Itron, Inc

TEST REPORT FOR

IRM-STAR Model: OW3

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928MHz)

Report No.: 108561-2

Date of issue: November 20, 2023

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 91 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	
Test Facility Information	2
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
General Product Information	9
FCC Part 15 Subpart C	14
15.247(b)(2) Output Power	14
15.247(d) Radiated Emissions & Band Edge	23
15.207 AC Conducted Emissions	
Supplemental Information	90
Measurement Uncertainty	90
Emissions Test Details	90

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc.Viviana Prado2111 N. Molter RoadCKC Laboratories, Inc.Liberty Lake, WA 990195046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Jack McPeck Project Number: 108561

Customer Reference Number: 283655

DATE OF EQUIPMENT RECEIPT: September 8, 2023

DATE(S) OF TESTING: September 8, 11, 13, and 19, 2023

and October 13, 2023

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Bello

Page 3 of 91 Report No.: 108561-2

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive SE, Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 91 Report No.: 108561-2

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NP
15.247(a)(1)	Carrier Separation	NA	NP
15.247(a)(1)(i)	Number of Hopping Channels	NA	NP
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NP
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary	of	Cond	litions

None

Page 5 of 91 Report No.: 108561-2

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233798

Support Equipment:

Manufacturer	Model #	S/N
Cisco	ANT-5G-MP-OUT-N	NA
Cisco	ANT-5G-MP-OUT-N	NA
Dell	Latitude E6430	NA
Cisco	ANT-5G-MP-OUT-N	NA
Cisco	IR8140H	NA
	Cisco Dell Cisco	Cisco ANT-5G-MP-OUT-N Cisco ANT-5G-MP-OUT-N Dell Latitude E6430 Cisco ANT-5G-MP-OUT-N

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233798

Support Equipment:

Device	Manufacturer	Model #	S/N
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Integrated Multi-purpose Antenna	Cisco	ANT-5G-MP-OUT-N	NA
Laptop	Dell	Latitude E6430	NA
Antenna (5.5 dBi remote ISM)	PCTEL	BOA9025NM-ITR	NA
Router Host	Cisco	IR8140H	NA

Page 6 of 91 Report No.: 108561-2

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233798

Support Equipment:

Device	Manufacturer	Model #	S/N
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Laptop	Dell	Latitude E6430	NA
Antenna (8.15 dBi remote	PCTEL	BOA9028	NA
ISM)			
1dB Attenuator (Qty: 2)	Mini-Circuits	15542 UNAT-1+	NA
Surge Protector	Times Microwave Systems	LP-BTRW-NMP	NA
Router Host	Cisco	IR8140H	NA

Configuration 4

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233798

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6430	NA
Router Host	Cisco	IR8140H	NA

Configuration 5

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233791

Support Equipment:

Device	Manufacturer	Model #	S/N
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Laptop	Dell	Latitude E6430	NA
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Router Host	Cisco	IR8140H	NA

Page 7 of 91 Report No.: 108561-2

Configuration 6

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233791

Support Equipment:

- appoint = quaparters	•	•	•
Device	Manufacturer	Model #	S/N
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Laptop	Dell	Latitude E6430	NA
Antenna (5.5 dBi remote	PCTEL	BOA9025NM-ITR	NA
ISM)			
Router Host	Cisco	IR8140H	NA

Configuration 7

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233791

Support Equipment:

Device	Manufacturer	Model #	S/N
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Integrated Multi-purpose	Cisco	ANT-5G-MP-OUT-N	NA
Antenna			
Laptop	Dell	Latitude E6430	NA
Antenna (8.15 dBi remote	PCTEL	BOA9028	NA
ISM)			
Router Host	Cisco	IR8140H	NA

Configuration 8

Equipment Tested:

Device	Manufacturer	Model #	S/N
IRM-STAR	Itron, Inc.	OW3	354233802

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6430	NA
12V Power Supply	Cisco	IR8140 Power Module	NA

Page 8 of 91 Report No.: 108561-2

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Limited Modular, CISCO IR8140H Host
Type of Wideband System:	Proprietary FHSS
Operating Frequency Range:	902.20-927.75MHz
Number of Hopping Channels:	512
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	10k and 25k GFSK
Maximum Duty Cycle:	Tested 100% as worst case
Number of TX Chains:	1
Antenna Type(s) and Gain:	1 x external attached 2.0dBi 1 x external remote 5.5dBi 1 x external remote 8.15dBi (requires 3dB of cable loss/attenuators to be attached per manufacturer)
Beamforming Type:	N/A
Antenna Connection Type:	External Connector
Nominal Input Voltage:	115VAC, 60Hz
Firmware / Software used for Test:	CAM3 FCC Test Helper v1 Putty Release 0.78 Firmware 5.3.194
The validity of results is dependent o full responsibility.	n the stated product details, the accuracy of which the manufacturer assumes

Page 9 of 91 Report No.: 108561-2

EUT Photo(s)

Page 10 of 91 Report No.: 108561-2

Support Equipment Photo(s)

Antenna Configuration 1 and Cellular

Antenna Configuration 2

Antenna Configuration 3

Laptop

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Page 13 of 91 Report No.: 108561-2

FCC Part 15 Subpart C

15.247(b)(2) Output Power

	Test Data Summary - Voltage Variations				
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)
902.2	10kHz FSK	25.4	25.4	25.4	0.0
915.0	10kHz FSK	26.0	26.0	26.0	0.0
927.75	10kHz FSK	24.5	24.5	24.5	0.0
902.2	25kHz FSK	25.3	25.3	25.3	0.0
915.0	25kHz FSK	25.9	25.9	25.9	0.0
927.75	25kHz FSK	24.5	24.5	24.5	0.0

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	132.25V/60Hz
V _{Minimum} :	115V/60Hz
V _{Maximum} :	97.75V/60Hz

	Test D	ata Summary - RF Conducted Measur	ement		
		6dBm EIRP ≥ 50 Channels 0dBm EIRP < 50 Channels (min 25)			
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
902.2	10kHz FSK	Multi-purpose 2dBi, Omni 5.5dBi and Remote ISM 8.15dBi with >2.15 cable loss.	25.4	≤30	Pass
915.0	10kHz FSK	Multi-purpose 2dBi, Omni 5.5dBi and Remote ISM 8.15dBi with >2.15 cable loss.	26.0	≤30	Pass
927.75	10kHz FSK	Multi-purpose 2dBi, Omni 5.5dBi and Remote ISM 8.15dBi with >2.15 cable loss.	24.5	≤30	Pass
902.2	25kHz FSK	Multi-purpose 2dBi, Omni 5.5dBi and Remote ISM 8.15dBi with >2.15 cable loss.	25.3	≤30	Pass
915.0	25kHz FSK	Multi-purpose 2dBi, Omni 5.5dBi and Remote ISM 8.15dBi with >2.15 cable loss.	25.9	≤30	Pass
927.75	25kHz FSK	Multi-purpose 2dBi, Omni 5.5dBi and Remote ISM 8.15dBi with >2.15 cable loss.	24.5	≤30	Pass

Page 14 of 91 Report No.: 108561-2

Plots

10kHz FSK

Low Channel

Middle Channel

High Channel

25kHz FSK

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(b) Power Output (902-928 MHz DTS)

Work Order #: 108561 Date: 9/13/2023
Test Type: Conducted Emissions Time: 07:59:30
Tested By: Steven Pittsford Sequence#: 21

Software: EMITest 5.03.20 230V 50Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 4

Support Equipment:

Device Manufacturer Model # S/N
Configuration 4

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 24°C Humidity: 47% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 902.2, 915MHz, and 927.75MHz

Test Setup:

Transmitting continuously with modulation at 902.20MHz, 915.00MHz, and 927.75MHz. 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.

Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N, PCTEL p/n BOA9025NM-ITR, or PCTEL p/n BOA9028 antenna attached. Worst case reported.

EUT Connected to support laptop via shielded Ethernet cable.

Vertical and horizontal antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

No change during voltage variations.

Page 19 of 91 Report No.: 108561-2

Itron, Inc. WO#: 108561 Sequence#: 21 Date: 9/13/2023 15.247(b) Power Output (902-928 MHz DTS) Test Lead: 230V 50Hz Ant

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T2	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T3	ANP06515	Cable	Heliax	3/1/2023	3/1/2025

Page 20 of 91 Report No.: 108561-2

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: Ant		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	915.005M	121.6	+9.1	+0.7	+1.6		+0.0	133.0	137.0	-4.0	Ant
									915M 10k		
2	915.005M	121.5	+9.1	+0.7	+1.6		+0.0	132.9	137.0	-4.1	Ant
									915M 25k		
3	902.201M	121.1	+9.1	+0.6	+1.6		+0.0	132.4	137.0	-4.6	Ant
									902.2M 10)k	
4	902.201M	121.0	+9.1	+0.6	+1.6		+0.0	132.3	137.0	-4.7	Ant
									902.2M 25	šk	
5	927.743M	120.1	+9.1	+0.7	+1.6		+0.0	131.5	137.0	-5.5	Ant
									927.75M 1	0k	
6	927.756M	120.1	+9.1	+0.7	+1.6		+0.0	131.5	137.0	-5.5	Ant
									927.75M 2	25k	

Page 21 of 91 Report No.: 108561-2

Test Setup Photo(s)

Page 22 of 91 Report No.: 108561-2

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/11/2023
Test Type: Maximized Emissions Time: 6:31:38 AM

Tested By: Steven Pittsford Sequence#: 20

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1, 2, & 3

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1, 2, & 3

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 24°C Humidity: 47% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9k-30MHz

Test Setup:

Transmitting continuously with modulation at 902.20MHz, 915.00MHz, and 927.75MHz. 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.

Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N, PCTEL p/n BOA9025NM-ITR, or PCTEL p/n BOA9028 antenna attached. Worst case reported.

EUT Connected to support laptop via shielded Ethernet cable.

Perpendicular, parallel, and ground parallel antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Page 23 of 91 Report No.: 108561-2

Itron, Inc. WO#: 108561 Sequence#: 20 Date: 9/11/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp, Para & Ground Para

ReadingsQP Readings

▼ Ambient
 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T1	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T2	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T3	ANP06515	Cable	Heliax	3/1/2023	3/1/2025

Page 24 of 91 Report No.: 108561-2

Measur	ement Data:	Re	ading list	ted by ma	ırgin.		Τe	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	505.000k	40.0	+0.0	+9.3	+0.0		-40.0	9.3	33.5	-24.2	Perp,
2	495.800k	39.2	+0.0	+9.3	+0.0		-40.0	8.5	33.7	-25.2	Perp,
3	2.180M	22.7	+0.0	+9.2	+0.1		-40.0	-8.0	29.5	-37.5	Perp,
4	25.522M	23.3	+0.1	+5.7	+0.3		-40.0	-10.6	29.5	-40.1	Perp,
5	13.369M	16.1	+0.1	+8.6	+0.2		-40.0	-15.0	29.5	-44.5	Perp,
6	4.126M	14.5	+0.1	+8.9	+0.1		-40.0	-16.4	29.5	-45.9	Perp,
7	6.216M	13.1	+0.1	+8.9	+0.1		-40.0	-17.8	29.5	-47.3	Perp,
8	8.378M	9.5	+0.1	+8.9	+0.1		-40.0	-21.4	29.5	-50.9	Perp,
9	8.414M	7.7	+0.1	+9.0	+0.1		-40.0	-23.1	29.5	-52.6	Perp,
10	94.927k	36.8	+0.0	+9.4	+0.0		-80.0	-33.8	28.0	-61.8	Perp,
11	92.168k	35.4	+0.0	+9.5	+0.0		-80.0	-35.1	28.3	-63.4	Perp,
12	104.963k	33.8	+0.0	+9.4	+0.0		-80.0	-36.8	27.2	-64.0	Perp,
13	106.217k	33.5	+0.0	+9.4	+0.0		-80.0	-37.1	27.1	-64.2	Perp,
14	108.224k	32.6	+0.0	+9.4	+0.0		-80.0	-38.0	26.9	-64.9	Perp,
15	100.070k	33.0	+0.0	+9.4	+0.0		-80.0	-37.6	27.6	-65.2	Perp,

Page 25 of 91 Report No.: 108561-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/11/2023
Test Type: Maximized Emissions Time: 11:58:47
Tested By: Steven Pittsford Sequence#: 21

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1, 2, & 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1, 2, & 3				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 24°C Humidity: 47% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 30MHz-9.28GHz

Test Setup:

Transmitting continuously with modulation at 902.20MHz, 915.00MHz, and 927.75MHz. 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.

Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N, PCTEL p/n BOA9025NM-ITR, or PCTEL p/n BOA9028 antenna attached. Worst case reported.

EUT Connected to support laptop via shielded Ethernet cable.

Vertical and horizontal antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Page 26 of 91 Report No.: 108561-2

Itron, Inc. WO#: 108561 Sequence#: 21 Date: 9/11/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T2	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
T5	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
T6	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T9	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T10	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		

Page 27 of 91 Report No.: 108561-2

Measi	ırement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dΒμV	dB	dB	dB	dB		•	dBμV/m	dB	Ant
1	0-010-0	9.3	+0.0	+27.2	+2.3	+1.2	+0.0	40.5	46.0	-5.5	Vert
	QP		+0.5	+0.0	+0.0	+0.0					129
			+0.0	+0.0							
^	610.826M	15.9	+0.0	+27.2	+2.3	+1.2	+0.0	47.1	46.0	+1.1	Vert
			+0.5	+0.0	+0.0	+0.0					129
	5.412.200N.f	27.6	+0.0	+0.0	. 0. 0	. 0. 0	. 0. 0	16.0	7.1.0	7.0	37 .
3	5413.200M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	46.2	54.0	-7.8	Vert
			+1.7	+4.9	+0.4	-33.8			Low		160
1	964.260M	9.4	+34.4	+1.0	+2.6	+1.6	+0.0	45.3	54.0	-8.7	Vert
4	904.200IVI QP	9.4	$+0.0 \\ +0.7$	+31.0 +0.0	+2.0	$^{+1.0}$	+0.0	43.3	34.0	-8.7	400
	Ųľ		+0.7	+0.0	+0.0	+0.0					400
^	964.260M	15.4	+0.0	+31.0	+2.6	+1.6	+0.0	51.3	54.0	-2.7	Vert
	904.200W	13.4	+0.7	+0.0	+0.0	+0.0	+0.0	31.3	34.0	-2.7	129
			+0.0	+0.0	10.0	10.0					12)
6	3662.060M	41.4	+0.0	+0.0	+0.0	+0.0	+0.0	45.0	54.0	-9.0	Vert
	3002.000111	11.1	+1.4	+3.7	+0.2	-34.0	10.0	15.0	Mid	7.0	145
			+31.4	+0.9							
7	4636.380M	38.9	+0.0	+0.0	+0.0	+0.0	+0.0	44.8	54.0	-9.2	Vert
			+1.3	+4.2	+0.4	-33.8			High		169
			+32.4	+1.4							
8	998.043M	9.5	+0.0	+30.3	+2.6	+1.6	+0.0	44.7	54.0	-9.3	Horiz
	QP		+0.7	+0.0	+0.0	+0.0					400
			+0.0	+0.0							
9	4576.970M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	44.5	54.0	-9.5	Vert
			+1.3	+4.2	+0.5	-33.8			Mid		145
			+32.2	+1.3							
10		9.3	+0.0	+24.0	+1.5	+1.0	+0.0	36.2	46.0	-9.8	Vert
	QP		+0.4	+0.0	+0.0	+0.0					103
	100 1100 5		+0.0	+0.0				12.0	4.1.0		
٨	403.640M	16.1	+0.0	+24.0	+1.5	+1.0	+0.0	43.0	46.0	-3.0	Vert
			+0.4	+0.0	+0.0	+0.0					129
10	4511.0003.5	20.0	+0.0	+0.0	. 0. 0	. 0. 0	.0.0	441	E 4 O	0.0	X7
12	4511.000M	38.8	+0.0 +1.2	+0.0	+0.0	+0.0	+0.0	44.1		-9.9	Vert
			+32.1	+4.2 +1.1	+0.5	-33.8			Low		160
12	3608.800M	40.0	+32.1	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
13	SUUO.8UUIVI	40.0	+0.0 +1.4	+0.0	+0.0	-34.0	+0.0	43.7	Low	-10.5	vert 160
			+31.3	+1.0	±0.5	-54.0			LUW		100
1/	3708.790M	37.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.6	54.0	-12.4	Vert
14	3700.770141	31.0	+1.5	+3.6	+0.0	-33.9	10.0	71.0	High	12.7	169
			+31.6	+0.8	. 0.2	23.7					10)
			131.0	10.0							

Page 28 of 91 Report No.: 108561-2

15 37.66	54M	9.2	+0.0	+17.6	+0.4	+0.3	+0.0	27.6	40.0	-12.4	Vert
QP			+0.1	+0.0	+0.0	+0.0					103
			+0.0	+0.0							
^ 37.66	54M 1	5.8	+0.0	+17.6	+0.4	+0.3	+0.0	34.2	40.0	-5.8	Vert
			+0.1	+0.0	+0.0	+0.0					99
			+0.0	+0.0							
17 2706.6	00M 4	-0.6	+0.0	+0.0	+0.0	+0.0	+0.0	40.3	54.0	-13.7	Vert
			+1.2	+3.0	+0.2	-34.5			Low		160
			+29.3	+0.5							
18 2783.6	25M 4	0.4	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Vert
			+1.2	+3.0	+0.3	-34.5			High		169
			+29.3	+0.5							
19 329.4	49M	9.2	+0.0	+19.4	+1.3	+0.9	+0.0	31.2	46.0	-14.8	Vert
QP			+0.4	+0.0	+0.0	+0.0					103
			+0.0	+0.0							
^ 329.4	49M 1	5.5	+0.0	+19.4	+1.3	+0.9	+0.0	37.5	46.0	-8.5	Vert
			+0.4	+0.0	+0.0	+0.0					129
			+0.0	+0.0							
21 2747.4	75M 3	9.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.2	54.0	-14.8	Vert
			+1.2	+3.0	+0.3	-34.5			Mid		145
			+29.3	+0.5							
22 8119.8	00M 2	2.2	+0.0	+0.0	+0.0	+0.0	+0.0	35.5	54.0	-18.5	Vert
Ave			+2.6	+5.7	+0.6	-35.4			Low		150
			+38.9	+0.9							
^ 8119.8	00M 3	7.4	+0.0	+0.0	+0.0	+0.0	+0.0	50.7	54.0	-3.3	Vert
			+2.6	+5.7	+0.6	-35.4			Low		160
			+38.9	+0.9							
24 7320.7	70M 2	3.5	+0.0	+0.0	+0.0	+0.0	+0.0	34.8	54.0	-19.2	Vert
Ave			+1.9	+5.3	+0.6	-35.1			Mid		139
			+37.2	+1.4							
^ 7320.7	70M 3	8.5	+0.0	+0.0	+0.0	+0.0	+0.0	49.8	54.0	-4.2	Vert
			+1.9	+5.3	+0.6	-35.1			Mid		145
			+37.2	+1.4							
26 8233.1	45M 2	2.2	+0.0	+0.0	+0.0	+0.0	+0.0	34.8	54.0	-19.2	Vert
Ave			+2.6	+5.5	+0.8	-35.4			Mid		139
			+38.4	+0.7							
^ 8233.1	45M 3	7.8		+0.0	+0.0	+0.0	+0.0	50.4	54.0	-3.6	Vert
020011	.01.1		+2.6	+5.5	+0.8				Mid	0.0	145
			+38.4	+0.7							- 10
28 7424.4	85M 2	2.8	+0.0	+0.0	+0.0	+0.0	+0.0	34.6	54.0	-19.4	Vert
Ave			+2.0	+5.6	+0.7	-35.1	. 0.0	20	High	-27.1	169
			+37.4	+1.2							-07
^ 7424.4	85M 3	8.0	+0.0	+0.0	+0.0	+0.0	+0.0	49.8	54.0	-4.2	Vert
, ,2 ,, ,		3.3	+2.0	+5.6	+0.7	-35.1	. 0.0	.,,0	High		169
			+37.4	+1.2	. 5.7	22.1					207
30 9149.7	05M 2	1.1	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	54.0	-19.7	Vert
Ave	0.5141 2	.1.1	+2.4	+5.9	+1.1	-34.7	10.0	J T. J	Mid	17.1	139
1110			+37.7	+0.8	11.1	57.1			17114		137
^ 9149.7	05M 3	6.7	+0.0	+0.0	+0.0	+0.0	+0.0	49.9	54.0	-4.1	Vert
7177.1	0.5171 3	0.7	+2.4	+5.9	+1.1	-34.7	10.0	マノ・ノ	Mid	7.1	145
			+37.7	+0.8	11.1	-J -1 ./			11114		143
			⊤J1.1	+0.6							

Page 29 of 91 Report No.: 108561-2

32 8347.	348M	21.7	+0.0	+0.0	+0.0	+0.0	+0.0	34.1	54.0	-19.9	Vert
Ave			+2.6	+5.5	+0.9	-35.3			High		169
			+38.3	+0.4							
^ 8347	350M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	50.0	54.0	-4.0	Vert
			+2.6	+5.5	+0.9	-35.3			High		169
			+38.3	+0.4							
^ 8347	350M	33.5	+0.0	+0.0	+0.0	+0.0	+0.0	45.9	54.0	-8.1	Vert
			+2.6	+5.5	+0.9	-35.3			High		169
			+38.3	+0.4							
35 9022.0	M000	19.9	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	54.0	-20.7	Vert
Ave			+2.4	+6.0	+0.7	-34.8			Low		150
			+37.9	+1.2							
^ 9022.0	000M	35.4	+0.0	+0.0	+0.0	+0.0	+0.0	48.8	54.0	-5.2	Vert
			+2.4	+6.0	+0.7	-34.8			Low		160
			+37.9	+1.2							
37 6403	385M	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.1	107.5	-59.4	Vert
			+2.1	+5.6	+0.5	-34.3			Mid		145
			+34.7	+1.0							
38 5488.	550M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	47.9	107.5	-59.6	Vert
			+1.7	+5.1	+0.4	-33.8			Mid		145
			+34.4	+1.3							
39 6493.	585M	37.5	+0.0	+0.0	+0.0	+0.0	+0.0	47.7	107.5	-59.8	Vert
			+2.1	+5.8	+0.6	-34.3			High		169
			+34.8	+1.2							
40 6315.4	400M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	46.9	107.5	-60.6	Vert
			+2.1	+5.4	+0.4	-34.2			Low		160
			+34.7	+0.9							
41 5564.:	535M	37.3	+0.0	+0.0	+0.0	+0.0	+0.0	46.7	107.5	-60.8	Vert
			+1.8	+5.2	+0.5	-33.8			High		169
			+34.4	+1.3					C		
42 1804.4	450M	44.7	+0.0	+0.0	+0.0	+0.0	+0.0	40.8	107.5	-66.7	Horiz
Ave			+0.7	+2.2	+0.6	-35.1			Low Confi		201
			+27.3	+0.4						C	
43 1804.4	400M	43.7	+0.0	+0.0	+0.0	+0.0	+0.0	39.8	107.5	-67.7	Horiz
Ave			+0.7	+2.2	+0.6	-35.1			Low Confi		169
			+27.3	+0.4						C	
44 9278.0	025M	21.7		+0.0	+0.0	+0.0	+0.0	35.0	107.5	-72.5	Vert
Ave	0_01,1		+2.4	+5.9	+1.3	-34.6	. 0.0		High	,	169
			+37.9	+0.4					6		
^ 9278.0	025M	36.7	+0.0	+0.0	+0.0	+0.0	+0.0	50.0	107.5	-57.5	Vert
, _ , 0.			+2.4	+5.9	+1.3	-34.6		- 0.0	High		169
			+37.9	+0.4					6.		
46 1830.0	045M	37.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	107.5	-73.6	Horiz
Ave		2	+0.7	+2.3	+0.6	-35.1	. 0.0	22.7	Mid Config		187
			+27.6	+0.4	. 5.0	22.1			Comi	> ~	107
47 7217.0	600M	23.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	107.5	-74.0	Vert
47 7217.0 Ave	0001 V1	43.1	+0.0	+5.2	+0.0	-35.0	10.0	33.3	Low	- / 4.0	150
1110			+36.8	+1.4	10.2	55.0			LOW.		130
^ 7217.0	600M	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	48.8	107.5	-58.7	Vert
/21/.	0001/1	J0. 4	+0.0	+5.2	+0.0	-35.0	±0.0	+0.0	Low	-50.7	160
			+36.8	+3.2	±0.∠	-55.0			LUW		100
			+30.0	±1.4							

Page 30 of 91 Report No.: 108561-2

t-									
49 1804.450M	35.2	+0.0	+0.0	+0.0	+0.0	+0.0	31.3	107.5 -76.2	Horiz
Ave		+0.7	+2.2	+0.6	-35.1			Low Config 1	208
		+27.3	+0.4						
^ 1804.400M	54.5	+0.0	+0.0	+0.0	+0.0	+0.0	50.6	107.5 -56.9	Horiz
		+0.7	+2.2	+0.6	-35.1			Low Config 3	160
		+27.3	+0.4						
^ 1804.450M	48.9	+0.0	+0.0	+0.0	+0.0	+0.0	45.0	107.5 -62.5	Horiz
		+0.7	+2.2	+0.6	-35.1			Low Config 2	191
		+27.3	+0.4						
^ 1804.450M	43.8	+0.0	+0.0	+0.0	+0.0	+0.0	39.9	107.5 -67.6	Horiz
		+0.7	+2.2	+0.6	-35.1			Low Config 1	208
		+27.3	+0.4						
53 1855.500M	33.4	+0.0	+0.0	+0.0	+0.0	+0.0	30.2	107.5 -77.3	Horiz
Ave		+0.7	+2.3	+0.6	-35.0			High Config 2	163
		+27.8	+0.4						
54 1855.500M	31.4	+0.0	+0.0	+0.0	+0.0	+0.0	28.2	107.5 -79.3	Horiz
Ave		+0.7	+2.3	+0.6	-35.0			High Config 1	183
		+27.8	+0.4						
^ 1855.500M	44.4	+0.0	+0.0	+0.0	+0.0	+0.0	41.2	107.5 -66.3	Horiz
		+0.7	+2.3	+0.6	-35.0			High Config 2	163
		+27.8	+0.4						
^ 1855.500M	44.1	+0.0	+0.0	+0.0	+0.0	+0.0	40.9	107.5 -66.6	Horiz
		+0.7	+2.3	+0.6	-35.0			High Config 1	183
		+27.8	+0.4						
57 1855.690M	30.6	+0.0	+0.0	+0.0	+0.0	+0.0	27.4	107.5 -80.1	Horiz
Ave		+0.7	+2.3	+0.6	-35.0			High Config 3	180
		+27.8	+0.4						
^ 1855.690M	44.7	+0.0	+0.0	+0.0	+0.0	+0.0	41.5	107.5 -66.0	Horiz
		+0.7	+2.3	+0.6	-35.0			High Config 3	169
		+27.8	+0.4						
59 1830.000M	30.8	+0.0	+0.0	+0.0	+0.0	+0.0	27.3	107.5 -80.2	Horiz
Ave		+0.7	+2.3	+0.6	-35.1			Mid Config 1	214
		+27.6	+0.4					C	
60 1830.000M	29.6	+0.0	+0.0	+0.0	+0.0	+0.0	26.1	107.5 -81.4	Horiz
Ave		+0.7	+2.3	+0.6	-35.1			Mid Config 2	189
		+27.6	+0.4					C	
^ 1830.045M	43.0	+0.0	+0.0	+0.0	+0.0	+0.0	39.5	107.5 -68.0	Horiz
		+0.7	+2.3	+0.6	-35.1			Mid Config 3	145
		+27.6	+0.4					C	
^ 1830.000M	43.0	+0.0	+0.0	+0.0	+0.0	+0.0	39.5	107.5 -68.0	Horiz
		+0.7	+2.3	+0.6	-35.1			Mid Config 1	214
		+27.6	+0.4					C	
^ 1830.000M	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	38.4	107.5 -69.1	Horiz
		+0.7	+2.3	+0.6	-35.1			Mid Config 2	189
		+27.6	+0.4	- / -				- 6-	
64 74.634M	11.1	+0.0	+12.9	+0.6	+0.4	+0.0	25.2	107.5 -82.3	Vert
QP		+0.2	+0.0	+0.0	+0.0	. 0.0		10,10 02.0	103
ζ-		+0.0	+0.0		. 0.0				-00
^ 74.634M	16.4	+0.0	+12.9	+0.6	+0.4	+0.0	30.5	107.5 -77.0	Vert
7 1103 1171	20.1	+0.2	+0.0	+0.0	+0.0	. 0.0	20.0	10,10	129
		+0.0	+0.0	. 0.0	10.0				
		1 0.0	10.0						

Page 31 of 91 Report No.: 108561-2

Band Edge

Band Edge Summary								
Operating Mo	Operating Mode: Single Channel (Low and High)							
Frequency (MHz)	Modulation	Configuration /Antenna Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	10k	1	40.7	46.0	Pass			
902	10k	1	77.5	106.5	Pass			
928	10k	1	76.5	106.5	Pass			
960	10k	1	45.4	54.0	Pass			
614	25k	1	40.8	46.0	Pass			
902	25k	1	77.7	106.5	Pass			
928	25k	1	74.8	106.5	Pass			
960	25k	1	45.4	54.0	Pass			

Band Edge Summary							
Operating Mo	Operating Mode: Single Channel (Low and High)						
Frequency (MHz)	Modulation	Configuration /Antenna Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results		
614	10k	2	40.8	46.0	Pass		
902	10k	2	80.2	109.5	Pass		
928	10k	2	78.8	109.5	Pass		
960	10k	2	45.4	54.0	Pass		
614	25k	2	40.8	46.0	Pass		
902	25k	2	82.4	109.5	Pass		
928	25k	2	78.4	109.5	Pass		
960	25k	2	45.4	54.0	Pass		

Band Edge Summary								
Operating Mo	Operating Mode: Single Channel (Low and High)							
Frequency (MHz)	Modulation	Configuration /Antenna Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	10k	3	40.8	46.0	Pass			
902	10k	3	80.0	107.5	Pass			
928	10k	3	75.4	107.5	Pass			
960	10k	3	45.4	54.0	Pass			
614	25k	3	40.6	46.0	Pass			
902	25k	3	80.6	107.5	Pass			
928	25k	3	75.9	107.5	Pass			
960	25k	3	45.4	54.0	Pass			

Page 32 of 91 Report No.: 108561-2

Band Edge Summary						
Operating Mode: Hopping						
Frequency (MHz)	Modulation	Configuration /Antenna Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results	
614	10k	5	40.7	46.0	Pass	
902	10k	5	77.8	106.5	Pass	
928	10k	5	74.5	106.5	Pass	
960	10k	5	45.3	54.0	Pass	
614	25k	5	40.6	46.0	Pass	
902	25k	5	76.9	106.5	Pass	
928	25k	5	72.3	106.5	Pass	
960	25k	5	45.3	54.0	Pass	

Band Edge Summary							
Operating Mo	Operating Mode: Hopping						
Frequency (MHz)	Modulation	Configuration /Antenna Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results		
614	10k	6	40.6	46.0	Pass		
902	10k	6	81.8	109.5	Pass		
928	10k	6	76.0	109.5	Pass		
960	10k	6	45.3	54.0	Pass		
614	25k	6	40.6	46.0	Pass		
902	25k	6	80.5	109.5	Pass		
928	25k	6	76.3	109.5	Pass		
960	25k	6	45.2	54.0	Pass		

Band Edge Summary						
Operating Mode: Hopping						
Frequency (MHz)	Modulation	Configuration /Antenna Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results	
614	10k	7	40.6	46.0	Pass	
902	10k	7	77.9	107.5	Pass	
928	10k	7	76.5	107.5	Pass	
960	10k	7	45.3	54.0	Pass	
614	25k	7	40.7	46.0	Pass	
902	25k	7	78.0	107.5	Pass	
928	25k	7	74.8	107.5	Pass	
960	25k	7	45.3	54.0	Pass	

Page 33 of 91 Report No.: 108561-2

Band Edge Plots

Configuration 1

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/8/2023
Test Type: Maximized Emissions Time: 18:07:52
Tested By: Michael Atkinson Sequence#: 17

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 23°C Humidity: 48% Pressure: 101.7kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup:

Transmitting continuously with modulation, 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.

Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N antenna attached.

EUT Connected to support laptop via shielded Ethernet cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Page 58 of 91 Report No.: 108561-2

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
T3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025

Measi	ırement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	614.000M	9.4	+27.4	+1.2	+2.3	+0.5	+0.0	40.8	46.0	-5.2	Vert
	QP								25k		
2	614.000M	9.3	+27.4	+1.2	+2.3	+0.5	+0.0	40.7	46.0	-5.3	Vert
	QP								10k		
3	960.000M	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	54.0	-8.6	Vert
	QP								25k		
4	960.000M	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	54.0	-8.6	Vert
	QP								10k		
5	902.000M	43.6	+29.5	+1.5	+2.5	+0.6	+0.0	77.7	106.5	-28.8	Vert
									25k		
6	902.000M	43.4	+29.5	+1.5	+2.5	+0.6	+0.0	77.5	106.5	-29.0	Vert
									10k		
7	928.000M	40.5	+31.2	+1.5	+2.6	+0.7	+0.0	76.5	106.5	-30.0	Vert
									10k		
8	928.000M	38.8	+31.2	+1.5	+2.6	+0.7	+0.0	74.8	106.5	-31.7	Vert
									25k		

Page 59 of 91 Report No.: 108561-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/8/2023
Test Type: Maximized Emissions Time: 18:58:25
Tested By: Michael Atkinson Sequence#: 18

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 23°C Humidity: 48% Pressure: 101.7kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup:

Transmitting continuously with modulation, 10k and 25k modulations investigated.

Top two LTE antenna ports are have Cisco p/n ANT-5G-MP-OUT-N antennas attached. Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9025NM-ITR antenna attached EUT Connected to support laptop via shielded Ethernet cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Page 60 of 91 Report No.: 108561-2

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
T3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025

Measi	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	614.000M	9.4	+27.4	+1.2	+2.3	+0.5	+0.0	40.8	46.0	-5.2	Vert
	QP								25k		
2	614.000M	9.4	+27.4	+1.2	+2.3	+0.5	+0.0	40.8	46.0	-5.2	Vert
	QP								10k		
3	960.000M	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	54.0	-8.6	Vert
	QP								25k		
4	960.000M	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	54.0	-8.6	Vert
	QP								10k		
5	902.000M	48.3	+29.5	+1.5	+2.5	+0.6	+0.0	82.4	109.5	-27.1	Vert
									25k		
6	902.000M	46.1	+29.5	+1.5	+2.5	+0.6	+0.0	80.2	109.5	-29.3	Vert
									10k		
7	928.000M	42.8	+31.2	+1.5	+2.6	+0.7	+0.0	78.8	109.5	-30.7	Vert
									10k		
8	928.000M	42.4	+31.2	+1.5	+2.6	+0.7	+0.0	78.4	109.5	-31.1	Vert
									25k		

Page 61 of 91 Report No.: 108561-2

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717 Test Location:

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/8/2023 Test Type: **Maximized Emissions** Time: 19:38:58 Tested By: Michael Atkinson Sequence#: 19

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 23°C Humidity: 48% Pressure: 101.7kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup:

Transmitting continuously with modulation, 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached. Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9028 antenna attached.

EUT Connected to support laptop via shielded Ethernet cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

> Page 62 of 91 Report No.: 108561-2

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
Т3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	l 614.000M	9.4	+27.4	+1.2	+2.3	+0.5	+0.0	40.8	46.0	-5.2	Vert
	QP								10k		
2	2 614.000M	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	46.0	-5.4	Vert
	QP								25k		
3	960.000M	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	54.0	-8.6	Vert
	QP								25k		
2	4 960.000M	9.4	+31.1	+1.6	+2.6	+0.7	+0.0	45.4	54.0	-8.6	Vert
	QP								10k		
4	5 902.000M	46.5	+29.5	+1.5	+2.5	+0.6	+0.0	80.6	107.5	-26.9	Vert
									25k		
(5 902.000M	45.9	+29.5	+1.5	+2.5	+0.6	+0.0	80.0	107.5	-27.5	Vert
									10k		
	7 928.000M	39.9	+31.2	+1.5	+2.6	+0.7	+0.0	75.9	107.5	-31.6	Vert
									25k		
8	3 928.000M	39.4	+31.2	+1.5	+2.6	+0.7	+0.0	75.4	107.5	-32.1	Vert
									10k		

Page 63 of 91 Report No.: 108561-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/19/2023
Test Type: Maximized Emissions Time: 09:03:18
Tested By: Michael Atkinson Sequence#: 37

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 5			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 23°C Humidity: 48% Pressure: 101.7kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup:

Transmitting with modulation, hopping mode, 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.

Itron IRM-Star (CAM3) radio module has Cisco p/n ANT-5G-MP-OUT-N antenna attached.

EUT Connected to support laptop via shielded Ethernet cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Page 64 of 91 Report No.: 108561-2

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
T3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	614.000M	9.3	+27.4	+1.2	+2.3	+0.5	+0.0	40.7	46.0	-5.3	Vert
	QP								10k		
2	614.000M	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	46.0	-5.4	Vert
	QP								25k		
3	960.000M	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	54.0	-8.7	Vert
	QP								25k		
4	960.000M	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	54.0	-8.7	Vert
	QP								10k		
5	902.000M	43.7	+29.5	+1.5	+2.5	+0.6	+0.0	77.8	106.5	-28.7	Vert
									10k		
6	902.000M	42.8	+29.5	+1.5	+2.5	+0.6	+0.0	76.9	106.5	-29.6	Vert
									25k		
7	928.000M	38.5	+31.2	+1.5	+2.6	+0.7	+0.0	74.5	106.5	-32.0	Vert
									10k		
8	928.000M	36.3	+31.2	+1.5	+2.6	+0.7	+0.0	72.3	106.5	-34.2	Vert
									25k		

Page 65 of 91 Report No.: 108561-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/19/2023
Test Type: Maximized Emissions Time: 09:44:40
Tested By: Michael Atkinson Sequence#: 38

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 6			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 23°C Humidity: 48% Pressure: 101.7kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup:

Transmitting with modulation, hopping mode, 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached.

Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9025NM-ITR antenna attached.

EUT Connected to support laptop via shielded Ethernet cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Page 66 of 91 Report No.: 108561-2

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
T3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025

Measi	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	;	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	614.000M	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	46.0	-5.4	Vert
	QP								25k		
2	614.000M	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	46.0	-5.4	Vert
	QP								10k		
3	960.000M	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	54.0	-8.7	Vert
	QP								10k		
4	960.000M	9.2	+31.1	+1.6	+2.6	+0.7	+0.0	45.2	54.0	-8.8	Vert
	QP								25k		
5	902.000M	47.7	+29.5	+1.5	+2.5	+0.6	+0.0	81.8	109.5	-27.7	Vert
									10k		
6	902.000M	46.4	+29.5	+1.5	+2.5	+0.6	+0.0	80.5	109.5	-29.0	Vert
									25k		
7	928.000M	40.3	+31.2	+1.5	+2.6	+0.7	+0.0	76.3	109.5	-33.2	Vert
									25k		
8	928.000M	40.0	+31.2	+1.5	+2.6	+0.7	+0.0	76.0	109.5	-33.5	Vert
									10k		

Page 67 of 91 Report No.: 108561-2

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC (4362)

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108561 Date: 9/19/2023
Test Type: Maximized Emissions Time: 10:37:31
Tested By: Michael Atkinson Sequence#: 39

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 7			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 23°C Humidity: 48% Pressure: 101.7kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Band Edge

Test Setup:

Transmitting with modulation, hopping mode, 10k and 25k modulations investigated.

Top two LTE antenna ports have Cisco p/n ANT-5G-MP-OUT-N antennas attached. Itron IRM-Star (CAM3) radio module has PCTEL p/n BOA9028 antenna attached. EUT Connected to support laptop via shielded Ethernet cable.

Horizontal and Vertical antenna polarities investigated, worst case reported.

2 x 31 material ferrites with 3 wraps each on Ethernet cable underneath the ground plane. The ferrites are out of the test volume and these are NOT considered a modification.

Page 68 of 91 Report No.: 108561-2

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03824	Biconilog Antenna	3142E	5/9/2023	5/9/2025
T2	ANP05333	Cable	Heliax	8/8/2023	8/8/2025
T3	ANP05360	Cable	RG214	8/8/2023	8/8/2025
T4	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	9.3	+27.4	+1.2	+2.3	+0.5	+0.0	40.7	46.0	-5.3	Vert
	QP								25k		
2	2 614.000M	9.2	+27.4	+1.2	+2.3	+0.5	+0.0	40.6	46.0	-5.4	Vert
	QP								10k		
3	960.000M	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	54.0	-8.7	Vert
	QP								25k		
4	960.000M	9.3	+31.1	+1.6	+2.6	+0.7	+0.0	45.3	54.0	-8.7	Vert
	QP								10k		
5	902.000M	43.9	+29.5	+1.5	+2.5	+0.6	+0.0	78.0	107.5	-29.5	Vert
									25k		
ϵ	5 902.000M	43.8	+29.5	+1.5	+2.5	+0.6	+0.0	77.9	107.5	-29.6	Vert
									10k		
7	928.000M	40.5	+31.2	+1.5	+2.6	+0.7	+0.0	76.5	107.5	-31.0	Vert
									10k		
8	928.000M	38.8	+31.2	+1.5	+2.6	+0.7	+0.0	74.8	107.5	-32.7	Vert
									25k		

Page 69 of 91 Report No.: 108561-2

Test Setup Photo(s)

Below 1GHz, 80cm; View 1

Below 1GHz, 80cm; View 2

Above 1GHz, 150cm

Below 1GHz, View 1

Below 1GHz, View 2

Above 1GHz, 1.5m

Page 73 of 91 Report No.: 108561-2

Configuration 3

Below 1GHz, 80cm; View 1

Below 1GHz, 80cm; View 2

Above 1GHz, 150cm

Hopping Only

Configuration 5

Configuration 6

Configuration 7

Page 77 of 91 Report No.: 108561-2

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.207 AC Mains - Quasi-peak

Work Order #:108561Date:10/13/2023Test Type:Conducted EmissionsTime:15:47:58Tested By:Michael AtkinsonSequence#:50

Software: EMITest 5.03.20 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 8

Support Equipment:

Device Manufacturer Model # S/N
Configuration 8

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 47% Pressure: 100.5kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 150k-30MHz

Test Setup:

Unit has ISM radio transmitting at 915MHz, 10k, and 25k data rates investigated, worst case reported. This is a test setup to show the ISM module can pass 15.207 limits. Antenna port terminated into 500hm load.

Page 78 of 91 Report No.: 108561-2

Itron, Inc. WO#: 108561 Sequence#: 50 Date: 10/13/2023 15.207 AC Mains - Quasi-peak Test Lead: 115V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T2	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
Т3	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T4	AN01492	50uH LISN-Line (L1)	3816/2NM	3/18/2022	3/18/2024
	AN01492	50uH LISN-Neutral (L2)	3816/2NM	3/18/2022	3/18/2024
	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T5	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		

Page 79 of 91 Report No.: 108561-2

Measi	urement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1		36.1	+9.1	+0.0	+0.0	+0.1	+0.0	45.4	48.2	-2.8	Line
	Ave		+0.1								
2	384.925k	36.1	+9.1	+0.0	+0.0	+0.1	+0.0	45.4	48.2	-2.8	Line
	Ave		+0.1								
3		45.6	+9.1	+0.0	+0.0	+0.1	+0.0	54.9	58.2	-3.3	Line
	QP		+0.1								
4		45.6	+9.1	+0.0	+0.0	+0.1	+0.0	54.9	58.2	-3.3	Line
^	QP	10.1	+0.1	.00	+ O O	ı O 1	.00	57.7	40.2	.0.5	T in a
	384.100k	48.4	+9.1 +0.1	+0.0	+0.0	+0.1	+0.0	57.7	48.2	+9.5	Line
^	384.925k	48.4	+9.1	+0.0	+0.0	+0.1	+0.0	57.7	48.2	+9.5	Line
7	418.748k	34.6	+0.1	+0.0	+0.0	+0.1	+0.0	43.9	47.5	-3.6	Line
,	416.746K Ave	34.0	+0.1	+0.0	+0.0	+0.1	+0.0	43.9	47.3	-3.0	Lille
^		45.8	+9.1	+0.0	+0.0	+0.1	+0.0	55.1	47.5	+7.6	Line
	110.7171	15.0	+0.1	10.0	10.0	10.1	10.0	55.1	17.5	17.0	Line
9		30.7	+9.1 +0.1	+0.0	+0.0	+0.1	+0.0	40.0	46.0	-6.0	Line
٨	Ave 537.131k	43.5	+9.1	+0.0	+0.0	+0.1	+0.0	52.8	46.0	+6.8	Line
	337.131K	43.3	+0.1	10.0	10.0	10.1	10.0	32.0	40.0	10.0	Line
11	499.032k	30.1	+9.1	+0.0	+0.0	+0.1	+0.0	39.4	46.0	-6.6	Line
	Ave		+0.1								
^	499.031k	43.8	+9.1	+0.0	+0.0	+0.1	+0.0	53.1	46.0	+7.1	Line
			+0.1								
13		30.1	+9.1	+0.0	+0.0	+0.1	+0.0	39.4	46.7	-7.3	Line
	Ave	42.0	+0.1	0.0	0.0	0.1	0.0	50.1	467		т.
^	460.931k	43.8	+9.1	+0.0	+0.0	+0.1	+0.0	53.1	46.7	+6.4	Line
15	729.447k	29.3	+0.1	+0.0	+0.0	±0.1	+0.0	38.6	46.0	-7.4	Line
13	729.447K Ave	29.3	+9.1 +0.1	+0.0	+0.0	+0.1	+0.0	38.0	40.0	-7.4	Line
^		41.9	+9.1	+0.0	+0.0	+0.1	+0.0	51.2	46.0	+5.2	Line
	, => 1 1 1011	,	+0.1	. 0.0	. 0.0	. 0.1	. 0.0	01.2			2
17	1.955M	27.9	+9.1	+0.0	+0.1	+0.2	+0.0	37.4	46.0	-8.6	Line
	Ave		+0.1								
^	1.955M	42.6	+9.1	+0.0	+0.1	+0.2	+0.0	52.1	46.0	+6.1	Line
			+0.1								
19	575.232k	27.9	+9.1	+0.0	+0.0	+0.1	+0.0	37.2	46.0	-8.8	Line
	Ave		+0.1					10.1	4.5.0		· ·
^	575.231k	39.8	+9.1	+0.0	+0.0	+0.1	+0.0	49.1	46.0	+3.1	Line
21	1.764M	27.7	+0.1	₁ 0.1	LO 1	+0.2	+0.0	37.2	46.0	-8.8	Lina
	1./64M Ave	21.1	+9.1 +0.0	+0.1	+0.1	+0.2	+0.0	31.2	46.0	-8.8	Line
٨		41.2	+9.1	+0.1	+0.1	+0.2	+0.0	50.7	46.0	+4.7	Line
	1.,071	71.2	+0.0	10.1	10.1	10.2	10.0	50.7	70.0	17./	Line
L			10.0								

Page 80 of 91 Report No.: 108561-2

23	921.129k	27.7	+9.1	+0.0	+0.1	+0.1	+0.0	37.1	46.0	-8.9	Line
	Ave		+0.1								
^	921.128k	40.3	+9.1	+0.0	+0.1	+0.1	+0.0	49.7	46.0	+3.7	Line
			+0.1								
25	690.742k	27.5	+9.1	+0.0	+0.0	+0.1	+0.0	36.9	46.0	-9.1	Line
	Ave		+0.2								
^	690.741k	40.8	+9.1	+0.0	+0.0	+0.1	+0.0	50.2	46.0	+4.2	Line
			+0.2								
27	1.994M	26.9	+9.1	+0.0	+0.1	+0.2	+0.0	36.4	46.0	-9.6	Line
	Ave		+0.1								
^	1.994 M	40.3	+9.1	+0.0	+0.1	+0.2	+0.0	49.8	46.0	+3.8	Line
			+0.1								
29	1.574M	26.7	+9.1	+0.1	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
-	Ave		+0.1								
^	1.574M	40.3	+9.1	+0.1	+0.1	+0.2	+0.0	49.9	46.0	+3.9	Line
			+0.1								
31	735.191k	26.3	+9.1	+0.0	+0.0	+0.1	+0.0	35.6	46.0	-10.4	Line
	Ave		+0.1					<u> </u>			
^	735.191k	41.1	+9.1	+0.0	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
<u> </u>			+0.1								
33	1.113M	25.9	+9.1	+0.0	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Line
	Ave		+0.1								
^	1.113M	38.6	+9.1	+0.0	+0.1	+0.1	+0.0	48.0	46.0	+2.0	Line
			+0.1								
35	1.152M	25.8	+9.1	+0.1	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Line
	Ave		+0.1								
^	1.152M	38.3	+9.1	+0.1	+0.1	+0.1	+0.0	47.8	46.0	+1.8	Line
			+0.1								
37	1.344M	25.5	+9.1	+0.1	+0.1	+0.1	+0.0	35.0	46.0	-11.0	Line
	Ave		+0.1								
^	1.344M	38.4	+9.1	+0.1	+0.1	+0.1	+0.0	47.9	46.0	+1.9	Line
<u> </u>			+0.1								
39	345.200k	28.9	+9.1	+0.0	+0.0	+0.1	+0.0	38.1	49.1	-11.0	Line
	Ave		+0.0								
^	345.200k	41.9	+9.1	+0.0	+0.0	+0.1	+0.0	51.1	49.1	+2.0	Line
<u> </u>			+0.0								
41	2.765M	25.4	+9.1	+0.0	+0.1	+0.2	+0.0	34.8	46.0	-11.2	Line
	Ave		+0.0								
^	2.765M	39.6	+9.1	+0.0	+0.1	+0.2	+0.0	49.0	46.0	+3.0	Line
			+0.0								
43	1.727M	25.2	+9.1	+0.1	+0.1	+0.2	+0.0	34.7	46.0	-11.3	Line
	Ave		+0.0								
^	1.727M	39.5	+9.1	+0.1	+0.1	+0.2	+0.0	49.0	46.0	+3.0	Line
<u> </u>			+0.0								
45	429.251k	26.4	+9.1	+0.0	+0.0	+0.1	+0.0	35.7	47.3	-11.6	Line
A	Ave		+0.1								
46	2.032M	24.9	+9.1	+0.0	+0.1	+0.2	+0.0	34.4	46.0	-11.6	Line
-	Ave		+0.1								
٨	2.032M	39.3	+9.1	+0.0	+0.1	+0.2	+0.0	48.8	46.0	+2.8	Line
			+0.1								

Page 81 of 91 Report No.: 108561-2

40 1.0	101/1 24/	.01	. 0. 0	. 0. 1	.0.2	. 0. 0	24.2	46.0	11.7	т
	18M 24.9		+0.0	+0.1	+0.2	+0.0	34.3	46.0	-11.7	Line
Ave	101/4 40 /	+0.0	. 0. 0	. 0. 1	. 0. 2	. 0. 0	10.0	16.0	.20	т.
^ 1.93	18M 40.5		+0.0	+0.1	+0.2	+0.0	49.9	46.0	+3.9	Line
70 121 0	25.	+0.0	0.0	0.0	0.1	0.0	27.1	45.0	12.1	<u> </u>
50 431.3	387k 25.8		+0.0	+0.0	+0.1	+0.0	35.1	47.2	-12.1	Line
Ave		+0.1								
	O2M 23.4		+0.1	+0.1	+0.2	+0.0	32.9	46.0	-13.1	Line
Ave		+0.0								
^ 3.80	02M 39.0		+0.1	+0.1	+0.2	+0.0	48.5	46.0	+2.5	Line
		+0.0								
53 2.72	29M 23.5		+0.0	+0.1	+0.2	+0.0	32.9	46.0	-13.1	Line
Ave		+0.0								
^ 2.72	29M 40.0) +9.1	+0.0	+0.1	+0.2	+0.0	49.4	46.0	+3.4	Line
		+0.0								
55 433.7	717k 24.2	2 +9.1	+0.0	+0.0	+0.1	+0.0	33.5	47.2	-13.7	Line
Ave		+0.1								
56 2.58	81M 22.3	3 +9.1	+0.0	+0.1	+0.2	+0.0	31.7	46.0	-14.3	Line
Ave		+0.0								
^ 2.58	81M 40.5	5 +9.1	+0.0	+0.1	+0.2	+0.0	49.9	46.0	+3.9	Line
		+0.0								
58 2.54	42M 22.3	3 +9.1	+0.0	+0.1	+0.2	+0.0	31.7	46.0	-14.3	Line
Ave		+0.0								
	42M 40.6		+0.0	+0.1	+0.2	+0.0	50.0	46.0	+4.0	Line
		+0.0								
60 2.1	14M 22.2		+0.0	+0.1	+0.2	+0.0	31.7	46.0	-14.3	Line
Ave		+0.1								
-	14M 39.6		+0.0	+0.1	+0.2	+0.0	49.1	46.0	+3.1	Line
		+0.1					.,			
62 10.9	40M 25.9		+0.1	+0.1	+0.4	+0.0	35.6	50.0	-14.4	Line
Ave		+0.0								
^ 10.9	40M 39.7		+0.1	+0.1	+0.4	+0.0	49.4	50.0	-0.6	Line
10.5	10171	+0.0	10.1	10.1	10.1	10.0	12.1	20.0	0.0	Line
64 429.2	251k 33.0		+0.0	+0.0	+0.1	+0.0	42.3	57.3	-15.0	Line
QP	231K 33.0	+0.1	10.0	10.0	10.1	10.0	72.3	37.3	13.0	Line
65 307.7	700k 25.7		+0.0	+0.0	+0.1	+0.0	34.9	50.0	-15.1	Line
Ave	23.	+0.0	10.0	10.0	10.1	10.0	J-T.J	50.0	13.1	Line
^ 307.7	700k 38.2		+0.0	+0.0	+0.1	+0.0	47.4	50.0	-2.6	Line
307.	JO.2	+0.0	±0.0	±0.0	+0.1	±0.0	+/.4	50.0	-2.0	Lille
67 2.39	94M 21.4		+0.0	+0.1	+0.2	+0.0	30.8	46.0	-15.2	Line
	7+1 V1 ∠1. ²		+0.0	+0.1	+0.2	+0.0	30.8	40.0	-13.2	Line
Ave ^ 2.30	94M 40.0	+0.0	ι Ο Ο	ı O 1	10.2	+0.0	49.4	46.0	12.4	Lina
2.39	941 VI 4U.(+0.0	+0.1	+0.2	+0.0	49.4	40.0	+3.4	Line
60 2.0	7214 21 4	+0.0		.0.1	.0.2	.00	20.5	46.0	155	Т :
	73M 21.0		+0.0	+0.1	+0.2	+0.0	30.5	46.0	-15.5	Line
Ave ^ 2.0°	723.4 20.4	+0.1	.00	. 0.1	.0.2	. 0. 0	40.7	46.0	. 2 7	т :
^ 2.0	73M 39.2		+0.0	+0.1	+0.2	+0.0	48.7	46.0	+2.7	Line
71 2 1	753.5	+0.1	0.0	0.1			20. 1	460	1= -	т.
	75M 20.9		+0.0	+0.1	+0.2	+0.0	30.4	46.0	-15.6	Line
Ave	753.6	+0.1	0.0	0.1		0.0	#O =	1		т.
^ 2.1	75M 41.1		+0.0	+0.1	+0.2	+0.0	50.6	46.0	+4.6	Line
<u> </u>		+0.1								

Page 82 of 91 Report No.: 108561-2

73	2.358M	20.3	+9.1	+0.0	+0.1	+0.2	+0.0	29.7	46.0	-16.3	Line
A	Ave		+0.0								
٨	2.358M	40.8	+9.1	+0.0	+0.1	+0.2	+0.0	50.2	46.0	+4.2	Line
			+0.0								
75	433.717k	30.7	+9.1	+0.0	+0.0	+0.1	+0.0	40.0	57.2	-17.2	Line
(QP		+0.1								
^	429.250k	47.5	+9.1	+0.0	+0.0	+0.1	+0.0	56.8	47.3	+9.5	Line
			+0.1								
^	433.717k	46.2	+9.1	+0.0	+0.0	+0.1	+0.0	55.5	47.2	+8.3	Line
			+0.1								
^	431.386k	45.6	+9.1	+0.0	+0.0	+0.1	+0.0	54.9	47.2	+7.7	Line
			+0.1								
79	15.930M	22.6	+9.1	+0.1	+0.2	+0.4	+0.0	32.4	50.0	-17.6	Line
A	Ave		+0.0								
^	15.930M	39.9	+9.1	+0.1	+0.2	+0.4	+0.0	49.7	50.0	-0.3	Line
			+0.0								
81	16.590M	18.0	+9.1	+0.1	+0.2	+0.5	+0.0	28.0	50.0	-22.0	Line
A	Ave		+0.1								
^	16.590M	40.1	+9.1	+0.1	+0.2	+0.5	+0.0	50.1	50.0	+0.1	Line
			+0.1								

Page 83 of 91 Report No.: 108561-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.207 AC Mains - Quasi-peak

Work Order #: 108561 Date: 10/13/2023
Test Type: Conducted Emissions Time: 16:04:12
Tested By: Michael Atkinson Sequence#: 51

Software: EMITest 5.03.20 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 8

Support Equipment:

Device Manufacturer Model # S/N
Configuration 8

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 22°C Humidity: 47% Pressure: 100.5kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 150k-30MHz

Test Setup:

Unit has ISM radio transmitting at 915MHz, 10k, and 25k data rates investigated, worst case reported. This is a test setup to show the ISM module can pass 15.207 limits. Antenna port terminated into 50ohm load.

Page 84 of 91 Report No.: 108561-2

Itron, Inc. WO#: 108561 Sequence#: 51 Date: 10/13/2023 15.207 AC Mains - Quasi-peak Test Lead: 115V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T2	ANP05546	Cable	Heliax	8/1/2023	8/1/2025
Т3	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
	AN01492	50uH LISN-Line (L1)	3816/2NM	3/18/2022	3/18/2024
T4	AN01492	50uH LISN-Neutral (L2)	3816/2NM	3/18/2022	3/18/2024
T5	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025
T6	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		

Page 85 of 91 Report No.: 108561-2

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	417.324k	34.5	+9.1	+0.0	+0.0	+0.0	+0.0	43.7	47.5	-3.8	Neutr
	Ave		+0.0	+0.1							
2		34.9	+9.1	+0.0	+0.0	+0.0	+0.0	44.1	48.2	-4.1	Neutr
	Ave		+0.0	+0.1							
3		44.5	+9.1	+0.0	+0.0	+0.0	+0.0	53.7	58.2	-4.5	Neutr
-	QP		+0.0	+0.1							
^	383.679k	47.5	+9.1	+0.0	+0.0	+0.0	+0.0	56.7	48.2	+8.5	Neutr
			+0.0	+0.1							
5		43.0	+9.1	+0.0	+0.0	+0.0	+0.0	52.2	57.5	-5.3	Neutr
	QP		+0.0	+0.1							
^	417.323k	45.8	+9.1	+0.0	+0.0	+0.0	+0.0	55.0	47.5	+7.5	Neutr
			+0.0	+0.1							
7		30.9	+9.1	+0.0	+0.0	+0.0	+0.0	40.1	46.0	-5.9	Neutr
	Ave		+0.0	+0.1							
^	538.946k	43.7	+9.1	+0.0	+0.0	+0.0	+0.0	52.9	46.0	+6.9	Neutr
			+0.0	+0.1							
9		40.9	+9.1	+0.0	+0.0	+0.0	+0.0	50.1	56.6	-6.5	Neutr
	QP		+0.0	+0.1							
10	498.427k	40.3	+9.1	+0.0	+0.0	+0.0	+0.0	49.5	56.0	-6.5	Neutr
	QP		+0.0	+0.1							
11	498.427k	30.3	+9.1	+0.0	+0.0	+0.0	+0.0	39.5	46.0	-6.5	Neutr
	Ave		+0.0	+0.1							
^	498.426k	43.7	+9.1	+0.0	+0.0	+0.0	+0.0	52.9	46.0	+6.9	Neutr
			+0.0	+0.1							
13	462.746k	30.9	+9.1	+0.0	+0.0	+0.0	+0.0	40.1	46.6	-6.5	Neutr
	Ave		+0.0	+0.1							
^	462.745k	44.7	+9.1	+0.0	+0.0	+0.0	+0.0	53.9	46.6	+7.3	Neutr
			+0.0	+0.1							
15	728.540k	29.7	+9.1	+0.0	+0.0	+0.0	+0.0	38.9	46.0	-7.1	Neutr
	Ave		+0.0	+0.1							
^	728.539k	42.2	+9.1	+0.0	+0.0	+0.0	+0.0	51.4	46.0	+5.4	Neutr
			+0.0	+0.1							
17	2.803M	28.8	+9.1	+0.0	+0.1	+0.0	+0.0	38.0	46.0	-8.0	Neutr
	Ave		+0.0	+0.0							
^	2.803M	42.8	+9.1	+0.0	+0.1	+0.0	+0.0	52.0	46.0	+6.0	Neutr
			+0.0	+0.0							
19		28.7	+9.1	+0.0	+0.1	+0.0	+0.0	37.9	46.0	-8.1	Neutr
	Ave		+0.0	+0.0							
٨	3.374M	42.5	+9.1	+0.0	+0.1	+0.0	+0.0	51.7	46.0	+5.7	Neutr
			+0.0	+0.0							
21		28.5	+9.1	+0.0	+0.1	+0.0	+0.0	37.7	46.0	-8.3	Neutr
	Ave		+0.0	+0.0							
٨	2.956M	42.7	+9.1	+0.0	+0.1	+0.0	+0.0	51.9	46.0	+5.9	Neutr
			+0.0	+0.0							

Page 86 of 91 Report No.: 108561-2

25 A	3.142M ave 3.142M 1.954M ave 1.954M 1.573M	28.5 42.0 28.4 42.5	+9.1 +0.0 +9.1 +0.0 +9.1 +0.0	+0.0 +0.0 +0.0 +0.0 +0.0	+0.1	+0.0	+0.0	37.7 51.2	46.0	-8.3 +5.2	Neutr Neutr
25 A	3.142M 1.954M ave 1.954M	28.4	+9.1 +0.0 +9.1	+0.0 +0.0		+0.0	+0.0	51.2	46.0	+5.2	Neutr
25 A	1.954M Ave 1.954M	28.4	+0.0 +9.1	+0.0		+0.0	+0.0	51.2	46.0	+5.2	Neutr
^ A	1.954M		+9.1								
^ A	1.954M			+0.0	. 0.1	. 0. 0	. 0. 0	27.7	46.0	0.2	NT 4
٨	1.954M	42.5	+0.0	. 0.1	+0.1	+0.0	+0.0	37.7	46.0	-8.3	Neutr
		42.5	. 0. 1	+0.1	. 0. 1	. 0. 0	. 0. 0	<i>5</i> 1.0	46.0	. 7.0	NT 4
	1.573M		+9.1	+0.0	+0.1	+0.0	+0.0	51.8	46.0	+5.8	Neutr
	1.5/3M	27.7	+0.0	+0.1	. 0.1	. 0. 0	. 0. 0	27.1	46.0	0.0	M
27		27.7	+9.1	+0.1	+0.1	+0.0	+0.0	37.1	46.0	-8.9	Neutr
A	1.573M	40.2	+0.0	+0.1	ı O 1	+ O O	+ O O	49.7	46.0	.27	Massass
,,	1.5/3WI	40.3	+9.1	+0.1	+0.1	+0.0	+0.0	49.7	46.0	+3.7	Neutr
20	345.290k	21.0	+0.0	+0.1	.00	+ O O	+ O O	40.1	40.1	0.0	Massass
29		31.0	+9.1 +0.0	$+0.0 \\ +0.0$	+0.0	+0.0	+0.0	40.1	49.1	-9.0	Neutr
Λ	245 2001r	43.9			+0.0	ι Ο Ο	+Ω.Ω	53.0	40.1	+2.0	Moute
•	345.290k	43.9	+9.1 +0.0	$+0.0 \\ +0.0$	+0.0	+0.0	+0.0	33.0	49.1	+3.9	Neutr
31	922.000k	27.6	+9.1	+0.0	+0.1	+0.0	+0.0	36.9	46.0	-9.1	Neutr
	922.000k	27.0	+0.0	+0.0	+0.1	+0.0	+0.0	30.9	40.0	-9.1	Neun
۸		40.1	+9.1	+0.1	+0.1	+0.0	+0.0	49.4	46.0	+3.4	Neutr
)22.000K	70.1	+0.0	+0.1	10.1	10.0	10.0	77.7	40.0	13.4	rvcuti
33	3.224M	27.6	+9.1	+0.0	+0.1	+0.0	+0.0	36.8	46.0	-9.2	Neutr
	3.22 -101	27.0	+0.0	+0.0	10.1	10.0	10.0	30.0	40.0	-7.2	rvcuti
Λ	3.224M	42.2	+9.1	+0.0	+0.1	+0.0	+0.0	51.4	46.0	+5.4	Neutr
	3.22-111	72.2	+0.0	+0.0	10.1	10.0	10.0	31.4	40.0	13.4	ricuti
35	1.768M	27.3	+9.1	+0.1	+0.1	+0.0	+0.0	36.6	46.0	-9.4	Neutr
	ve	21.5	+0.0	+0.0	10.1	10.0	10.0	30.0	40.0	7.4	ricuti
٨	1.768M	41.0	+9.1	+0.1	+0.1	+0.0	+0.0	50.3	46.0	+4.3	Neutr
	11,700171	11.0	+0.0	+0.0	10.1	10.0	10.0	20.2	10.0	1 1.5	110411
37	735.191k	26.9	+9.1	+0.0	+0.0	+0.0	+0.0	36.1	46.0	-9.9	Neutr
	ve		+0.0	+0.1							- 1
	735.191k	41.7	+9.1	+0.0	+0.0	+0.0	+0.0	50.9	46.0	+4.9	Neutr
			+0.0	+0.1							
39	1.382M	26.6	+9.1	+0.1	+0.1	+0.0	+0.0	36.0	46.0	-10.0	Neutr
A	ve		+0.0	+0.1							
٨	1.382M	39.0	+9.1	+0.1	+0.1	+0.0	+0.0	48.4	46.0	+2.4	Neutr
			+0.0	+0.1							
41	2.767M	26.7	+9.1	+0.0	+0.1	+0.0	+0.0	35.9	46.0	-10.1	Neutr
A	ve		+0.0	+0.0							
٨	2.767M	42.8	+9.1	+0.0	+0.1	+0.0	+0.0	52.0	46.0	+6.0	Neutr
			+0.0	+0.0							
43	3.572M	26.7	+9.1	+0.0	+0.1	+0.0	+0.0	35.9	46.0	-10.1	Neutr
A	ve		+0.0	+0.0							
٨	3.572M	43.2	+9.1	+0.0	+0.1	+0.0	+0.0	52.4	46.0	+6.4	Neutr
			+0.0	+0.0							
45	2.615M	26.3	+9.1	+0.0	+0.1	+0.0	+0.0	35.5	46.0	-10.5	Neutr
Α	ve		+0.0	+0.0							
٨	2.615M	43.3	+9.1	+0.0	+0.1	+0.0	+0.0	52.5	46.0	+6.5	Neutr
			+0.0	+0.0							
45 A	2.615M	26.3	+0.0 +9.1 +0.0 +9.1	+0.0 +0.0 +0.0 +0.0	+0.1	+0.0	+0.0	35.5	46.0	-10.5	Neutr

Page 87 of 91 Report No.: 108561-2

47	1.113M	26.1	+9.1	+0.0	+0.1	+0.0	+0.0	35.4	46.0	-10.6	Neutr
	Ave		+0.0	+0.1							
^	1.113M	38.8	+9.1	+0.0	+0.1	+0.0	+0.0	48.1	46.0	+2.1	Neutr
			+0.0	+0.1							
49	3.686M	25.9	+9.1	+0.1	+0.1	+0.0	+0.0	35.2	46.0	-10.8	Neutr
	Ave		+0.0	+0.0							
^	3.686M	41.7	+9.1	+0.1	+0.1	+0.0	+0.0	51.0	46.0	+5.0	Neutr
			+0.0	+0.0							
51	2.579M	25.3	+9.1	+0.0	+0.1	+0.0	+0.0	34.5	46.0	-11.5	Neutr
-	Ave		+0.0	+0.0							
٨	2.579M	43.0	+9.1	+0.0	+0.1	+0.0	+0.0	52.2	46.0	+6.2	Neutr
			+0.0	+0.0							
53	2.433M	24.9	+9.1	+0.0	+0.1	+0.0	+0.0	34.1	46.0	-11.9	Neutr
-	Ave		+0.0	+0.0							
^	2.433M	42.6	+9.1	+0.0	+0.1	+0.0	+0.0	51.8	46.0	+5.8	Neutr
			+0.0	+0.0							
55	2.396M	24.3	+9.1	+0.0	+0.1	+0.0	+0.0	33.5	46.0	-12.5	Neutr
	Ave		+0.0	+0.0							
^	2.395M	42.9	+9.1	+0.0	+0.1	+0.0	+0.0	52.1	46.0	+6.1	Neutr
			+0.0	+0.0							
57	2.212M	22.9	+9.1	+0.0	+0.1	+0.0	+0.0	32.2	46.0	-13.8	Neutr
	Ave		+0.0	+0.1							
٨	2.212M	42.1	+9.1	+0.0	+0.1	+0.0	+0.0	51.4	46.0	+5.4	Neutr
	44.0.55.5	210	+0.0	+0.1			0.0	242	#C ^		
59		24.8	+9.1	+0.1	+0.1	+0.2	+0.0	34.3	50.0	-15.7	Neutr
-	Ave	20.0	+0.0	+0.0	0.1		0.0	40.4	FO 0	0.5	3.7
٨	11.365M	39.9	+9.1	+0.1	+0.1	+0.2	+0.0	49.4	50.0	-0.6	Neutr
	15.055).5	22.0	+0.0	+0.0	0.0	0.2	0.0	22.7	7 0.0	1	
61	15.355M	23.9	+9.1	+0.1	+0.2	+0.2	+0.0	33.5	50.0	-16.5	Neutr
	Ave	20.5	+0.0	+0.0	0.2	0.0	0.0	40.1	50.0	0.0	37
٨	15.355M	39.5	+9.1	+0.1	+0.2	+0.2	+0.0	49.1	50.0	-0.9	Neutr
- 62	01.0403.5	10.6	+0.0	+0.0	.0.2	.0.5	. 0. 0	20.6	50.0	21.4	NT /
63	21.940M	18.6	+9.1	+0.1	+0.2	+0.5	+0.0	28.6	50.0	-21.4	Neutr
	Ave	20.4	+0.0	+0.1	.0.2	.0.5	. 0. 0	40.4	50.0	0.6	NT /
٨	21.940M	39.4	+9.1	+0.1	+0.2	+0.5	+0.0	49.4	50.0	-0.6	Neutr
			+0.0	+0.1							

Page 88 of 91 Report No.: 108561-2

Test Setup Photo(s)

Page 89 of 91 Report No.: 108561-2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS								
	Meter reading	(dBμV)							
+	Antenna Factor	(dB/m)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	(dBμV/m)							

Page 90 of 91 Report No.: 108561-2

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING	MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz						

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 91 of 91 Report No.: 108561-2