CERTIFICATION
 INTENTIONAL RADIATOR
 UNDER 47 CFR, PART 15.247
 ITRON, INC.

FCC ID: EO9PET

October 25, 1999

Prepared By:

Spectrum Technology, Inc.
209 Dayton Street
Edmonds, WA 98020

CERTIFICATION

TABLE OF CONTENTS

Field Strength of Radiated Emissions Setup and Discussion 1-2
Tabular Field Strength Results Under Part 15.247 3
Duty Cycle, Data Stream Discussion and 4
Plot of Transmitter on Time
Occupied Bandwidth 5
Antenna Factors and Sample Calculations 6-9
Test Equipment List 10

TEST: FIELD STRENGTH OF RADIATED EMISSIONS

Grantee: Itron, Inc.
FCC ID: EO9PET

Setup:

The equipment under test (EUT) was configured and operated in accordance with the applicable provisions of ANSI C63.4-1992, Section 6, 13. Measurements were made in accordance with applicable paragraphs of Section 8.2.3, 8.2.4, Section 13.1.1, 13.1.4 Appendix D, and I.

The EUT was placed on a 1 by 1.5 meter table located 40 cm above a 2 meter diameter non-metallic turntable that sits 40 cm above the 15×30-meter ground plane at Spectrum's Open Area Test Site. The bi-conical or log-periodic antenna was mounted on a tower spaced at a three meters distance, and arranged for adjustment in height (1-4 meters) and vertical/horizontal polarization to maximize the emissions levels when combined with turntable rotation of the EUT. The dual ridged guide antenna was mounted on a tripod at one-meter height and adjusted for vertical or horizontal antenna orientation. An HP 8562A spectrum analyzer with an HP 8447F, Option H64 amplifier and an HP 83006A preamplifier were used for the measuring instrumentation.

Discussion:

No modifications were required prior to the final radiated emissions measurements reported herein. Measurements were made from 30 to 5000 MHz .

The EUT is an Intentional Radiator operating under Part 15.237 (a)(1) manufactured by Itron, Inc. The Model: PET is a utility meter monitoring system that operates on one of 25 channels between $902-928 \mathrm{MHz}$. A companion 25 channel frequency hopping receiver designed with receiver inputs bandwidths that match the transmitter bandwidth. The PET utility monitoring system would be installed on a utility meter and used to transmit utility usage data to the PETRC Unit which can forward data via modem to a main computer and display usage data and status.

The EUT would normally be installed on the side of a meter or the side wall of a house so the EUT was taped to a vertical nonconductive test fixture to hold it in a location representative of typical installation location. The EUT was carefully centered on the table to maintain a 3-meter EUT to receive antenna distance during rotation.

The transmitter normally operates on for approximately 41 ms of every 10 minutes, which would be very difficult to measure. To resolve this problem and allow adequate span and capture the peak level within the constrains of the RBW and sweep speeds available
the following was arranged. A companion PETRC system receiver was set up and used in combination with a TEK 2432 Storage Scope to trigger the spectrum analyzer sweep every time the transmitter hopped channels. The receiver knowing from the hop tables sequence and which channel the transmitter will be on next. The transmitter was jumpered allow almost continuous repetitive transmission at its maximum date rate to avoid the 10 minute delay. This made it possible to firstly, catch the signal then, maximize the emission level when the turntable was rotated and antenna height and polarization adjusted.

Measurements were made with the transmitter operating over it's range of frequencies. The unit hops 25 channels over the band so we covered the low mid and high and as well as the other 22 channels.

Preliminary measurements were made as described in Section 8.3.11 and 13.1.4.1 with the EUT operating as described.

The final set of measurements as specified in Section 8.3.1.2 and 13.1.4.2 were made as specified in Section 13.1.1. The transmitter was observed stand-alone positioned as recommended by the manufacturer on the turntable three meters from the receive antenna. We rotated the turntable and varied antenna height and polarization endeavoring to maximize the signal being measured. The EUT was powered with a fresh battery during all the measurements. RBW and VBW of 100 kHz were used for measurements below 1 GHz . Above 1 GHz peak measurements were made with a RBW and VBW of 1 MHz .

All of the harmonics were measurable at 3 meters during the final detailed radiated emissions measurements. An HP pre-amplifier and a band pass filter were used to attenuated the 900 MHz signal to insure no overloading of the front end of the spectrum analyzer would occur when amplifying the input to look for the harmonics.

The EUT has a permanent or fixed antenna.

FCC Part 15.247 Field Strength of Radiated Spurious Emissions

Grantee: Itron, Inc.
09/28/99
FCC ID: EO9PET

Worst case field strength reported having measured all 25 channels

FREQ MHz	VERT	HORZ	ANT-F	CABLE LOSS	AMP GAIN	$\mathrm{dBuV} / \mathrm{m}$	uV / m

915							
1830	63.66	66.33	25.7	1.22	24.8	68.45	2645.45
2745	47.63	51.33	29.93	1.53	21.6	61.19	1146.83
3660	44.87	43.99	31.01	1.67	21.4	56.15	641.9
4575	47.34	48.87	31.98	1.92	23.1	59.67	962.72

Page 2

Conversion From Peak to Averaged Reading with 41 \% Duty Cycle

In accordance with Section 15.35(c) when the radiated emissions limits are expressed in terms of the average value of the emission [as in Section 15.231(b)(2)], and pulsed operation is employed, the field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 -second interval during which its field strength is at its maximum value

ANSI C63.4-1992 Appendix I4 (10) also describes a method which we used to correct for duty cycle when average detector function limits are specified for a pulse-modulated transmitter, the average level of emissions may be found by measuring the peak level of emissions and correcting them with duty cycle.

When the pulse train exceeds 100 ms calculate the duty cycle by averaging the sum of the pulse widths with the highest average over the 100 ms width with the highest average value. The duty cycle is the value of the sum of the pulse widths in one period (or 100 ms) divided by the length of the period (or 100 ms).

We multiplied the peak detector field strength in $u \mathrm{~V} / \mathrm{m}$ of the emission from the transmitter using pulsed modulation by the duty cycle calculated to determine the average detector field strength of the emission for comparison to the average detector limit in Part 15.231.

Sum of the pulse widths with highest average value / 100ms = Duty Cycle
Max high time 41ms per typical data transmission duration
$41 / 100 \mathrm{~ms}=41 \%$

Freq.	Peak uV/m	Averaged uV/m	Limit $500 \mathrm{uV} / \mathrm{m}$

1830	2645.45	1084.63	20 dBc complies
2745^{*}	1146.83	469.86	469.86 complies
3660^{*}	962.72	394.71	263.18 complies
4575^{*}	807.23	330.96	394.71 complies

Conclusion:

The Itron, Inc., FCC ID: EO9PET, when operated and measured as discussed above, meets the field strength of fundamental and spurious emissions requirements under Title 47, CFR Part 15.247. This device has shown compliance with the current rules and is not subject to the transition provisions of Part 15.37.

Page 3

Duty Cycle, Data Stream Discussion and Plot of Transmitter On Time

The PET module transmits once every 10 minutes on one of 25 channels that are pseudo-randomly selected. The 164-bit message contains 8 bits of preamble, 32 bits of PET module identification number information, 32 bits of consumption information, 8 bits of PET module type information, 8 bits of tamper information and 32 bits of cyclic redundancy check information. This information is transmitted at a rate of 16.384 kilobits per second. The transmission duration is less than 50 milliseconds, which is made up of approximately 10 milliseconds of unmodulated carrier followed by 20 milliseconds of modulated data. Figure 1 depicts a spectrum analyzer's output view of a typical PET module's transmission where the x-axis depicts time and the y-axis depicts power. The full transmission time is 41 ms ; however full power transmission is 30 ms . The plot below shows the power up on and off sequence.

Figure 1

Output Power

An SMA connector was attached appropriately to the RF output instead of the soldered on antenna and a output level of 16 dBm as measured. Well below the . 25 Watt limit or 24 dBm .

Occupied Bandwidth Plots of the Low and High groups of hopping channels recorded over lengthy period of time in two groups for span detail.

ANTENNA FACTORS FOR EMCO 3104 BICONICAL ANTENNA AND EMCO 3146 LOG PERIODIC ANTENNA INCLUDING CONVERSION TO OPEN CIRCUIT VOLTAGE.

Antenna Factor and Field Strength Formula

IF FREQ $=>242.5$	AND	FREQ $=<245$	THEN ANTF $=15.1$
IF FREQ $=>245$	AND	FREQ $=<247.5$	THEN ANTF $=15.5$
IF FREQ $=>247.5$	AND	FREQ $=<250$	THEN ANTF $=15.7$
IF FREQ $=>250$	AND	FREQ $=<252$	THEN ANTF $=15.9$
IF FREQ $=>252$	AND	FREQ $=<254$	THEN ANTF $=16$
IF FREQ $=>254$	AND	FREQ $=<256$	THEN ANTF $=16.1$
IF FREQ $=>256$	AND	FREQ $=<258$	THEN ANTF $=16.2$
IF FREQ $=>258$	AND	FREQ $=<260$	THEN ANTF $=16.3$
IF FREQ $=>260$	AND	FREQ $=<263.5$	THEN ANTF $=16.4$
IF FREQ $=>263.5$	AND	FREQ $=<265$	THEN ANTF $=16.4$
IF FREQ => 265	AND	FREQ $=<267.5$	THEN ANTF $=16.6$
IF FREQ $=>267.5$	AND	FREQ $=<271$	THEN ANTF $=16.7$
IF FREQ $=>271$	AND	FREQ $=<274$	THEN ANTF $=16.8$
IF FREQ $=>274$	AND	FREQ $=<276$	THEN ANTF $=16.9$
IF FREQ $=>276$	AND	FREQ $=<278$	THEN ANTF $=17$
IF FREQ $=>278$	AND	FREQ $=<280$	THEN ANTF $=17.1$
IF FREQ $=>280$	AND	FREQ $=<282$	THEN ANTF $=17.3$
IF FREQ $=>282$	AND	FREQ $=<284$	THEN ANTF $=17.6$
IF FREQ $=>284$	AND	FREQ $=<286$	THEN ANTF $=18$
IF FREQ $=>286$	AND	FREQ $=<288$	THEN ANTF $=18.2$
IF FREQ $=>288$	AND	FREQ $=<295$	THEN ANTF $=18.4$
IF FREQ $=>290$	AND	FREQ $=<295$	THEN ANTF $=15.8$
IF FREQ => 295	AND	FREQ $=<305$	THEN ANTF $=18.6$
IF FREQ => 305	AND	FREQ $=<310$	THEN ANTF $=18.4$
IF FREQ $=>310$	AND	FREQ $=<311$	THEN ANTF $=18.3$
IF FREQ $=>311$	AND	FREQ $=<312$	THEN ANTF $=18.1$
IF FREQ $=>312$	AND	FREQ $=<313$	THEN ANTF $=18$
IF FREQ $=>313$	AND	FREQ $=<340$	THEN ANTF $=17.9$
IF FREQ $=>340$	AND	FREQ $=<343$	THEN ANTF $=18.1$
IF FREQ $=>343$	AND	FREQ $=<350$	THEN ANTF $=18.2$
IF FREQ $=>350$	AND	FREQ $=<357$	THEN ANTF $=18.3$
IF FREQ => 357	AND	FREQ $=<360$	THEN ANTF $=18.5$
IF FREQ $=>360$	AND	FREQ $=<365$	THEN ANTF $=18.6$
IF FREQ $=>365$	AND	FREQ $=<375$	THEN ANTF $=18.7$
IF FREQ $=>375$	AND	FREQ $=<378$	THEN ANTF $=19$
IF FREQ $=>378$	AND	FREQ $=<381$	THEN ANTF $=19.1$
IF FREQ $=>381$	AND	FREQ $=<383$	THEN ANTF $=19.2$
IF FREQ $=>383$	AND	FREQ $=<385$	THEN ANTF $=19.3$
IF FREQ => 385	AND	FREQ $=<387.5$	THEN ANTF $=19.4$
IF FREQ $=>387.5$	AND	FREQ $=<390$	THEN ANTF $=19.5$
IF FREQ $=>390$	AND	FREQ $=<392$	THEN ANTF $=19.7$
IF FREQ => 392	AND	FREQ $=<394$	THEN ANTF $=18.8$
IF FREQ => 394	AND	FREQ $=<396$	THEN ANTF $=19.9$
IF FREQ $=>396$	AND	FREQ $=<398$	THEN ANTF $=20$
IF FREQ $=>398$	AND	FREQ $=<402$	THEN ANTF $=20.1$
IF FREQ $=>402$	AND	FREQ $=<405$	THEN ANTF $=20.2$
IF FREQ $=>405$	AND	FREQ $=<410$	THEN ANTF $=20.3$
IF FREQ $=>410$	AND	FREQ $=<415$	THEN ANTF $=20.4$
IF FREQ $=>415$	AND	FREQ $=<420$	THEN ANTF $=20.6$
IF FREQ $=>420$	AND	FREQ $=<425$	THEN ANTF $=20.8$
IF FREQ $=>425$	AND	FREQ $=<430$	THEN ANTF $=21$
IF FREQ $=>430$	AND	FREQ $=<435$	THEN ANTF $=21.2$
IF FREQ $=>435$	AND	FREQ $=<440$	THEN ANTF $=21.3$
IF FREQ $=>440$	AND	FREQ $=<445$	THEN ANTF $=21.4$
IF FREQ $=>445$	AND	FREQ $=<450$	THEN ANTF $=21.5$
IF FREQ $=>450$	AND	FREQ $=<455$	THEN ANTF $=21.6$
IF FREQ $=>455$	AND	FREQ $=<460$	THEN ANTF $=21.8$
IF FREQ $=>460$	AND	FREQ $=<465$	THEN ANTF $=21.9$
IF FREQ $=>465$	AND	FREQ $=<470$	THEN ANTF $=22$
IF FREQ $=>470$	AND	FREQ $=<472.5$	THEN ANTF $=22.1$
IF FREQ $=>472.5$	AND	FREQ $=<475$	THEN ANTF $=22.2$
IF FREQ $=>475$	AND	FREQ $=<477$	THEN ANTF $=22.4$
IF FREQ $=>477$	AND	FREQ $=<478$	THEN ANTF $=22.5$
IF FREQ $=>478$	AND	FREQ $=<481$	THEN ANTF $=22.6$

IF FREQ $=>481$	AND	FREQ $=<482.5$	THEN ANTF $=22.7$
IF FREQ $=>482.5$	AND	FREQ $=<485$	THEN ANTF $=22.8$
IF FREQ $=>485$	AND	FREQ $=<488$	THEN ANTF $=22.9$
IF FREQ $=>488$	AND	FREQ $=<515$	THEN ANTF $=23.1$
IF FREQ $=>515$	AND	FREQ $=<540$	THEN ANTF $=23.3$
IF FREQ $=>540$	AND	FREQ $=<560$	THEN ANTF $=23.6$
IF FREQ $=>560$	AND	FREQ $=<570$	THEN ANTF $=23.7$
IF FREQ $=>570$	AND	FREQ $=<580$	THEN ANTF $=23.9$
IF FREQ $=>580$	AND	FREQ $=<590$	THEN ANTF $=24$
IF FREQ $=>590$	AND	FREQ $=<610$	THEN ANTF $=24.2$
IF FREQ $=>610$	AND	FREQ $=<615$	THEN ANTF $=24.4$
IF FREQ $=>615$	AND	FREQ $=<620$	THEN ANTF $=24.5$
IF FREQ => 620	AND	FREQ $=<625$	THEN ANTF $=24.6$
IF FREQ $=>625$	AND	FREQ $=<630$	THEN ANTF $=24.8$
IF FREQ => 630	AND	FREQ $=<635$	THEN ANTF $=24.9$
IF FREQ $=>635$	AND	FREQ $=<640$	THEN ANTF $=25$
IF FREQ $=>640$	AND	FREQ $=<645$	THEN ANTF $=25.1$
IF FREQ $=>645$	AND	FREQ $=<647.5$	THEN ANTF $=25.3$
IF FREQ $=>647.5$	AND	FREQ $=<650$	THEN ANTF $=25.4$
IF FREQ $=>650$	AND	FREQ $=<652.5$	THEN ANTF $=25.6$
IF FREQ $=>652.5$	AND	FREQ $=<655$	THEN ANTF $=25.7$
IF FREQ => 655	AND	FREQ $=<660$	THEN ANTF $=25.8$
IF FREQ $=>660$	AND	FREQ $=<665$	THEN ANTF $=26.1$
IF FREQ $=>665$	AND	FREQ $=<670$	THEN ANTF $=26.3$
IF FREQ $=>670$	AND	FREQ $=<680$	THEN ANTF $=26.6$
IF FREQ $=>680$	AND	FREQ $=<690$	THEN ANTF $=26.7$
IF FREQ $=>690$	AND	FREQ $=<720$	THEN ANTF $=26.9$
IF FREQ $=>720$	AND	FREQ $=<760$	THEN ANTF $=26.8$
IF FREQ $=>760$	AND	FREQ $=<800$	THEN ANTF $=27$
IF FREQ $=>800$	AND	FREQ $=<802.5$	THEN ANTF $=27.3$
IF FREQ $=>802.5$	AND	FREQ $=<805$	THEN ANTF $=27.5$
IF FREQ $=>805$	AND	FREQ $=<807.5$	THEN ANTF $=27.6$
IF FREQ $=>807.5$	AND	FREQ $=<810$	THEN ANTF $=27.7$
IF FREQ $=>810$	AND	FREQ $=<815$	THEN ANTF $=27.8$
IF FREQ $=>815$	AND	FREQ $=<820$	THEN ANTF $=27.9$
IF FREQ $=>820$	AND	FREQ $=<840$	THEN ANTF $=28.2$
IF FREQ $=>840$	AND	FREQ $=<860$	THEN ANTF $=28.4$
IF FREQ $=>860$	AND	FREQ $=<870$	THEN ANTF $=28.8$
IF FREQ $=>870$	AND	FREQ $=<880$	THEN ANTF $=29.3$
IF FREQ $=>880$	AND	FREQ $=<890$	THEN ANTF $=29.4$
IF FREQ $=>890$	AND	FREQ $=<910$	THEN ANTF $=29.6$
IF FREQ => 910	AND	FREQ $=<920$	THEN ANTF $=29.7$
IF FREQ $=>920$	AND	FREQ $=<930$	THEN ANTF $=29.9$
IF FREQ => 930	AND	FREQ $=<940$	THEN ANTF $=30$
IF FREQ $=>940$	AND	FREQ $=<960$	THEN ANTF $=30.2$
IF FREQ $=>960$	AND	FREQ $=<970$	THEN ANTF $=30.6$
IF FREQ $=>970$	AND	FREQ $=<975$	THEN ANTF $=30.8$
IF FREQ => 975	AND	FREQ $=<980$	THEN ANTF $=31$
IF FREQ $=>980$	AND	FREQ $=<985$	THEN ANTF $=31.1$
IF FREQ $=>985$	AND	FREQ $=<990$	THEN ANTF $=31.3$
IF FREQ => 990	AND	FREQ $=<1000$	THEN ANTF $=31.4$

Page 8
\(\left.$$
\begin{array}{lcl}\begin{array}{l}\text { Serial } \\
\text { Number } \\
6225\end{array} & \begin{array}{c}\text { ELECTO-METRICS } \\
\text { GAIN AND ANTENNA FACTORS } \\
\text { MODEL RGA-60 }\end{array} & \begin{array}{c}1 \\
\text { METER }\end{array}
$$

\& \& CALIBRATION\end{array}\right]\)| |
| :--- |
| FREQUENCY |
| MHz |

TEST EQUIPMENT LIST A SPECTRUM TECHNOLOGY, INC.

Equipment	Manufacturer	Seria	Number	Cal Dat	/Due Date
Spectrum Analyzer	Hewlett-Packard 8562A 08562-60062			11/04/98	11/04/99
Amplifier $9 \mathrm{kHz}-1300 \mathrm{MHz}$	Hewlett-Packard 8447F 2727A02208 OPT H64			11/04/98	11/04/99
RF Signal Gen.	Fluke 6071A	2915016		5/14/99	4/14/00
Service Monitor	IFR FM/AM 500A	4103		---	
Oscilloscope	Kikusui C055060	6132295		---	
Power Supply	Astron VS35	8601266		---	
Voltmeter	Fluke 8020A	N2420658		---	
Multimeter	Fluke 25	3710310		---	
Wattmeter	Bird 43	56227		---	
RF Termination	Bird 8135	10004		---	
Dual Phase LISN 50 ohm/50 uH	STI per MP-4	02		1/8/99	1/9/00
Dual Phase LISN $50 \mathrm{ohm} / 50 \mathrm{uH}$	Compliance Design	8012-50R-24-BNC		1/8/99	1/9/00
Audio Generator	Hewlett-Packard 205-AG		8689	---	
Thermometer	Fluke 52		3965185	---	
Test Line	Simulator, Teltone TLS-2		none	---	
Turn Table, RC	EMCO 1060-2M		8912-1415	---	
Antenna Mast, RC	Compliance Design, Inc.		M100	---	
Antennas:					
Dipole Set	EMCO Model: 3121C		1335	reference only	
Dipole Set	EMCO Model: 3121C		1336	reference only	
Bi-Conical	EMCO 3104		3763	reference only	
Bi-Conical	EMCO 3104C		9401-4635	1/24/99	1/24/00
Log-Periodic	EMCO 3146		1754	6/10/99	6/10/00
BiConiLog	EMCO 3141		1125	0/10/98	04/28/00
Active Loop	EMCO 6502		9107-2645	reference only	

