

Starkey Laboratories, Inc.

Genesis macro RIC (BLE and NFMI)

FCC 15.209:2021 Inductive Radio

Report: STAK0251.5 Rev. 1, Issue Date: March 22, 2022

Last Date of Test: October 29, 2021 Starkey Laboratories, Inc. EUT: Genesis macro RIC (BLE and NFMI)

Radio Equipment Testing

Standards	
Specification	Method
FCC 15.209:2021	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.4	Field Strength of Fundamental	Yes	Pass	
6.4, 6.5	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

02

Eric Brandon, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Put in the new "Test Setup Block Diagrams" module that contains the correct sample calculations and removed the sample calculations from this module.	2022-03-22	14-16, 17-20

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE						
For details on the Scopes of our Accreditations, please visit:						
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
		A2LA					
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
		VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110			
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	requency Range Peak Data (MHz) (kHz)		Average Data (kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

42.6

+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Starkey Laboratories, Inc.
Address:	6600 Washington Ave S
City, State, Zip:	Eden Prairie, MN 55344-3404
Test Requested By:	Bill Mitchell
EUT:	Genesis macro RIC (BLE and NFMI)
First Date of Test:	October 28, 2021
Last Date of Test:	October 29, 2021
Receipt Date of Samples:	October 12, 2021
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Hearing aid with 10.281 MHz NFMI radio and BLE supporting 1 and 2 Mbps datarates.

Testing Objective:

To demonstrate compliance of the inductive portion of the device to FCC Part 15.209 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Coil	Starkey Laboratories, Inc.	Not Provided	Not Provided

POWER SETTINGS

Radio	Modulation	Channel	Power Setting
NFMI	Modulated	10.281 MHz	Not Provided

Configuration STAK0251-6

EUT								
Description	Manufacturer	Model/Part Number	Serial Number					
Hearing Aid	Starkey Laboratories, Inc.	63191-040	211728202					
Hearing Aid	Starkey Laboratories, Inc.	63191-040	211728243					

Remote Equipment Outside of Test Setup Boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
Laptop	Dell	Latitude 5420	JM323D3					
Bluetooth Adapter	NoahLink Wireless	CPD-1	1881381559					
Router	Belkin	N750	121124GG117433					
AC Adapter (Router)	DVE	DSA-24CA-12	None					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable					
(Bluetooth	Yes	1.9 m	No	Laptop	Bluetooth Adapter
Adapter)					
Ethernet Cable	No	>3m	No	Laptop	Router
DC Power	No	1.1 m	No		Poutor
(Router)	INO	1.4 [1]	INO	AC Adapter	Roulei

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-10-28	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2021-10-29	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

NFMI Transmitting 10.281 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0251 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency 10 MHz Stop Frequency 11 MHz

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	ESM Cable Corp.	Antenna Loop Cable	MNE	2021-02-17	2022-02-17
Receiver	Rohde & Schwarz	ESR26	ARP	2021-04-08	2022-04-08
Antenna - Loop	ETS Lindgren	6502	AOB	2021-06-01	2023-06-01

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = CISPR Average Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

								EmiR5 2021.09.09.0	PSA-ESCI 2021.03.1		
	Wor	k Order:	STAK0251		Date:	2021-10-28	$\langle \rangle$	ρ	11		
		Project:	None	Te	mperature:	23.2 °C		13	U		
		Job Site:	MN04		Humidity:	37.7% RH					
S	Serial	Number:	11728202, 2117282	4 Barom	etric Pres.:	1011 mbar	Tes	ted by: Chris Patters	on		
		EUT:	Genesis macro RIC	(BLE and N	FMI)						
	Config	guration:	6								
	Ci	ustomer:	Starkey Laboratories	s, Inc.							
	At	tendees:	John Quach								
	EU	Power:	Battery								
Ор	peratin	ng Mode:	NFMI Transmitting 1	VFMI Transmitting 10.281 MHz							
	De	viations:	None								
	Со	mments:	None								
Cest S	Snecifi	ications				Test N	lethod				
-CC 1	5 209	·2021	I			ANSI	C63 10:2013				
Rı	un #	37	Test Distance (m) 1	Antenna H	leight(s)	1(m)	Results	Pass		
	50			· ·							
	⁵⁰ T										
	40 +										
	30										
	20 -										
	10 +								+		
Ĕ,											
Ž	0 +										
B	-										
σ	10										
-											
-	-20 +								+		
											
-	20								+		
	-30 +										
	-30 -										
-	-30 -40 -										
-	-30 -										
-	-40			•							
-	-30 + -40 + -50 + -)	10.1 10.2	10.3	10.4	10.5	10.6 10.7	10.8 1			
-	-30 -40 -50 10.0)	10.1 10.2	10.3	10.4	10.5	10.6 10.7	10.8 1	0.9 11.0		
-	-40 -50 10.0)	10.1 10.2	10.3	10.4	10.5 MHz	10.6 10.7	10.8 1 PK	0.9 11.0		

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
10.284	26.2	11.1	1.0	206.0	1.0	0.0	Para to GND	QP	-59.1	-21.8	29.5	-51.3	EUT On Side
10.289	25.8	11.1	1.0	289.0	1.0	0.0	Para to EUT	QP	-59.1	-22.2	29.5	-51.7	EUT Horz
10.288	25.0	11.1	1.0	71.0	1.0	0.0	Para to EUT	QP	-59.1	-23.0	29.5	-52.5	EUT Vert
10.289	24.4	11.1	1.0	185.0	1.0	0.0	Perp to EUT	QP	-59.1	-23.6	29.5	-53.1	EUT Vert
10.286	23.5	11.1	1.0	215.0	1.0	0.0	Perp to EUT	QP	-59.1	-24.5	29.5	-54.0	EUT Horz
10.286	22.5	11.1	1.0	147.0	1.0	0.0	Para to EUT	QP	-59.1	-25.5	29.5	-55.0	EUT On Side
10.285	18.6	11.1	1.0	83.0	1.0	0.0	Para to GND	QP	-59.1	-29.4	29.5	-58.9	EUT Horz
10.289	18.1	11.1	1.0	250.0	1.0	0.0	Para to GND	QP	-59.1	-29.9	29.5	-59.4	EUT Vert
10.285	12.9	11.1	1.0	52.0	1.0	0.0	Perp to EUT	QP	-59.1	-35.1	29.5	-64.6	EUT On Side

FIELD STRENGTH OF FUNDAMENTAL

										EmiR5 2021.09.09.0	P	SA-ESCI 2021.03.17.
Work	Order:	STAK025	1		Date	: 202	1-10-28					
Р	Project:	None		Ten	nperature	: 23	3.2 °C					
Jo	b Site:	MN04			Humidity	37.	7% RH					
Serial Nu	umber:	211728202, 211	72824	Barome	tric Pres.	: 101	1 mbar		Tested by:	Chris Patte	erson	
	EUT:	Genesis macro	RIC (BLE	and NF	MI)							
Configu	ration:	6										
Cus	stomer:	Starkey Laborat	tories, Inc.									
Atter	ndees:	John Quach										
EUTE	Power:	Battery										
Operating	Mode:		ing 10.281	MHZ								
Devia	ations:	None										
Com	ments:	None										
est Specifica	ations						Test Met	nod				
C 15.209:20	021						ANSI C63	.10:2013				
Run #	38	Test Distance	:e (m)	10	Antenr	a Height(s	.)	1(m)		Results	P	ass
50	~~	. cor Biotant	- ()									
50												
40												
30 🗕												
									1			
20												
20												
20												
20												
20												
20 10 10 0												
20			•									
20 10 MAN 0 -10			•									
20 10 MAR -10			•									
20 10 -10 -20			•									
20 10 10 -10 -20			•									
20 10 10 -10 -20 -20 -20			•									
20 10 -10 -20 -30			•									
20 10 10 -10 -20 -30			•									
20 10 -10 -20 -30 -40			•									
20 10 -10 -20 -30 -40			•									
20 10 10 -10 -20 -30 -40 -50			•									
20 10 -10 -20 -30 -40 -50 10.0		0.1 10.2	2 1	0.3	10.4	10.3	5 10	6 10	0.7	10.8	10.9	11.0
20 10 10 -10 -20 -30 -40 -50 10.0	1	0.1 10.2	2 1	0.3	10.4	10.9 MH	5 10 Z		0.7	10.8	10.9	11.0
20 10 0 -10 -20 -30 -30 -40 -50 10.0	1	0.1 10.2	2 1	0.3	10.4	10.9 MH	5 10 Z	.6 10	0.7	10.8	10.9 AV	11.0 • QP
20 10 0 -10 -20 -30 -30 -40 -50 10.0	1	0.1 10.2	2 1	0.3	10.4	10.9 MH	5 10 Z Polarity/	6 10	0.7	10.8 PK	10.9 AV	11.0 • QP
20 10 0 -10 -20 -30 -30 -40 -50 10.0	1 moliturie	0.1 10.2	2 1	0.3	10.4	10.4 MH	5 10 Z Polarity/ Transducer	.6 1(Distance Adjustment	10.8 Adjusted	10.9	11.0 Compared to Sper
20 10 -10 -20 -30 -40 -50 10.0 Freq Ar	1 mplitude (dBuV)	0.1 10.2	2 1 na Height Acters) (c	0.3	10.4	10.4 MH Attenuation ((B)	5 10 Z Polarity/ Transducer Type	.6 10 Detector	0.7 Distance Adjustment (dB)	10.8 Adjusted (dBuV/m)	10.9 Spec. Limit (dBuV/m)	11.0 Compared to Spec. (dB)
20 10 -10 -20 -30 -40 -50 10.0 Freq Ar (MHz)	mplitude (dBuV)	0.1 10.2	2 1 na Height A eters) A	0.3	10.4	10.4 MH Attenuation (dB)	5 10 Z Polarity/ Transducer Type	6 10 Detector	Distance Adjustment (dB)	10.8 Adjusted (dBuV/m)	10.9 Spec. Limit (dBuV/m)	11.0 Compared to Spec. (dB)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

NFMI Transmitting 10.281 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0251 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency	190 MHz	Ston Frequency	1000 MHz
	.+30 10112		

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2020-12-27	2021-12-27
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2021-10-13	2022-10-13
Cable	ESM Cable Corp.	Bilog Cables	MNH	2021-10-13	2022-10-13
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2021-09-14	2023-09-14
Receiver	Rohde & Schwarz	ESR26	ARP	2021-04-08	2022-04-08
Cable	ESM Cable Corp.	Antenna Loop Cable	MNE	2021-02-17	2022-02-17
Antenna - Loop	ETS Lindgren	6502	AOB	2021-06-01	2023-06-01

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height (where applicable) and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = CISPR Average Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

Work Order: STARO251 Date: 2021-10-28 Project: None Temperature: 23.9 °C Job Site: MN04 Humidity: 37% RH Serial Number: 11728202, 211728243 Barometric Pres.: 1010 mbar Tested by: Chris Patter EUT: Genesis macro RIC (BLE and NFMI) Configuration: 6 6 6 Customer: Starkey Laboratories, Inc. Attendees: John Quach 6 6 Customer: Starkey Laboratories, Inc. Attendees: John Quach 6 6 Customer: Battery Operating Mode: NFMI Transmitting 10.281 MHz 6 6 Deviations: None None 7 7 7 7 7 Comments: None Ansi C63.10:2013 7 <	son
Project: None Job Site: MN04 Serial Number: 11728202, 21172824 Barometric Pres.: 1010 mbar Configuration: 6 Customer: Starkey Laboratories, Inc. Attendees: John Quach EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None Test Specifications Test Method FCC 15.209:2021 Antenna Height(s) 1(m) 40 40 Antenna Height(s) 1(m)	son
Job Site: MNU4 Humdrify: 37% KH Serial Number: 11728202, 211728243 Barometric Pres.: 1010 mbar Tested by: Chris Patter EUT: Genesis macro RIC (BLE and NFMI) Configuration: 6 Customer: Starkey Laboratories, Inc. Attendees: John Quach EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013	son
Serial Number: 11728243 Barometric Pres.: 1010 moar Tested by: Chils Patter EUT: Genesis macro RIC (BLE and NFMI) Configuration: 6 Customer: Starkey Laboratories, Inc. Attendees: John Quach EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None FCC 15.209:2021 ANSI C63.10:2013	son
Configuration: 6 Customer: Starkey Laboratories, Inc. Attendees: John Quach EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None FCC 15.209:2021 None Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) 40 40	
Configuration: 6 Customer: Starkey Laboratories, Inc. Attendees: John Quach EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results	
Customer: Starkey Laboratories, Inc. Attendees: John Quach EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40 40 40 40 40 40 40 40	
Attendees: John Quach EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40 <	
EUT Power: Battery Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) 40 40	
Operating Mode: NFMI Transmitting 10.281 MHz Deviations: None Comments: None Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40 <t< th=""><th></th></t<>	
Deviations: None Comments: None Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40	
None Test Method Ansi C63.10:2013 FCC 15.209:2021 ANSI C63.10:2013 Ansi C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40	
Test Specifications Test Method FCC 15.209:2021 ANSI C63.10:2013 Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40	
Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40	
Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40	
Run # 39 Test Distance (m) 1 Antenna Height(s) 1(m) Results 40	
40	Pass
40	
40	
20	
ε	
σ ΄	
-40	
60	
-00	
-80	the second se
0.1 1.0 10.0	
	100.0
INIT2 PK	100.0
Freq (MHz) Amplitude (dBuV) Factor (dB/m) Antenna Height (meters) Azimuth (degrees) Test Distance Test Distance (meters) External Attenuation (dB) Polarity/ Transducer (dB) Detector Distance Adjusted (dB) Adjusted (dBUV/m)	100.0

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	(meters)	Attenuation (dB)	Type	Detector	Adjustment (dB)	Adjusted (dBuV/m)	(dBuV/m)	Spec. (dB)		
```													Comments	l
20.596	0.9	10.6	1.0	230.0	1.0	0.0	Para to GND	QP	-59.1	-47.6	29.5	-77.1	EUT Horz	
20.576	0.3	10.6	1.0	109.0	1.0	0.0	Para to GND	QP	-59.1	-48.2	29.5	-77.7	EUT On Side	
20.528	0.3	10.6	1.0	20.0	1.0	0.0	Para to GND	QP	-59.1	-48.2	29.5	-77.7	EUT Vert	
20.522	0.2	10.6	1.0	190.0	1.0	0.0	Perp to EUT	QP	-59.1	-48.3	29.5	-77.8	EUT On Side	
20.554	0.2	10.6	1.0	196.0	1.0	0.0	Perp to EUT	QP	-59.1	-48.3	29.5	-77.8	EUT Horz	
20.572	0.1	10.6	1.0	330.0	1.0	0.0	Para to EUT	QP	-59.1	-48.4	29.5	-77.9	EUT On Side	
20.525	0.1	10.6	1.0	182.0	1.0	0.0	Para to EUT	QP	-59.1	-48.4	29.5	-77.9	EUT Vert	
20.586	0.1	10.6	1.0	105.0	1.0	0.0	Para to EUT	QP	-59.1	-48.4	29.5	-77.9	EUT Horz	
20.528	0.0	10.6	1.0	252.0	1.0	0.0	Perp to EUT	QP	-59.1	-48.5	29.5	-78.0	EUT Vert	



		-		_					EmiR5 2021.09.09.0	PSA-ESCI 2021.03.17
Wo	rk Order:	STAK	0251		Date:	2021-10-	-28	1 1	D	4
	Project:	No	ne	Te	emperature:	23.9 °C	)	1 K	12	
	Job Site:	MN	104		Humidity:	37% R	H			
Serial	Number:	11728202,	21172824	Baron	netric Pres.:	1010 mb	ar	Tested	by: Chris Patterson	
	EUT:	Genesis m	acro RIC (	BLE and N	JFMI)					
Config	guration:	6								
C	ustomer:	Starkev La	boratories	. Inc.			-			
At	tendees:	John Quac	h	, -	-					
FU	T Power	Battery	••							
		NEMI Tran	cmitting 1(	201 MU-						
Operatir	ng Mode:		Similary it	J.201 WII IZ						
		None								
De	eviations:	None								
		Nana								
•		None								
Co	mments:									
st Specif	ications	1				Te	st Method			
°C 15 200	0.2021							2013		
0 10.200						, u .	0000.10.	2010		
Run #	41	Test Dis	stance (m)	10	Antenna	Height(s)		1(m)	Results	Pass
40										
20  -										
0										
E										
≶ ∣										
₿-20										
- I										
-10										
-40										
-60							-			
-80										
0.1				1.	0			10.0		100.0
						MHZ				
						MHZ			📕 PK 🔶	AV 🗢 QP
						MHZ	Polarity/		■ PK ◆	AV • QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
10.280	3.0	11.1	1.0	64.0	10.0	0.0	Para to GND	QP	-19.1	-5.0	29.5	-34.5	EUT Horz
20.567	0.2	10.6	1.0	133.0	10.0	0.0	Para to GND	QP	-19.1	-8.3	29.5	-37.8	EUT Horz



										-		EmiR5 2021.09	9.09.0		PS	A-ESCI 2	021.03.1
Wo	rk Order:	STAK0	251		Da	te:		202	-10-29	1	1		0	4	2		-
	Project:	Non	е	Te	mperatu	re:		24	.6 °C	//	Ľ	/	17	N			_
	Job Site:	MNO	5		Humidi	ty:		36.9	9% RH								
Serial	Number:	11728202, 2	11728243	Barom	etric Pre	s.:		101	5 mbar		Tested by:	Chris P	atters	son			
	EUT:	Genesis ma	cro RIC (B	LE and N	FMI)												
Config	guration:	6															
C	ustomer:	Starkey Lab	oratories, I	nc.													
At	tendees:	John Quach															
EU	T Power:	Battery															
Operatir	ng Mode:	NFMI Transr	mitting 10.2	281 MHz													
De	viations:	None															
		None															
Co	mments:																
est Specif	ications								Test Meth	od							
CC 15 209	:2021								ANSI C63	10:2013							
Run #	46	Test Dist	ance (m)	3	Anter	na	Hei	ght(s	)	1 to 4(m)		Resu	lts		Pa	ISS	
																	1
80																	
																	1
																	1
70 +																	
60 +																	
e ⁵⁰																	
5																┿┛╿	
3							1										1
<u>a</u> 40 +																	1
°																	1
20																	1
30																	l l
				•													l l
20																	1
																	í.
					•		'	•									l l
10 🕂							_					-				$\parallel$	1
																	í.
							•										l l
o 🗕																	ł.
10								100								10	00
								MH ₂									
												P	ĸ	<ul> <li>A</li> </ul>	V	• 0	٩¢
									Polority/								
							Ex	xternal	Transducer		Distance					Com	pared f
Freq	Amplitude	Factor A	ntenna Height	Azimuth	Test Distar	nce	Atte	enuation	Туре	Detector	Adjustment	Adjusted	d	Spec. L	Limit	S	pec.
(8411-)	(dBu)/)	(dR/m)	(meters)	(dogroop)	(motors			(dB)				(dBu)//m	1	(dBuV)	(m)	1 (	(dP)

Freq (MHz)	(dBuV)	Factor (dB/m)	(meters)	(degrees)	(meters)	Attenuation (dB)	туре	Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
、 ,													Comments
39.124	30.2	-5.4	2.41	142.0	3.0	0.0	Horz	QP	0.0	24.8	40.0	-15.2	EUT Horz
53.382	25.4	-9.9	2.02	15.1	3.0	0.0	Horz	QP	0.0	15.5	40.0	-24.5	EUT Horz
31.455	16.4	-1.4	4.0	0.0	3.0	0.0	Horz	QP	0.0	15.0	40.0	-25.0	EUT Horz
91.554	24.4	-9.7	4.0	96.9	3.0	0.0	Horz	QP	0.0	14.7	43.5	-28.8	EUT Horz
62.941	19.4	-10.6	3.56	51.0	3.0	0.0	Horz	QP	0.0	8.8	40.0	-31.2	EUT Horz
73.922	17.5	-10.6	3.33	274.0	3.0	0.0	Horz	QP	0.0	6.9	40.0	-33.1	EUT Horz
82.128	16.1	-10.9	1.0	88.0	3.0	0.0	Horz	QP	0.0	5.2	40.0	-34.8	EUT Horz
102.512	16.3	-8.9	1.24	166.0	3.0	0.0	Horz	QP	0.0	7.4	43.5	-36.1	EUT Horz



End of Test Report