Itron, Inc

TEST REPORT FOR

IRM-STAR
Model: OW3

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(FHSS 902-928MHz)

Report No.: 108561-2

Date of issue: November 20, 2023

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.01

TABLE OF CONTENTS

Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results5
Modifications During Testing5
Conditions During Testing5
Equipment Under Test 6
General Product Information 9
FCC Part 15 Subpart C 14
15.247(b)(2) Output Power 14
15.247(d) Radiated Emissions \& Band Edge 23
15.207 AC Conducted Emissions 78
Supplemental Information 90
Measurement Uncertainty 90
Emissions Test Details. 90

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jack McPeck
Customer Reference Number: 283655

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Viviana Prado
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 108561

September 8, 2023
September 8, 11, 13, and 19, 2023
and October 13, 2023

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive SE, Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .20

Site Registration \& Accreditation Information

Location	${ }^{\text {}}$ NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	$3082 A$	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	NP
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	NP
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable
NP = CKC Laboratories was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EXT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	tron, Inc.	OW3	354233798

Support Equipment:

Device	Manufacturer	Model \#	S/N
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna		ANT-5G-MP-OUT-N	NA
Integrated Multi-purpose Cisco Latitude E6430 NA Antenna Dell ANT-5G-MP-OUT-N NA Laptop Cisco IR8140H NA Integrated Multi-purpose Antenna Cisco Router Host \mathbf{l}			

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	Itron, Inc.	OW3	354233798

Support Equipment:

Device	Manufacturer	Model \#	S/N
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna		ANT-5G-MP-OUT-N	NA
Integrated Multi-purpose Antenna	Cisco	Latitude E6430	NA
Laptop	Dell	BOA9025NM-ITR	NA
Antenna (5.5 dBi remote PCTEL NA ISM) Cisco IR8140H \mathbf{l}			

Configuration 3
Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	Itron, Inc.	OW3	354233798

Support Equipment:

Device	Manufacturer	Model \#	S/N
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Laptop	Dell	Latitude E6430	NA
Antenna (8.15 dBi remote ISM)	PCTEL	BOA9028	NA
1dB Attenuator (Qty: 2)	Mini-Circuits	15542 UNAT-1+	NA
Surge Protector	Times Microwave Systems	LP-BTRW-NMP	NA
Router Host	Cisco	IR8140H	NA

Configuration 4

Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	Itron, Inc.	OW3	354233798
Support Equipment:			
Device	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude E6430	NA
Router Host	Cisco	IR8140H	NA

Configuration 5

Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	Itron, Inc.	OW3	354233791

Support Equipment:

Device	Manufacturer	Model \#	S/N
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Laptop	Dell	Latitude E6430	NA
Integrated Multi-purpose Cisco ANT-5G-MP-OUT-N NA Antenna Cisco IR8140H NA Router Host \mathbf{l}			

Configuration 6

Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	Itron, Inc.	OW3	354233791

Support Equipment:

Device	Manufacturer	Model \#	S/N
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Laptop	Dell	Latitude E6430	NA
Antenna (5.5 dBi remote ISM)	PCTEL	BOA9025NM-ITR	NA
Router Host	Cisco	IR8140H	NA

Configuration 7

Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	Itron, Inc.	OW3	354233791

Support Equipment:

Device	Manufacturer	Model \#	S/N
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Laptop	Dell	Latitude E6430	NA
Antenna (8.15 dBi remote PCTEL BOA9028 NA ISM) Cisco IR8140H NA Router Host \mathbf{l}			

Configuration 8

Equipment Tested:

Device	Manufacturer	Model \#	S/N
IRM-STAR	Itron, Inc.	OW3	354233802
Support Equipment:			
Device	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude E6430	NA
12V Power Supply	Cisco	IR8140 Power Module	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Limited Modular, CISCO IR8140H Host
Type of Wideband System:	Proprietary FHSS
Operating Frequency Range:	$902.20-927.75 \mathrm{MHz}$
Number of Hopping Channels:	512
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	10k and 25k GFSK
Maximum Duty Cycle:	Tested 100\% as worst case
Number of TX Chains:	1
Antenna Type(s) and Gain:	$1 \times$ external attached 2.0 dBi 1 x external remote 5.5 dBi 1 x external remote 8.15 dBi (requires 3 dB of cable loss/attenuators to be attached per manufacturer)
Beamforming Type:	N/A
Antenna Connection Type:	External Connector
Nominal Input Voltage:	$115 \mathrm{VAC}, 60 \mathrm{~Hz}$
Firmware / Software used for Test:	CAM3 FCC Test Helper v1 Putty Release 0.78 Firmware 5.3.194
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.	

EUT Photo(s)

Support Equipment Photo(s)

Antenna Configuration 1 and Cellular

Antenna Configuration 2

Antenna Configuration 3

Laptop

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(b)(2) Output Power

Test Data Summary - Voltage Variations					
Frequency $(\mathbf{M H z})$	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Maximum }}$ $(\mathbf{d B m})$	Max Deviation from $\mathbf{V}_{\text {Nominal }}(\mathbf{d B})$
902.2	10 kHz FSK	25.4	25.4	25.4	0.0
915.0	10 kHz FSK	26.0	26.0	26.0	0.0
927.75	10 kHz FSK	24.5	24.5	24.5	0.0
902.2	25 kHz FSK	25.3	25.3	25.3	0.0
915.0	25 kHz FSK	25.9	25.9	25.9	0.0
927.75	25 kHz FSK	24.5	24.5	24.5	0.0

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
$\mathrm{V}_{\text {Nominal }}:$	$132.25 \mathrm{~V} / 60 \mathrm{~Hz}$
$\mathrm{~V}_{\text {Minimum }}:$	$115 \mathrm{~V} / 60 \mathrm{~Hz}$
$\mathrm{~V}_{\text {Maximum: }}:$	$97.75 \mathrm{~V} / 60 \mathrm{~Hz}$

Test Data Summary - RF Conducted Measurement
Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels (min 25) }\end{array}\right.$

$\begin{gathered} \text { Frequency } \\ \text { (MHz) } \\ \hline \end{gathered}$	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
902.2	10kHz FSK	Multi-purpose 2 dBi , Omni 5.5 dBi and Remote ISM 8.15 dBi with >2.15 cable loss.	25.4	≤ 30	Pass
915.0	10kHz FSK	Multi-purpose $2 \mathrm{dBi}, 0 \mathrm{mni} 5.5 \mathrm{dBi}$ and Remote ISM 8.15 dBi with >2.15 cable loss.	26.0	≤ 30	Pass
927.75	10kHz FSK	Multi-purpose 2 dBi , Omni 5.5 dBi and Remote ISM 8.15 dBi with >2.15 cable loss.	24.5	≤ 30	Pass
902.2	25kHz FSK	Multi-purpose $2 \mathrm{dBi}, \mathrm{Omni} 5.5 \mathrm{dBi}$ and Remote ISM 8.15 dBi with >2.15 cable loss.	25.3	≤ 30	Pass
915.0	25 kHz FSK	Multi-purpose $2 \mathrm{dBi}, O m n i 5.5 \mathrm{dBi}$ and Remote ISM 8.15 dBi with >2.15 cable loss.	25.9	≤ 30	Pass
927.75	25 kHz FSK	Multi-purpose $2 \mathrm{dBi}, \mathrm{Omni} 5.5 \mathrm{dBi}$ and Remote ISM 8.15 dBi with >2.15 cable loss.	24.5	≤ 30	Pass

Plots

10kHz FSK

Low Channel

Middle Channel

High Channel

25kHz FSK

Low Channel

Middle Channel

Page 17 of 91

High Channel

Test Setup / Conditions / Data

Test Location:
Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(b) Power Output (902-928 MHz DTS)

108561
Conducted Emissions
Steven Pittsford
EMITest 5.03.20

Date: 9/13/2023
Time: 07:59:30
Sequence\#: 21
230 V 50 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 4		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 47%
Pressure: 101.5 kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: $902.2,915 \mathrm{MHz}$, and 927.75 MHz
Test Setup:
Transmitting continuously with modulation at $902.20 \mathrm{MHz}, 915.00 \mathrm{MHz}$, and 927.75 MHz .10 k and 25 k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N, PCTEL p/n BOA9025NM-ITR, or PCTEL p/n BOA9028 antenna attached. Worst case reported.
EUT Connected to support laptop via shielded Ethernet cable.
Vertical and horizontal antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

No change during voltage variations.
tron. Inc. WO\#: 108561 Sequence\#: 21 Date: 9/13/2023
15.247 (b) Power Output (902-928 MHz DTS) Test Lead: 230 V 50 Hz Ant

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	$768-10$	$3 / 23 / 2022$	$3 / 23 / 2024$
T2	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
T3	ANP06515	Cable	Heliax	$3 / 1 / 2023$	$3 / 1 / 2025$

Measurement Data: \quad Reading listed by margin. \quad Test Lead: Ant

Test Setup Photo(s)

LABORATORIES, INC.

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021• (425) 402-1717

Customer:
Specification:
Work Order \#:
Test Type
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

108561 Date: 9/11/2023
Maximized Emissions Time: 6:31:38 AM
Steven Pittsford
EMITest 5.03.20

Sequence\#: 20

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1, 2, \& 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1, 2, \& 3		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 47%
Pressure: 101.5 kPa

Test Method: ANSI C63.10 (2013)
Frequency Range: $9 \mathrm{k}-30 \mathrm{MHz}$
Test Setup:
Transmitting continuously with modulation at $902.20 \mathrm{MHz}, 915.00 \mathrm{MHz}$, and 927.75 MHz .10 k and 25 k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N, PCTEL p/n BOA9025NM-ITR, or PCTEL p/n BOA9028 antenna attached. Worst case reported.
EUT Connected to support laptop via shielded Ethernet cable.
Perpendicular, parallel, and ground parallel antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Itron, Inc. WO\#: 108561 Sequence\#: 20 Date: 9/11/2023
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp, Para \& Ground Para

—— Readings
\times QP Readings
\times Ambient
$\quad 1-15.247$ (d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$
T1	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
T2	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T3	ANP06515	Cable	Heliax	$3 / 1 / 2023$	$3 / 1 / 2025$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	505.000k	40.0	+0.0	+9.3	+0.0		-40.0	9.3	33.5	-24.2	Perp,
2	495.800k	39.2	+0.0	+9.3	+0.0		-40.0	8.5	33.7	-25.2	Perp,
3	2.180M	22.7	+0.0	+9.2	+0.1		-40.0	-8.0	29.5	-37.5	Perp,
4	25.522 M	23.3	+0.1	+5.7	+0.3		-40.0	-10.6	29.5	-40.1	Perp,
5	13.369M	16.1	+0.1	+8.6	+0.2		-40.0	-15.0	29.5	-44.5	Perp,
6	4.126M	14.5	+0.1	+8.9	+0.1		-40.0	-16.4	29.5	-45.9	Perp,
7	6.216M	13.1	+0.1	+8.9	+0.1		-40.0	-17.8	29.5	-47.3	Perp,
8	8.378M	9.5	+0.1	+8.9	+0.1		-40.0	-21.4	29.5	-50.9	Perp,
9	8.414M	7.7	+0.1	+9.0	+0.1		-40.0	-23.1	29.5	-52.6	Perp,
10	94.927 k	36.8	+0.0	+9.4	+0.0		-80.0	-33.8	28.0	-61.8	Perp,
11	92.168k	35.4	+0.0	+9.5	+0.0		-80.0	-35.1	28.3	-63.4	Perp,
12	104.963k	33.8	+0.0	+9.4	+0.0		-80.0	-36.8	27.2	-64.0	Perp,
13	106.217k	33.5	+0.0	+9.4	+0.0		-80.0	-37.1	27.1	-64.2	Perp,
14	108.224k	32.6	+0.0	+9.4	+0.0		-80.0	-38.0	26.9	-64.9	Perp,
15	100.070k	33.0	+0.0	+9.4	+0.0		-80.0	-37.6	27.6	-65.2	Perp,

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

108561 Date: 9/11/2023
Maximized Emissions
Steven Pittsford
EMITest 5.03.20

Time: 11:58:47
Sequence\#: 21

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1, 2, \& 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1, $2, \& 3$		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 47\%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: $30 \mathrm{MHz}-9.28 \mathrm{GHz}$
Test Setup:
Transmitting continuously with modulation at $902.20 \mathrm{MHz}, 915.00 \mathrm{MHz}$, and 927.75 MHz .10 k and 25 k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N, PCTEL p/n BOA9025NM-ITR, or PCTEL p/n BOA9028 antenna attached. Worst case reported.
EUT Connected to support laptop via shielded Ethernet cable.
Vertical and horizontal antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

```
Itron, Inc. WO#: 108561 Sequence#: 21 Date: 9/11/2023
```

15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz


```
-_Readings
\(\times\) QP Readings
- Ambient
1-15.247(d) / 15.209 Radiated Spurious Emissions
```

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$
T2	AN03824	Biconilog Antenna	3142E	$5 / 9 / 2023$	$5 / 9 / 2025$
T3	ANP05360	Cable	RG214	$8 / 8 / 2023$	$8 / 8 / 2025$
T4	ANP05333	Cable	Heliax	$8 / 8 / 2023$	$8 / 8 / 2025$
T5	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
T6	ANP06515	Cable	Heliax	$3 / 1 / 2023$	$3 / 1 / 2025$
T7	AN03170	High Pass Filter	HM1155-11SS	$9 / 16 / 2021$	$9 / 16 / 2023$
T8	AN03540	Preamp	83017A	$3 / 24 / 2023$	$3 / 24 / 2025$
T9	AN02374ANSI	Horn Antenna	RGA-60	$5 / 26 / 2023$	$5 / 26 / 2025$
T10	ANP07504	Cable	CLU40-KMKM-	$1 / 24 / 2023$	$1 / 24 / 2025$
			$02.00 F$		

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~T} 7 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 610.826 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	9.3	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	+0.0	40.5	46.0	-5.5	$\begin{array}{r} \hline \text { Vert } \\ 129 \end{array}$
$\wedge 610.826 \mathrm{M}$	15.9	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	+0.0	47.1	46.0	+1.1	$\begin{array}{r} \hline \text { Vert } \\ 129 \end{array}$
3 5413.200M	37.6	$\begin{array}{r} +0.0 \\ +1.7 \\ +34.4 \end{array}$	$\begin{array}{r} +0.0 \\ +4.9 \\ +1.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \end{array}$	+0.0	46.2	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-7.8	$\begin{array}{r} \hline \text { Vert } \\ 160 \end{array}$
$\begin{aligned} & 4 \quad 964.260 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	9.4	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +31.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +2.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	+0.0	45.3	54.0	-8.7	$\begin{array}{r} \hline \text { Vert } \\ 400 \end{array}$
$\wedge 964.260 \mathrm{M}$	15.4	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	+0.0	51.3	54.0	-2.7	$\begin{gathered} \hline \text { Vert } \\ 129 \end{gathered}$
63662.060 M	41.4	$\begin{array}{r} +0.0 \\ +1.4 \\ +31.4 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.7 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.0 \end{array}$	$+0.0$	45.0	$\begin{aligned} & \text { Mid } \\ & \text { M4.0 } \end{aligned}$	-9.0	$\begin{array}{r} \hline \text { Vert } \\ 145 \end{array}$
7 4636.380M	38.9	$\begin{array}{r} +0.0 \\ +1.3 \\ +32.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.2 \\ & +1.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{gathered} +0.0 \\ -33.8 \end{gathered}$	+0.0	44.8	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-9.2	$\begin{gathered} \hline \text { Vert } \\ 169 \end{gathered}$
$\begin{gathered} 8998.043 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	9.5	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+30.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.6 \\ & +0.0 \end{aligned}$	+0.0	44.7	54.0	-9.3	$\begin{gathered} \text { Horiz } \\ 400 \end{gathered}$
9 4576.970M	38.8	$\begin{array}{r} +0.0 \\ +1.3 \\ +32.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +4.2 \\ & +1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \end{array}$	+0.0	44.5	$\begin{aligned} & \text { Mid } \\ & \text { M4.0 } \end{aligned}$	-9.5	$\begin{array}{r} \text { Vert } \\ 145 \end{array}$
$\begin{gathered} 10 \quad 403.640 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	9.3	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$+0.0$	36.2	46.0	-9.8	$\begin{array}{r} \hline \text { Vert } \\ 103 \end{array}$
$\wedge 403.640 \mathrm{M}$	16.1	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+24.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	+0.0	43.0	46.0	-3.0	$\begin{array}{r} \hline \text { Vert } \\ 129 \end{array}$
12 4511.000M	38.8	$\begin{array}{r} +0.0 \\ +1.2 \\ +32.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +4.2 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \end{array}$	+0.0	44.1	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-9.9	$\begin{gathered} \hline \text { Vert } \\ 160 \end{gathered}$
13 3608.800M	40.0	$\begin{array}{r} +0.0 \\ +1.4 \\ +31.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +3.7 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{gathered} +0.0 \\ -34.0 \end{gathered}$	$+0.0$	43.7	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-10.3	$\begin{gathered} \hline \text { Vert } \\ 160 \end{gathered}$
14 3708.790M	37.8	$\begin{array}{r} +0.0 \\ +1.5 \\ +31.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.6 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{gathered} +0.0 \\ -33.9 \end{gathered}$	$+0.0$	41.6	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-12.4	$\begin{gathered} \hline \text { Vert } \\ 169 \end{gathered}$

Page 28 of 91

$\begin{gathered} 15{ }^{37.664 \mathrm{M}} \\ \mathrm{QP} \end{gathered}$	9.2	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+17.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \end{aligned}$	+0.0	27.6	40.0	-12.4	$\begin{array}{r} \hline \text { Vert } \\ 103 \end{array}$
$\wedge 37.664 \mathrm{M}$	15.8	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +17.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$+0.0$	34.2	40.0	-5.8	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
17 2706.600M	40.6	$\begin{array}{r} +0.0 \\ +1.2 \\ +29.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.5 \end{array}$	+0.0		54.0	-13.7	$\begin{array}{r} \hline \text { Vert } \\ 160 \end{array}$
18 2783.625M	40.4	$\begin{array}{r} +0.0 \\ +1.2 \\ +29.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.5 \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { gh } \end{aligned}$	-13.8	$\begin{array}{r} \hline \text { Vert } \\ 169 \end{array}$
$\begin{aligned} & 19329.449 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	9.2	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+19.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	+0.0	31.2	46.0	-14.8	$\begin{array}{r} \hline \text { Vert } \\ 103 \end{array}$
$\wedge 329.449 \mathrm{M}$	15.5	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+19.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	+0.0	37.5	46.0	-8.5	$\begin{gathered} \hline \text { Vert } \\ 129 \end{gathered}$
21 2747.475M	39.4	$\begin{array}{r} +0.0 \\ +1.2 \\ +29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.5 \end{array}$	+0.0	39.2	$\begin{aligned} & 54.0 \\ & \mathrm{~d} \end{aligned}$	-14.8	$\begin{array}{r} \hline \text { Vert } \\ 145 \end{array}$
$\begin{aligned} & 22 \text { 8119.800M } \\ & \text { Ave } \end{aligned}$	22.2	$\begin{array}{r} +0.0 \\ +2.6 \\ +38.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.7 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.4 \end{array}$	+0.0	35.5	54.0	-18.5	$\begin{array}{r} \hline \text { Vert } \\ 150 \end{array}$
$\wedge 8119.800 \mathrm{M}$	37.4	$\begin{array}{r} +0.0 \\ +2.6 \\ +38.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.7 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.4 \end{array}$	$+0.0$	50.7	$\begin{aligned} & 54.0 \\ & \mathrm{w} \end{aligned}$	-3.3	$\begin{array}{r} \hline \text { Vert } \\ 160 \end{array}$
$\begin{aligned} & 24 \begin{array}{l} 7320.770 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	23.5	$\begin{array}{r} +0.0 \\ +1.9 \\ +37.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +5.3 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \end{array}$	$+0.0$	34.8	54.0	-19.2	$\begin{array}{r} \hline \text { Vert } \\ 139 \end{array}$
$\wedge 7320.770 \mathrm{M}$	38.5	$\begin{array}{r} +0.0 \\ +1.9 \\ +37.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.3 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \end{array}$	$+0.0$	49.8	54.0	-4.2	$\begin{array}{r} \hline \text { Vert } \\ 145 \end{array}$
$\begin{aligned} & 26 \text { 8233.145M } \\ & \text { Ave } \end{aligned}$	22.2	$\begin{array}{r} +0.0 \\ +2.6 \\ +38.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.5 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.4 \end{array}$	$+0.0$	34.8	$\overline{54.0}$	-19.2	$\begin{array}{r} \hline \text { Vert } \\ 139 \end{array}$
$\wedge 8233.145 \mathrm{M}$	37.8	$\begin{array}{r} +0.0 \\ +2.6 \\ +38.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.5 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.4 \end{array}$	$+0.0$	50.4	54.0	-3.6	$\begin{array}{r} \hline \text { Vert } \\ 145 \end{array}$
$\begin{aligned} & 287424.485 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.8	$\begin{array}{r} +0.0 \\ +2.0 \\ +37.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.6 \\ & +1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \end{array}$	$+0.0$	34.6	54.0 h	-19.4	$\begin{array}{r} \hline \text { Vert } \\ 169 \end{array}$
$\wedge 7424.485 \mathrm{M}$	38.0	$\begin{array}{r} +0.0 \\ +2.0 \\ +37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.6 \\ & +1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { gh } \end{aligned}$	-4.2	$\begin{array}{r} \hline \text { Vert } \\ 169 \end{array}$
$\begin{aligned} & 309149.705 \mathrm{M} \\ & \text { Ave } \end{aligned}$	21.1	$\begin{array}{r} +0.0 \\ +2.4 \\ +37.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.9 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \end{array}$	$+0.0$	34.3	54.0	-19.7	Vert 139
$\wedge 9149.705 \mathrm{M}$	36.7	$\begin{array}{r} +0.0 \\ +2.4 \\ +37.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.9 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \end{array}$	$+0.0$	49.9	54.0	-4.1	$\begin{array}{r} \hline \text { Vert } \\ 145 \end{array}$

328347.348 MAve		21.7	+0.0	+0.0	+0.0	${ }^{+0.0}$	+0.0	34.1	54.0	-19.9	$\begin{gathered} \text { Vert } \\ 169 \end{gathered}$	
		$\begin{array}{r} +2.6 \\ +38.3 \end{array}$	$\begin{array}{r} +5.5 \\ +0.4 \\ \hline \end{array}$	+0.9	-35.3			High				
\wedge	(8347.350 M		37.6	+0.0	+0.0	+0.0	+0.0	+0.0	50.0	54.0	-4.0	Vert
			+2.6	+5.5	+0.9	-35.3		High			169	
			+38.3	+0.4								
\wedge	^ 8347.350 M	33.5	+0.0	+0.0	+0.0	+0.0	+0.0	45.9	54.0	-8.1	169	
			+2.6	+5.5	+0.9	-35.3		High				
			+38.3	+0.4								
35	9022.000M	19.9	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	54.0	-20.7	$\begin{gathered} \hline \text { Vert } \\ 150 \end{gathered}$	
	Ave		+2.4	+6.0	+0.7	-34.8		Low		150		
			+37.9	+1.2								
	9022.000M	35.4	+0.0	+0.0	+0.0	+0.0	+0.0	48.8	54.0	-5.2	$\begin{gathered} \hline \text { Vert } \\ 160 \end{gathered}$	
			+2.4	+6.0	+0.7	-34.8		Low				
			+37.9	+1.2								
37	6403.385M	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.1	107.5	-59.4	$\begin{gathered} \hline \text { Vert } \\ 145 \end{gathered}$	
			+2.1	+5.6	+0.5	-34.3			Mid			
			+34.7	+1.0								
38	5488.550M	38.8	+0.0	+0.0	+0.0	$+0.0$	+0.0	47.9	107.5	-59.6	$\begin{gathered} \hline \text { Vert } \\ 145 \end{gathered}$	
			+1.7	+5.1	+0.4	-33.8		Mid				
			+34.4	+1.3								
39	6493.585M	37.5	+0.0	+0.0	+0.0	+0.0	$+0.0$	47.7	107.5	-59.8	$\begin{array}{r} \hline \text { Vert } \\ 169 \end{array}$	
			+2.1	+5.8	+0.6	-34.3			High			
			+34.8	+1.2								
40	6315.400M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	46.9	107.5	-60.6	$\begin{gathered} \hline \text { Vert } \\ 160 \end{gathered}$	
			+2.1	+5.4	+0.4	-34.2			Low			
			+34.7	+0.9								
41	5564.535M	37.3	+0.0	+0.0	+0.0	+0.0	+0.0	46.7	107.5	-60.8	$\begin{array}{r} \hline \text { Vert } \\ 169 \end{array}$	
			+1.8	+5.2	+0.5	-33.8			High			
			+34.4	+1.3								
$\begin{aligned} & 42 \quad \text { 1804.450M } \\ & \text { Ave } \end{aligned}$		44.7	+0.0	+0.0	+0.0	+0.0	+0.0	40.8	107.5	-66.7	$\begin{gathered} \text { Horiz } \\ 201 \end{gathered}$	
		+0.7	+2.2	+0.6	-35.1			Low Config 2				
		+27.3	+0.4									
$\begin{aligned} & 43 \text { 1804.400M } \\ & \text { Ave } \end{aligned}$			43.7	+0.0	+0.0	+0.0	+0.0	+0.0	39.8	107.5	-67.7	$\begin{gathered} \hline \text { Horiz } \\ 169 \end{gathered}$
		+0.7		+2.2	+0.6	-35.1			Low Config 3			
		+27.3		+0.4								
$\begin{aligned} & 449278.025 \mathrm{M} \\ & \text { Ave } \end{aligned}$			21.7	+0.0	+0.0	+0.0	+0.0	+0.0	35.0	107.5	-72.5	$\begin{array}{r} \hline \text { Vert } \\ 169 \end{array}$
		+2.4		+5.9	+1.3	-34.6			High			
		+37.9		+0.4								
^ 9278.025M		36.7	+0.0	+0.0	+0.0	+0.0	+0.0	50.0	107.5	-57.5	$\begin{array}{r} \hline \text { Vert } \\ 169 \end{array}$	
		+2.4	+5.9	+1.3	-34.6			High				
		+37.9	+0.4									
$\begin{aligned} & 46 \text { 1830.045M } \\ & \text { Ave } \end{aligned}$			37.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	107.5	-73.6	Horiz 187
		+0.7		+2.3	+0.6	-35.1			Mid Config 3			
		+27.6		+0.4								
$\begin{aligned} & 47 \text { 7217.600M } \\ & \text { Ave } \end{aligned}$			23.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	107.5	-74.0	$\begin{array}{r} \hline \text { Vert } \\ 150 \end{array}$
		+1.8		+5.2	+0.2	-35.0			Low			
		+36.8		+1.4								
^ 7217.600M		38.4	+0.0	+0.0	+0.0	$+0.0$	+0.0	48.8	107.5	-58.7	Vert 160	
		+1.8	+5.2	+0.2	-35.0			Low				
		+36.8	+1.4									

Band Edge

Band Edge Summary

Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Configuration /Antenna Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Limit (dBuV/m @3m)	Results
614	10 k	1	40.7	46.0	Pass
902	10 k	1	77.5	106.5	Pass
928	10 k	1	76.5	106.5	Pass
960	10 k	1	45.4	54.0	Pass
614	25 k	1	40.8	46.0	Pass
902	25 k	1	77.7	106.5	Pass
928	25 k	1	74.8	106.5	Pass
960	25 k	1	45.4	54.0	Pass

Band Edge Summary
Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Configuration /Antenna Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 \mathrm{~m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	10 k	2	40.8	46.0	Pass
902	10 k	2	80.2	109.5	Pass
928	10 k	2	78.8	109.5	Pass
960	10 k	2	45.4	54.0	Pass
614	25 k	2	40.8	46.0	Pass
902	25 k	2	82.4	109.5	Pass
928	25 k	2	78.4	109.5	Pass
960	25 k	2	45.4	54.0	Pass

Band Edge Summary

Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Configuration /Antenna Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Limit (dBuV/m @3m)	Results
614	10 k	3	40.8	46.0	Pass
902	10 k	3	80.0	107.5	Pass
928	10 k	3	75.4	107.5	Pass
960	10 k	3	45.4	54.0	Pass
614	25 k	3	40.6	46.0	Pass
902	25 k	3	80.6	107.5	Pass
928	25 k	3	75.9	107.5	Pass
960	25 k	3	45.4	54.0	Pass

Band Edge Summary

Operating Mode: Hopping

Frequency $\mathbf{(M H z)}$	Modulation	Configuration /Antenna Type	Field Strength $(\mathbf{d B u V} / \mathbf{m @ 3 m})$	Limit $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Results
614	10 k	5	40.7	46.0	Pass
902	10 k	5	77.8	106.5	Pass
928	10 k	5	74.5	106.5	Pass
960	10 k	5	45.3	54.0	Pass
614	25 k	5	40.6	46.0	Pass
902	25 k	5	76.9	106.5	Pass
928	25 k	5	72.3	106.5	Pass
960	25 k	5	45.3	54.0	Pass

Band Edge Summary					
Operating Mode: Hopping					
Frequency (MHz)	Modulation	Configuration /Antenna Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	10 k	6	40.6	46.0	Pass
902	10 k	6	81.8	109.5	Pass
928	10 k	6	76.0	109.5	Pass
960	10 k	6	45.3	54.0	Pass
614	25 k	6	40.6	46.0	Pass
902	25 k	6	80.5	109.5	Pass
928	25 k	6	76.3	109.5	Pass
960	25 k	6	45.2	54.0	Pass

Band Edge Summary

Operating Mode: Hopping

Frequency $(\mathbf{M H z})$	Modulation	Configuration /Antenna Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Limit (dBuV/m @3m)	Results
614	10 k	7	40.6	46.0	Pass
902	10 k	7	77.9	107.5	Pass
928	10 k	7	76.5	107.5	Pass
960	10 k	7	45.3	54.0	Pass
614	25 k	7	40.7	46.0	Pass
902	25 k	7	78.0	107.5	Pass
928	25 k	7	74.8	107.5	Pass
960	25 k	7	45.3	54.0	Pass

Band Edge Plots

Configuration 1

Page 34 of 91 1 Tosting the Futuro LABORATORIES, INC.

BE 960 Config $1,10 \mathrm{k}, \mathrm{SC}$ (limit corrected for system factors)
Ref Level $96.99 \mathrm{~dB} \mathrm{~V} \quad$ ATTEN 0 dB
RES BW: 120.0 kHz VID BW: 1.0 MHz SWP: 10.476 sec
Marker: $960.0 \mathrm{MHz} 9.3567 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$

—— 15.247(d) / 15.209 Radiated Spurious Emissions $\mathcal{W}_{\text {Tosting the Futuro }}$ LABORATORIES, INC.

 $\mathcal{W}_{\text {Tosting the Futuro }}$ LABORATORIES, INC.

LABORATORIES, INC.

Configuration 2

$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

 $\mathcal{W}_{\text {Tosting the Futuro }}$ LABORATORIES, INC.

Page 40 of 91
$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

LABORATORIES, INC.

Configuration 3

 1 Tosting the Futuro LABORATORIES, INC.

 $\mathcal{W}_{\text {Tosting the Futuro }}$ LABORATORIES, INC.

 1 Tosting the Futuro LABORATORIES, INC.

LABORATORIES, INC.

Configuration 5

$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

 $\mathcal{W}_{\text {Tosting the Futuro }}$ LABORATORIES, INC.

Page 48 of 91
$\wedge_{\text {Tesating me future }}$
LABORATORIES, INC.

LABORATORIES, INC.

Configuration 6

$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

LABORATORIES, INC.

Configuration 7

$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

 $\mathcal{W}_{\text {Tosting the Futuro }}$ LABORATORIES, INC.

$\mathcal{M}_{\text {Testing me muture }}$
LABORATORIES, INC.

LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

108561 Date: 9/8/2023
Maximized Emissions Time: 18:07:52
Michael Atkinson
EMIT est 5.03.20
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.7 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: Band Edge
Test Setup:
Transmitting continuously with modulation, 10k and 25 k modulations investigated.
Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N antenna attached.
EUT Connected to support laptop via shielded Ethernet cable.
Horizontal and Vertical antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	$5 / 9 / 2023$	$5 / 9 / 2025$
T2	ANP05333	Cable	Heliax	$8 / 8 / 2023$	$8 / 8 / 2025$
T3	ANP05360	Cable	RG214	$8 / 8 / 2023$	$8 / 8 / 2025$
T4	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\# \quadFreq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.4	+27.4	+1.2	+2.3	$+0.5$	+0.0	40.8	$\begin{aligned} & 46.0 \\ & 25 \mathrm{k} \end{aligned}$	-5.2	Vert
$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.3	+27.4	+1.2	+2.3	+0.5	+0.0	40.7	$\begin{aligned} & 46.0 \\ & 10 \mathrm{k} \end{aligned}$	-5.3	Vert
$\begin{aligned} & 3 \begin{array}{l} 960.000 \mathrm{M} \\ \mathrm{QP} \end{array} \\ & \hline \end{aligned}$	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	$$	-8.6	Vert
$\begin{aligned} & 4690.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	$\begin{aligned} & 54.0 \\ & 10 \mathrm{k} \end{aligned}$	-8.6	Vert
$5 \quad 902.000 \mathrm{M}$	43.6	+29.5	+1.5	+2.5	+0.6	+0.0	77.7	$\begin{aligned} & 106.5 \\ & 25 \mathrm{k} \end{aligned}$	-28.8	Vert
$6 \quad 902.000 \mathrm{M}$	43.4	+29.5	+1.5	+2.5	+0.6	+0.0	77.5	$\begin{aligned} & 106.5 \\ & 10 \mathrm{k} \end{aligned}$	-29.0	Vert
$7 \quad 928.000 \mathrm{M}$	40.5	+31.2	+1.5	+2.6	+0.7	+0.0	76.5	$\begin{aligned} & 106.5 \\ & 10 \mathrm{k} \end{aligned}$	-30.0	Vert
$8 \quad 928.000 \mathrm{M}$	38.8	+31.2	+1.5	+2.6	+0.7	+0.0	74.8	$\begin{aligned} & 106.5 \\ & 25 \mathrm{k} \end{aligned}$	-31.7	Vert

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

108561
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 9/8/2023
Time: 18:58:25
Sequence\#: 18

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.7 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: Band Edge
Test Setup:
Transmitting continuously with modulation, 10 k and 25 k modulations investigated.
Top two LTE antenna ports are have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9025NM-ITR antenna attached
EUT Connected to support laptop via shielded Ethernet cable.
Horizontal and Vertical antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	$5 / 9 / 2023$	$5 / 9 / 2025$
T2	ANP05333	Cable	Heliax	$8 / 8 / 2023$	$8 / 8 / 2025$
T3	ANP05360	Cable	RG214	$8 / 8 / 2023$	$8 / 8 / 2025$
T4	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\# \quadFreq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.4	+27.4	+1.2	+2.3	$+0.5$	+0.0	40.8	$\begin{aligned} & 46.0 \\ & 25 \mathrm{k} \end{aligned}$	-5.2	Vert
$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.4	+27.4	+1.2	+2.3	+0.5	+0.0	40.8	$\begin{aligned} & 46.0 \\ & 10 \mathrm{k} \end{aligned}$	-5.2	Vert
$\begin{aligned} & 3 \begin{array}{l} 960.000 \mathrm{M} \\ \mathrm{QP} \end{array} \\ & \hline \end{aligned}$	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	$$	-8.6	Vert
$\begin{aligned} & 4690.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	$\begin{aligned} & 54.0 \\ & 10 \mathrm{k} \end{aligned}$	-8.6	Vert
$5 \quad 902.000 \mathrm{M}$	48.3	+29.5	+1.5	+2.5	+0.6	+0.0	82.4	$\begin{aligned} & 109.5 \\ & 25 \mathrm{k} \end{aligned}$	-27.1	Vert
$6 \quad 902.000 \mathrm{M}$	46.1	+29.5	+1.5	+2.5	+0.6	+0.0	80.2	$\begin{aligned} & 109.5 \\ & 10 \mathrm{k} \end{aligned}$	-29.3	Vert
$7 \quad 928.000 \mathrm{M}$	42.8	+31.2	+1.5	+2.6	+0.7	+0.0	78.8	$\begin{aligned} & 109.5 \\ & 10 \mathrm{k} \end{aligned}$	-30.7	Vert
$8 \quad 928.000 \mathrm{M}$	42.4	+31.2	+1.5	+2.6	+0.7	+0.0	78.4	$\begin{aligned} & 109.5 \\ & 25 \mathrm{k} \end{aligned}$	-31.1	Vert

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

108561
Maximized Emissions
Michael Atkinson
EMIT est 5.03.20

Date: 9/8/2023
Time: 19:38:58
Sequence\#: 19

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.7 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: Band Edge
Test Setup:
Transmitting continuously with modulation, 10 k and 25 k modulations investigated.
Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9028 antenna attached.
EUT Connected to support laptop via shielded Ethernet cable.
Horizontal and Vertical antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	$5 / 9 / 2023$	$5 / 9 / 2025$
T2	ANP05333	Cable	Heliax	$8 / 8 / 2023$	$8 / 8 / 2025$
T3	ANP05360	Cable	RG214	$8 / 8 / 2023$	$8 / 8 / 2025$
T4	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.4	+27.4	+1.2	+2.3	$+0.5$	+0.0	40.8	$\begin{aligned} & 46.0 \\ & 10 \mathrm{k} \end{aligned}$	-5.2	Vert
$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	$\begin{aligned} & 46.0 \\ & 25 \mathrm{k} \end{aligned}$	-5.4	Vert
$\begin{aligned} & 3960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	$\begin{aligned} & 54.0 \\ & 25 \mathrm{k} \end{aligned}$	-8.6	Vert
$\begin{aligned} & 4960.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	$\begin{aligned} & 54.0 \\ & 10 \mathrm{k} \\ & \hline \end{aligned}$	-8.6	Vert
$5 \quad 902.000 \mathrm{M}$	46.5	+29.5	+1.5	+2.5	+0.6	+0.0	80.6	$\begin{aligned} & 107.5 \\ & 25 \mathrm{k} \\ & \hline \end{aligned}$	-26.9	Vert
$6 \quad 902.000 \mathrm{M}$	45.9	+29.5	+1.5	+2.5	+0.6	+0.0	80.0	$\begin{aligned} & 107.5 \\ & 10 \mathrm{k} \end{aligned}$	-27.5	Vert
$7 \quad 928.000 \mathrm{M}$	39.9	+31.2	+1.5	+2.6	+0.7	+0.0	75.9	$\begin{aligned} & 107.5 \\ & 25 \mathrm{k} \end{aligned}$	-31.6	Vert
$8 \quad 928.000 \mathrm{M}$	39.4	+31.2	+1.5	+2.6	+0.7	+0.0	75.4	$\begin{aligned} & 107.5 \\ & 10 \mathrm{k} \\ & \hline \end{aligned}$	-32.1	Vert

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

108561
Maximized Emissions
Michael Atkinson
EMIT est 5.03.20

Date: 9/19/2023
Time: 09:03:18
Sequence\#: 37

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.7 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: Band Edge
Test Setup:
Transmitting with modulation, hopping mode, 10k and 25 k modulations investigated.
Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N antenna attached.
EUT Connected to support laptop via shielded Ethernet cable.
Horizontal and Vertical antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	$5 / 9 / 2023$	$5 / 9 / 2025$
T2	ANP05333	Cable	Heliax	$8 / 8 / 2023$	$8 / 8 / 2025$
T3	ANP05360	Cable	RG214	$8 / 8 / 2023$	$8 / 8 / 2025$
T4	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.3	+27.4	+1.2	+2.3	$+0.5$	+0.0	40.7	${ }_{10 \mathrm{k}}{ }^{46.0}$	-5.3	Vert
$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	$\begin{aligned} & 46.0 \\ & 25 \mathrm{k} \end{aligned}$	-5.4	Vert
$\begin{aligned} & 3960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	$\begin{aligned} & 54.0 \\ & 25 \mathrm{k} \\ & \hline \end{aligned}$	-8.7	Vert
$\begin{aligned} & 4 \begin{array}{l} 960.000 \mathrm{M} \\ \mathrm{QP} \end{array} \\ & \hline \end{aligned}$	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	$\begin{aligned} & 54.0 \\ & 10 \mathrm{k} \\ & \hline \end{aligned}$	-8.7	Vert
$5 \quad 902.000 \mathrm{M}$	43.7	+29.5	+1.5	+2.5	+0.6	+0.0	77.8	$\begin{aligned} & 106.5 \\ & 10 \mathrm{k} \\ & \hline \end{aligned}$	-28.7	Vert
$6 \quad 902.000 \mathrm{M}$	42.8	+29.5	+1.5	+2.5	+0.6	+0.0	76.9	$\begin{aligned} & 106.5 \\ & 25 \mathrm{k} \end{aligned}$	-29.6	Vert
$7 \quad 928.000 \mathrm{M}$	38.5	+31.2	+1.5	+2.6	+0.7	+0.0	74.5	$\begin{aligned} & 106.5 \\ & 10 \mathrm{k} \end{aligned}$	-32.0	Vert
$8 \quad 928.000 \mathrm{M}$	36.3	+31.2	+1.5	+2.6	+0.7	+0.0	72.3	$\begin{aligned} & 106.5 \\ & 25 \mathrm{k} \\ & \hline \end{aligned}$	-34.2	Vert

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

108561
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 9/19/2023
Time: 09:44:40
Sequence\#: 38

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 6		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 6		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 48\%
Pressure: 101.7 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: Band Edge
Test Setup:
Transmitting with modulation, hopping mode, 10 k and 25 k modulations investigated.
Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.
Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9025NM-ITR antenna attached.
EUT Connected to support laptop via shielded Ethernet cable.
Horizontal and Vertical antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	$5 / 9 / 2023$	$5 / 9 / 2025$
T2	ANP05333	Cable	Heliax	$8 / 8 / 2023$	$8 / 8 / 2025$
T3	ANP05360	Cable	RG214	$8 / 8 / 2023$	$8 / 8 / 2025$
T4	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.2	+27.4	+1.2	+2.3	$+0.5$	+0.0	40.6	$25 \mathrm{k}$	-5.4	Vert
$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	$\begin{aligned} & 46.0 \\ & 10 \mathrm{k} \end{aligned}$	-5.4	Vert
$\begin{aligned} & 3960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	$\begin{aligned} & 54.0 \\ & 10 \mathrm{k} \end{aligned}$	-8.7	Vert
$\begin{aligned} & 4960.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	9.2	+31.1	+1.6	+2.6	+0.7	+0.0	45.2	$\begin{aligned} & 54.0 \\ & 25 \mathrm{k} \end{aligned}$	-8.8	Vert
$5 \quad 902.000 \mathrm{M}$	47.7	+29.5	+1.5	+2.5	+0.6	+0.0	81.8	$\begin{aligned} & 109.5 \\ & 10 \mathrm{k} \end{aligned}$	-27.7	Vert
$6 \quad 902.000 \mathrm{M}$	46.4	+29.5	+1.5	+2.5	+0.6	+0.0	80.5	$\begin{aligned} & 109.5 \\ & 25 \mathrm{k} \end{aligned}$	-29.0	Vert
$7 \quad 928.000 \mathrm{M}$	40.3	+31.2	+1.5	+2.6	+0.7	+0.0	76.3	$\begin{aligned} & 109.5 \\ & 25 \mathrm{k} \end{aligned}$	-33.2	Vert
$8 \quad 928.000 \mathrm{M}$	40.0	+31.2	+1.5	+2.6	+0.7	+0.0	76.0	$\begin{aligned} & 109.5 \\ & 10 \mathrm{k} \\ & \hline \end{aligned}$	-33.5	Vert

Test Location: CKC Laboratories • 2211623 rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

108561
Maximized Emissions
Date: 9/19/2023

Michael Atkinson
Time: 10:37:31

Software:
EMIT est 5.03.20
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Humidity: 48\%
Pressure: 101.7 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: Band Edge
Test Setup:
Transmitting with modulation, hopping mode, 10 k and 25 k modulations investigated
Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached. Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9028 antenna attached.
EUT Connected to support laptop via shielded Ethernet cable.
Horizontal and Vertical antenna polarities investigated, worst case reported.
2×31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	$5 / 9 / 2023$	$5 / 9 / 2025$
T2	ANP05333	Cable	Heliax	$8 / 8 / 2023$	$8 / 8 / 2025$
T3	ANP05360	Cable	RG214	$8 / 8 / 2023$	$8 / 8 / 2025$
T4	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\# \quadFreq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.3	+27.4	+1.2	+2.3	$+0.5$	+0.0	40.7	$\begin{aligned} & 46.0 \\ & 25 \mathrm{k} \end{aligned}$	-5.3	Vert
$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	$\begin{aligned} & 46.0 \\ & 10 \mathrm{k} \end{aligned}$	-5.4	Vert
$\begin{aligned} & 3 \begin{array}{l} 960.000 \mathrm{M} \\ \mathrm{QP} \end{array} \\ & \hline \end{aligned}$	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	$$	-8.7	Vert
$\begin{aligned} & 4690.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	$\begin{aligned} & 54.0 \\ & 10 \mathrm{k} \end{aligned}$	-8.7	Vert
$5 \quad 902.000 \mathrm{M}$	43.9	+29.5	+1.5	+2.5	+0.6	+0.0	78.0	$\begin{aligned} & 107.5 \\ & 25 \mathrm{k} \end{aligned}$	-29.5	Vert
$6 \quad 902.000 \mathrm{M}$	43.8	+29.5	+1.5	+2.5	+0.6	+0.0	77.9	$\begin{aligned} & 107.5 \\ & 10 \mathrm{k} \\ & \hline \end{aligned}$	-29.6	Vert
$7 \quad 928.000 \mathrm{M}$	40.5	+31.2	+1.5	+2.6	+0.7	+0.0	76.5	$\begin{aligned} & 107.5 \\ & 10 \mathrm{k} \end{aligned}$	-31.0	Vert
$8 \quad 928.000 \mathrm{M}$	38.8	+31.2	+1.5	+2.6	+0.7	+0.0	74.8	$\begin{aligned} & 107.5 \\ & 25 \mathrm{k} \end{aligned}$	-32.7	Vert

Test Setup Photo(s)

Configuration 1

Below 1GHz, 80cm; View 1

Below 1GHz, 80cm; View 2

Above $1 \mathrm{GHz}, 150 \mathrm{~cm}$

Configuration 2

Below 1GHz, View 1

Below 1GHz, View 2

Above 1 GHz , 1.5 m

Configuration 3

Below 1GHz, 80cm; View 1

Below 1GHz, 80cm; View 2

Above $1 \mathrm{GHz}, 150 \mathrm{~cm}$

Hopping Only

Configuration 5

Configuration 6

Configuration 7

LABORATORIES, INC.

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021• (425) 402-1717

Customer:
Specification: Work Order \#: Test Type Tested By:
Software:

Itron, Inc.
15.207 AC Mains - Quasi-peak

108561 Date: 10/13/2023
Conducted Emissions Time: 15:47:58
Michael Atkinson
EMITest 5.03.20

Sequence\#: 50
115 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 8		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 8		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 47%
Pressure: 100.5 kPa

Test Method: ANSI C63.10 (2013)
Frequency Range: 150k-30MHz
Test Setup:
Unit has ISM radio transmitting at $915 \mathrm{MHz}, 10 \mathrm{k}$, and 25 k data rates investigated, worst case reported. This is a test setup to show the ISM module can pass 15.207 limits. Antenna port terminated into 50ohm load.

Itron, Inc. WO\#: 108561 Sequence\#: 50 Date: 10/13/2023
15.207 AC Mains - Quasi-peak Test Lead: 115 V 60 Hz Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	$768-10$	$3 / 23 / 2022$	$3 / 23 / 2024$
T2	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
T3	ANP06515	Cable	Heliax	$3 / 1 / 2023$	$3 / 1 / 2025$
T4	AN01492	50uH LISN-Line (L1)	$3816 / 2 N M$	$3 / 18 / 2022$	$3 / 18 / 2024$
	AN01492	50uH LISN-Neutral (L2)	$3816 / 2 N M$	$3 / 18 / 2022$	$3 / 18 / 2024$
	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$
T5	AN02611	High Pass Filter	HE9615-150K-	$1 / 5 / 2022$	$1 / 5 / 2024$
			$50-720 B$		

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	T2 dB	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec dBu V	Margin dB	Polar Ant
	$\begin{aligned} & \text { 384.100k } \\ & \text { Ave } \end{aligned}$	36.1	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.1	+0.0	45.4	48.2	-2.8	Line
	$384.925 \mathrm{k}$	36.1	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	45.4	48.2	-2.8	Line
	$384.100 \mathrm{k}$ QP	45.6	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.1	+0.0	54.9	58.2	-3.3	Line
	$\begin{aligned} & 384.925 \mathrm{k} \\ & \mathrm{P} \\ & \hline \end{aligned}$	45.6	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	54.9	58.2	-3.3	Line
	384.100k	48.4	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	57.7	48.2	+9.5	Line
	384.925k	48.4	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	57.7	48.2	+9.5	Line
	$\begin{aligned} & \text { 418.748k } \\ & \text { Ave } \\ & \hline \end{aligned}$	34.6	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	43.9	47.5	-3.6	Line
	418.747 k	45.8	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	55.1	47.5	+7.6	Line
	$\begin{aligned} & 537.132 \mathrm{k} \\ & \mathrm{ve} \end{aligned}$	30.7	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	40.0	46.0	-6.0	Line
	537.131 k	43.5	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.1	+0.0	52.8	46.0	+6.8	Line
	$\begin{aligned} & 499.032 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	30.1	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	39.4	46.0	-6.6	Line
	499.031k	43.8	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	53.1	46.0	+7.1	Line
13	$\begin{aligned} & \text { 460.932k } \\ & \text { Ave } \end{aligned}$	30.1	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.1	+0.0	39.4	46.7	-7.3	Line
	460.931k	43.8	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.1	+0.0	53.1	46.7	+6.4	Line
	$729.447 \mathrm{k}$ Ave	29.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	38.6	46.0	-7.4	Line
	729.446k	41.9	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.1	+0.0	51.2	46.0	+5.2	Line
17	$\begin{aligned} & 1.955 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	27.9	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	37.4	46.0	-8.6	Line
	1.955 M	42.6	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.2	+0.0	52.1	46.0	+6.1	Line
	$\begin{aligned} & \text { 575.232k } \\ & \text { Ave } \end{aligned}$	27.9	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	37.2	46.0	-8.8	Line
	575.231 k	39.8	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.1	+0.0	49.1	46.0	+3.1	Line
21	$\begin{aligned} & 1.764 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.7	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.1	+0.2	+0.0	37.2	46.0	-8.8	Line
	1.764 M	41.2	$\begin{aligned} & \hline+9.1 \\ & +0.0 \end{aligned}$	+0.1	+0.1	+0.2	+0.0	50.7	46.0	+4.7	Line

23	$921.129 \mathrm{k}$ ve	27.7	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.1	+0.0	37.1	46.0	-8.9	Line
\wedge	921.128 k	40.3	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.1	+0.0	49.7	46.0	+3.7	Line
	$690.742 \mathrm{k}$ ve	27.5	$\begin{aligned} & +9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.0	+0.1	$+0.0$	36.9	46.0	-9.1	Line
\wedge	690.741 k	40.8	$\begin{aligned} & +9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.0	+0.1	+0.0	50.2	46.0	+4.2	Line
	$1.994 \mathrm{M}$	26.9	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.1	+0.2	$+0.0$	36.4	46.0	-9.6	Line
\wedge	1.994 M	40.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	49.8	46.0	+3.8	Line
	$1.574 \mathrm{M}$	26.7	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
\wedge	1.574 M	40.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+0.2	+0.0	49.9	46.0	+3.9	Line
	$\begin{aligned} & 735.191 \mathrm{k} \\ & \text { ve } \\ & \hline \end{aligned}$	26.3	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	35.6	46.0	-10.4	Line
\wedge	735.191k	41.1	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.1	$+0.0$	50.4	46.0	+4.4	Line
	$1.113 \mathrm{M}$ ve	25.9	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Line
\wedge	1.113 M	38.6	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.1	+0.0	48.0	46.0	+2.0	Line
	$1.152 \mathrm{M}$	25.8	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Line
\wedge	1.152 M	38.3	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+0.1	+0.0	47.8	46.0	+1.8	Line
	$\mathrm{ve}^{1.344 \mathrm{M}}$	25.5	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+0.1	$+0.0$	35.0	46.0	-11.0	Line
\wedge	1.344 M	38.4	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+0.1	$+0.0$	47.9	46.0	+1.9	Line
	$345.200 \mathrm{k}$ ve	28.9	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.1	+0.0	38.1	49.1	-11.0	Line
\wedge	345.200 k	41.9	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	51.1	49.1	+2.0	Line
	$\begin{aligned} & 2.765 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	25.4	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.2	$+0.0$	34.8	46.0	-11.2	Line
\wedge	2.765 M	39.6	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	$+0.0$	49.0	46.0	+3.0	Line
	$\mathrm{ve}^{1.727 \mathrm{M}}$	25.2	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	+0.1	+0.1	+0.2	$+0.0$	34.7	46.0	-11.3	Line
\wedge	1.727 M	39.5	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	+0.1	+0.1	+0.2	+0.0	49.0	46.0	+3.0	Line
	$\begin{aligned} & 429.251 \mathrm{k} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	26.4	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	$+0.0$	35.7	47.3	-11.6	Line
	$\mathrm{ve}^{2.032 \mathrm{M}}$	24.9	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.2	+0.0	34.4	46.0	-11.6	Line
\wedge	2.032 M	39.3	$\begin{aligned} & +9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.2	+0.0	48.8	46.0	+2.8	Line

Page 81 of 91

	$\begin{aligned} & 1.918 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	24.9	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	34.3	46.0	-11.7	Line
\wedge	1.918M	40.5	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	49.9	46.0	+3.9	Line
	$431.387 \mathrm{k}$ ve	25.8	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	35.1	47.2	-12.1	Line
	$3.802 \mathrm{M}$ ve	23.4	$\begin{aligned} & \hline+9.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.1	+0.2	+0.0	32.9	46.0	-13.1	Line
\wedge	3.802 M	39.0	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	+0.1	+0.1	+0.2	+0.0	48.5	46.0	+2.5	Line
	$2.729 \mathrm{M}$	23.5	$\begin{aligned} & \hline+9.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	$+0.2$	$+0.0$	32.9	46.0	-13.1	Line
\wedge	2.729 M	40.0	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.2	+0.0	49.4	46.0	+3.4	Line
	$\begin{aligned} & \text { 433.717k } \\ & \text { ve } \end{aligned}$	24.2	$\begin{aligned} & \hline+9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.1	+0.0	33.5	47.2	-13.7	Line
56	$\begin{aligned} & 2.581 \mathrm{M} \\ & \mathrm{ve}^{2} \\ & \hline \end{aligned}$	22.3	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	31.7	46.0	-14.3	Line
\wedge	2.581 M	40.5	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	$+0.0$	49.9	46.0	+3.9	Line
	$\begin{aligned} & \text { ve }{ }^{2.542 \mathrm{M}} \\ & \text { ve } \end{aligned}$	22.3	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	31.7	46.0	-14.3	Line
\wedge	2.542 M	40.6	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	50.0	46.0	+4.0	Line
	$2.114 \mathrm{M}$ ve	22.2	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.2	+0.0	31.7	46.0	-14.3	Line
\wedge	2.114 M	39.6	$\begin{array}{r} \hline+9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	49.1	46.0	+3.1	Line
	$10.940 \mathrm{M}$	25.9	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	+0.1	+0.1	+0.4	+0.0	35.6	50.0	-14.4	Line
\wedge	10.940M	39.7	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.1	+0.4	+0.0	49.4	50.0	-0.6	Line
	$\begin{aligned} & 429.251 \mathrm{k} \\ & \mathrm{P} \\ & \hline \end{aligned}$	33.0	$\begin{array}{r} \hline+9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	42.3	57.3	-15.0	Line
	$\begin{aligned} & 307.700 \mathrm{k} \\ & \text { ve } \end{aligned}$	25.7	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	34.9	50.0	-15.1	Line
\wedge	307.700k	38.2	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	47.4	50.0	-2.6	Line
	$\begin{aligned} & 2.394 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	21.4	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	30.8	46.0	-15.2	Line
\wedge	2.394 M	40.0	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	49.4	46.0	+3.4	Line
	$2.073 \mathrm{M}$ ve	21.0	$\begin{array}{r} \hline+9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	30.5	46.0	-15.5	Line
\wedge	2.073 M	39.2	$\begin{aligned} & \hline+9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.2	+0.0	48.7	46.0	+2.7	Line
	$\begin{aligned} & 2.175 \mathrm{M} \\ & \mathrm{ve} \end{aligned}$	20.9	$\begin{aligned} & +9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.2	+0.0	30.4	46.0	-15.6	Line
\wedge	2.175 M	41.1	$\begin{aligned} & \hline+9.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.2	+0.0	50.6	46.0	+4.6	Line

Page 82 of 91

73	$2.358 \mathrm{M}$	20.3	$\begin{aligned} & \hline+9.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+0.2	+0.0	29.7	46.0	-16.3	Line
\wedge	2.358 M	40.8	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+0.2	+0.0	50.2	46.0	+4.2	Line
	$\begin{aligned} & 433.717 \mathrm{k} \\ & \mathrm{p} \end{aligned}$	30.7	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	40.0	57.2	-17.2	Line
\wedge	429.250 k	47.5	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	56.8	47.3	+9.5	Line
\wedge	433.717 k	46.2	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	55.5	47.2	+8.3	Line
\wedge	431.386k	45.6	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.1	+0.0	54.9	47.2	+7.7	Line
	$\begin{aligned} & \text { 15.930M } \\ & \text { ive } \end{aligned}$	22.6	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.2	+0.4	+0.0	32.4	50.0	-17.6	Line
\wedge	15.930M	39.9	$\begin{aligned} & \hline+9.1 \\ & +0.0 \end{aligned}$	+0.1	+0.2	+0.4	+0.0	49.7	50.0	-0.3	Line
81	$16.590 \mathrm{M}$ ve	18.0	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+0.5	+0.0	28.0	50.0	-22.0	Line
\wedge	16.590 M	40.1	$\begin{array}{r} +9.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.2	+0.5	+0.0	50.1	50.0	+0.1	Line

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software: Itron, Inc.
15.207 AC Mains - Quasi-peak

108561
Conducted Emissions
Date: 10/13/2023

Michael Atkinson
EMITest 5.03.20

Time: 16:04:12
Sequence\#: 51
115 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 8		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 8		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 47\%
Pressure: 100.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency Range: $150 \mathrm{k}-30 \mathrm{MHz}$
Test Setup:
Unit has ISM radio transmitting at $915 \mathrm{MHz}, 10 \mathrm{k}$, and 25 k data rates investigated, worst case reported. This is a test setup to show the ISM module can pass 15.207 limits. Antenna port terminated into 50ohm load.

Itron, Inc. WO\#: 108561 Sequence\#: 51 Date: 10/13/2023
15.207 AC Mains - Quasi-peak Test Lead: 115 V 60 Hz Neutral

	Sweep Data
$\times \quad$ QP Readings	
	Software Version: 5.03 .20

- Readings
Average Readings

Software Version: 5.03 .20
1-15.207 AC Mains - Average \quad Ambient $\quad 2$-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	$768-10$	$3 / 23 / 2022$	$3 / 23 / 2024$
T2	ANP05546	Cable	Heliax	$8 / 1 / 2023$	$8 / 1 / 2025$
T3	ANP06515	Cable	Heliax	$3 / 1 / 2023$	$3 / 1 / 2025$
	AN01492	50uH LISN-Line (L1)	$3816 / 2 N M$	$3 / 18 / 2022$	$3 / 18 / 2024$
T4	AN01492	50uH LISN-Neutral (L2)	$3816 / 2 N M$	$3 / 18 / 2022$	$3 / 18 / 2024$
T5	AN02673	Spectrum Analyzer	E4446A	$3 / 2 / 2023$	$3 / 2 / 2025$
T6	AN02611	High Pass Filter	HE9615-150K-	$1 / 5 / 2022$	$1 / 5 / 2024$
			$50-720 B$		

Measurement Data:		ading lis	d by m	gin.			Test Lea	Neutral		
Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	T3 dB	T4 dB	Dist Table	$\begin{array}{r} \hline \text { Corr } \\ \text { dB } \mu \mathrm{V} \\ \hline \end{array}$	$\begin{array}{r} \hline \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{array}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 417.324 \mathrm{k} \\ & \text { Ave } \end{aligned}$	34.5	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.0	43.7	47.5	-3.8	Neutr
$\begin{aligned} & \hline 2383.679 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	34.9	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.0	44.1	48.2	-4.1	Neutr
$\begin{gathered} 3{ }^{383.679 \mathrm{k}} \\ \mathrm{QP} \\ \hline \end{gathered}$	44.5	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	53.7	58.2	-4.5	Neutr
$\wedge 383.679 \mathrm{k}$	47.5	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.0	+0.0	+0.0	56.7	48.2	+8.5	Neutr
$\begin{gathered} 5{ }^{517.324 \mathrm{k}} \\ \mathrm{QP} \end{gathered}$	43.0	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	52.2	57.5	-5.3	Neutr
^ 417.323 k	45.8	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.1 \end{array}$	+0.0	+0.0	$+0.0$	55.0	47.5	+7.5	Neutr
$\begin{aligned} & 7538.946 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	30.9	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	40.1	46.0	-5.9	Neutr
^ 538.946k	43.7	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	52.9	46.0	+6.9	Neutr
$\begin{aligned} & \hline 9{ }^{462.746 \mathrm{k}} \\ & \mathrm{QPP} \\ & \hline \end{aligned}$	40.9	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	50.1	56.6	-6.5	Neutr
$\begin{gathered} 10 \begin{array}{c} 498.427 \mathrm{k} \\ \mathrm{QP} \end{array} \\ \hline \end{gathered}$	40.3	$\begin{array}{r} +9.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	49.5	56.0	-6.5	Neutr
$\begin{aligned} & 11 \begin{array}{l} 498.427 \mathrm{k} \\ \text { Ave } \end{array} \end{aligned}$	30.3	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	39.5	46.0	-6.5	Neutr
^ 498.426k	43.7	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	52.9	46.0	+6.9	Neutr
$\begin{gathered} \hline 13 \begin{array}{l} 462.746 \mathrm{k} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	30.9	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ + \\ \hline \end{array}$	+0.0	+0.0	$+0.0$	40.1	46.6	-6.5	Neutr
^ 462.745k	44.7	$\begin{array}{r} +9.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	53.9	46.6	+7.3	Neutr
$\begin{gathered} \hline 15 \begin{array}{c} 728.540 \mathrm{k} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	29.7	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.0	38.9	46.0	-7.1	Neutr
$\wedge 728.539 \mathrm{k}$	42.2	$\begin{array}{r} +9.1 \\ +9.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.0	+0.0	$+0.0$	51.4	46.0	+5.4	Neutr
$\begin{gathered} 17 \mathrm{Ave}^{2.803 \mathrm{M}} \\ \mathrm{~A}^{2} \end{gathered}$	28.8	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	38.0	46.0	-8.0	Neutr
^ 2.803 M	42.8	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	52.0	46.0	+6.0	Neutr
$\begin{gathered} 19{ }^{3.374 \mathrm{M}} \\ \text { Ave } \\ \hline \end{gathered}$	28.7	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	37.9	46.0	-8.1	Neutr
3.374M	42.5	$\begin{array}{r} +9.0 \\ +9.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	51.7	46.0	+5.7	Neutr
$\begin{gathered} 21 \quad 2.956 \mathrm{M} \\ \mathrm{Ave}^{2} \\ \hline \end{gathered}$	28.5	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	37.7	46.0	-8.3	Neutr
2.956M	42.7	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	51.9	46.0	+5.9	Neutr

Page 86 of 91

23	$3.142 \mathrm{M}$	28.5	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.0	37.7	46.0	-8.3	Neutr
\wedge	3.142 M	42.0	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.0	51.2	46.0	+5.2	Neutr
25	$1.954 \mathrm{M}$	28.4	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$+0.1$	$+0.0$	$+0.0$	37.7	46.0	-8.3	Neutr
\wedge	1.954 M	42.5	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.0	51.8	46.0	+5.8	Neutr
	$\begin{aligned} & 1.573 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	27.7	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.0	37.1	46.0	-8.9	Neutr
\wedge	1.573 M	40.3	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	$+0.0$	49.7	46.0	+3.7	Neutr
	$345.290 \mathrm{k}$	31.0	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.0	40.1	49.1	-9.0	Neutr
\wedge	345.290k	43.9	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.0	53.0	49.1	+3.9	Neutr
	$922.000 \mathrm{k}$ ve	27.6	$\begin{aligned} & \hline+9.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.0	36.9	46.0	-9.1	Neutr
\wedge	922.000 k	40.1	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.0	49.4	46.0	+3.4	Neutr
	$\mathrm{ve}^{3.224 \mathrm{M}}$	27.6	$\begin{aligned} & +9.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.0	36.8	46.0	-9.2	Neutr
\wedge	3.224 M	42.2	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	$+0.0$	51.4	46.0	+5.4	Neutr
	$\begin{aligned} & 1.768 \mathrm{M} \\ & \mathrm{ve} \end{aligned}$	27.3	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	36.6	46.0	-9.4	Neutr
\wedge	1.768 M	41.0	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.0	50.3	46.0	+4.3	Neutr
	$735.191 \mathrm{k}$	26.9	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+0.0	+0.0	36.1	46.0	-9.9	Neutr
\wedge	735.191k	41.7	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.0	+0.0	$+0.0$	50.9	46.0	+4.9	Neutr
	$\begin{aligned} & 1.382 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	26.6	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	$+0.1$	+0.0	+0.0	36.0	46.0	-10.0	Neutr
\wedge	1.382 M	39.0	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	$+0.1$	+0.0	$+0.0$	48.4	46.0	+2.4	Neutr
	$2.767 \mathrm{M}$	26.7	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.0	35.9	46.0	-10.1	Neutr
\wedge	2.767 M	42.8	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.0	52.0	46.0	+6.0	Neutr
	$3.572 \mathrm{M}$ ve	26.7	$\begin{aligned} & \hline+9.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.0	35.9	46.0	-10.1	Neutr
\wedge	3.572 M	43.2	$\begin{array}{r} +9.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.0	52.4	46.0	+6.4	Neutr
	$2.615 \mathrm{M}$ ve	26.3	$\begin{aligned} & \hline+9.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	$+0.0$	35.5	46.0	-10.5	Neutr
\wedge	2.615 M	43.3	$\begin{array}{r} +9.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	+0.0	52.5	46.0	+6.5	Neutr

Page 87 of 91

Ave	$\mathrm{ve}^{1.113 \mathrm{M}}$	26.1	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.0	35.4	46.0	-10.6	Neutr
\wedge	1.113M	38.8	+9.1	+0.0	+0.1	+0.0	+0.0	48.1	46.0	+2.1	Neutr
			+0.0	+0.1							
49	3.686M	25.9	+9.1	+0.1	+0.1	+0.0	+0.0	35.2	46.0	-10.8	Neutr
Ave			+0.0	+0.0							
\wedge	3.686 M	41.7	+9.1	+0.1	+0.1	+0.0	$+0.0$	51.0	46.0	+5.0	Neutr
			+0.0	+0.0							
51	2.579 M	25.3	+9.1	+0.0	+0.1	+0.0	+0.0	34.5	46.0	-11.5	Neutr
Ave			+0.0	+0.0							
\wedge	2.579 M	43.0	+9.1	+0.0	+0.1	+0.0	$+0.0$	52.2	46.0	+6.2	Neutr
			+0.0	+0.0							
53	2.433 M	24.9	+9.1	+0.0	+0.1	+0.0	+0.0	34.1	46.0	-11.9	Neutr
Ave			+0.0	+0.0							
\wedge	2.433 M	42.6	+9.1	+0.0	+0.1	+0.0	+0.0	51.8	46.0	+5.8	Neutr
			+0.0	+0.0							
55	2.396M	24.3	+9.1	+0.0	+0.1	+0.0	+0.0	33.5	46.0	-12.5	Neutr
Ave			+0.0	+0.0							
\wedge	2.395M	42.9	+9.1	+0.0	+0.1	+0.0	+0.0	52.1	46.0	+6.1	Neutr
			+0.0	+0.0							
57	2.212 M	22.9	+9.1	+0.0	+0.1	+0.0	+0.0	32.2	46.0	-13.8	Neutr
Ave			+0.0	+0.1							
\wedge	2.212M	42.1	+9.1	+0.0	+0.1	+0.0	+0.0	51.4	46.0	+5.4	Neutr
			+0.0	+0.1							
59	11.365M	24.8	+9.1	+0.1	+0.1	+0.2	+0.0	34.3	50.0	-15.7	Neutr
Ave			+0.0	+0.0							
\wedge	11.365M	39.9	+9.1	+0.1	+0.1	+0.2	+0.0	49.4	50.0	-0.6	Neutr
			+0.0	+0.0							
61	15.355M	23.9	+9.1	+0.1	+0.2	+0.2	+0.0	33.5	50.0	-16.5	Neutr
Ave			+0.0	+0.0							
\wedge	15.355M	39.5	+9.1	+0.1	+0.2	+0.2	+0.0	49.1	50.0	-0.9	Neutr
			+0.0	+0.0							
63	21.940M	18.6	+9.1	+0.1	+0.2	+0.5	+0.0	28.6	50.0	-21.4	Neutr
Ave			+0.0	+0.1							
^ 21.940 M		39.4	+9.1	+0.1	+0.2	+0.5	+0.0	49.4	50.0	-0.6	Neutr
			+0.0	+0.1							

Test Setup Photos)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

