Number: G102714365

Testing performed on the BTE13
Class II Permissive Changes

FCC ID: EOA-EXPSTANDARD

to 47 CFR Part 15.249:2015

For Starkey Laboratories, Inc.

Test Performed by: Intertek Testing Services NA, Inc. 7250 Hudson Blvd., Suite 100 Oakdale, MN 55128 USA Test Authorized by: Starkey Laboratories, Inc. 6700 Washington Avenue South Eden Prairie, MN 55344, USA

Prepared by:	M. Spector Uri Spector		
Reviewed by:	Norman Shpilsher	Date of issue:	September 1, 2016

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1.0	GENERAL DESCRIPTION	3
1.1	Product Description; Test Facility	4
1.3	Environmental conditions	5
1.4	Measurement uncertainty	6
1.5	Field Strength Calculation	6
2.0	TEST SUMMARY	7
3.0	TEST CONDITIONS AND RESULTS	8
3.1	Field strength of fundamental	8
3.2	Field strength of harmonics and spurious emissions	10
4.0	TEST EQUIPMENT	18
5.0	REVISION HISTORY	

1.0 GENERAL DESCRIPTION

Model Tested:	BTE13
Type of EUT:	Hearing Aid
Serial Number:	161085203
FCC ID:	EOA-EXPSTANDARD
Related Submittal(s) Grants:	Class II Permissive Changes
Company:	Starkey Laboratories, Inc.
Customer:	Mr. Bill Mitchell
Address:	6700 Washington Avenue South Eden Prairie, MN 55344, USA
Phone:	(952) 947-4734
Fax:	(952) 828-6972
E-mail:	bill_mitchell@starkey.com
Test Standards:	□ 47 CFR, Part 15:2015, §15.249 □ RSS-210, Issue 8, 2010 □ RSS-Gen, Issue 4, 2014 □ 47 CFR, Part 15:2015, §15.107 and §15.109, Class □ test method: ANSI C63.4-2014 □ ICES-003, Issue 6:2016 □ Other
Type of radio:	⊠ Stand -alone □ Module □ Hybrid
Date Sample Submitted:	August 31, 2016
Test Work Started:	August 31, 2016
Test Work Completed:	September 1, 2016
Test Sample Conditions:	□ Damaged □Poor (Usable) ⊠ Good

1.1 Product Description; Test Facility

Product Description:	Hearing Aid Transceiver
Band of Operation:	902 - 928MHz
Operating Frequencies:	902.6-926.9MHz
Modulation:	FSK
Antenna(s) Info:	Integral
Antenna Installation:	☐ User ☐ Professional ☒ Factory
Transmitter Power Configuration:	☐ Internal battery ☐ External power source ☐ 120VAC ☐ 230VAC ☐ 400VAC ☐ 1.45VDC ☐ Other: ☐ Amp. ☐ 50Hz ☐ 60Hz
Special Test Arrangement:	None
Test Facility Accreditation:	A2LA (Certificate No. 1427.01)
Test Methodology:	Measurements performed according to the procedures in ANSI C63.10-2013

1.2 EUT Configuration

Tha	aquinmant	under	toct was	anaratad	during th	o moocur	omonti	ındar th	o followin	na conditions:
HIE	edulpment	. unaer	iesi was	operated	aurina u	ie ilieasuit	emeni	ınaeı in	e ioliowii	ia conditions.

l - Stand	lh١
	ıν١

_	\sim				
	 l :∩	ntiı	าเเ	വ	10
	 -	1141	ıu	vu	·

- □ Continuous un-modulated
- □ Test program (customer specific)
- □ Continuous modulated (see details below)

Operating modes of the EUT:

No.	Description
1	The device was pre-programmed to operate continuously at low, middle, and upper frequency channels,
	one channel being transmitted at a given time.

Cables:

No.	Туре	Length	Designation	Note
1	None			

Support equipment/Services:

N	0.	Item	Description
	1	None	

General Note: The only RF circuit change that has been made to the design was that antenna tuning capacitor C401 was depopulated. Therefore, Field Strength of Fundamental Emission and Spurious Radiated Emissions were measured.

1.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

⋈ Normal

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

1.4 Measurement uncertainty

The expanded uncertainty (k = 2) for radiated emissions from 30 to 1000 MHz has been determined to be: ± 4 dB at 10m and ± 5.4 dB at 3m

The expanded uncertainty (k = 2) for radiated emissions above 1GHz has been determined to be: ± 6.4 dB at 3m

The expanded uncertainty (k = 2) for conducted emissions from 150 kHz to 30 MHz has been determined to be:

±2.6 dB

1.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured emissions reading on the EMI Receiver.

The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where: FS = Field Strength in $dB(\mu V/m)$ RA = Receiver Amplitude in $dB(\mu V)$ CF = Cable Attenuation Factor in dBAF = Antenna Factor in $dB(m^{-1})$

AG = Amplifier Gain in dB

Assume a receiver reading of 48.1 dB(μ V) is obtained. The antenna factor of 7.4 dB(m⁻¹) and cable factor of 1.6 dB is added and amplifier gain of 16.0 dB is subtracted giving field strength of 41.1 dB(μ V/m).

 $RA = 48.1 dB(\mu V)$ $AF = 7.4 dB(m^{-1})$

CF = 1.6 dB

AG = 16.0 dB

FS = RA + AF + CF - AG

FS = 48.1 + 7.4 + 1.6 - 16.0

 $FS = 41.1 dB(\mu V/m)$

General notes:

Page 6 of 19

2.0 TEST SUMMARY

Referring to the performance criteria and the operating mode during the tests specified in this report, the equipment complies with the requirements according to the following standards.

TEST SPECIFICATION	TEST PARAMETERS	RESULT
15.249(a)	Field strength of fundamental	Pass
15.249(a)	Field strength of harmonics	Pass
15.249(d)	Field strength of spurious emissions	Pass

3.0 TEST CONDITIONS AND RESULTS

3.1 Field	1 Field strength of fundamental						
Test location	:	OATS		Other			
Test distance	e:	☐ 10 meters	☑ 3 meters				
Frequency ra	ange of measurements:		902-928MHz				
Test result:			Pass				
Max. Emissions margin at fundamental:			17.1dB below the limits				
Notes:	None						

Date:	August 31, 2016	Result:	Pass
Tested by:	Uri Spector		
Standard:	FCC 15.249(a)		
Test Point:	Enclosure with antenna		
Operation mode:	See page 5		
Environmental Conditions:	22.9°C; 47.8%(RH); 98.8kPa		
Equipment Verification:			
Note:	None		

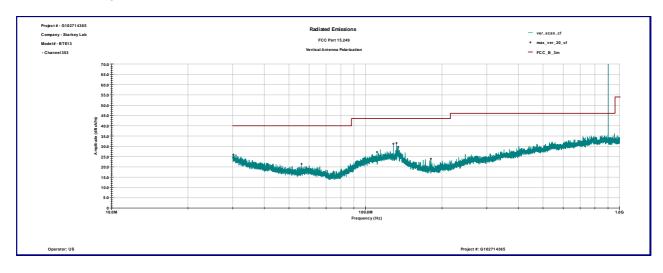
Table 3.1.1

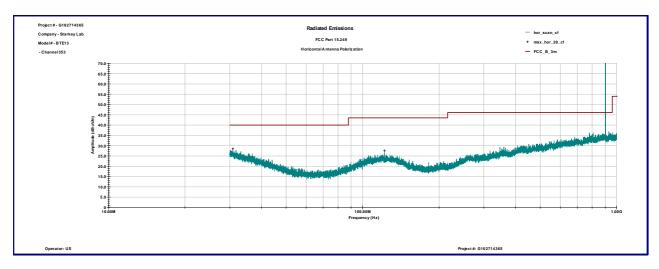
							0000000			
Frequency	Ant	tenna	Ant. CF	Cable loss	Pre-amp	Reading	Total @ 3m	Limit	Margin	Comments
MHz	Polarity	Hts(cm)	dB1/m	dB	Gain (dB)	dΒμV	dBμV/m	dBµV/m	dB	
				Channel 353			000000			OR OTHER DESIGNATION OF THE PROPERTY OF THE PR
902.58	V	129	22.0	2.6	0.0	52.5	77.1	94.0	-16.9	Peak Readings
902.58	Н	204	22.0	2.6	0.0	48.3	72.9	94.0	-21.1	Peak Readings
				Channel 393						Minocoonia
914.74	V	117	22.0	2.6	0.0	52.3	76.9	94.0	-17.1	Peak Readings
914.74	Η	187	22.0	2.6	0.0	48.4	73.0	94.0	-21.0	Peak Readings
	Channel 433									
926.85	V	110	22.0	2.6	0.0	49.2	73.8	94.0	-20.2	Peak Readings
926.85	Н	190	22.0	2.6	0.0	45.3	69.9	94.0	-24.1	Peak Readings

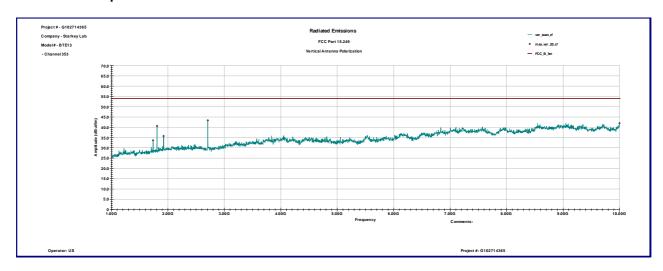
Page 9 of 19

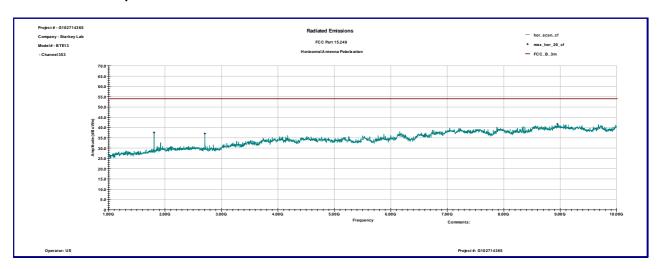
3.2 Field	3.2 Field strength of harmonics and spurious emissions							
Test location: ☐ OATS								
Test distance: ☐ 10 meters								
Frequency ra	nge of measurements:	30MHz-10GHz						
Test result:	Pass							
Maximum ma	rgin of harmonics and s	spurious emissions: 5.8dB below the limits						
Notes:	Graphs 3.2.1 and 3.2.2 s Graphs 3.2.3 and 3.2.4 s Graphs 3.2.5 and 3.2.6 s	show spurious and harmonics emissions for Channel 353 show spurious and harmonics emissions for Channel 393 show spurious and harmonics emissions for Channel 433						
	All peak harmonics and spurious emissions are below average limit.							

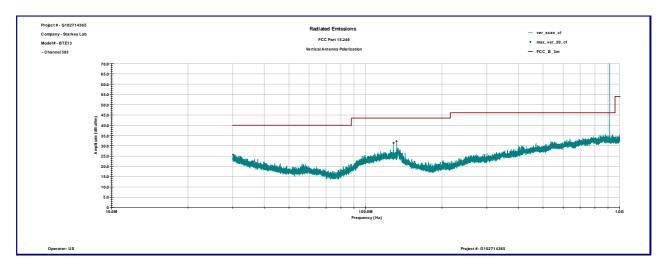
Date:	August 31, 2016	Result: Pass
Tested by:	Uri Spector	
Standard:	FCC 15.249(a)	
Test Point:	Enclosure with antenna	
Operation mode:	See page 5	
Environmental Conditions:	22.9°C; 47.8%(RH); 98.8kPa	
Equipment Verification:		
Note:	None	

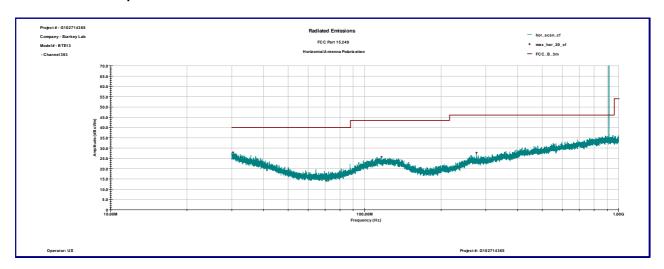

Table 3.2.1

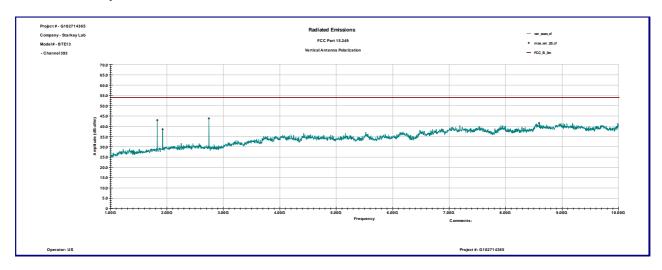

Frequency	Antenna	Peak Reading	Total C.F.	Pre-Amp.	Total at 3m	Limit	Margin
MHz	Polarity	dBµV	dB1/m	Gain (dB)	dBµV/m	dBµV/m	dB
IVII IZ	1 Clarity	Сhanne		Gairi (GD)	αΒμν/ιιι	αυμν/π	uD
1.738 GHz	V	48.1	28.6	43.0	33.6	54.0	-20.4
1.807 GHz	V	54.8	29.0	43.1	40.6	54.0	-13.4
1.924 GHz	V	49.1	29.8	43.1	35.7	54.0	-13.4
	V	<u>49.1</u> 55.1		43.6	43.4	54.0	
2.707 GHz	V	55.1	31.8	43.6	43.4	54.0	-10.6
1.807 GHz	Н	51.7	29.0	43.1	37.6	54.0	-16.4
2.707 GHz	Н	48.8	31.8	43.6	37.1	54.0	-16.9
		Channe	el 393				
1.831 GHz	V	56.9	29.2	43.1	43.0	54.0	-11.0
1.924 GHz	V	51.9	29.8	43.2	38.5	54.0	-15.4
2.743 GHz	V	55.5	31.9	43.6	43.8	54.0	-10.2
1.831 GHz	Н	52.2	29.2	43.1	38.3	54.0	-15.7
2.743 GHz	Н	50.3	31.9	43.6	38.6	54.0	-15.4
		Channe	el 433				
1.855 GHz	V	55.4	29.4	43.1	41.7	54.0	-12.3
1.924 GHz	V	47.9	29.8	43.2	34.5	54.0	-19.5
2.779 GHz	V	59.9	31.9	43.6	48.2	54.0	-5.8
1.855 GHz	Н	52.2	29.5	43.1	38.6	54.0	-15.4
2.779 GHz	Н	54.4	32.0	43.6	42.8	54.0	-11.2

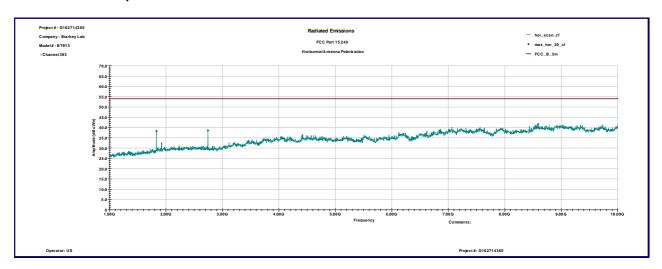

Graph 3.2.1

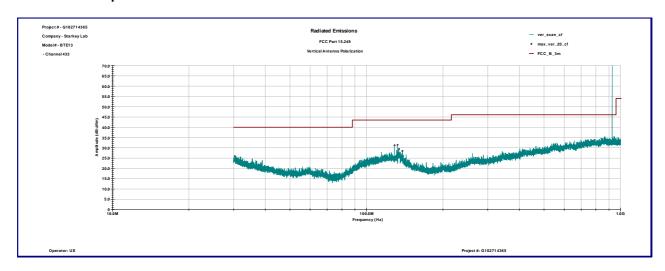

Vertical antenna polarization

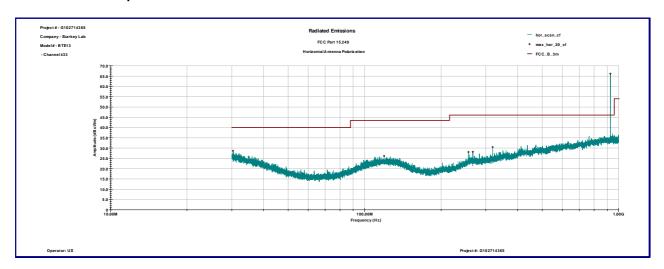


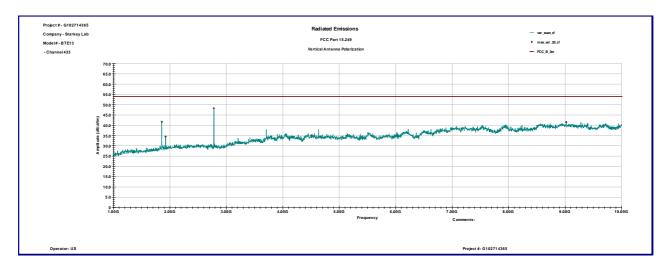


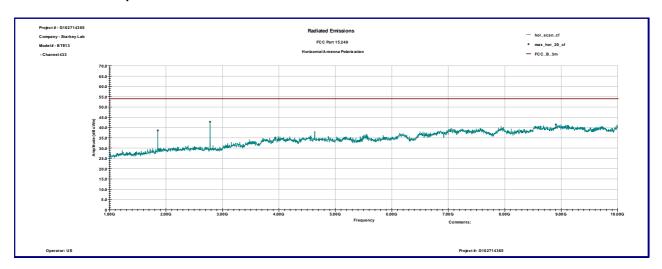












4.0 TEST EQUIPMENT

DESCRIPTION	MANUFACTURER	MODEL	SERIAL NO.	INTERTEK ID	CAL DUE	USED
Spectrum Analyzer	R&S	FSP 40 100024		12559	01/20/2017	\boxtimes
Spectrum Analyzer	R&S	ESU 100398		25283	02/11/2017	\boxtimes
Bicono-Log Antenna	Teseq	CBL6112D	32859	25289	09/24/2016	\boxtimes
Horn Antenna	EMCO	3115	9507-4513	9936	07/12/2017	\boxtimes
Pre-Amplifier	MITEQ	AMF-5D-00501800-28- 13P	1402232	172081	11/19/2016	
System	Quantum Change	TILE! Instrument Control	Ver. 3.4.K.29	15259	VBU	
High pass filter Reactel		7HS-1G-S12	SN02-1	6015275	VBU	\boxtimes

5.0 Revision History

REVISION LEVEL	DATE	REPORT NUMBER	PREPARED	REVIEWED	NOTES
0	09-01-2016	102714365MIN-001	US	NS	Original Issue