Partial reproduction of this document is prohibited without prior written consent of Acme Testing Inc. ACME TESTING INC., 2002 VALLEY HWY, P.O. BOX 3, ACME, WASHINGTON 98220-0003 888-226-3837.

REPORT OF MEASUREMENTS PART 15C (15.247) - INTENTIONAL RADIATOR

DEVICE:	902 – 928 MHz FREQUENCY HOPPING TRANSMITTER
MODEL:	RPT0006-001
MANUFACTURER:	ITRON, INC
ADDRESS:	2818 NORTH SULLIVAN ROAD PO BOX 15288 SPOKANE WA 99215-5288

WORK ORDER: 9245dp

1. 6	GENERAL	4
1.1	Document History	4
1.2	PURPOSE	5
1.3	MANUFACTURER	
1.4	TEST LOCATION	
1.5	5 ACCREDITATION AND LISTING	6
2. Т	TEST RESULTS SUMMARY	7
3. E	DESCRIPTION OF EQUIPMENT AND PERIPHERALS	8
3.1	Equipment Under Test (EUT)	
3.2	-	
3.3	B DESCRIPTION OF INTERFACE CABLES	
3.4	MODE OF OPERATION DURING TESTS	
3.5	MODIFICATIONS REQUIRED FOR COMPLIANCE	
4. A	ANTENNA REQUIREMENT	9
4.1	REGULATION	9
4.2	2 Result	9
5. 0	CONDUCTED EMISSIONS TESTS	
5.1	Test Equipment	
5.2		
5.3		
5.4		
6. 2	20 DB BANDWIDTH AND CHANNEL SEPARATION	14
6.1	REGULATION	
6.2		
6.3		
6.4		
7. N	NUMBER OF CHANNELS	
7.1	REGULATION	
7.2	2 TEST RESULTS	
8. P	POWER OUTPUT	24
8.1	REGULATION	
8.2		
8.3	3 Test Procedures	
8.4	TEST RESULTS	
9. A	ANTENNA GAIN REQUIREMENTS	
9.1	REGULATION	
9.2		
10.	RADIO FREQUENCY EXPOSURE	
10.		
10.2		
10.2		

11.	CONDUCTED SPURIOUS EMISSIONS	
11.1		
11.2	2 Test Equipment	
11.3	Test Procedures	
11.4	TEST RESULTS	
12.	RADIATED SPURIOUS EMISSIONS	41
12.1	REGULATION	
12.2	2 Test Equipment	
12.3		
12.4	TEST RESULTS	
13.	CONTINUOUS DATA AND SHORT TRANSMISSIONS	
13.1	REGULATION	
13.2		
14.	COORDINATION OF FREQUENCY HOPPING	
14.1	REGULATION	
14.2		
15.	MISCELLANEOUS COMMENTS AND NOTES	

1. General

1.1 Document History

REVISION	DATE	COMMENTS	
- 13 March 2001		Initial Release, Paul G. Slavens	

Note: Acme Testing Co. hereby makes the following statements so as to conform with Chapter 10 (Test Reports) Requirement of ANSI C63.4:1992 "Methods and Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz":

- The units described in this report were received at Acme Testing Co.'s facilities on 20 February 2001. Testing was performed on the units described in this report on 20 February 2001.
- The Test Results reported herein apply only to the Units actually tested, and to substantially identical Units.
- This test report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government, or any other foreign government.

This document is the property of Acme Testing, Co., and shall not be reproduced, except in full, without prior written approval of Acme Testing Co. However, all ownership rights are hereby returned unconditionally to Itron Inc., and approval is hereby granted to Itron Inc. and its employees and agents to reproduce all or part of this report for any legitimate business purpose without further reference to Acme Testing Co.

1.2 Purpose

The purpose of this report is to show compliance to the FCC regulations for spread spectrum unlicensed devices operating under section 15.247 of the Code of Federal Regulations title 47.

THE DATA CONTAINED IN THIS REPORT WAS COLLECTED AND COMPILED BY:

PAUL G. SLAVENS CHIEF EMC ENGINEER DANIEL B. STATON SENIOR EMC TECHNICIAN

1.3 Manufacturer

Company Name:	Itron, Inc.
Contact:	Scott Cumeralto
Street Address:	2818 North Sullivan Road
Mailing Address:	PO Box 15288
City/State/Zip:	Spokane WA 99215-5288
Telephone:	509 891-3446
Fax:	509 891-3355

1.4 Test location

Laboratory:	Test Site #2
Street Address:	2002 Valley Highway
Mailing Address:	PO Box 3
City/State/Zip:	Acme WA 98220-0003
Telephone:	888 226-3837
Fax:	360 595-2722
E-mail:	acmetest@acmetesting.com
Web:	www.acmetesting.com

1.5 Accreditation and Listing

Acme Testing Co.'s test facilities are accredited by A2LA for the specific scope of accreditation under Certificate Numbers: 0829-01 (Acme, WA), and 0829-02 (Plummer, ID). Acme Testing Co.'s test facilities that are used to perform radiated and conducted emissions are currently registered with the Federal Communications Commission under registration numbers: 90420 (Acme, WA), and 96502 (Plummer, ID). In addition test facilities are also registered with the Industry Canada under registration numbers: 3251 (Acme, WA), and 3618 (Plummer, ID).

2. Test Results Summary

Summary of Test Results

Requirement	CFR Section	Test Result
Radiated Spurs < 15.209	15.205(b)	COMPLIES
Conducted Emissions < 48.0 dBuV	15.207	COMPLIES
Channel Separation > 25 kHz	15.247(a1)	COMPLIES
Number of Channels $= 25$	15.247(a1i)	COMPLIES
20 dB BW < 500 kHz	15.247(a1i)	COMPLIES
Max Output Power < 0.25 W	15.247(b2)	COMPLIES
Antenna Gain < 6 dBi	15.247(b3)	COMPLIES
Conducted Spurious >-20 dBc	15.247(c)	COMPLIES

The signed original of this report, supplied to the client, represents the only "official" copy. Retention of any additional copies (electronic or non-electronic media) is at Acme Testing's discretion to meet internal requirements only. The client has made the determination that EUT Condition, Characterization, and Mode of Operation are representative of production units, and meet the requirements of the specifications referenced herein.

The measurements contained in this report were made in accordance with the procedure ANSI C63.4 - 1992 and all applicable Public Notices received prior to the date of testing. All emissions from the device were found to be within the limits outlined in this report. Acme Testing assumes responsibility only for the accuracy and completeness of this data as it pertains to the sample tested.

Paul G. Slavens Chief EMC Engineer Date of Issuance

3. Description of Equipment and Peripherals

3.1 Equipment Under Test (EUT)

Device: Model Number: Serial Number: Size of EUT: FCC ID: Power: Grounding: Measurement Distance: Number of EUT Antonnes	902 – 928 MHz Frequency Hopping Transmitter RPT0006-001 71001009 32 cm x 27 cm x 11 cm EO9PETRPT 120 V/60 Hz 3 Wire A/C Plug 3 Meter
e	e
Number of EUT Antennas	1
Type of Antenna	Omni-directional
Gain of Antenna	7.1 dBi

3.2 EUT Peripherals

Device	Manufacturer	Model Number	FCC ID	Serial Number
Co-Linear Antenna	Maxrad, Inc.	Z546	None	None

3.3 Description of Interface Cables

EUT/Co-Linear Antenna (LMR-400 Coaxial Cable)					
Shielded	Unshielded	Flat	Round	Length	Ferrite
Yes	No	No	Yes	15.6 M	No

ARRANGEMENT OF INTERFACE CABLES: All interface cables were positioned for worst case maximum emissions within the manner assumed to be a typical operation condition (please reference photographs).

3.4 Mode of Operation During Tests

The transmitter was transmitting during testing. The transmitter was modulated or unmodulated and hopping or not hopping per the needs of each test.

3.5 Modifications Required for Compliance

The EUT required the following modifications during testing to bring the product into compliance:

1. None.

4. Antenna requirement

4.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

4.2 Result

- (a) The PETNET system documentation clearly specifies that its sole intended use is to provide water submetering services to companies that market these services to customers.
- (b) The PETNET system is to be professionally installed by qualified and trained installers. The PETNET system transmitting components are provided with one type of antenna and coaxial assembly as well as instruction on proper installation of these mandatory components.
- (c) The PETNET system is marketed to water submetering companies exclusively throughout the United States who install the equipment. The submetering companies provide both billing of water usage and the on-site service of any faulty equipment or system failures.

5. Conducted Emissions Tests

Test Requirement: FCC CFR47, Part 15C, 15.207

Test Procedure: ANSI C63.4:1992

Date of Test: 20 February 2001

Test Location: Test Site #2 (Acme, WA)

5.1 Test Equipment

- ⇒ Spectrum Analyzer (blue): Hewlett-Packard 8566B, Serial Number 2410A00168, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ RF Preselector (blue): Hewlett-Packard 85685A, Serial Number 2648A-00519, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ Quasi Peak Adapter (blue): Hewlett-Packard 85650A, Serial Number 2043A00327, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ Line Impedance Stabilization Network: EMCO 3825/2, Serial Number 9002-1601, Calibrated: 2 January 2001, Calibration due Date: 2 January 2002

5.2 Purpose

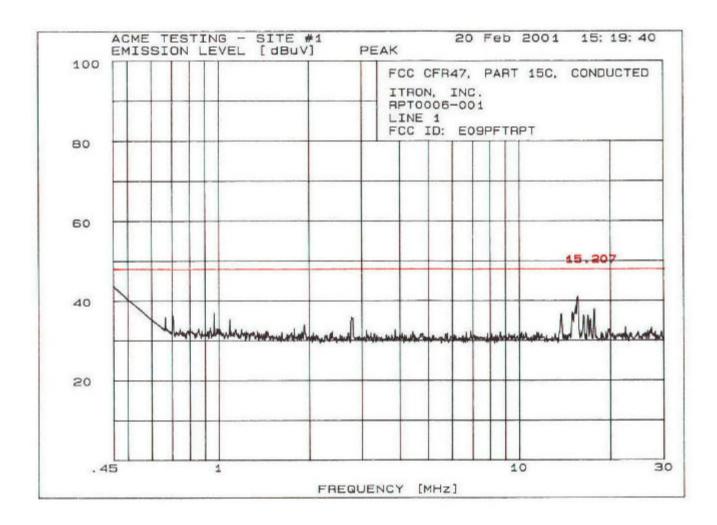
The purpose of this test is to evaluate the level of conducted noise the EUT imposes on the AC mains.

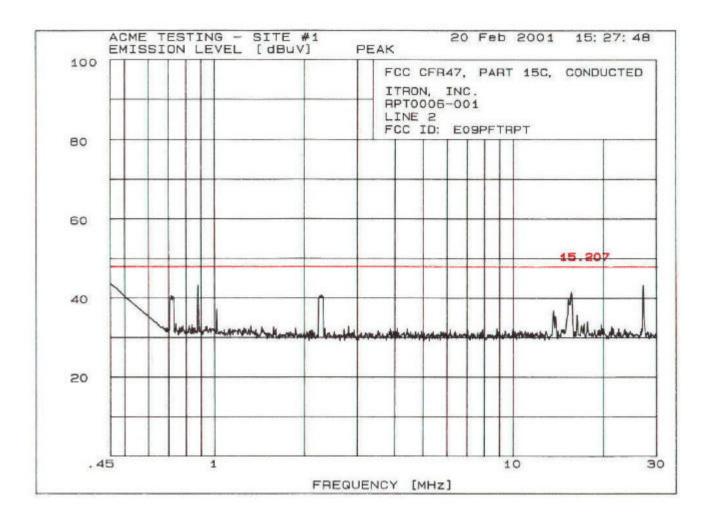
5.3 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that is placed above the groundplane. Floor standing equipment is placed directly on the groundplane. Any supplemental grounding mechanisms are connected, if appropriate. The EUT is connected to its associated peripherals, with any excess I/O cabling bundled to approximately 1 meter. The EUT is connected to a dedicated LISN and all peripherals are connected to a second separate LISN circuit. The LISNs are bonded to the groundplane.

Preview tests are performed to determine the "worst case" mode of operation. With the EUT operating in "worst case" mode, final conducted measurements are taken. Conducted measurements are made on each current carrying conductor with respect to ground.

Conducted Emissions Test Characteristics	
Frequency range	0.45 MHz - 30.0 MHz
Test instrumentation resolution bandwidth	9 kHz
Lines Tested	Line 1/Line 2


5.4 Test Results


 PEAK #	FREQ. (MHz)	AMPL (dBuV)
1	0.9657	36.9
2	13.75	36.6
3	15.59	41.0
4	16.26	36.3
5	16.81	36.3
6	17.61	37.8

LINE 1

LINE 2

PEAK #	FREQ. (MHz)	AMPL (dBuV)	
1	0.7169	40.6	
2	0.8842	43.2	
3	1.02	37.2	
4	2.273	40.7	
5	15.53	41.5	
6	27.01	43.2	

6. 20 dB Bandwidth and Channel Separation

6.1 Regulation

15.247(a1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20-dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system-hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.2 Test Equipment

- ⇒ Spectrum Analyzer (blue): Hewlett-Packard 8566B, Serial Number 2410A00168, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ RF Preselector (blue): Hewlett-Packard 85685A, Serial Number 2648A-00519, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001

6.3 Test Procedures

The RF output of the EUT was connected to the RF input port of the RF preselector through a 10-dB pad. The following measurements were made with a RBW = 30 kHz and VBW = 100 kHz.

6.4 Test Results

- A. The measured 20 dB bandwidth is 265.5 kHz (See plot).
- B. The measured Carrier Frequency Separation is 400 kHz (See plot).
- C. The description of the hopping algorithm is included below

Each hop sequence has 25 hops numbered 0 to 24. There are 256 different hop sequences used, numbered from 0 to 255. The following describes how the 256 new hop sequences were generated. Synthesis Algorithm for a single hop sequence:

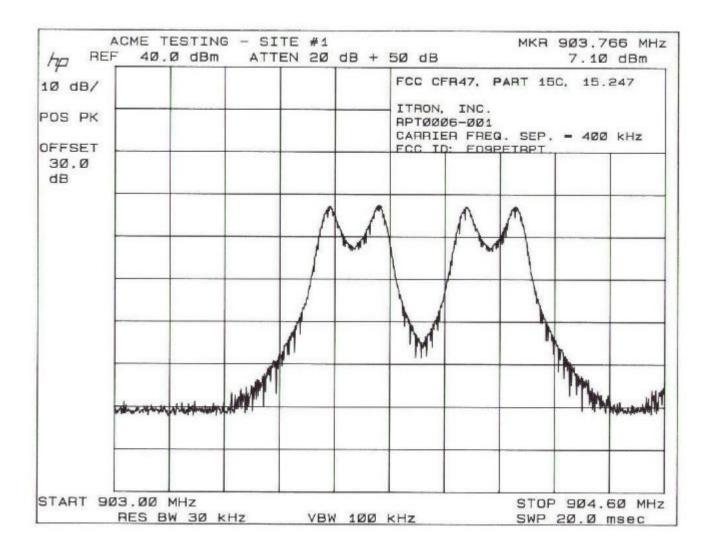
1. A random number between 0 and 24 is selected using the random number generator provided as a function within the compiler. The random number generator provides a uniform distribution of values. 2. The random number selected above is the "proposed" channel number to use for this hop. If this channel has not been previously assigned, it is assigned to the current position in the hop table. If the channel has been previously assigned, repeat step 1.

3. If all 25 positions in the hop sequence being generated are not filled, go to step 1 and begin the process of determining the next hop value. The above algorithm is applied to all 256 sequences.

The code segment below shows the actual code used to generate the 256 hop sequences. The random number generator can be seeded to start at different points. Each seed value renders an entirely new table. There are 65,535 possible tables with the given algorithm. The seed value selected for the table below is 11.

Basic Program Instructions, which developed the pseudorandom channel selection table:

```
FOR seq\% = 0 TO 255
PRINT "Working on sequence # "; seq%
'reinitialize used table
FOR hop% = 0 TO 24
UsedFreq\%(hop\%) = 0
NEXT hop%
FOR hop% = 0 TO 24
DO
'Pick a random hop
potentialhop\% = RND(1) * 24
'See if the proposed hop is already used
IF UsedFreq%(potentialhop%) <> 1 THEN
'It is not used
UsedFreq%(potentialhop%) = 1
table%(seq%, hop%) = potentialhop%
EXIT DO
END IF
LOOP
NEXT hop%
NEXT sea%
Seed Value Selected = 11
Program Version = 1.2
```


Example of Hop Sequence Table Used in PETNET system components:

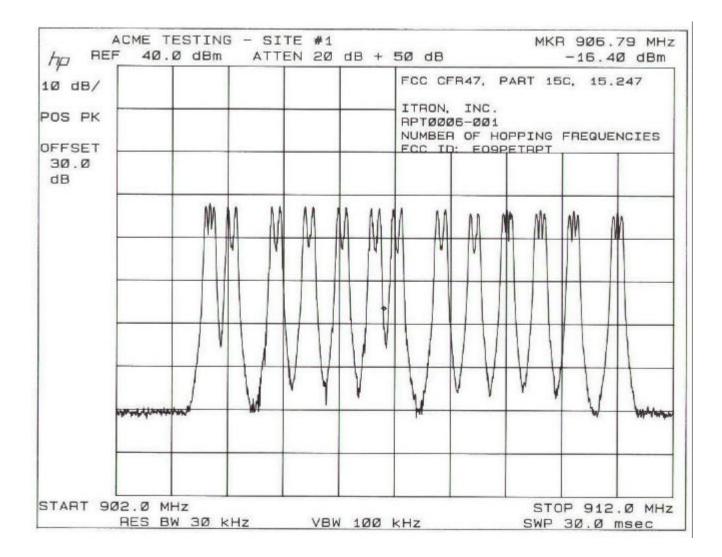
Sequence 0: 3,1,21,13,10,22,2,18,12,9,16,19,6,11,4,5,8,23,20,15,7,24,0,14,17 Sequence 1: 12,24,7,10,18,13,2,17,0,19,16,4,23,5,15,11,22,3,21,9,1,20,14,8,6 Sequence 2: 9,10,12,15,13,8,21,11,19,14,22,1,2,18,4,3,5,24,17,7,6,16,20,0,23 Sequence 3: 12,18,20,11,2,8,1,9,3,4,22,19,14,16,0,7,5,15,10,21,24,6,17,23,13 Sequence 4: 16,8,12,5,3,6,22,7,2,0,1,23,20,4,17,21,11,14,13,15,24,9,19,18,10 Sequence 5: 15,20,17,18,2,11,0,9,6,4,23,7,5,19,13,3,12,14,1,16,22,8,21,10,24 Sequence 6: 10,23,11,4,14,22,8,5,3,16,18,17,19,7,21,9,15,1,2,6,20,24,13,0,12 Sequence 7: 3,13,12,7,11,20,23,4,5,24,17,1,8,14,2,10,21,22,18,6,15,16,19,9,0 Sequence 8: 17,3,21,15,18,19,5,1,2,0,4,8,16,24,10,12,9,20,11,23,6,7,13,14,22 Sequence 9: 19,9,5,15,18,16,12,2,17,8,23,13,4,0,22,24,7,1,6,21,11,20,10,3,14 Sequence 10: 16,9,23,6,11,21,3,22,5,17,14,13,2,7,10,19,1,20,24,0,18,15,4,12,8

D. The explanation of the receiver bandwidth is included below:

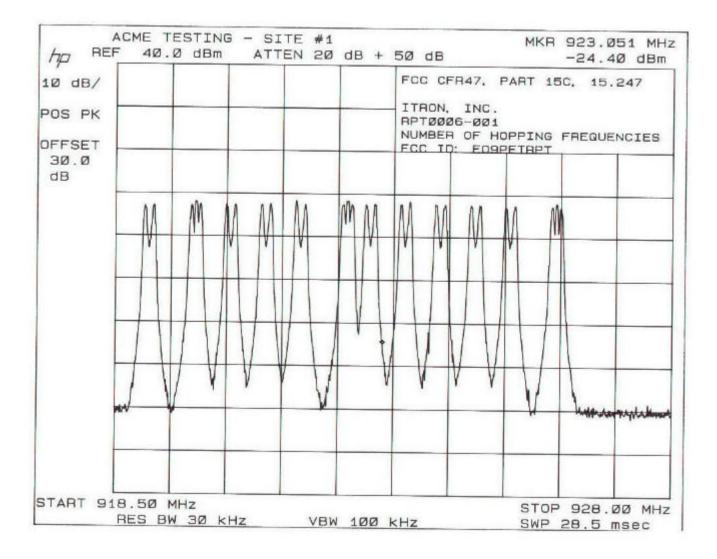
The Pet Repeater is equipped with a synthesized dual conversion super-heterodyne receiver. The low IF of the system utilizes a 10.7 MHz IF of 360 KHz at the 3 dB down points. The bandwidth is determined by the use of 3 stages of Toko ceramic filters, each filter with a 380 KHz bandpass. The composite bandpass of all filters results in a 360 KHz total bandwidth. The part number for these filters is SK107M0-AE-10. Attached, in PDF format, is the specification of the filters. The transmitter-occupied bandwidth is nominally 275 KHz. The remaining difference between the occupied bandwidth and the receiver bandwidth is necessary for frequency instability between the transmitter and receiver as well as component variations of the ceramic filters.

B/ PK				50 dB -13.20 dB FCC CFR47. PART 15C. 15.247 ITRON, INC. RPT0006-001 20 dB BANDWIDTH = 265.5 kHz
SET . Ø				FCC ID: E09PETRPT
			5	
		 - /	(
	-	 		
	wayhat			

7. Number of Channels


7.1 Regulation

15.247(a1i) For frequency hopping systems operating in the 902-928 MHz band: if the 20-dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20-dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20-dB bandwidth of the hopping channel is 500 kHz.


7.2 Test Results

- A. The measured 20 dB bandwidth is 265.5 kHz (See previous plot).
- B. The system uses 25 channels (See plots).
- C. The measured on time on each channel is 395.1 milliseconds (See plot)
- D. None of the 25 channels is repeated in any hop sequence so average time of occupancy in any 10 second time period is met (See algorithm in section 6)

ви				FCC CF		ART 150	0, 15.2	247
PK				DWELL	TIME:	391.5	nSec	
SET -			 	FCC TC	: E09P	EIRPI		
.Ø								
-			 	 	_	-		
-								
F							manum	lus
-	man	montrospectre				manana	angua su	A.W
-								
F								
F								

dB/ PK						ITRON, I RPTØØØ6- NUMBER C	5C, 15.247 FREQUENCIE	
SET .Ø						FCC ID:	FOSPETRET	
	_							
3								
	-	whenter	All proprior and be	Mumuu	-	www.www.www	manneman	Muthiliphiliphiliphic

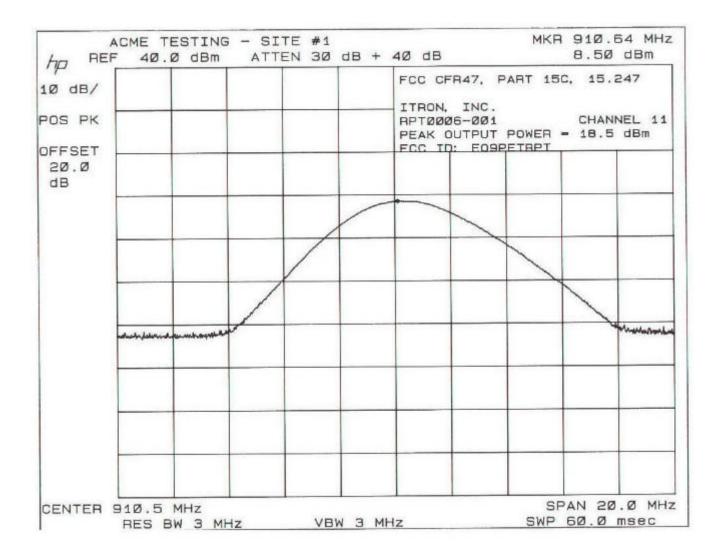
8. Power Output

8.1 Regulation

15.247(b2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph 15.247(a)(1)(i).

8.2 Test Equipment

- ⇒ Spectrum Analyzer (blue): Hewlett-Packard 8566B, Serial Number 2410A00168, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ RF Preselector (blue): Hewlett-Packard 85685A, Serial Number 2648A-00519, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001


8.3 Test Procedures

The RF output of the EUT was connected to the RF input port of the RF preselector through a 10-dB pad. The following measurements were made with a RBW = 3 MHz and VBW = 3 MHz.

8.4 Test Results

The power was measured at the end of the minimum length coaxial cable supplied with the system. Measured maximum Peak Envelope Power was 19.2 dBm or 83 milliwatts. Please see plots. The power was also measured at 85% and 115% nominal line voltage with no change in conducted power.

	40.0 dB			FCC CF	1947, F		SC, 15.	
SET				PEAK C	UTPUT	POWER	- 19.2	
.ø				FCC II	E E D 9 E	ETRPT		
					~			
		1	1					
	drawlaw www.	1						-
								-
								-
-				 				-

dB/	40.0 d				R47, I	PART 15			
S PK				RPTØØØ6-ØØ1 CHANNEL 2 PEAK OUTPUT POWER = 19.2 dBm					
FSET Ø.Ø B				FCC II): E09(PETRPT			
			/		/				
							\backslash		
	r.h.and.calledo.and.	and the second						Mary Mary Marine	

9. Antenna gain requirements

9.1 Regulation

15.247(b3) Except as shown below, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the above stated values by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

9.2 Result

The antenna system used by the PETNET repeater subsystem includes both the coaxial cable and antenna. The coax is LMR-400 manufactured by Times Microwave Systems. The length of the coax is 50 feet and is pre-terminated with a N-Male and N-female connectors. The connectors are of a crimp type and provided with heat shrink tubing to minimize water intrusion. The attenuation of the coax at 915 MHz is 2 dB. Providing both the antenna and coaxial cable to only qualified professional installers guarantees proper RF Effective Radiated Power not exceeding the FCC requirements. The following calculation is used to determine compliance: 5dBD Antenna, +2.14 Isotropic to Reference Dipole, -2 dB cable loss = 5.14 dBi antenna system gain.

10. Radio Frequency exposure

10.1 Regulation

15.247(b4) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. *See* \$1.1307(b)(1) of this Chapter.

10.2 Result

1) The following calculations were used to determine the power density limits for the PETNET system. These limits are used to determine the Antenna Installation and configuration limits specified in the Installation manual.

Maximum PET Repeater Power Density:

Background:

The PET Repeater transmits at a rate never to exceed 90 messages each 400 ms long every half hour. The total transmission time is therefore 36000 ms each half hour.

Due to the standards for installation the closest one can get to the antenna is typically greater than 100 cm.

The maximum peak transmit power is 200 mw at the antenna port

The maximum antenna system gain is 3 db made up of a 5dB gain antenna and a coaxial cable loss of 2 db.

Thus the total power level radiated is 400 mw.

The average transmit power is therefore:

Pavr=400mw x 36,000/1,800= 20 mw

Compute the average power density:

The following analysis will give the worst case power density at 100 cm from the antenna. Referring to Figure 1 below, assume that all of the power is radiated from a point source (the dot located at the center of the sphere) contained in a sphere of radius 100 cm. The power density at the surface of the sphere is a worst case analysis in this example. In reality, the power will be distributed over a larger antenna, resulting in a lower average power density than that predicted by this analysis.

11.0 Figure 1

The Power density is equal to the total average transmitter power (averaged over a half hour period) divided by the surface area of the 100 cm radius sphere.

The surface area of the sphere is:

A sphere = $4 \times \pi \times r^2 = 4 \times \pi \times 1002 = 125663 \text{ cm}^2$

The power density, PD, at the surface of the sphere then becomes:

Conclusion:

The preceding analysis clearly demonstrates that the PET Repeater and associated antenna operated in close proximity to general public exceeds all safety requirements by several orders of magnitude.

2) The PETNET system is to be professionally installed by qualified and trained installers. The PETNET system transmitting components are provided with one type of antenna and coaxial assembly as well as instruction on proper installation of these mandatory components. Since only one antenna is provided and authorized for use with the PETNET system, compliance is ensured when properly installed by Itron and its qualified contractors.

3) The PETNET system is several orders of magnitude lower than the exposure limits specified in section 2.1091 of the FCC Regulations.

4) There are no other RF exposure related issues that may affect MPE compliance.

11. Conducted Spurious Emissions

11.1 Regulation

15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

11.2 Test Equipment

- ⇒ Spectrum Analyzer (blue): Hewlett-Packard 8566B, Serial Number 2410A00168, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ RF Preselector (blue): Hewlett-Packard 85685A, Serial Number 2648A-00519, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ Quasi Peak Adapter (blue): Hewlett-Packard 85650A, Serial Number 2043A00327, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001

11.3 Test Procedures

The RF output of the EUT was connected to the RF input port of the RF preselector through a 10 dB pad. The following measurements were made with a RBW = 100 kHz and VBW = 300 kHz.

11.4 Test Results

Please see plots

CONDUCTED SPURIOUS EMISSIONS CHANNEL 0

Frequency (MHz)	Absolute Level (dBm)	Relative Level (dBc)	Limit (dBc)
2711.1	-49.2	-68.4	-20.0

	ACME TE = 30.0				dB +		R 86Ø.3 MHz -42.9Ø dBm
10 dB/ POS PK DFFSET 10.0 dB						FCC CFR47, PART 150 ITRON, INC. RPTØØ06-Ø01 CONDUCTED SPURIOUS, FCC ID: E09PETRPT	
ав							
	jt isste better og ten		htte, slava Li	untrationality in	encipathynas	gracion and the last the land the state	langashariyikin yayimi jayimiyan
START 30	a MHz RES BW	300	kHz	VBK	V 1 MH		P 1.000 GHz 1.00 sec

B/ PK						FCC CFR47. PART 15C. 15.247 ITRON. INC. RPTØØØ6-ØØ1 CONDUCTED SPURIOUS, CHANNEL FCC ID: ED9PETRPT
.ø						
Γ						
F						
-						
how	- marketly A	uld seconderate	u-matrixing wa	the second	Landarana	North Manufactor and an and a strate of the state of the
-						

			- SIT		dB				-59.2	
Ø dB/ OS PK						ITRON, 1 RPTØØØ6-	IOUS	15C, 15.247		
	a didarahayaha	-townson the	munmul	thy the data for the	mann	ntaglagage Alfel & sty	enterstand-daytoon	ya, den		and the second
ART 2	.øø gh:	z						STO	P 10.0	аø сн

Frequency (MHz)	Absolute Level (dBm)	Relative Level (dBc)	Limit (dBc)
2730.9	-48.2	-66.7	-20.0

hannagangab	Montechanteris	nghraanse	and allow the	captor man	entruphorus	alwayarill	matura	en yinterni	
			-						
	Lanuartanak	Lan Markinger	Adrice and the second s				ITRON, INC. RPTØØØ6-ØØ1 CONDUCTED SF FCC ID: F09F	ITRON, INC. RPTØØØ6-ØØ1 CONDUCTED SPURIOUS FCC ID: FO9PETBPT	RPTØØØ6-ØØ1 CONDUCTED SPURIOUS. CHAN

dB/						FCC CFR47.	.	iC, 15.247	
AND A DESCRIPTION						RPTØØØ6-ØØ CONDUCTED	SPURIOUS	. CHANNEL	
SET .Ø						FCC ID: E	19PETRPT		
			_				_		
				· · · · ·					
									_
	derest and	nuthan	unerspersed	amp or before	har	a a day in the low of	www.www.whate	-	M
				-					

7/2 REF 2 dB/						FCC CFR47, PART 15C, 15.247
POS PK						ITRON, INC. RPTØØ06-Ø01 CONDUCTED SPURIOUS, CHANNEL 11 FCC ID: E09PETRPT
	-	70			w	have not the state of the state
	wansh	-Hall, Alfredd	unlangel	White	willow	

	NDUCTED SI UNIOUS		
Frequency (MHz)	Absolute Level (dBm)	Relative Level (dBc)	Limit (dBc)
2778.3	-53.2	-72.4	-20.0

CONDUCTED SPURIOUS EMISSIONS CHANNEL 24

, HEF dB/ 8 PK						FCC CFR ITRON, RPTØØØ6 CONDUCT	INC. -ØØ1			
SET						FCC IT:				ALL C
9.Ø										I
										-
								_		-
	1									
	number to anot	inter the loss of the second	perchaster in the	and the second s	Who the who	whether	when when the	<i>incompanies</i>	ernentenerete	shapeder
	MHz			-						

	CCME TESTING - SITE #1 MKR 1.856 GH 30.0 dBm ATTEN 30 dB + 30 dB -45.20 dBr
Ø dB/ POS PK DFFSET 10.0	FCC CFR47, PART 15C, 15.247 ITRON, INC. RPTØØØ6-ØØ1 CONDUCTED SPURIOUS, CHANNEL 2 FCC ID: E09PETRPT
В	
	entrans.na.matanatasiantasiantasianana ang ata ang asmanitasian kanasirasi na ang ata ang ata ang aspang attas
ART 1	ØØ GHZ RES BW 100 KHZ VBW 300 KHZ SWP 1.00 sec

P	- Ø.Ø	dBm	ATT	EN 10	dB	FCC CF			-63.2	
Ø dB/						ITRON. RPTØØ	INC. 06-001	PURIOUS	G. CHAN	
	nuclingun	Henney	بيديا <u>م</u> د مدين	when		han the second sec	li an	and conversion	alt alternation with	and the state of the
ART 2									DP 10.	

12. Radiated Spurious Emissions

12.1 Regulation

15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c).

12.2 Test Equipment

- ⇒ Spectrum Analyzer (blue): Hewlett-Packard 8566B, Serial Number 2410A00168, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ RF Preselector (blue): Hewlett-Packard 85685A, Serial Number 2648A-00519, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ Quasi Peak Adapter (blue): Hewlett-Packard 85650A, Serial Number 2043A00327, Calibrated: 17 March 2000, Calibration due Date: 17 March 2001
- ⇒ Broadband Biconical Antenna (blue) (20 MHz to 200 MHz): EMCO 3110, Serial Number 1180, Calibrated: 19 June 2000, Calibration due Date: 19 June 2001
- ⇒ Broadband Log Periodic Antenna (blue) (200 MHz to 1000 MHz): EMCO 3146, Serial Number 2852, Calibrated: 19 June 2000, Calibration due Date: 19 June 2001
- ⇒ EUT Turntable Position Controller: Rothenbuhler Engineering, Custom, No Calibration Required
- \Rightarrow Antenna Mast: Compliance Design, model M100/200, No Calibration Required
- ⇒ 2 GHz to 10 GHz Low Noise Preamplifier: Milliwave 593-2898, Serial Number 2494, Calibrated: 5 May 2000, Calibration Due Date: 5 May 2001
- ⇒ Double Ridge Guide Horn Antenna: EMCO 3115, Serial Number 9807-5534, Calibrated: 5 January 2001, Calibration due Date: 5 January 2002

12.3 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that sits on a flush mounted metal turntable. Floor standing equipment is placed directly on the flush mounted metal turntable. The EUT is connected to its associated peripherals with any excess I/O cabling bundled to approximately 1 meter.

Preview tests are performed to determine the "worst case" mode of operation. With the EUT operating in "worst case" mode, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable. Manipulating the system cables also maximizes EUT emissions.

Radiated Emissions Test Characteristics	
Frequency range	30 MHz - 10000 MHz
	15.205 RESTRICTED BANDS ONLY
Test distance	3 m
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1000 MHz)
	1 MHz (1000 MHz - 10000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/Horizontal

EMISSION	SPEC	MEA	ASUREM	ENTS		SITE		CORR
FREQUENCY	LIMIT	ABS	dLIM	MODE	POL	HGT	AZM	FACTOR
MHz	dBu	V/m	dB			cm	deg	dB
2710.90	74.0	44.5	-23.5	PK	V	115	30	1.7
2710.90	54.0	39.9	-14.1	AVG	V	115	30	1.7
5421.86	54.0	45.9	-8.1	PK	V	100	280	8.3

PRODUCT EMISSIONS CHANNEL 0

PRODUCT EMISSIONS CHANNEL 11

_									
	EMISSION	SPEC	MEA	ASUREM	ENTS		SITE		CORR
	FREQUENCY	LIMIT	ABS	dLIM	MODE	POL	HGT	AZM	FACTOR
	MHz	dBu	V/m	dB			cm	deg	dB
	2733.29	74.0	48.1	-25.9	PK	V	110	110	1.7
	2733.29	54.0	43.2	-10.8	AVG	V	110	110	1.7
	4555.47	54.0	44.4	-9.6	РК	V	100	320	5.7
	5421.86	54.0	47.2	-6.8	PK	V	115	290	8.4

PRODUCT EMISSIONS CHANNEL 24

EMISSION	SPEC	MEA	SUREM	ENTS		SITE		CORR
FREQUENCY	LIMIT	ABS	dLIM	MODE	POL	HGT	AZM	FACTOR
MHz	dBu	V/m	dB			cm	deg	dB
2778.07	54.0	44.5	-95	PK	V	110	90	1.8

13. Continuous Data and Short Transmissions

13.1 Regulation

15.247(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

13.2 Test Results

The PET Repeater is designed to operate as a frequency hopper in that it utilizes 25 pseudorandom channels. The RF channels equally used on average with a channels separation sufficient to provides non-overlapping transmitter occupied bandwidth emission greater than the -20 dB down point. The Transmitter has an occupied bandwidth of 275 KHz. The system receiver hops in synchronization with the transmitter and has a receive bandwidth equal to the transmitter occupied bandwidth. The system does not perform any interference avoidance algorithms.

The PET Repeater or transmitter is often presented with a continuous stream of data. The data or information is in the form short received RF transmission burst generated by submetering end point devices or PET modules that are connected to water meters. The PET Repeater accumulates the PET transmissions from up to 1000 devices, stores only the most recent information, reformats the information into larger packets and transmits this information at the repeaters' allotted time slot and pseudo-randomly selected frequency. The Repeaters transmission rate or channels selection process does not change when presented with continuous data from that process preformed when non-continuous data is presented to it. Since only the most recent information is stored for transmission, intermediate information from the continuous stream is overwritten. However, information between received transmissions is differentially computed at the head-end system providing sufficient resolution of the continuous stream of data to provide accurate information for the submetering application.

When the PET Repeater or transmitter is presented with a continuous stream of data or information the transmitter transmits only 1) in it's allotted time slot: 2) on its pseudo-randomly selected channel: 3) and for its preset transmission duration (less than 400 milliseconds).

14. Coordination of Frequency Hopping

14.1 Regulation

15.247(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

14.2 Result

The PET Repeater and the associated PETRC receiver utilize a time slot based system to coordinate transmission and reception of data communications messages. The system utilizes the same timing and pseudo-random channel selection process whether in a stand-alone operation or within the coverage range of another FHSS systems. When collision between FHSS system the PETNET system continues to operate in a predefined manner by retransmission of the corrupted message at it next scheduled transmission time at next pseudo-randomly selected channel.

15. Miscellaneous Comments and Notes

1. None.