

Starkey Laboratories, Inc.

Genesis AI RIC 312

FCC 15.209:2023

Inductive Radio

Report: STAK0288.4 Rev. 1, Issue Date: June 7, 2023

Last Date of Test: April 4, 2023 Starkey Laboratories, Inc. EUT: Genesis AI RIC 312

Radio Equipment Testing

 Standards

 Specification
 Method

 FCC 15.209:2023
 ANSI C63.10:2013

Results

Test Description	Result	Specification Section(s)	Method Section(s)	Comments
Powerline Conducted Emissions	N/A	15.207	6.2	Not required for a battery powered EUT.
Field Strength of Fundamental	Pass	15.209	6.4	
Spurious Radiated Emissions	Pass	15.209	6.4, 6.5	

Deviations From Test Standards

None

Approved By:

Eric Brandon, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Updated power settings table.	2023-06-07	11
01	Changed to cfg 11, with 2 EUTs. No other support equipment used during these tests.	2023-06-07	12
	Adjusted graph, removed >1GHz equipment	2023-06-07	19-22
	Corrected test distances in headers	2023-06-07	24-27

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

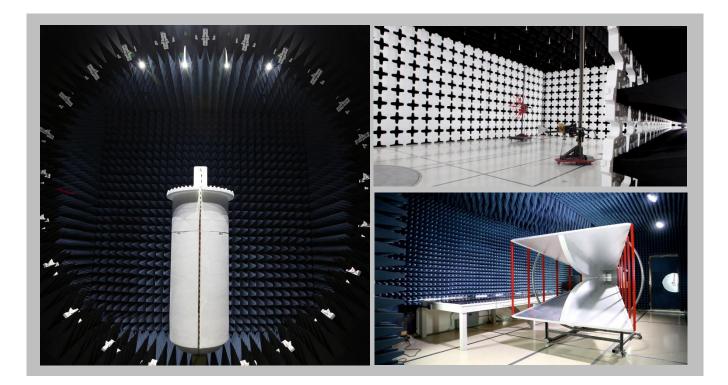
MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.


SCOPE						
	For details on the Scopes of our Accreditations, please visit:					
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
		A2LA					
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
		VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

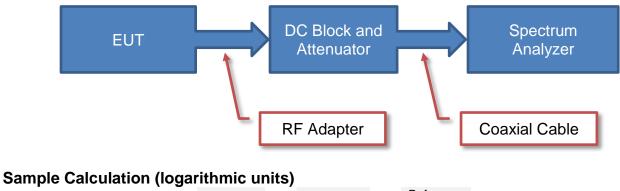
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

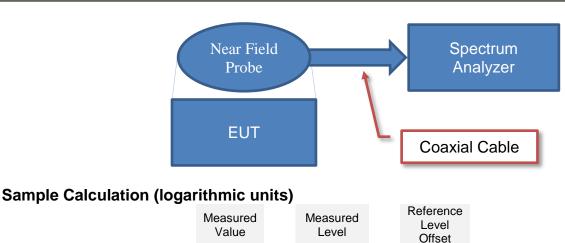


Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements



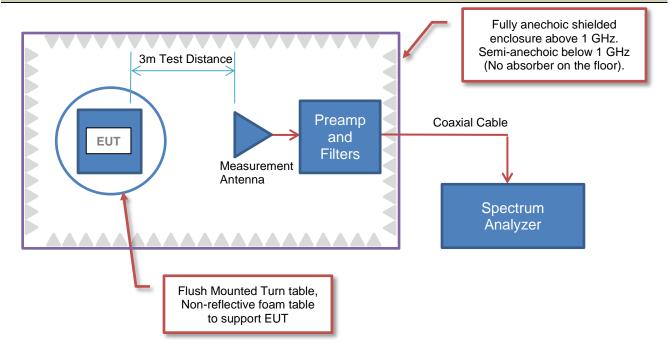
_	Measured Value	-	Measured Level		Reference Level Offset
	71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

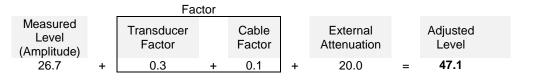
42.6


+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements



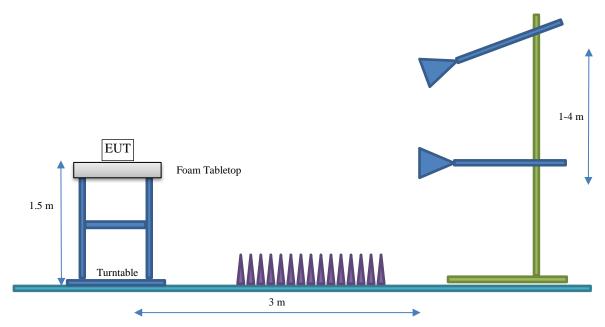
Sample Calculation (logarithmic units)

Radiated Emissions:

			Factor								
Measured Level (Amplitude)	ntenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6 +	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:


Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Starkey Laboratories, Inc.
Address:	6600 Washington Ave S
City, State, Zip:	Eden Prairie, MN 55344-3404
Test Requested By:	Bill Mitchell
EUT:	Genesis AI RIC 312
First Date of Test:	April 3, 2023
Last Date of Test:	April 4, 2023
Receipt Date of Samples:	February 27, 2023
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Hearing aid with near field manetic induction and Bluetooth LE.

Testing Objective:

To demonstrate compliance of the inductive portion of the device to FCC Part 15.209 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)
Coil	Starkey Laboratories, Inc	10.281

The NFMI antenna coil is a cylinder of nominal radius 1.125 mm and length 4.2 mm. There are 21 turns going down the coil, and 3 turns coming back, which are needed because the wire feed is only along one end of the coil.

The EUT was tested using the power settings provided by the manufacturer which were based upon:

□ Test software settings

⊠ Rated power settings

Test firmware installed on EUT 8.3.0.6

Test software: Monaco 6.2.1.0

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Frequency Range (MHz)	Power Setting *
Single Data Rate / Modulation		
Data Rate - 894 kbps,	10.281 MHz	3.4 mW
Modulation - 8-DPSK		

* power value was obtained from the NXH2281 (NFMI Radio) datasheet.

Configuration STAK0288-11

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Genesis AI RIC 312	Starkey Laboratories, Inc.	Genesis AI RIC 312	230160490
Genesis AI RIC 312	Starkey Laboratories, Inc.	Genesis AI RIC 312	230160530

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2023-04-03	Field Strength of Fundamental	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2023-04-03	Spurious Radiated Emissions (below 30MHz)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2023-04-04	Spurious Radiated Emissions (above 30MHz)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = CISPR Average Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Loop	ETS Lindgren	6502	AOB	2021-06-01	2023-06-01
Cable	ESM Cable Corp.	Antenna Loop Cable	MNE	2023-01-30	2024-01-30
Receiver	Rohde & Schwarz	ESR26	ARP	2022-04-20	2023-04-20

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	1.8 dB	-1.8 dB

FREQUENCY RANGE INVESTIGATED

9 kHz TO 30 MHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0288-11

MODES INVESTIGATED

NFMI Transmitting 10.281 MHz

	Run #: 7			■ PK ◆	AV •	QP	
0.1		1.0	MHz	10.0			100.0
-60							
-40				_			
-20				8			
В 0							
20 20 myngp							
40							
60							
80							
DEVIATIONS FI	KOM TEST STA	ANDARD					
NFMI Transmitting	10.281 MHz						
None EUT OPERATIN							
COMMENTS			1	7.00	gin(o) (iii).	1 (111)	
Run #:	TERS	Test Distance (m):	1	Ant He	ight(s) (m):	1(m)	
FCC 15.209:2023				I C63.10:2013			
TEST SPECIFIC Specification:	ATIONS		Meth	ad.			
Power:	Battery			Configuratio	on:	STAK02	288-11
Customer Project: Tested By:	None Marcelo Aguayo			Bar. Pressu Job Site:	re (PMSL):	1007 ml MN04	C
Attendees:	John Quach			Relative Hu	midity:	28.9%	
Serial Number: Customer:	230160490, 230 Starkey Laborato			Date: Temperatur	<u>م</u> .	2023-04 21.7°C	-03
EUT:	Genesis AI RIC			Work Order		STAK02	

RESULTS - Run #7

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
10.285	27.2	11.2	1.0	161.0	1.0	0.0	Perp to GND	QP	-59.1	-20.7	29.5	-50.2	EUT On Side
10.285	24.1	11.2	1.0	97.0	1.0	0.0	Perp to GND	QP	-59.1	-23.8	29.5	-53.3	EUT Horz
10.285	22.7	11.2	1.0	151.0	1.0	0.0	Perp to GND	QP	-59.1	-25.2	29.5	-54.7	EUT Vert
10.285	15.8	11.2	1.0	295.0	1.0	0.0	Para to EUT	QP	-59.1	-32.1	29.5	-61.6	EUT Horz
10.285	15.3	11.2	1.0	294.0	1.0	0.0	Perp to EUT	QP	-59.1	-32.6	29.5	-62.1	EUT On Side
10.285	14.7	11.2	1.0	193.0	1.0	0.0	Perp to EUT	QP	-59.1	-33.2	29.5	-62.7	EUT Vert
10.285	14.5	11.2	1.0	197.0	1.0	0.0	Perp to EUT	QP	-59.1	-33.4	29.5	-62.9	EUT Horz
10.285	13.5	11.2	1.0	187.0	1.0	0.0	Para to EUT	QP	-59.1	-34.4	29.5	-63.9	EUT On Side
10.285	13.2	11.2	1.0	360.0	1.0	0.0	Para to EUT	QP	-59.1	-34.7	29.5	-64.2	EUT Vert

CONCLUSION

Pass

NG

Tested By

EUT:	Genesis AI RIC 31	2	Work Or	der:	STAK0288
Serial Number:	230160490, 23016		Date:		2023-04-03
Customer:	Starkey Laboratori	es, Inc.	Tempera		21.7°C
Attendees:	John Quach			Humidity:	28.9%
Customer Projec				ssure (PMSL):	1007 mb
Tested By:	Marcelo Aguayo		Job Site		MN04
Power:	Battery		Configur	ation:	STAK0288-11
EST SPECIF	ICATIONS		1		
Specification: FCC 15.209:202	00		Method: ANSI C63.10:2013		
			ANSI C03.10.2013		
		East Distance (m): 40	Ant	lleight(e) (me);	4(
Run #:	8	Test Distance (m): 10	Ant.	Height(s) (m):	1(m)
UT OPERAT					
	FROM TEST STAN				
None	TRUM 1231 31AM	NDARD			
NOTE					
80					
60					
40					
-					
20 M/Nngp					
ζη					
Щ р					
0					
-20					
40					
-40					
60					
-60 0.1		1.0	10.0		100.0
		MH			
	D.u. #. 0				OP
	Run #: 8		PK 🕚	🕨 AV 🗢	QP

RESULTS - Run #8

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
10.280	-2.4	11.2	1.0	82.0	10.0	0.0	Perp to GND	QP	-19.1	-10.3	29.5	-39.8	EUT On Side

CONCLUSION

Pass

Tested By

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height (where applicable) and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = CISPR Average Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	2023-02-06	2024-02-06
Filter - High Pass	Micro-Tronics	HPM50111	LFN	2022-08-27	2023-08-27
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2021-09-14	2023-09-14
Cable	ESM Cable Corp.	Bilog Cables	MNH	2022-10-08	2023-10-08
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2022-10-08	2023-10-08

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	5.2 dB	-5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 1000 MHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0288-11

MODES INVESTIGATED

NFMI Transmitting 10.281 MHz

230160490, 230 Starkey Labora John Quach None Marcelo Aguayo Battery ATIONS TERS 55 G MODES 10.281 MHz COM TEST ST	tories, Inc.	tance (m):	3	Method: ANSI C6:	Bar. Pres Job Site: Configura 3.10:2013	Humidity: ssure (PMS	2 3 SL): 1 N S	2023-04 21.6°C 31.2% 003 m AN05 STAK02 I to 4(r	nb 1288-11
John Quach None Marcelo Aguaye Battery ATIONS ERS 55 G MODES 10.281 MHz	o Test Dist				Relative Bar. Pres Job Site: Configura 3.10:2013	Humidity: ssure (PMS ation:	3 SL): 1 N S	81.2% 003 m /N05 STAK0	nb 1288-11
None Marcelo Aguaye Battery ATIONS ERS 55 G MODES 10.281 MHz	Test Dist				Bar. Pres Job Site: Configura 3.10:2013	ation:	SL): 1 N S	003 m //N05 STAK0:	288-11
Marcelo Aguayo Battery ATIONS ERS 55 G MODES 10.281 MHz	Test Dist				Job Site: Configura 3.10:2013	ation:		MN05 STAK02	288-11
Battery ATIONS ERS 55 G MODES 10.281 MHz	Test Dist				Configura	ation:		STAK0	
ATIONS ERS 55 G MODES 10.281 MHz			3		3.10:2013				
ERS 55 G MODES 10.281 MHz			3			Height(s) (r	m): 1	l to 4(r	m)
55 G MODES 10.281 MHz			3			Height(s) (r	m): 1	I to 4(r	m)
55 G MODES 10.281 MHz			3	ANSI C6:		Height(s) (r	m): 1	l to 4(r	m)
55 G MODES 10.281 MHz			3		Ant. H	Height(s) (r	m): 1	l to 4(r	m)
55 G MODES 10.281 MHz			3		Ant. I	Height(s) (r	m): 1	I to 4(r	m)
10.281 MHz	ANDARD)							
10.281 MHz									
10.281 MHz)							
					_			\vdash	+++
	•								
		·							
	•								
									+++
		'							
			100						1,00
									-
-					100 MHz				

RESULTS - Run #55

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
40.381	34.1	-6.1	1.1	12.9	3.0	0.0	Vert	QP	0.0	28.0	40.0	-12.0	EUT Horz
51.994	28.1	-9.6	1.0	52.0	3.0	0.0	Vert	QP	0.0	18.5	40.0	-21.5	EUT Horz
30.652	19.3	-1.2	1.0	343.9	3.0	0.0	Vert	QP	0.0	18.1	40.0	-21.9	EUT Horz
31.492	17.7	-1.6	3.0	319.9	3.0	0.0	Horz	QP	0.0	16.1	40.0	-23.9	EUT Horz
40.979	19.5	-6.3	1.0	8.0	3.0	0.0	Horz	QP	0.0	13.2	40.0	-26.8	EUT Horz
51.528	17.5	-9.5	1.0	49.9	3.0	0.0	Horz	QP	0.0	8.0	40.0	-32.0	EUT Horz

CONCLUSION

Pass

VJ

Tested By

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height (where applicable) and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = CISPR Average Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Loop	ETS Lindgren	6502	AOB	2021-06-01	2023-06-01
Cable	ESM Cable Corp.	Antenna Loop Cable	MNE	2023-01-30	2024-01-30
Receiver	Rohde & Schwarz	ESR26	ARP	2022-04-20	2023-04-20

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	1.8 dB	-1.8 dB
		•

FREQUENCY RANGE INVESTIGATED

10 kHz TO 30 MHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0288-11

MODES INVESTIGATED

NFMI Transmitting 10.281 MHz

EUT: Genesis AI RIC 312 Work Criter: STAK0 Serial Number: 230160490, 230160530 Date: 2023-0 Customer: Starkey Laboratories, Inc. Temperature: 227C Attendees: John Quach Relative Humidity: 228.5% Customer: Barkey Laboratories, Inc. Temperature: 227C Attendees: John Quach Relative Humidity: 28.5% Customer: Battery Configuration: STAK0 Power: Battery Configuration: STAK0 Specification: Marcelo Aguayo Job Site: MN04 Power: Battery Configuration: STAK0 Specification: Method: FFCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS None DeviAtions FROM TEST STANDARD DeviAtions FROM TEST STANDARD DeviAtions From Test Standard Distance of the standard Distandard Distandard Distandard Distandard Dista	-03 D
Customer: Starkey Laboratories, Inc. Temperature: 22°C Attendees: John Quach Relative Humidity: 28.5% Customer Project: None Bar. Pressure (PMSL): 1009 m Tested By: Marcelo Aguayo Job Site: MN04 Power: Battery Configuration: STAKO Specification: Method: FCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Ant. Height(s) (m): 1 (m) COMMENTS 9 Test Distance (m): 1 Ant. Height(s) (m): 1 (m) COMMENTS None None EUT OPERATING MODES None None <	
Attendees: John Quach Relative Humidity: 28.5%. Customer Project: None Bar. Pressure (PMSL): 1009 m Tested By: Marcelo Aguayo Job Site: MN04 Power: Battery Configuration: STAKO Specification: Method: FCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Anst C63.10:2013 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS 9 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS None EUT OPERATING MODES None EUT OPERATING MODES Image: Configuration of the configurat	
Customer Project: None Bar. Pressure (PMSL): 1009 m Power: Battery Job Site: MN04 Power: Battery Configuration: STAKO TEST SPECIFICATIONS Specification: Method: FCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1 (m) COMMENTS None EUT OPERATING MODES None EUT OPERATING MODES NFMI Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None 70 0 </td <td></td>	
Power: Battery Configuration: STAK0 TEST SPECIFICATIONS Specification: Method: FCC 15.209:203 ANSI C63.10:2013 TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1 (m) COMMENTS None 1 (m) COMMENTS None 1 (m) COMMENTS None 1 (m)	
TEST SPECIFICATIONS Specification: Method: FCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1 (m) COMMENTS None EUT OPERATING MODES NTENT Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None Output 0 <th< td=""><td></td></th<>	
Specification: Method: FCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS None EUT OPERATING MODES NFMI Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None 70 50 1	
Specification: Method: FCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS None EUT OPERATING MODES NFMI Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None 70 50 1	
FCC 15.209:2023 ANSI C63.10:2013 TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS None	
TEST PARAMETERS Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS None	
Run #: 9 Test Distance (m): 1 Ant. Height(s) (m): 1(m) COMMENTS None None Image: Second Se	
COMMENTS Description None EUT OPERATING MODES NFMI Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None None	
None EUT OPERATING MODES NFMI Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None 70 50 30 10 10 10 10 10 10 10 10 10 1	
EUT OPERATING MODES NFMI Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None	
NFMI Transmitting 10.281 MHz DEVIATIONS FROM TEST STANDARD None	
DEVIATIONS FROM TEST STANDARD None	
None	
70 50 30 10 -10	
50 30 10 -10	
50 30 10 -10	
50 30 10 -10	
50 30 10 -10	
30 50 50 50 50 50 50 50 50 50 5	
30 50 50 50 50 50 50 50 50 50 5	
30 50 50 50 50 50 50 50 50 50 5	
10 -10	
10 -10	
-10	
-10	
-10	
-10	
-10	
-30	
-30	
-30	
-50	
-70	
0.1 1.0 10.0	
MHz	100.0
	100.0
Run #: 11	100.0

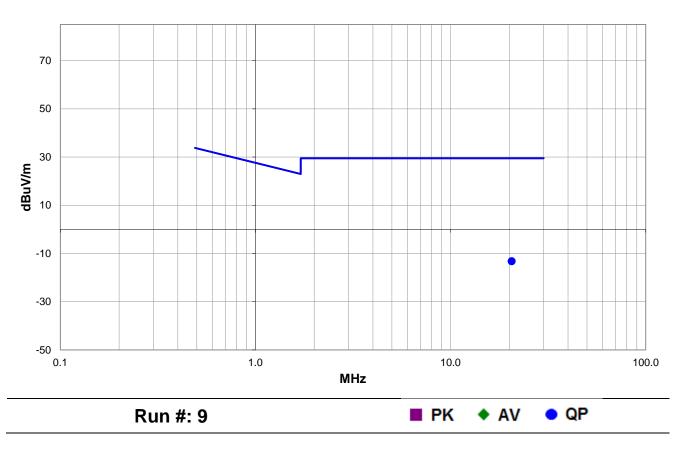
RESULTS - Run #11

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
20.562	31.9	10.7	1.0	109.0	1.0	0.0	Perp to GND	QP	-59.1	-16.5	29.5	-46.0	EUT Horz
20.562	27.3	10.7	1.0	180.0	1.0	0.0	Perp to GND	QP	-59.1	-21.1	29.5	-50.6	EUT Vert
20.562	23.1	10.7	1.0	126.0	1.0	0.0	Perp to GND	QP	-59.1	-25.3	29.5	-54.8	EUT On Side
20.563	5.2	10.7	1.0	166.0	1.0	0.0	Para to EUT	QP	-59.1	-43.2	29.5	-72.7	EUT On Side
20.562	0.8	10.7	1.0	143.0	1.0	0.0	Para to EUT	QP	-59.1	-47.6	29.5	-77.1	EUT Vert
20.563	0.4	10.7	1.0	149.0	1.0	0.0	Perp to EUT	QP	-59.1	-48.0	29.5	-77.5	EUT Vert
20.563	-4.0	10.7	1.0	357.0	1.0	0.0	Perp to EUT	QP	-59.1	-52.4	29.5	-81.9	EUT On Side
20.561	-4.4	10.7	1.0	293.0	1.0	0.0	Perp to EUT	QP	-59.1	-52.8	29.5	-82.3	EUT Horz
20.566	-4.7	10.7	1.0	4.0	1.0	0.0	Para to EUT	QP	-59.1	-53.1	29.5	-82.6	EUT Horz

CONCLUSION

Pass

MA


Tested By

EUT:	Genesis AI RIC 3	312			Work Order:	STAK0288						
Serial Number:	230160490, 2301	30160490, 230160530 Date: 2023-04-03										
Customer:	Starkey Laborato	ories, Inc.			Temperature:	22°C						
Attendees:	John Quach				Relative Humidity:	28.5%						
Customer Project:	None				Bar. Pressure (PMSL):	1009 mb						
Tested By:	Marcelo Aguayo Job Site: MN04											
Power:	Battery											
TEST SPECIFIC	ATIONS											
Specification:				Method:								
FCC 15.209:2023				ANSI C63	.10:2013							
FEST PARAMET	ERS											
Run #: 1	1	Test Distance (m):	10		Ant. Height(s) (m):	1(m)						
COMMENTS												
None												
	G MODES											
NFMI Transmitting												

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #9

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
20.564	-4.8	10.7	1.0	245.0	10.0	0.0	Perp to GND	QP	-19.1	-13.2	29.5	-42.7	EUT On Side

CONCLUSION

Pass

Tested By

End of Test Report