

Starkey Laboratories, Inc.

Edge AI RIC 312 with NFMI

FCC 1.1307:2023 Bluetooth Low Energy Inductive

Report: STAK0333.12, Issue Date: July 24, 2024

TABLE OF CONTENTS

Section

Page Number

Certificate of Evaluation	3
Revision History	4
Accreditations	5
Facilities	6
Product Description	
Exposure Condition	8
Exemption From RF Exposure Evaluation	9
End of Report	13

CERTIFICATE OF EVALUATION

Last Date of Evaluation: July 24, 2024 Starkey Laboratories, Inc. EUT: Edge AI RIC 312 with NFMI

RF Exposure Evaluation

Standards	
Specification	Method
FCC 1.1307:2024	FCC 1.1307:2024

Results

Method Clause	Description	Applied	Results	Comments
(b)(3)(ii)(A)	Exemption From RF Exposure Evaluation	Yes	Pass	None

Deviations From Evaluation Standards

None

Approved By:

Donald Facteau, Process Architect

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

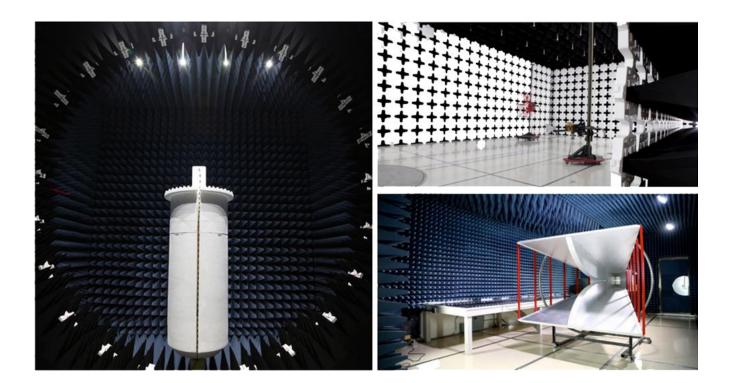
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

	SCOPE						
For details on the Scopes of our Accreditations, please visit:							
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington			

FACILITIES


Location	Labs (1)	Address	A2LA (2)	ISED (3)	BSMI (4)	VCCI (5)	CAB (6)	FDA (7)
California	OC01-17	41 Tesla Irvine, CA 92618 (949) 861-8918	3310.04	2834B	SL2-IN-E-1154R	A-0029	US0158	TL-55
Minnesota	MN01-11	9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	3310.05	2834E	SL2-IN-E-1152R	A-0109	US0175	TL-57
Oregon	EV01-12	6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	3310.02	2834D	SL2-IN-E-1017	A-0108	US0017	TL-56
Plano Texas	PT01-15	1701 E Plano Pkwy, Ste 150 Plano, TX 75074 (972) 509-2566	214.19	32637	SL2-IN-E-057R	N/A	US0054	N/A
Texas	TX01-09	3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	3310.03	2834G	SL2-IN-E-1158R	N/A	US0191	TL-54
Washington	NC01-05	19201 120th Ave NE Bothell, WA 98011 (425) 984-6600	3310.06	2834F	SL2-IN-E-1153R	A-0110	US0157	TL-67
Offsite	N/A	See Product Description	N/A	N/A	N/A	N/A	N/A	N/A

Testing was performed at the following location(s)

See data sheets for specific labs

The lab designations denote individual rooms within each location. (OC01, OC02, OC03, etc.) A2LA Certificate No. ISED Company No. (1) (2) (3) (4) (5) (6) (7)

BSD Company No. BSMI No. VCCI Site Filing No. CAB Identifier. Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA FDA ASCA No.

PRODUCT DESCRIPTION

Client and Equipment Under Evaluation Information

Company Name:	Starkey Laboratories, Inc.
Address:	6600 Washington Ave S
City, State, Zip:	Eden Prairie, MN 55344-3404
Evaluation Requested By:	Bill Mitchell
EUT:	Edge AI RIC 312 with NFMI
Date of Evaluation:	7/24/2024

Information Provided by the Party Requesting the Evaluation

Functional Description of the Equipment:
--

Wireless hearing aid for use by the hearing-impaired.

Two Radios:

NXP NxH 2004 Bluetooth Low Energy (2.4 - 2.4835 GHz) for communication with smartphones and wireless accessories

NXP NxH 2281 NFMI (10.281 MHz) for communication with the other hearing aid of a binaural pair. Uses H-field magnetic induction.

Objective:

To demonstrate compliance with FCC Requirements for RF exposure for 1.1307 RF exempt devices

RF EXPOSURE CONDITION

The following RF Exposure conditions were used for the assessment documented in this report:				
Intended Use	Portable			
Location on Body (if applicable)	Head/Torso			
How is the Device Used	Device is inserted into ear of the user. (less than 20cm)			
Radios Contained in the Same Host Device	Bluetooth Low Energy			
	Inductive			
Simultaneous Transmitting Radios	Bluetooth Low Energy, Inductive			
Body Worn Accessories	NA			
Environment	General Population/Uncontrolled Exposure			

OVERVIEW

Section 1.3 of KDB 44798 D04 v01 states that, "Under the new rules, all radio services and operations are subject to Routine Evaluation [§§ 1.1307(b)(1), 2.1033(f), etc.], unless shown to qualify under the exemptions provided in the rules and OET Lab policies for equipment authorization."

The glossary of KDB 447498 D04 v01 specifies that an exempt RF device is defined "solely from the obligation to perform a routine environmental evaluation to demonstrate compliance with the RF exposure limits in § 1.1310; it is not exemption from the equipment authorization procedures described in 47 CFR Part 2, not exemption from general obligations of compliance with the RF exposure limits in § 1.1310 of this chapter, and not exemption from determination of whether there is no significant effect on the quality of the human environment under § 1.1306." Compliance with the exemption criteria defined in 1.1307(b) confirm compliance with the limits in § 1.1310.

COMPLIANCE WITH FCC 1.1310

Per 1.1307(b)(3), (i) For single RF sources (*i.e.*, any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

- (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
- (B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold *P_{th}* (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). *P_{th}* is given by:

$$P_{th}(mW) = \begin{cases} ERP_{20\ cm}(d/20\ cm)^x & d \le 20\ cm \\ ERP_{20\ cm} & 20\ cm < d \le 40\ cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right) \text{ and } f \text{ is in } GHz;$$

And

$$ERP_{20\ cm}(mW) = \begin{cases} 2040f & 0.3\ GHz \le f < 1.5\ GHz\\ 3060 & 1.5\ GHz \le f \le 6\ GHz \end{cases}$$

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

- (ii) For multiple RF sources: Multiple RF sources are exempt if:
- (A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of two centimeters between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required). This exemption may not be used in conjunction with other exemption criteria other than those is paragraph (b)(3)(i)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(i)(A).
- (B) in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation.

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

Where:

- a = number of fixed, mobile, or portable RF sources claiming exemption using paragraph (b)(3)(i)(B) of this section for P_{th} , including existing exempt transmitters and those being added.
- b = number of fixed, mobile, or portable RF sources claiming exemption using paragraph (b)(3)(i)(C) of this section for Threshold ERP, including existing exempt transmitters and those being added.
- c = number of existing fixed, mobile, or portable RF sources with known evaluation for the specified minimum distance including existing evaluated transmitters.
- P_i = the available maximum time-averaged power or the ERP, whichever is greater, for fixed, mobile, or portable RF source *i* at a distance between 0.5 cm and 40 cm (inclusive).
- $P_{m,i}$ = the exemption threshold power (P_m) according to paragraph (b)(3)(i)(B) of this section for fixed, mobile, or portable RF source *i*.
- ERP_{i} = the ERP of fixed, mobile, or portable RF source *j*.
- $ERP_{n,j}$ = exemption threshold ERP for fixed, mobile, or portable RF source *j*, at a distance of at least $\lambda/2\pi$ according to the applicable formula of paragraph (b)(3)(i)(C) of this section.
- *Evaluated*_k = the maximum reported SAR or MPE of fixed, mobile, or portable RF source *k* either in the device or at the transmitter site from an existing evaluation at the location of exposure.
- *Exposure Limit*_{*k*} = either the general population/uncontrolled maximum permissible exposure (MPE) or specific absorption rate (SAR) limit for each fixed, mobile, or portable RF source *k*, as applicable from §1.1310

The relationship between EIRP and ERP is:

ERP(dBm) = EIRP(dBm) - 2.14 dB

Where EIRP is the sum of the conducted power (dBm) and the antenna gain (dBi).

APPARENT POWER

When the transmitted signal is measured as a field strength value ($dB\mu V/m$), this value is converted to a power level using the following derivation (the field strength value has been distance corrected to 3 m):

Step 1 – Per ANSI C63.10:2013 section 10.3.9 equation (34), the relationship between EIRP and field strength is as follows: $EIRP_{meas} = E_{meas} - 95.3$

Where:

EIRP_{meas} is the equivalent isotropically radiated power in dBm as converted from a measured value E_{meas} is the field strength at a 3 m measurement distance in dBµV/m. To convert from the specification measurement distance to 3 m, a 40 dB/decade adjustment was applied.

Step 2 – If a power tolerance or a tune-up value is provided, the reported power should be scaled accordingly:

 $EIRP = EIRP_{meas} + Tolerance$

Where:

EIRP is the maximum equivalent isotropically radiated power in dBm EIRP_{meas} is the equivalent isotropically radiated power in dBm as converted from a measured value Tolerance is either the tolerance provided in dB or the positive tune-up tolerance range in dB

Step 3 - Convert the EIRP value to linear terms

$$EIRP(mW) = 10^{\frac{EIRP(dBm)}{10}}$$

Where:

EIRP is the maximum equivalent isotropically radiated power, in terms of either mW or dBm

When the transmitted field strength value is reported as a magnetic field strength value, $(dB\mu A/m)$, the value is converted to an electric field strength, $(dB\mu V/m)$, by adding the free-space impedance, $20log(377 \text{ ohm}) \sim 51.5 \text{ dBohm}$ to the magnetic field strength (in logarithmic terms).

ASSESSMENT

The exemption from RF exposure evaluation is summarized in the following table(s):

Radio	Transmit Frequency (MHz)	Radiated Output Power or Field Strength	Power Tolerance (dB)	Duty Cycle	Antenna Assembly Gain (dBi)	Minimum Separation Distance (cm)	Calculated Conducted Exposure Power (mW)	Limit (mW)	Ratio
Inductive: NxH 2281	10.281	-19.5 dBuV/m @ 30m	2.0	100.0%	0	0.5	0.0	1.0	0.00
Max Ratio (0.00

The information in the table above was obtained from:

A measured value was used in these calculations. From customer supplied information and Element reports STAK0333.0 and STAK0333.1.

Radio	Transmit Frequency (MHz)	Conducted Output Power	Power Tolerance (dB)	Duty Cycle	Antenna Assembly Gain (dBi)	Minimum Separation Distance (cm)	Calculated Conducted Exposure Power (mW)	Limit (mW)	Ratio
Bluetooth Low Energy: NxH 2004	2480	-3.662 dBm	2.0	100.0%	1.4	0.5	0.7	1.0	0.68
Bluetooth Low Energy: NxH 2004	2402	-3.662 dBm	2.0	100.0%	1.4	0.5	0.7	1.0	0.68
Max Ratio									0.68

The information in the table above was obtained from:

A measured value was used in these calculations. From customer supplied information and Element reports STAK0333.0 and STAK0333.1.

Sum of Maximum RatiosLimitCompliant0.681Yes

Evaluator: Chuck Heller

End of Test Report