

Starkey Laboratories, Inc.

Remote Microphone + Model 900 FCC 15.247:2019

Bluetooth Radio

Report # STAK0155

NVLAP LAB CODE: 200881-0

Last Date of Test: January 16, 2019 Starkey Laboratories, Inc. Model: Remote Microphone + Model 900

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2019	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required. Covered by testing under STAK0117
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
7.5	Duty Cycle	No	N/A	Not required. Covered by testing under STAK0117
7.8.2	Carrier Frequency Separation	No	N/A	Not required. Covered by testing under STAK0117
7.8.3	Number of Hopping Frequencies	No	N/A	Not required. Covered by testing under STAK0117
7.8.4	Dwell Time	No	N/A	Not required. Covered by testing under STAK0117
7.8.5	Output Power	Yes	Pass	
7.8.6	Band Edge Compliance	No	N/A	Not required. Covered by testing under STAK0117
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required. Covered by testing under STAK0117
7.8.7	Occupied Bandwidth	No	N/A	Not required. Covered by testing under STAK0117
7.8.8	Spurious Conducted Emissions	No	N/A	Not required. Covered by testing under STAK0117

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

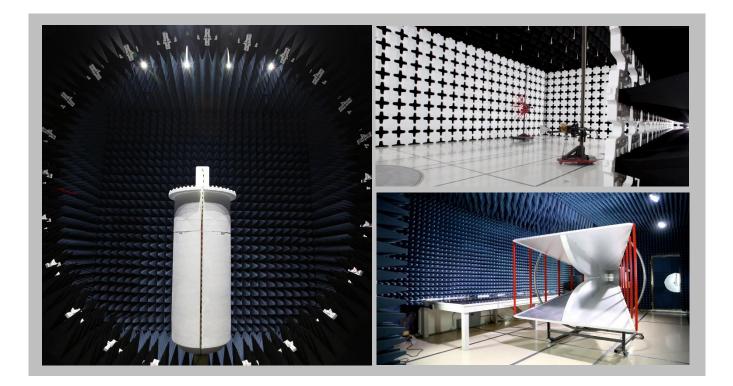
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

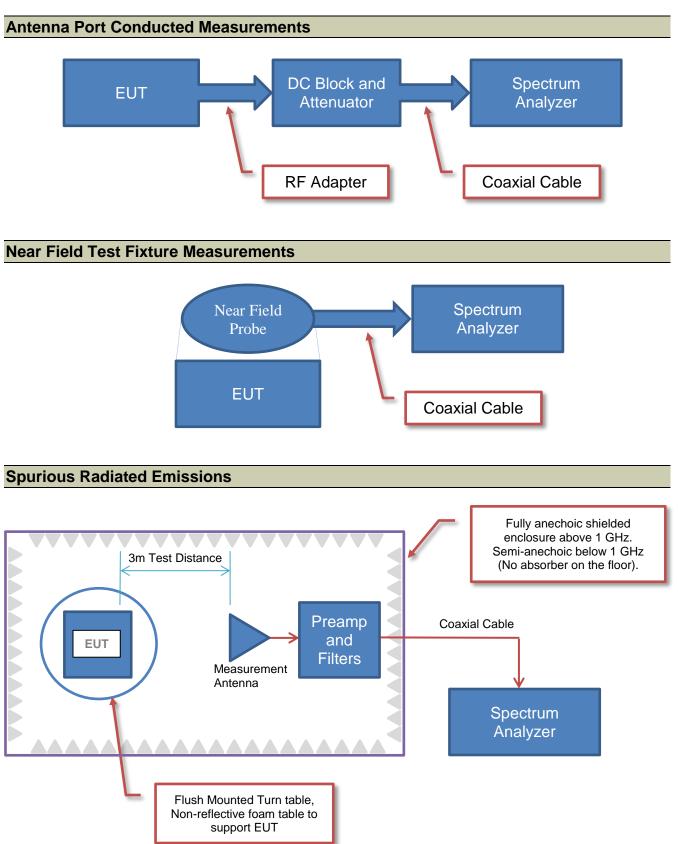
FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
		NV	LAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1	2834G-1	2834F-1			
		BSI	MI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
		VC	CI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	N/A	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Starkey Laboratories, Inc.
Address:	6600 Washington Ave S
City, State, Zip:	EDEN PRAIRIE, MN 55344-3404
Test Requested By:	Bill Mitchell
Model:	Remote Microphone + Model 900
First Date of Test:	December 10, 2018
Last Date of Test:	January 16, 2019
Receipt Date of Samples:	December 10, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Remote microphone device.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.

Configuration STAK0155-1

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Remote Microphone +	Starkey Inc.	900	182810378B				

Configuration STAK0155-5

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Remote Microphone +	Starkey Inc.	900	182810800B				

Remote Equipment Outside of Test Setup Boundary							
Description Manufacturer Model/Part Number Serial Number							
Laptop	Lenovo	ThinkPad T430	11306				
Power Supply (Laptop)	Lenovo	ADLX90NCT2A	11S45N0311Z1ZLZ633M0T4				
USB to Serial Converter	CSR	CNS10020V3A	381800				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.8 m	No	Laptop	USB to Serial Converter
Serial Cable	No	0.2 m	No	USB to Serial Converter	Remote Microphone +
AC Cable	No	1.0 m	No	AC Mains	Power Supply (Laptop)
DC Cable	No	1.8 m	Yes	Power Supply (Laptop)	Laptop

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1 2018-12-10		Spurious	Tested as	No EMI suppression	EUT remained at
	2018-12-10	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Output	Tested as	No EMI suppression	Sebeduled testing
2	2019-01-16	01-16 Output Power	delivered to	devices were added or	Scheduled testing was completed.
		FUWEI	Test Station.	modified during this test.	was completed.

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx Low Ch. 2402 MHz, Mid Ch. 2440 MHz, and High Ch. 2480 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0155 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 26500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Manufacturer	Model	ID	Last Cal.	Interval
Miteq	JSD4-18002600-26-8P	APU	13-Sep-2018	12 mo
ESM Cable Corp	TTBJ141 KMKM-72	MNP	12-Sep-2018	12 mo
ETS Lindgren	3160-09	AHG	NCR	0 mo
Micro-Tronics	HPM50111	HFM	26-Sep-2018	12 mo
Miteq	AMF-3D-00100800-32-13P	AVX	24-Feb-2018	12 mo
Micro-Tronics	LPM50004	HGG	26-Sep-2018	12 mo
Coaxicom	3910-20	AXY	26-Sep-2018	12 mo
L-3 Narda-MITEQ	AMF-6F-12001800-30-10P	PAP	24-Feb-2018	12 mo
Miteq	AMF-6F-08001200-30-10P	AVC	24-Feb-2018	12 mo
ETS-Lindgren	3160-08	AJP	NCR	0 mo
ETS-Lindgren	3160-07	AJJ	NCR	0 mo
Element	Standard Gain Cable	MNW	24-Feb-2018	12 mo
Element	Double Ridge Guide Horn Cables	MNV	24-Feb-2018	12 mo
ETS Lindgren	3115	AIB	27-Aug-2018	24 mo
Agilent	E4440A	AAX	26-Mar-2018	12 mo
Miteq	AM-1064-9079 and SA18E-10	AOO	24-Feb-2018	12 mo
Element	Biconilog Cable	MNX	24-Feb-2018	12 mo
ETS Lindgren	3142D	AXO	15-Dec-2017	24 mo
	Miteq ESM Cable Corp ETS Lindgren Micro-Tronics Miteq Micro-Tronics Coaxicom L-3 Narda-MITEQ Miteq ETS-Lindgren ETS-Lindgren Element Element Element Agilent Miteq ETS Lindgren	MiteqJSD4-18002600-26-8PESM Cable CorpTTBJ141 KMKM-72ETS Lindgren3160-09Micro-TronicsHPM50111MiteqAMF-3D-00100800-32-13PMicro-TronicsLPM50004Coaxicom3910-20L-3 Narda-MITEQAMF-6F-12001800-30-10PMiteqAMF-6F-08001200-30-10PETS-Lindgren3160-08ETS-Lindgren3160-07ElementStandard Gain CableElementDouble Ridge Guide Horn CablesETS Lindgren3115AgilentE4440AMiteqAM-1064-9079 and SA18E-10ElementBiconilog Cable	MiteqJSD4-18002600-26-8PAPUESM Cable CorpTTBJ141 KMKM-72MNPETS Lindgren3160-09AHGMicro-TronicsHPM50111HFMMiteqAMF-3D-00100800-32-13PAVXMicro-TronicsLPM50004HGGCoaxicom3910-20AXYL-3 Narda-MITEQAMF-6F-12001800-30-10PPAPMiteqAMF-6F-08001200-30-10PAVCETS-Lindgren3160-08AJPETS-LindgrenStandard Gain CableMNWElementDouble Ridge Guide Horn CablesMNVETS Lindgren3115AIBAgilentE4440AAAXMiteqAM-1064-9079 and SA18E-10AOOElementBiconilog CableMNX	MiteqJSD4-18002600-26-8PAPU13-Sep-2018ESM Cable CorpTTBJ141 KMKM-72MNP12-Sep-2018ETS Lindgren3160-09AHGNCRMicro-TronicsHPM50111HFM26-Sep-2018MiteqAMF-3D-00100800-32-13PAVX24-Feb-2018Micro-TronicsLPM50004HGG26-Sep-2018Coaxicom3910-20AXY26-Sep-2018L-3 Narda-MITEQAMF-6F-12001800-30-10PPAP24-Feb-2018MiteqAMF-6F-08001200-30-10PAVC24-Feb-2018ETS-Lindgren3160-08AJPNCRETS-LindgrenStandard Gain CableMNW24-Feb-2018ElementDouble Ridge Guide Horn CablesMNV24-Feb-2018ETS Lindgren3115AIB27-Aug-2018AgilentE4440AAAX26-Mar-2018MiteqAM-1064-9079 and SA18E-10AOO24-Feb-2018ElementBiconilog CableMNX24-Feb-2018

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

SPURIOUS RADIATED EMISSIONS

																			EmiR5	2018.09.	26			PSA-ES	SCI 2018.07
Wo	ork Order:	STA	K0155				D	ate:		10-	Dec-	2018				1	1		20.0	/	0	11	1		
	Project:	N	lone		Т	emp	perat	ure:		2	20.6	°C			/	Æ	/			1	15	U			
	Job Site:	M	IN09			Ĥ	lumi	dity:		2	1.1%	RH		(/	_				1					
Serial	Number:	1828	10378	3	Baro	metr	ric Pi	res.:		10)24 m	ıbar				Т	est	ed by:	Chri	s Pat	ters	on, A	And	rew	Rogst
	EUT:	Remote N	Microph	none +	Model	900																			
Confi	iguration:	1																							
	Sustomer:		aborat	ories,	Inc.																				
	ttendees:			/																					
	JT Power:																								
	ng Mode:	Tx Low C	h. 2402	2 MHz	, Mid Cl	า. 24	40 N	1Hz, 1	and	Higl	h Ch.	2480) MH	z											
De	eviations:	None																							
Co	omments:	See data	comm	ents fo	or EUT o	orien	tatio	n, Tx	mo	dula	tion,	and c	han	nel											
Test Speci	fications	1									Т	est N	leth	od											
FCC 15.24												NSI (013										
Run #	20	Test D	istance	e (m)	3		Ant	enna	a He	ight	:(s)			1 to	o 4(ı	m)			Re	esult	S		P	ass	
				/							. / .														
]
80 -								_														-	+++		
70 —																						-	+++	++-	
60 +													i I												1
										∣↓			_												
_ 50 -																									
ε ³⁰													-												
Σ.				<u> </u>																					
W/\Nngp															-								$\downarrow \downarrow$		
B															7		•								
															.										
30 —								_							_								+++		
20 +								_	\square	\mathbb{H}					-	+	+				-	-	++	++	
10																									
10 +																							$\uparrow \uparrow$		1
o 🗕																									
10				100						100	0						10	000						100	1000
10				100													10	000						100	000
										МΗ	1Z											• A	V	•	QP

Freq	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
(MHz)	(ubuv)	(db)	(meters)	(uegrees)	(meters)	(ub)			(ub)	(ubuv/m)	(ubuv/iii)	(UD)	Comments
2483.635	29.8	-4.2	1.0	256.0	3.0	20.0	Horz	AV	0.0	45.6	54.0	-8.4	High Ch, DH5, EUT Horz
2379.300	29.2	-4.5	1.0	285.0	3.0	20.0	Vert	AV	0.0	44.7	54.0	-9.3	Low Ch, DH5, EUT Vert
2483.600	28.8	-4.2	1.0	199.0	3.0	20.0	Horz	AV	0.0	44.6	54.0	-9.4	High Ch, 2DH5, EUT Horz
2485.075	28.7	-4.2	1.0	103.0	3.0	20.0	Vert	AV	0.0	44.5	54.0	-9.5	High Ch, DH5, EUT Vert
2483.500	28.7	-4.2	1.0	37.0	3.0	20.0	Horz	AV	0.0	44.5	54.0	-9.5	High Ch, 3DH5, EUT Horz
2382.050	28.2	-4.5	1.0	256.0	3.0	20.0	Horz	AV	0.0	43.7	54.0	-10.3	Low Ch, DH5, EUT Horz
2385.150	28.1	-4.5	1.0	16.0	3.0	20.0	Horz	AV	0.0	43.6	54.0	-10.4	Low Ch, 2DH5, EUT Horz
2385.267	28.1	-4.5	1.0	103.0	3.0	20.0	Horz	AV	0.0	43.6	54.0	-10.4	Low Ch, 3DH5, EUT Horz
4880.083	38.0	4.0	3.9	0.0	3.0	0.0	Vert	AV	0.0	42.0	54.0	-12.0	Mid Ch, DH5, EUT Vert
4880.067	37.0	4.0	1.0	159.0	3.0	0.0	Horz	AV	0.0	41.0	54.0	-13.0	Mid Ch, DH5, EUT Horz
2483.767	45.1	-4.2	1.0	37.0	3.0	20.0	Horz	PK	0.0	60.9	74.0	-13.1	High Ch, 3DH5, EUT Horz
4804.050	36.2	4.3	2.3	140.0	3.0	0.0	Horz	AV	0.0	40.5	54.0	-13.5	Low Ch, DH5, EUT Horz
2483.625	44.6	-4.2	1.0	199.0	3.0	20.0	Horz	PK	0.0	60.4	74.0	-13.6	High Ch, 2DH5, EUT Horz
7319.975	27.5	12.1	1.0	14.0	3.0	0.0	Vert	AV	0.0	39.6	54.0	-14.4	Mid Ch, DH5, EUT Vert
4804.058	34.7	4.3	2.2	77.0	3.0	0.0	Horz	AV	0.0	39.0	54.0	-15.0	Low Ch, DH5, EUT On Side
7440.175	26.4	12.5	1.0	1.0	3.0	0.0	Vert	AV	0.0	38.9	54.0	-15.1	High Ch, DH5, EUT Vert
4960.058	34.8	4.0	1.0	18.0	3.0	0.0	Vert	AV	0.0	38.8	54.0	-15.2	High Ch, DH5, EUT Vert
4960.067	34.0	4.0	2.6	151.0	3.0	0.0	Horz	AV	0.0	38.0	54.0	-16.0	High Ch, DH5, EUT Horz
2389.600	42.4	-4.5	1.0	16.0	3.0	20.0	Horz	PK	0.0	57.9	74.0	-16.1	Low Ch, 2DH5, EUT Horz
7440.208	25.3	12.5	1.0	279.0	3.0	0.0	Horz	AV	0.0	37.8	54.0	-16.2	High Ch, DH5, EUT Horz
2387.850	42.1	-4.5	1.0	103.0	3.0	20.0	Horz	PK	0.0	57.6	74.0	-16.4	Low Ch, 3DH5, EUT Horz
7320.300	25.4	12.1	1.0	249.0	3.0	0.0	Horz	AV	0.0	37.5	54.0	-16.5	Mid Ch, DH5, EUT Horz
4804.033	32.2	4.3	1.0	1.0	3.0	0.0	Vert	AV	0.0	36.5	54.0	-17.5	Low Ch, DH5, EUT Vert

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4804.058	30.9	4.3	1.0	270.0	3.0	0.0	Vert	AV	0.0	35.2	54.0	-18.8	Low Ch, DH5, EUT Horz
4880.058	31.2	4.0	1.0	201.0	3.0	0.0	Vert	AV	0.0	35.2	54.0	-18.8	Mid Ch, 3DH5, EUT Vert
4804.058	30.8	4.3	1.0	298.0	3.0	0.0	Vert	AV	0.0	35.1	54.0	-18.9	Low Ch, DH5, EUT On Side
4880.075	31.0	4.0	1.0	169.0	3.0	0.0	Vert	AV	0.0	35.0	54.0	-19.0	Mid Ch, 2DH5, EUT Vert
4804.108	29.6	4.3	2.2	272.0	3.0	0.0	Horz	AV	0.0	33.9	54.0	-20.1	Low Ch, DH5, EUT Vert
7320.550	40.4	12.1	1.0	14.0	3.0	0.0	Vert	PK	0.0	52.5	74.0	-21.5	Mid Ch, DH5, EUT Vert
7439.592	39.6	12.5	1.0	1.0	3.0	0.0	Vert	PK	0.0	52.1	74.0	-21.9	High Ch, DH5, EUT Vert
7440.917	39.2	12.5	1.0	279.0	3.0	0.0	Horz	PK	0.0	51.7	74.0	-22.3	High Ch, DH5, EUT Horz
7318.042	39.3	12.1	1.0	249.0	3.0	0.0	Horz	PK	0.0	51.4	74.0	-22.6	Mid Ch, DH5, EUT Horz
4880.225	45.3	4.0	3.9	0.0	3.0	0.0	Vert	PK	0.0	49.3	74.0	-24.7	Mid Ch, DH5, EUT Vert
4804.250	44.5	4.3	2.3	140.0	3.0	0.0	Horz	PK	0.0	48.8	74.0	-25.2	Low Ch, DH5, EUT Horz
4879.825	44.5	4.0	1.0	159.0	3.0	0.0	Horz	PK	0.0	48.5	74.0	-25.5	Mid Ch, DH5, EUT Horz
4804.375	43.7	4.3	2.2	77.0	3.0	0.0	Horz	PK	0.0	48.0	74.0	-26.0	Low Ch, DH5, EUT On Side
4960.625	43.4	4.0	1.0	18.0	3.0	0.0	Vert	PK	0.0	47.4	74.0	-26.6	High Ch, DH5, EUT Vert
12198.160	27.4	-0.2	1.0	103.0	3.0	0.0	Vert	AV	0.0	27.2	54.0	-26.8	Mid Ch, DH5, EUT Vert
12198.230	27.2	-0.2	1.0	359.0	3.0	0.0	Horz	AV	0.0	27.0	54.0	-27.0	Mid Ch, DH5, EUT Horz
4879.892	42.7	4.0	1.0	169.0	3.0	0.0	Vert	PK	0.0	46.7	74.0	-27.3	Mid Ch, 2DH5, EUT Vert
4804.475	42.3	4.3	1.0	1.0	3.0	0.0	Vert	PK	0.0	46.6	74.0	-27.4	Low Ch, DH5, EUT Vert
4959.683	42.5	4.0	2.6	151.0	3.0	0.0	Horz	PK	0.0	46.5	74.0	-27.5	High Ch, DH5, EUT Horz
12398.080	27.0	-0.5	1.0	308.0	3.0	0.0	Horz	AV	0.0	26.5	54.0	-27.5	High Ch, DH5, EUT Horz
2483.635	30.7	-4.2	1.0	256.0	3.0	20.0	Horz	PK	0.0	46.5	74.0	-27.5	High Ch, DH5, EUT Horz
12399.240	26.9	-0.5	1.0	102.0	3.0	0.0	Vert	AV	0.0	26.4	54.0	-27.6	High Ch, DH5, EUT Vert
4879.650	42.4	4.0	1.0	201.0	3.0	0.0	Vert	PK	0.0	46.4	74.0	-27.6	Mid Ch, 3DH5, EUT Vert
12007.790	28.0	-1.8	1.0	187.0	3.0	0.0	Vert	AV	0.0	26.2	54.0	-27.8	Low Ch, DH5, EUT Vert
12007.670	27.9	-1.8	1.0	338.0	3.0	0.0	Horz	AV	0.0	26.1	54.0	-27.9	Low Ch, DH5, EUT Horz
4805.092	41.4	4.3	2.2	272.0	3.0	0.0	Horz	PK	0.0	45.7	74.0	-28.3	Low Ch, DH5, EUT Vert
2485.075	29.5	-4.2	1.0	103.0	3.0	20.0	Vert	PK	0.0	45.3	74.0	-28.7	High Ch, DH5, EUT Vert
2379.300	29.7	-4.5	1.0	285.0	3.0	20.0	Vert	PK	0.0	45.2	74.0	-28.8	Low Ch, DH5, EUT Vert
4804.325	40.8	4.3	1.0	298.0	3.0	0.0	Vert	PK	0.0	45.1	74.0	-28.9	Low Ch, DH5, EUT On Side
4804.517	40.8	4.3	1.0	270.0	3.0	0.0	Vert	PK	0.0	45.1	74.0	-28.9	Low Ch, DH5, EUT Horz
2382.050	28.8	-4.5	1.0	256.0	3.0	20.0	Horz	PK	0.0	44.3	74.0	-29.7	Low Ch, DH5, EUT Horz
12201.270	41.1	-0.2	1.0	359.0	3.0	0.0	Horz	PK	0.0	40.9	74.0	-33.1	Mid Ch, DH5, EUT Horz
12198.290	41.1	-0.2	1.0	103.0	3.0	0.0	Vert	PK	0.0	40.9	74.0	-33.1	Mid Ch, DH5, EUT Vert
12399.460	41.4	-0.5	1.0	308.0	3.0	0.0	Horz	PK	0.0	40.9	74.0	-33.1	High Ch, DH5, EUT Horz
12397.680	41.4	-0.5	1.0	102.0	3.0	0.0	Vert	PK	0.0	40.9	74.0	-33.1	High Ch, DH5, EUT Vert
12008.080	42.6	-1.8	1.0	187.0	3.0	0.0	Vert	PK	0.0	40.8	74.0	-33.2	Low Ch, DH5, EUT Vert
12010.580	41.7	-1.7	1.0	338.0	3.0	0.0	Horz	PK	0.0	40.0	74.0	-34.0	Low Ch, DH5, EUT Horz

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	13-Dec-18	13-Dec-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

The method found in ANSI C63.10:2013 Section 7.8.5 was used for a FHSS radio.

	Remote Microphone + Mode	1 900			Work Order:		
Serial Number						16-Jan-19	
	: Starkey Laboratories, Inc.				Temperature:	21.1 °C	
	Charle Esch					20.9% RH	
	:: None			Barc	ometric Pres.:		
	Kyle McMullan		Power: 3.9VDC		Job Site:	MN08	
EST SPECIFICAT	TIONS		Test Method				
CC 15.247:2019			ANSI C63.10:2013				
COMMENTS							
lone							
EVIATIONS FRO	M TEST STANDARD						
lone							
			V. 2 mr. M. Cl.				
None Configuration #	5	Signatura	Kryle Mathellen				
	5	Signature	Kryla Mithella			Limit	
	5	Signature	Virgle Mathella		Value	Limit (<)	Result
Configuration #	5	Signature	Virgle Mathella		Value		Result
Configuration #	Low Channel	Signature	Vizle Mithellen		275.93 uW		Result Pass
Configuration #		Signature	Voyla Mathalla			(<)	
	Low Channel	Signature	Virgle Mathella	9	275.93 uW	(<) 125 mW	Pass
Configuration #	Low Channel Mid Channel High Channel	Signature	Vizle Mithellen	2	275.93 uW 968.06 uW 512.34 uW	(<) 125 mW 125 mW	Pass Pass
Configuration #	Low Channel Mid Channel High Channel	Signature	Vayla Mathella	2	275.93 uW 968.06 uW	(<) 125 mW 125 mW	Pass Pass
Configuration #	Low Channel Mid Channel High Channel	Signature	Virgle Mathella	5	275.93 uW 968.06 uW 512.34 uW	(<) 125 mW 125 mW 125 mW	Pass Pass Pass
Configuration #	Low Channel Mid Channel High Channel Low Channel	Signature	Vayla Mathalla	2	275.93 uW 968.06 uW 512.34 uW 258.36 uW	(<) 125 mW 125 mW 125 mW 125 mW	Pass Pass Pass Pass
Configuration # DH5, GFSK DH5, pi/4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel	Signature	Vayla Mithella	2	275.93 uW 968.06 uW 512.34 uW 258.36 uW 868.84 uW	(<) 125 mW 125 mW 125 mW 125 mW 125 mW	Pass Pass Pass Pass Pass
Configuration # 1H5, GFSK DH5, pi/4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel	Signature	Voyle Mathella	2 2 3 8 2	275.93 uW 968.06 uW 512.34 uW 258.36 uW 868.84 uW	(<) 125 mW 125 mW 125 mW 125 mW 125 mW	Pass Pass Pass Pass Pass
Configuration #	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signature	Voyla Mathella	2	275.93 uW 968.06 uW 512.34 uW 258.36 uW 868.84 uW 469.28 uW	(<) 125 mW 125 mW 125 mW 125 mW 125 mW 125 mW	Pass Pass Pass Pass Pass Pass

			DH	5, GFSK, Low	Channel				
			0.10	, e. e., e.w			Limit	D. "	
						/alue 5.93 uW	(<) 125 mW	Result Pass	
	trum Analyzer - Element I RF 50 Ω DC		SE	ENSE:INT	ALI	GN OFF		05:18:21 AM Jan 17, 3	2019
			D: Fast ↔→	Trig: Free Ru	n	#Avg Type: Avg Hold: 1	Log-Pwr 00/100	TRACE 1 2 3 TYPE MWW DET P P P	456 WWW PPP
	Def Offerst 24.0 df		ain:Low	#Atten: 10 dB			Mkr1	2.402 206 G	and the second second
5 dB/div Log	Ref Offset 21.8 dE Ref 1.000 mW	3						275.93	μW
				ľ	1				
316 µVV					V				
100 µW									
31.6 µW									<u> </u>
10.0 μW									
3.16 μW									
1.00 μW									
316 nW									
100 nW									
31.6 nW									
Center 2.4 #Res BW 1	02000 GHz I.5 MHz		#VBW	5.0 MHz			#Sweep 7	Span 3.000 M 3.46 ms (1000	ИНz pts)
Center 2.4 #Res BW 1	02000 GHz I.5 MHz		#VBW	5.0 MHz		STATUS	#Sweep 7	Span 3.000 N 3.46 ms (1000	VIHz pts)
#Res BW 1	02000 GHz I.5 MHz			5.0 MHz 5, GFSK, Mid	Channel	STATUS		Span 3.000 N 3.46 ms (1000	VIHz pts)
#Res BW 1	02000 GHz I.5 MHz					status /alue	#Sweep 7 Limit (<)	Span 3.000 M 3.46 ms (1000) Result	ИНZ pts)
#Res BW 1	02000 GHz 1.5 MHz				v		Limit	′3.46 ms (1000	MHz pts)
#Res BW 1	trum Analyzer - Element 1		DH	5, GFSK, Mid	V 968	/alue 3.06 uW	Limit (<)	(1000) Result Pass	pts)
#Res BW 1	I.5 MHz		DH	5, GFSK, Mid	V 968 	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 <u>Result</u> Pass 05:22:6 M Jan 17.	pts)
#Res BW 1	trum Analyzer - Element 1	PNC	DH	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	Result Pass 05:22:26 AMJan 17, TRACE TYPE TYPE DET	pts) 2019 4 5 6 ₽ ₽ ₽
#Res BW 1 MSG Keysight Spec	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 <u>Result</u> Pass 05:22:6 M Jan 17.	2019 4 5 6 P P P
#Res BW 1	trum Analyzer - Element 1	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	2019 4 5 6 9 P P P
#Res BW 1 MSG Keysight Spec	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	2019 4 5 6 9 P P P
#Res BW 1 MSG MSG Keysight Spect W RL 5 dB/div	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	PTS)
#Res BW 1 Msg msg E B C Keysight Spect D RL S D Log 1.11 mW 350 µW	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	PTS)
#Res BW 1 MSG	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	2019 4 5 6 9 P P P
#Res BW 1 Msg msg E B C Keysight Spect D RL S D Log 1.11 mW 350 µW	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	PTS)
#Res BW 1 MSG MSG B Keysight Spect MSG B	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	pts)
#Res BW 1 MSG MSG E C E C B C B C <	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	PTS)
#Res BW 1 Msg Msg Image: Second	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	PTS)
#Res BW 1 MSG MSG E C E C B C B C <	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	pts)
#Res BW 1 Msg Msg Image: Second	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	pts)
#Res BW 1 MSG MSG Solution	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	pts)
#Res BW 1 MSG Keysight Spec W RL 5 dB/div 5 dB/div 1.11 mW 350 µW 111 µW 3.50 µW 1.11 µW 1.11 µW	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DHt SE	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	pts)
#Res BW 1 MSG MSG Image: Second state	trum Analyzer - Element 1 RF 50 Ω DC	PNC IFGa	DH: SE D: Fast ->- in:Low	5, GFSK, Mid	V 968 (ALI n	/alue 3.06 uW	Limit (<) 125 mW	3.46 ms (1000 Result Pass 05:22:6 MJan 17, TRACE 12 3 TYPE MWM DET PPP 2.439 860 G	

