Itron, Inc.

TEST REPORT FOR

CGR ACT Module 3 (CAM3) Model: OW3

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928 MHz)

Report No.: 103006-10

Date of issue: October 4, 2019

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 84 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	8
15.247(a) Transmitter Characteristics	8
15.247(a)(1)(i) 20 dB Bandwidth	9
15.247(a)(1) Carrier Separation	11
15.247(a)(1)(i) Number of Hopping Channels	12
15.247(a)(1)(i) Average Time of Occupancy	16
15.247(b)(2) Output Power	18
15.247(d) RF Conducted Emissions & Band Edge	24
15.247(d) Radiated Emissions & Band Edge	30
15.207 AC Conducted Emissions	69
Supplemental Information	83
Measurement Uncertainty	83
Emissions Test Details	83

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019 **REPORT PREPARED BY:**

Morgan Tramontin CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Jay Holcomb Customer Reference Number: 187363

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 103006

August 20, 2019 August 20-22, 2019

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.12

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Japan
Canyon Park, Bothell, WA	US0081	US1022	A-0136
Brea, CA	US0060	US1025	A-0136
Fremont, CA	US0082	US1023	A-0136
Mariposa, CA	US0103	US1024	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform this test. See Manufacturer Declaration in Average Time of Occupancy section.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

The 2dB attenuator with 0.2dB coaxial cable was used for testing to simulate a long coax cable. The manuals explain how to calculate the coaxial cable loss and to be sure there is at least 2.2dB of total loss.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
CGR ACT Module 3 (CAM3)	ltron, Inc.	OW3	CAM3-FCC1
Support Equipment:			
Device	Manufacturer	Model #	S/N
Laptop	Dell	E7440	7021511606
USB to Ethernet adapter	Linksys	USB3GIGV1	15710S0B400416
Configuration 2			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
CGR ACT Module 3 (CAM3)	ltron, Inc.	OW3	CAM3-FCC1
Support Equipment:			
Device	Manufacturer	Model #	S/N
Laptop	Dell	E7440	7021511606
USB to Ethernet adapter	Linksys	USB3GIGV1	15710S0B400416
2.8dBi Colinear	Cisco Systems, Inc.	07-1140-02	NA
Omnidirectional Antenna			
Configuration 3			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
CGR ACT Module 3 (CAM3)	ltron, Inc.	OW3	CAM3-FCC1
Support Equipment:			
Device	Manufacturer	Model #	S/N
Laptop	Dell	E7440	7021511606
USB to Ethernet adapter	Linksys	USB3GIGV1	15710S0B400416
5.5dBi Colinear	PCTEL	BOA9025NM-ITR	NA
Omnidirectional Antenna			

Configuration 4

quipment Tested:				
Device	Manufacturer	Model #	S/N	
CGR ACT Module 3 (CAM3)	ltron, Inc.	OW3	CAM3-FCC1	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Laptop	Dell	E7440	7021511606	
USB to Ethernet adapter	Linksys	USB3GIGV1	15710S0B400416	
8.15dBi Colinear	ANTENEX	FG9026	NA	
Omnidirectional Antenna				
2dB Attenuator	Mini-Circuits	UNAT-2+	NA	
Coaxial Cable with 0.2dB	Mini-Circuits	141-24NM+	NA	
loss at 915MHz				

General Product Information:

Product Information	Manufacturer-Provided Details	
Equipment Type:	Limited Modular, Cisco CGR Host	
Type of Wideband System:	Proprietary FHSS	
Operating Frequency Range:	902.2 to 927.75MHz (FSK)	
Number of Hopping Channels:	512	
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.	
Modulation Type(s):	FSK	
Maximum Duty Cycle:	100%	
Number of TX Chains:	1	
Antenna Type(s) and Gain:	colinear omnidirectional 2.8dBi colinear omnidirectional 5.5dBi colinear omnidirectional 8.15dBi	
Beamforming Type:	NA	
Antenna Connection Type:	External Connector (Professional Installation)	
Nominal Input Voltage:	120Vac and 220Vac	
Firmware / Software used for Test:	Firmware: 5.1.10.0 Test Software: CAM3 FCC Test Help V29.3	

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions				
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	8/21/2019	
Configuration:	1			
Test Setup:	The equipment under test (EUT) is is connected to the spectrum and set to continuously transmit on it Frequency Range: 902MHz to 928 Frequency tested: Low (902.2MHz Firmware power setting: 60 (max) Firmware: 5.1.10.0 Test Software: CAM3 FCC Test He Modulation Types: 25kbps FSK Duty Cycle: Tested at 100%	s stand alone on the ta lyzer using an attenua s low, middle, and hig 3MHz z), Middle (915MHz) an) lp V29.3	able. The antenna port of the EUT ator and coaxial cable. The EUT is in channels for this test. nd High (927.75MHz) and Hopping	

Environmental Conditions			
Temperature (^o C)	23	Relative Humidity (%):	58

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/27/2017	10/27/2019
P06978	Cable	Huber & Suhner Inc	Sucoflex 104A	3/31/2018	3/31/2020
02869	Spectrum Analyzer	Agilent	E4440A	7/25/2019	7/25/2020

15.247(a)(1)(i) 20 dB Bandwidth

Test Data Summary					
Frequency (MHz)	Antenna Port	Limit (kHz)	Results		
902.2	1	FSK	30.3		
915	1	FSK	30.3	≤500	Pass
927.75	1	FSK	30.3		

Plot(s)

Low Channel

Middle Channel

High Channel

15.247(a)(1) Carrier Separation

Test Data Summary				
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.			
Antenna	Operational Mode	Measured	Limit	Results
Port	Operational Mode	(kHz)	(kHz)	Results
1	Transmitting hopping	50.0	>30.3	Pass

Plot(s)

15.247(a)(1)(i) Number of Hopping Channels

Test Data Summary							
$Limit = \begin{cases} 50 & 0\\ 25 & 0 \end{cases}$	$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW < 250 \ kHz \\ 25 \ Channels \ 20 \ dB \ BW \ge 250 \ kHz \end{cases}$						
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results			
1	Transmitting hopping	512	≥50	Pass			

Plot(s)

902MHz - 906MHz

906MHz - 910MHz

910MHz – 914MHz

914MHz – 918MHz

918MHz – 922MHz

922MHz – 926MHz

926MHz – 928MHz

15.247(a)(1)(i) Average Time of Occupancy

CKC laboratories was not contracted to perform the testing due to the required equipment and firmware to exercise the EUT's multiple pseudo-random hopping sequences was not available and that the complexity of the different modulations and modes depend on the device to be in a fully operating network environment.

With the multiple modulations, modes and hop tables, the mode with the worst-case Time of Occupancy to demonstrate 400mS compliance is 399.8mS in 10 seconds, with a modulation that is > 250kHz and < 500 kHz OBW, and 400mS in 20 seconds for a modulation that is < 250kHz OBW. Each session of multiple short transmissions takes place on one of 64 or 512 different channels in a pseudorandom sequence. The algorithm that determines the pseudo-random hop sequence ensures all channels are used equally on the average.

Itron employs hopping patterns based on a pseudo-random sequence generated by an algorithm. The algorithm can have multiple components generated, that each has its own pseudo-random sequence.

The firmware insures the channels are used in the prescribed pseudo random order, therefore, it maintains equal channel usage.

The system has single channel receiver bandwidths that match the transmitter's modulation bandwidth that is enabled.

With the transmitter and receiver in synchronization within the network, transmitters switch frequencies in synchronization with the receiver.

When the transmitter needs to send a continuous or long data stream, total time of the packet transmissions is monitored to comply with dwell time requirement of 400ms in the appropriate 10s or 20s window depending on the modulation/mode enabled.

This device does not employ any hopping avoidance techniques.

Test Setup Photo

15.247(b)(2) Output Power

Test Data Summary - Voltage Variations							
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
902.2	FSK / 1	28.77	28.77	28.77	0.00		
915	FSK / 1	28.85	28.85	28.85	0.00		
927.75	FSK /1	28.62	28.62	28.62	0.00		

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

Parameter	Value		
V _{Nominal} :	120Vac and 220Vac		
VMinimum:	102Vac		
V _{Maximum} :	240Vac		

Test Data Summary - RF Conducted Measurement									
$Limit = \begin{cases} 30\\ 24 \end{cases}$	$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \ \ge 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \ < 50 \ Channels \ (min \ 25) \end{cases}$								
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Ant. Type / Gain (dBi) Measured (dBm)		Results				
902.2	FSK	External Colinear Omnidirectional / 2.8dBi	28.77	≤30dBm conducted/36dBm EIRP	Pass				
915	FSK	External Colinear Omnidirectional / 2.8dBi	28.85	≤30dBm conducted/36dBm EIRP	Pass				
927.75	FSK	External Colinear Omnidirectional / 2.8dBi	28.62	≤30dBm conducted/36dBm EIRP	Pass				
902.2	FSK	External Colinear Omnidirectional / 5.5dBi	28.77	≤30dBm conducted/36dBm EIRP	Pass				
915	FSK	External Colinear Omnidirectional / 5.5dBi	28.85	≤30dBm conducted/36dBm EIRP	Pass				
927.75	FSK	External Colinear Omnidirectional / 5.5dBi	28.62	≤30dBm conducted/36dBm EIRP	Pass				
902.2	FSK	External Colinear Omnidirectional / 8.15dBi	28.77	≤30dBm conducted/36dBm EIRP	Pass				
915	FSK	External Colinear Omnidirectional / 8.15dBi	28.85	≤30dBm conducted/36dBm EIRP	Pass				
927.75	FSK	External Colinear Omnidirectional / 8.15dBi	28.62	≤30dBm conducted/36dBm EIRP	Pass				

Note: 8.15 dBi external antenna uses a 2.0dB external attenuator and 0.2dB coaxial cable.

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc • 110 N Oline	da Pl • Brea CA 92823 •	714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(b) Power Output (902-928	MHz FHSS >50 Chan	nels)
Work Order #:	103006	Date:	8/20/2019
Test Type:	Conducted Emissions	Time:	09:37:51
Tested By:	S. Yamamoto	Sequence#:	1
Software:	EMITest 5.03.12		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the table. The antenna port of the EUT is connected to the spectrum analyzer using an attenuator and coaxial cable. The EUT is continuously transmitting and being set to the low, middle, and high channels for this test. Measurement of fundamental output power. Temperature: 23°C, Humidity: 58%, Pressure:100kPa. Site D. Test method ANSI C63.10 2013 Frequency Range: Fundamental Frequency tested: Low (902.2MHz), Middle (915.0MHz), and High (927.75MHz) Firmware power setting: 60 (max) Firmware: 5.1.10.0 Test Software: CAM3 FCC Test Help V29.3 Modulation Types: 25kbps FSK Antenna type: External Colinear Omnidirectional Antenna Gain: 2.8dBi (attached), 5.5dBi (remote), 8.15dBi with 2dB attenuator and 0.2dB cable (remote)

Duty Cycle: Tested at 100%

Itron, Inc. WO#: 103006 Sequence#: 1 Date: 8/20/2019 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) Test Lead: 120V 60Hz Antenna Port

- × QP Readings
- * Average Readings
- Average Readings
 Ambient
- Software Version: 5.03.12
- 1 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03432	Attenuator	90-30-34	10/27/2017	10/27/2019
T2	ANP06978	Cable	Sucoflex 104A	3/31/2018	3/31/2020
	AN02869	Spectrum Analyzer	E4440A	7/25/2019	7/25/2020

Measu	rement Data:	Re	eading lis	ted by ma	rgin.	n. Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	915.000M	105.9	+29.6	+0.3			+0.0	135.9	137.0	-1.1	Anten
2	902.200M	105.9	+29.6	+0.3			+0.0	135.8	137.0	-1.2	Anten
3	927 750M	105 7	+29.6	+0.3			+0.0	135.6	137.0	-14	Anten
5	27.750M	100.7	- 29.0	10.5			10.0	155.0	12710	1.1	7 miten

Test Setup Photo

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc • 110 N Olinda Pl	• Brea CA 92823 •	714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emission	ons	
Work Order #:	103006	Date:	8/20/2019
Test Type:	Conducted Emissions	Time:	12:23:17
Tested By:	S. Yamamoto	Sequence#:	4
Software:	EMITest 5.03.12		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment: Device Manufacturer Model # S/N Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the table. The antenna port of the EUT is connected to the spectrum analyzer using an attenuator and coaxial cable. The EUT is set to continuously transmit on its low, middle, and high channels for this test. Measurement of spurious emissions. **No emissions found within 35dB of the limit line.**

Temperature range tested: From -10C to +55C Temperature: 23°C, Humidity: 58% Site D. Test method ANSI C63.10 2013

Frequency Range: 0.009MHz to 10GHz RBW=100kHz VBW=300kHz Frequency tested: Low (902.2MHz), Middle (915.0MHz) and High (927.75MHz) Firmware power setting: 60 (max) Firmware: 5.1.10.0 Test Software: CAM3 FCC Test Help V29.3

Modulation Types: 25kbps FSK

Antenna type: External Colinear Omnidirectional Antenna Gain: 2.8dBi (attached), 5.5dBi (remote), 8.15dBi with 2dB attenuator and 0.2dB coaxial cable (remote) Duty Cycle: Tested at 100%

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN03432	Attenuator	90-30-34	10/27/2017	10/27/2019
	ANP06978	Cable	Sucoflex 104A	3/31/2018	3/31/2020
	AN02869	Spectrum Analyzer	E4440A	7/25/2019	7/25/2020

Band Edge

Band Edge Summary									
Limit applied:	Limit applied: Max Power/100kHz - 20dB.								
Operating Mo	ode: Single Channel (Low and High)								
Frequency	Modulation	Measured	Limit	Pocults					
(MHz)	Woddiation	(dBm)	(dBm)	Results					
902	FSK	-10.1	<8.8	Pass					
928	FSK	-23.8	<8.8	Pass					

Band Edge Summary									
Limit applied	Limit applied: Max Power/100kHz - 20dB.								
Operating Mo	ode: Hopping								
Frequency	Modulation	Measured	Limit	Poculto					
(MHz)	Woddiation	(dBm)	(dBm)	Results					
902	FSK	-9.9	<8.8	Pass					
928	FSK	-24.0	<8.8	Pass					

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc • 110 N Olinda Pl • Bre	ea CA 92823 •	714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	103006	Date:	8/20/2019
Test Type:	Conducted Emissions	Time:	11:26:10
Tested By:	S. Yamamoto	Sequence#:	3
Software:	EMITest 5.03.12		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the table. The antenna port of the EUT is connected to the spectrum analyzer using an attenuator and coaxial cable. The EUT is set to continuously transmit on its low and high channels for this test. Additionally, The EUT is set to continuously frequency hop for this test. Measurement of band edge compliance.

Temperature: 23°C, Humidity: 58%, Pressure:100kPa. Site D. Test method ANSI C63.10 2013

Frequency Range: 899MHz to 931MHz Frequency tested: Low (902.2MHz) and High (927.75MHz) and Hopping Firmware power setting: 60 (max) Firmware: 5.1.10.0 Test Software: CAM3 FCC Test Help V29.3

Modulation Types: 25kbps FSK

Antenna type: External Colinear Omnidirectional Antenna Gain: 2.8dBi (attached), 5.5dBi (remote), 8.15dBi with 2dB attenuator and 0.2dB coaxial cable (remote) Duty Cycle: Tested at 100%

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03432	Attenuator	90-30-34	10/27/2017	10/27/2019
T2	ANP06978	Cable	Sucoflex 104A	3/31/2018	3/31/2020
	AN02869	Spectrum Analyzer	E4440A	7/25/2019	7/25/2020

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lea	d: Antenna	Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	902.000M	-39.8	+29.6	+0.3			+0.0	-9.9	8.8	-18.7	Anten
									hopping		
2	902.000M	-40.0	+29.6	+0.3			+0.0	-10.1	8.8	-18.9	Anten
									single char	nnel tx	
3	928.000M	-53.7	+29.6	+0.3			+0.0	-23.8	8.8	-32.6	Anten
									single cha	nnel tx	
4	928.000M	-53.9	+29.6	+0.3			+0.0	-24.0	8.8	-32.8	Anten
									hopping		

Test Setup Photo

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

CKC Laboratories Inc • 110 N Ol	inda Pl • Brea CA 92823 •	714-993-6112
Itron, Inc.		
15.247(d) / 15.209 Radiated Spu	rious Emissions	
103006	Date:	8/22/2019
Radiated Scan	Time:	12:28:58
S. Yamamoto	Sequence#:	12
EMITest 5.03.12		
	CKC Laboratories Inc • 110 N OI Itron, Inc. 15.247(d) / 15.209 Radiated Spu 103006 Radiated Scan S. Yamamoto EMITest 5.03.12	CKC Laboratories Inc • 110 N Olinda Pl • Brea CA 92823 • Itron, Inc. 15.247(d) / 15.209 Radiated Spurious Emissions 103006 Date: Radiated Scan Time: S. Yamamoto Sequence#: EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam table. The EUT is set to continuously transmit when set to its low (902.2MHz), middle (915.0MHz) and high (927.75MHz) channel for this test. Measurement of radiated spurious emissions.

Temperature: 23°C, Humidity: 60%, Pressure:100kPa. Site D. Test method ANSI C63.10 2013

Frequency Range: 9kHz to 10GHz RBW=100kHz VBW=300kHz non restrict band! RBW=200Hz VBW=620Hz restrict band 9kHz to 150kHz RBW=9kHz VBW=27kHz restrict band 150kHz to 30MHz RBW=120kHz VBW=360kHz restrict band 30MHz to 1000MHz RBW=1MHz VBW=3MHz restrict band 1GHz to 10GHz

Frequency tested: Low (902.2MHz), middle (915.0MHz) and High (927.75MHz). Firmware power setting: 60 (max) Firmware: 5.1.10.0 Test Software: CAM3 FCC Test Help V29.3

Modulation Types: 25kbps FSK

Antenna type: External Colinear Omnidirectional (antenna attached to chassis) Antenna Gain: 2.8dBi Duty Cycle: Tested at 100%

Itron, Inc. WO#: 103006 Sequence#: 12 Date: 8/22/2019 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP04382	Cable	LDF-50	6/2/2018	6/2/2020
	ANP05569	Cable-Amplitude	RG-214/U	12/24/2018	12/24/2020
		+15C to +45C (dB)			
	ANP05283	Attenuator	ATT-0218-06-	4/5/2018	4/5/2020
			NNN-02		
	AN01994	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
	ANP06978	Cable	Sucoflex 104A	3/31/2018	3/31/2020
	AN00010	Preamp	8447D	2/19/2018	2/19/2020
	AN00314	Loop Antenna	6502	5/13/2018	5/13/2020
T2	ANP07138	Cable	ANDL1-	3/4/2019	3/4/2021
			PNMNM-60		
Т3	AN00787	Preamp	83017A	5/31/2019	5/31/2021
T4	ANP07247	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		
T5	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021
Т6	AN01646	Horn Antenna	3115	3/14/2018	3/14/2020
	AN02869	Spectrum Analyzer	E4440A	7/25/2019	7/25/2020

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	3338.900M	45.5	+6.6	+4.8	-40.1	+0.6	+0.0	48.6	54.0	-5.4	Vert
			+0.1	+31.1							
2	1451.500M	55.5	+4.2	+3.0	-40.0	+0.2	+0.0	48.5	54.0	-5.5	Vert
			+0.4	+25.2							
3	1410.700M	55.2	+4.1	+2.9	-40.1	+0.2	+0.0	48.2	54.0	-5.8	Vert
			+0.5	+25.4							
4	1526.300M	54.3	+4.4	+3.0	-39.9	+0.2	+0.0	48.0	54.0	-6.0	Vert
			+0.4	+25.6							
5	4990.170M	39.3	+8.5	+5.9	-39.8	+0.4	+0.0	47.9	54.0	-6.1	Vert
			+0.1	+33.5							
6	1303.200M	53.4	+3.9	+2.8	-40.3	+0.2	+0.0	46.3	54.0	-7.7	Vert
			+0.5	+25.8							
7	3353.000M	42.4	+6.6	+4.8	-40.1	+0.6	+0.0	45.5	54.0	-8.5	Horiz
			+0.1	+31.1							
8	1229.800M	52.8	+3.8	+2.7	-40.5	+0.2	+0.0	45.0	54.0	-9.0	Vert
			+0.7	+25.3							
9	4990.000M	36.1	+8.5	+5.9	-39.8	+0.4	+0.0	44.7	54.0	-9.3	Horiz
			+0.1	+33.5							
10	2706.621M	45.1	+5.7	+4.4	-40.0	+0.3	+0.0	44.6	54.0	-9.4	Horiz
			+0.2	+28.9							
11	1508.600M	51.1	+4.3	+3.0	-40.0	+0.2	+0.0	44.5	54.0	-9.5	Horiz
			+0.4	+25.5							
12	2693.500M	44.8	+5.7	+4.4	-40.0	+0.3	+0.0	44.3	54.0	-9.7	Horiz
			+0.2	+28.9							

13 2745.	.030M	44.7	+5.7 +0.2	+4.4 +29.0	-40.0	+0.3	+0.0	44.3	54.0	-9.7	Horiz
14 3659.	.978M	39.6	+7.1 +0.2	+5.1 +31.8	-40.0	+0.4	+0.0	44.2	54.0	-9.8	Horiz
15 3710.	.297M	39.0	+7.1 +0.2	+5.1 +32.1	-39.9	+0.4	+0.0	44.0	54.0	-10.0	Horiz
16 3261.	.900M	40.6	+6.5 +0.1	+4.8 +31.4	-40.1	+0.6	+0.0	43.9	54.0	-10.1	Horiz
17 3711.	.120M	38.8	+7.1 +0.2	+5.1 +32.1	-39.9	+0.4	+0.0	43.8	54.0	-10.2	Vert
18 2885.	.300M	43.3	+5.9 +0.2	+4.5 +29.5	-40.0	+0.3	+0.0	43.7	54.0	-10.3	Horiz
19 1421.	.600M	50.7	+4.1 +0.5	+2.9 +25.4	-40.1	+0.2	+0.0	43.7	54.0	-10.3	Horiz
20 3608.	.823M	39.7	+7.0 +0.1	+5.0 +31.3	-40.0	+0.5	+0.0	43.6	54.0	-10.4	Vert
21 2783.	.090M	43.3	+5.8 +0.2	+4.4 +29.1	-40.0	+0.3	+0.0	43.1	54.0	-10.9	Vert
22 3608.	.811M	38.7	+7.0 +0.1	+5.0 +31.3	-40.0	+0.5	+0.0	42.6	54.0	-11.4	Horiz
23 3660.	.000M	37.8	+7.1 +0.2	+5.1 +31.8	-40.0	+0.4	+0.0	42.4	54.0	-11.6	Horiz
24 2201.	.600M	44.6	+5.3 +0.2	+3.8 +28.0	-39.8	+0.3	+0.0	42.4	54.0	-11.6	Horiz
25 2783.	.543M	42.2	+5.8 +0.2	+4.4 +29.1	-40.0	+0.3	+0.0	42.0	54.0	-12.0	Horiz
26 2200.	.700M	43.9	+5.3 +0.2	+3.8 +28.0	-39.8	+0.3	+0.0	41.7	54.0	-12.3	Vert
27 2706.	.600M	42.0	+5.7 +0.2	+4.4 +28.9	-40.0	+0.3	+0.0	41.5	54.0	-12.5	Vert
28 1301.	.900M	48.5	+3.9 +0.5	+2.8 +25.8	-40.3	+0.2	+0.0	41.4	54.0	-12.6	Horiz
29 5413.	.206M	31.6	+8.9 +0.2	+6.3 +33.8	-39.7	+0.2	+0.0	41.3	54.0	-12.7	Horiz
30 1236.	.600M	47.9	+3.8 +0.7	+2.7 +25.3	-40.5	+0.2	+0.0	40.1	54.0	-13.9	Horiz
31 5413.	.228M	30.3	+8.9 +0.2	+6.3 +33.8	-39.7	+0.2	+0.0	40.0	54.0	-14.0	Vert
32 1719.	.400M	44.6	+4.7 +0.3	+3.2 +26.5	-39.8	+0.2	+0.0	39.7	54.0	-14.3	Horiz
33 2691.	.600M	40.1	+5.7 +0.2	+4.4 +28.9	-40.0	+0.3	+0.0	39.6	54.0	-14.4	Vert

Test Location:	CKC Laboratories Inc • 110 N Olinda Pl • B	erea CA 92823 •	714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious Emi	ssions	
Work Order #:	103006	Date:	8/22/2019
Test Type:	Radiated Scan	Time:	14:08:59
Tested By:	S. Yamamoto	Sequence#:	11
Software:	EMITest 5.03.12		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam table. The EUT is set to continuously transmit when set to its low (902.2MHz), middle (915.0MHz) and high (927.75MHz) channel for this test. Measurement of radiated spurious emissions.

Temperature: 23°C, Humidity: 60%, Pressure:100kPa. Site D. Test method ANSI C63.10 2013

Frequency Range: 9kHz to 10GHz

RBW=100kHz VBW=300kHz non restrict band RBW=200Hz VBW=620Hz restrict band 9kHz to 150kHz RBW=9kHz VBW=27kHz restrict band 150kHz to 30MHz RBW=120kHz VBW=360kHz restrict band 30MHz to 1000MHz RBW=1MHz VBW=3MHz restrict band 1GHz to 10GHz

Frequency tested: Low (902.2MHz), middle (915.0MHz) and High (927.75MHz). Firmware power setting: 60 (max) Firmware: 5.1.10.0 Test Software: CAM3 FCC Test Help V29.3

Modulation Types: 25kbps FSK

Antenna type: External Omnidirectional (antenna remote from chassis) Antenna Gain: 5.5dBi Duty Cycle: Tested at 100%

Itron, Inc. WO#: 103006 Sequence#: 11 Date: 8/22/2019 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP04382	Cable	LDF-50	6/2/2018	6/2/2020
	ANP05569	Cable-Amplitude	RG-214/U	12/24/2018	12/24/2020
		+15C to +45C (dB)			
	ANP05283	Attenuator	ATT-0218-06-	4/5/2018	4/5/2020
			NNN-02		
	AN01994	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
	ANP06978	Cable	Sucoflex 104A	3/31/2018	3/31/2020
	AN00010	Preamp	8447D	2/19/2018	2/19/2020
	AN00314	Loop Antenna	6502	5/13/2018	5/13/2020
T2	ANP07138	Cable	ANDL1-	3/4/2019	3/4/2021
			PNMNM-60		
Т3	AN00787	Preamp	83017A	5/31/2019	5/31/2021
T4	ANP07247	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		
T5	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021
Т6	AN01646	Horn Antenna	3115	3/14/2018	3/14/2020
	AN02869	Spectrum Analyzer	E4440A	7/25/2019	7/25/2020

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	4997.510M	41.3	+8.5	+5.9	-39.8	+0.4	+0.0	49.9	54.0	-4.1	Vert
			+0.1	+33.5							
2	4983.550M	40.3	+8.5	+5.9	-39.8	+0.4	+0.0	48.9	54.0	-5.1	Horiz
			+0.1	+33.5							
3	1545.800M	53.8	+4.4	+3.0	-39.9	+0.2	+0.0	47.6	54.0	-6.4	Vert
			+0.4	+25.7							
4	2745.003M	47.6	+5.7	+4.4	-40.0	+0.3	+0.0	47.2	54.0	-6.8	Vert
			+0.2	+29.0							
5	1409.200M	54.0	+4.1	+2.9	-40.1	+0.2	+0.0	47.0	54.0	-7.0	Vert
			+0.5	+25.4							
6	1452.500M	53.7	+4.2	+3.0	-40.0	+0.2	+0.0	46.7	54.0	-7.3	Vert
			+0.4	+25.2							
7	1231.800M	53.3	+3.8	+2.7	-40.5	+0.2	+0.0	45.5	54.0	-8.5	Vert
			+0.7	+25.3							
8	3356.700M	42.3	+6.6	+4.8	-40.1	+0.6	+0.0	45.4	54.0	-8.6	Vert
			+0.1	+31.1							
9	3333.300M	42.3	+6.6	+4.8	-40.1	+0.6	+0.0	45.4	54.0	-8.6	Horiz
			+0.1	+31.1							
10	3353.300M	42.1	+6.6	+4.8	-40.1	+0.6	+0.0	45.2	54.0	-8.8	Horiz
			+0.1	+31.1							
11	2707.070M	45.7	+5.7	+4.4	-40.0	+0.3	+0.0	45.2	54.0	-8.8	Horiz
			+0.2	+28.9							
12	1502.200M	51.7	+4.3	+3.0	-40.0	+0.2	+0.0	45.1	54.0	-8.9	Horiz
			+0.4	+25.5							

13 36	09.147M	41.1	+7.0 +0.1	+5.0 +31.3	-40.0	+0.5	+0.0	45.0	54.0	-9.0	Vert
14 13	12.200M	52.0	+3.9 +0.5	+2.8 +25.8	-40.3	+0.2	+0.0	44.9	54.0	-9.1	Vert
15 37	11.118M	39.8	+7.1 +0.2	+5.1 +32.1	-39.9	+0.4	+0.0	44.8	54.0	-9.2	Vert
16 27	83.285M	44.9	+5.8 +0.2	+4.4 +29.1	-40.0	+0.3	+0.0	44.7	54.0	-9.3	Vert
17 15	20.000M	51.1	+4.3 +0.4	+3.0 +25.6	-39.9	+0.2	+0.0	44.7	54.0	-9.3	Horiz
18 36	60.335M	39.7	+7.1 +0.2	+5.1 +31.8	-40.0	+0.4	+0.0	44.3	54.0	-9.7	Horiz
19 36	59.995M	39.4	+7.1 +0.2	+5.1 +31.8	-40.0	+0.4	+0.0	44.0	54.0	-10.0	Vert
20 14	64.300M	50.6	+4.2 +0.4	+3.0 +25.3	-40.0	+0.2	+0.0	43.7	54.0	-10.3	Horiz
21 14	14.200M	50.6	+4.1 +0.5	+2.9 +25.4	-40.1	+0.2	+0.0	43.6	54.0	-10.4	Horiz
22 37	10.995M	38.6	+7.1 +0.2	+5.1 +32.1	-39.9	+0.4	+0.0	43.6	54.0	-10.4	Horiz
23 54	13.140M	33.6	+8.9 +0.2	+6.3 +33.8	-39.7	+0.2	+0.0	43.3	54.0	-10.7	Vert
24 27	45.182M	43.7	+5.7 +0.2	+4.4 +29.0	-40.0	+0.3	+0.0	43.3	54.0	-10.7	Horiz
25 39	09.200M	36.6	+7.4 +0.2	+5.3 +33.2	-39.9	+0.5	+0.0	43.3	54.0	-10.7	Vert
26 26	63.300M	43.8	+5.7 +0.2	+4.3 +28.8	-39.9	+0.3	+0.0	43.2	54.0	-10.8	Vert
27 22	00.900M	45.4	+5.3 +0.2	+3.8 +28.0	-39.8	+0.3	+0.0	43.2	54.0	-10.8	Horiz
28 36	08.703M	39.1	+7.0 +0.1	+5.0 +31.3	-40.0	+0.5	+0.0	43.0	54.0	-11.0	Horiz
29 27	83.198M	43.1	+5.8 +0.2	+4.4 +29.1	-40.0	+0.3	+0.0	42.9	54.0	-11.1	Horiz
30 26	93.100M	43.3	+5.7 +0.2	+4.4 +28.9	-40.0	+0.3	+0.0	42.8	54.0	-11.2	Horiz
31 32	61.700M	39.3	+6.5 +0.1	+4.8 +31.4	-40.1	+0.6	+0.0	42.6	54.0	-11.4	Horiz
32 22	03.300M	44.7	+5.3 +0.2	+3.8 +28.0	-39.8	+0.3	+0.0	42.5	54.0	-11.5	Vert
33 22	86.600M	44.4	+5.3 +0.2	+3.9 +28.0	-39.8	+0.3	+0.0	42.3	54.0	-11.7	Horiz
34 16	89.200M	47.7	+4.7 +0.3	+3.2 +26.0	-39.8	+0.2	+0.0	42.3	54.0	-11.7	Vert
35 33	33.300M	39.1	+6.6 +0.1	+4.8 +31.1	-40.1	+0.6	+0.0	42.2	54.0	-11.8	Vert
36 12	39.000M	49.9	+3.8 +0.7	+2.7 +25.2	-40.5	+0.2	+0.0	42.0	54.0	-12.0	Horiz
37 15	80.000M	48.0	+4.5 +0.3	+3.1 +25.6	-39.9	+0.2	+0.0	41.8	54.0	-12.2	Horiz
38 28	77.500M	41.4	+5.9 +0.2	+4.5 +29.5	-40.0	+0.3	+0.0	41.8	54.0	-12.2	Horiz

39	1300.400M	48.8	+3.9	+2.8	-40.3	+0.2	+0.0	41.7	54.0	-12.3	Horiz
			+0.5	+25.8							
40	3605.000M	37.5	+7.0	+5.0	-40.0	+0.5	+0.0	41.4	54.0	-12.6	Vert
			+0.1	+31.3							
41	2310.800M	42.8	+5.3	+3.9	-39.8	+0.3	+0.0	40.9	54.0	-13.1	Vert
			+0.2	+28.2							
42	2893.300M	40.5	+5.9	+4.5	-40.0	+0.3	+0.0	40.9	54.0	-13.1	Vert
			+0.2	+29.5							
43	2706.033M	41.3	+5.7	+4.4	-40.0	+0.3	+0.0	40.8	54.0	-13.2	Vert
			+0.2	+28.9							
44	2344.700M	42.5	+5.3	+3.9	-39.8	+0.3	+0.0	40.8	54.0	-13.2	Horiz
			+0.2	+28.4							
45	1663.300M	46.1	+4.6	+3.2	-39.8	+0.2	+0.0	40.6	54.0	-13.4	Horiz
			+0.3	+26.0							
46	1221.200M	48.2	+3.8	+2.6	-40.6	+0.2	+0.0	40.2	54.0	-13.8	Horiz
			+0.7	+25.3							
47	1720.500M	44.0	+4.7	+3.2	-39.8	+0.2	+0.0	39.1	54.0	-14.9	Horiz
			+0.3	+26.5							
48	2490.800M	40.4	+5.5	+4.1	-39.9	+0.3	+0.0	39.1	54.0	-14.9	Vert
			+0.2	+28.5							

Test Location:	CKC Laboratories Inc • 110 N Olinda Pl	• Brea CA 92823 •	714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious	Emissions	
Work Order #:	103006	Date:	8/22/2019
Test Type:	Radiated Scan	Time:	16:10:55
Tested By:	S. Yamamoto	Sequence#:	10
Software:	EMITest 5.03.12		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 4			
Support Equipment	:		
Device	Manufacturer	Model #	S/N
Configuration 4			
Test Conditions / No	otes:		
The equipment und	ler test (EUT) is stand alone on	the Styrofoam table. T	The EUT is set to continuously transmit
when set to its low (902.2MHz), middle (915.0MHz	z) and high (927.75MHz) channel for this test. Measurement of
radiated spurious em	issions.		
Tomporatura: 23°C	Lumidity 600/ Droccuro 1001/) ₀	

Temperature: 23°C, Humidity: 60%, Pressure:100kPa. Site D. Test method ANSI C63.10 2013

Frequency Range: 9kHz to 10GHz

RBW=100kHz VBW=300kHz non restrict band RBW=200Hz VBW=620Hz restrict band 9kHz to 150kHz RBW=9kHz VBW=27kHz restrict band 150kHz to 30MHz RBW=120kHz VBW=360kHz restrict band 30MHz to 1000MHz RBW=1MHz VBW=3MHz restrict band 1GHz to 10GHz Frequency tested: Low (902.2MHz), middle (915.0MHz) and High (927.75MHz). Firmware power setting: 60 (max) Firmware: 5.1.10.0 Test Software: CAM3 FCC Test Help V29.3

Modulation Types: 25kbps FSK

Antenna type: External Omnidirectional (antenna remote from chassis) Antenna Gain: 8.15dBi with 2dB external attenuator and 0.2dB coaxial cable Duty Cycle: Tested at 100%

Itron, Inc. WO#: 103006 Sequence#: 10 Date: 8/22/2019 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP04382	Cable	LDF-50	6/2/2018	6/2/2020
	ANP05569	Cable-Amplitude	RG-214/U	12/24/2018	12/24/2020
		+15C to +45C (dB)			
	ANP05283	Attenuator	ATT-0218-06-	4/5/2018	4/5/2020
			NNN-02		
	AN01994	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
	ANP06978	Cable	Sucoflex 104A	3/31/2018	3/31/2020
	AN00010	Preamp	8447D	2/19/2018	2/19/2020
	AN00314	Loop Antenna	6502	5/13/2018	5/13/2020
T2	ANP07138	Cable	ANDL1-	3/4/2019	3/4/2021
			PNMNM-60		
Т3	AN00787	Preamp	83017A	5/31/2019	5/31/2021
T4	ANP07247	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		
T5	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021
Т6	AN01646	Horn Antenna	3115	3/14/2018	3/14/2020
	AN02869	Spectrum Analyzer	E4440A	7/25/2019	7/25/2020

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant	
1	1379.200M	56.5	+4.1	+2.9	-40.1	+0.2	+0.0	49.7	54.0	-4.3	Vert	
			+0.5	+25.6								
2	1411.700M	56.5	+4.1	+2.9	-40.1	+0.2	+0.0	49.5	54.0	-4.5	Vert	
			+0.5	+25.4								
3	1457.500M	55.3	+4.2	+3.0	-40.0	+0.2	+0.0	48.3	54.0	-5.7	Horiz	
			+0.4	+25.2								
4	4999.670M	39.0	+8.5	+5.9	-39.8	+0.4	+0.0	47.6	54.0	-6.4	Horiz	
			+0.1	+33.5								
5	1420.000M	54.5	+4.1	+2.9	-40.1	+0.2	+0.0	47.5	54.0	-6.5	Horiz	
			+0.5	+25.4								
6	3346.700M	43.9	+6.6	+4.8	-40.1	+0.6	+0.0	47.0	54.0	-7.0	Horiz	
			+0.1	+31.1								
7	2865.000M	46.4	+5.9	+4.5	-40.0	+0.3	+0.0	46.7	54.0	-7.3	Horiz	
	1220 0003 6		+0.2	+29.4	10.0				= 1 0			
8	1320.000M	53.5	+3.9	+2.8	-40.3	+0.2	+0.0	46.4	54.0	-7.6	Vert	
-	2745 26724	167	+0.5	+25.8	40.0	.0.2	.0.0	16.0	540			
9	2/45.26/M	46./	+5.7	+4.4	-40.0	+0.3	+0.0	46.3	54.0	-/./	Horiz	
10	2607 20214	40.2	+0.2	+29.0	40.0	0.5	.0.0	46.2	540	7.0	II	
10	3007.893M	42.5	+7.0	+3.0	-40.0	+0.3	+0.0	40.2	54.0	-7.8	HOLIZ	
11	2650 157M	41.5	+0.1	+51.5	40.0	+0.4		16.1	54.0	7.0	Uoriz	
11	5059.157W	41.5	+7.1 +0.2	+3.1	-40.0	+0.4	± 0.0	40.1	54.0	-7.9	TIOTIZ	
12	2329 200M	17.8	+5.3	+31.0	-39.8	±0.3	+0.0	46.0	54.0	-8.0	Horiz	
12	2527.20014	47.0	+0.2	+28.3	57.0	10.5	10.0	40.0	54.0	0.0	HOHZ	
13	2330.000M	47.8	+5.3	+3.9	-39.8	+0.3	+0.0	46.0	54.0	-8.0	Vert	
15	2330.00011	17.0	+0.2	+28.3	57.0	10.5	10.0	10.0	51.0	0.0	vent	
14	1302.700M	52.8	+3.9	+2.8	-40.3	+0.2	+0.0	45.7	54.0	-8.3	Vert	
			+0.5	+25.8								
15	2705.000M	46.0	+5.7	+4.4	-40.0	+0.3	+0.0	45.5	54.0	-8.5	Horiz	
			+0.2	+28.9								
16	3335.000M	42.4	+6.6	+4.8	-40.1	+0.6	+0.0	45.5	54.0	-8.5	Horiz	
			+0.1	+31.1								
17	2782.670M	45.5	+5.8	+4.4	-40.0	+0.3	+0.0	45.3	54.0	-8.7	Horiz	
			+0.2	+29.1								
18	1360.000M	52.2	+4.0	+2.9	-40.2	+0.2	+0.0	45.3	54.0	-8.7	Horiz	
			+0.5	+25.7								
19	2705.813M	45.7	+5.7	+4.4	-40.0	+0.3	+0.0	45.2	54.0	-8.8	Horiz	
			+0.2	+28.9								
20	3710.747M	39.9	+7.1	+5.1	-39.9	+0.4	+0.0	44.9	54.0	-9.1	Horiz	
			+0.2	+32.1								
21	4991.410M	35.9	+8.5	+5.9	-39.8	+0.4	+0.0	44.5	54.0	-9.5	Vert	
			+0.1	+33.5								
22	3659.790M	39.8	+7.1	+5.1	-40.0	+0.4	+0.0	44.4	54.0	-9.6	Vert	
			+0.2	+31.8								
23	2202.500M	46.3	+5.3	+3.8	-39.8	+0.3	+0.0	44.1	54.0	-9.9	Vert	
			+0.2	+28.0								

24	3609.250M	40.2	+7.0	+5.0	-40.0	+0.5	+0.0	44.1	54.0	-9.9	Vert
			+0.1	+31.3							
25	3265.000M	40.7	+6.5	+4.8	-40.1	+0.6	+0.0	43.9	54.0	-10.1	Horiz
			+0.1	+31.3							
26	2268.300M	46.0	+5.3	+3.9	-39.8	+0.3	+0.0	43.9	54.0	-10.1	Vert
			+0.2	+28.0							
27	2210.800M	45.8	+5.3	+3.8	-39.8	+0.3	+0.0	43.6	54.0	-10.4	Horiz
			+0.2	+28.0							
28	3711.527M	38.5	+7.1	+5.1	-39.9	+0.4	+0.0	43.5	54.0	-10.5	Vert
			+0.2	+32.1							
29	1301.400M	50.2	+3.9	+2.8	-40.3	+0.2	+0.0	43.1	54.0	-10.9	Horiz
			+0.5	+25.8							
30	1234.800M	50.5	+3.8	+2.7	-40.5	+0.2	+0.0	42.7	54.0	-11.3	Vert
			+0.7	+25.3							
31	1661.700M	47.9	+4.6	+3.2	-39.8	+0.2	+0.0	42.4	54.0	-11.6	Horiz
			+0.3	+26.0							
32	1223.500M	50.3	+3.8	+2.6	-40.6	+0.2	+0.0	42.3	54.0	-11.7	Vert
			+0.7	+25.3							
33	2493.300M	43.6	+5.5	+4.1	-39.9	+0.3	+0.0	42.3	54.0	-11.7	Horiz
00	2.00.00000	1010	+0.2	+28.5	0,1,1	1010			0.110		110112
34	2390.000M	43.8	+5.4	+4.0	-39.8	+0.3	+0.0	42.2	54.0	-11.8	Horiz
0.	200000000	1010	+0.2	+28.3	0710	1010			0.110	1110	110112
35	2706 459M	42.4	+5.7	+4 4	-40.0	+0.3	+0.0	41 9	54.0	-12.1	Vert
55	2700.109111	.2	+0.2	+28.9	10.0	10.5	10.0	,	5 110	12.1	v ere
36	5413 237M	32.1	+8.9	+6.3	-39.7	+0.2	+0.0	41.8	54.0	-12.2	Horiz
50	5115.257141	52.1	+0.2	+33.8	57.1	10.2	10.0	11.0	51.0	12.2	HOHE
37	5413 047M	32.1	+8.9	+6.3	-39.7	+0.2	+0.0	41.8	54.0	-12.2	Vert
57	5115.01714	52.1	+0.2	+33.8	57.1	10.2	10.0	11.0	51.0	12.2	vert
38	3356 700M	38.6	+6.6	±1.8	-40.1	±0.6	+0.0	41.7	54.0	-12.3	Vert
50	5550.700141	50.0	+0.0	+31.1	-40.1	10.0	10.0	71./	54.0	-12.5	ven
30	2744 860M	/2.1	+5.7	±1.1	-40.0	±0.3	+0.0	41.7	54.0	-12.3	Vert
57	2744.000101	72.1	± 0.7	⊥29.0	-+0.0	10.5	10.0	71./	54.0	-12.5	ven
40	1232 100M	19.1	+3.8	+27.0	-40.5	+0.2	+0.0	/1.6	54.0	_12.4	Horiz
40	1252.1001	49.4	+3.8 +0.7	+2.7 ⊥25.3	-40.5	+0.2	+0.0	41.0	54.0	-12.4	HOHZ
41	2385 000M	42.0	10.7	+4.0	20.8	+0.3		/1.3	54.0	12.7	Vort
41	2385.000101	42.7	+0.2	+ 4 .0 +28.3	-39.0	± 0.5	± 0.0	41.5	54.0	-12.7	ven
42	2264 200M	27.6	+6.5	+4.9	40.1	0.6		40.8	54.0	12.2	Vort
42	5204.2001 v I	57.0	+0.3	+4.0	-40.1	± 0.0	± 0.0	40.8	54.0	-13.2	ven
12	1162 150M	18.2	+0.1	+31.5	40.8	+0.2		40.7	54.0	12.2	Vort
43	1105.1501	40.2	+3.0	+2.0	-40.8	+0.2	+0.0	40.7	54.0	-15.5	ven
A	1661 70014	16.0	+1.2	+23.3	20.9	10.2		40.7	54.0	12.2	Vent
44	1001./UUM	40.2	+4.0	+3.2	-39.8	+0.2	+0.0	40.7	54.0	-13.3	vert
4.5	2702 20714	10.0	+0.5	+20.0	40.0	10.2	.0.0	40.4	540	12.0	Vert
45	2/83.38/M	40.6	+5.8	+4.4	-40.0	+0.3	+0.0	40.4	54.0	-13.0	vert
			+0.2	+29.1							

46 1494.200M	46.5	+4.3	+3.0	-40.0	+0.2	+0.0	39.9	54.0	-14.1	Vert
Ave		+0.4	+25.5							
^ 1494.200M	58.6	+4.3	+3.0	-40.0	+0.2	+0.0	52.0	54.0	-2.0	Vert
		+0.4	+25.5							
48 1515.000M	46.2	+4.3	+3.0	-39.9	+0.2	+0.0	39.8	54.0	-14.2	Vert
Ave		+0.4	+25.6							
^ 1515.000M	58.0	+4.3	+3.0	-39.9	+0.2	+0.0	51.6	54.0	-2.4	Vert
		+0.4	+25.6							
50 1456.700M	45.7	+4.2	+3.0	-40.0	+0.2	+0.0	38.7	54.0	-15.3	Vert
Ave		+0.4	+25.2							
^ 1456.700M	57.9	+4.2	+3.0	-40.0	+0.2	+0.0	50.9	54.0	-3.1	Vert
		+0.4	+25.2							
52 2694.200M	38.2	+5.7	+4.4	-40.0	+0.3	+0.0	37.7	54.0	-16.3	Vert
		+0.2	+28.9							

Band Edge

Band Edge Summary									
Operating Mode: Single Channel (Low and High)									
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	FSK	External Colinear Omnidirectional / 2.8dBi	40.6	<46	Pass				
902	FSK	External Colinear Omnidirectional / 2.8dBi	88.5	<106.3	Pass				
928	FSK	External Colinear Omnidirectional / 2.8dBi	73.8	< 106.3	Pass				
960	FSK	External Colinear Omnidirectional / 2.8dBi	45.9	<54	Pass				
614	FSK	External Colinear Omnidirectional / 5.5dBi	41.4	<46	Pass				
902	FSK	External Colinear Omnidirectional / 5.5dBi	90.0	<111	Pass				
928	FSK	External Colinear Omnidirectional / 5.5dBi	76.0	<111	Pass				
960	FSK	External Colinear Omnidirectional / 5.5dBi	46.8	<54	Pass				
614	FSK	External Colinear Omnidirectional / 8.15dBi	41.2	<46	Pass				
902	FSK	External Colinear Omnidirectional / 8.15dBi	88.5	<108.2	Pass				
928	FSK	External Colinear Omnidirectional / 8.15dBi	72.2	<108.2	Pass				
960	FSK	External Colinear Omnidirectional / 8.15dBi	44.6	<54	Pass				

Band Edge Summary									
Operating Mode: Hopping									
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	FSK	External Colinear Omnidirectional / 2.8dBi	40.0	<46	Pass				
902	FSK	External Colinear Omnidirectional / 2.8dBi	86.5	<106.3	Pass				
928	FSK	External Colinear Omnidirectional / 2.8dBi	71.2	<106.3	Pass				
960	FSK	External Colinear Omnidirectional / 2.8dBi	49.7	<54	Pass				
614	FSK	External Colinear Omnidirectional / 5.5dBi	42.7	<46	Pass				
902	FSK	External Colinear Omnidirectional / 5.5dBi	90.7	<111	Pass				
928	FSK	External Colinear Omnidirectional / 5.5dBi	70.2	<111	Pass				
960	FSK	External Colinear Omnidirectional / 5.5dBi	50.2	<54	Pass				
614	FSK	External Colinear Omnidirectional / 8.15dBi	42.1	<46	Pass				
902	FSK	External Colinear Omnidirectional / 8.15dBi	72.4	<108.2	Pass				
928	FSK	External Colinear Omnidirectional / 8.15dBi	70.8	<108.2	Pass				
960	FSK	External Colinear Omnidirectional / 8.15dBi	48.1	<54	Pass				

Band Edge Plots

Page 47 of 84 Report No.: 103006-10