## Itron, Inc.

## TEST REPORT FOR

## CGR ACT Module 3 (CAM3) <br> Model: OW3

## Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(FHSS 902-928 MHz)

Report No.: 101674-1

Date of issue: October 11, 2018


Test Certificate \# 803.05

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information ..... 3
Test Report Information .....  3
Report Authorization .....  3
Test Facility Information .....  4
Software Versions .....  4
Site Registration \& Accreditation Information .....  .4
Summary of Results .....  5
Modifications During Testing .....  .5
Conditions During Testing .....  5
Equipment Under Test ..... 6
General Product Information .....  7
FCC Part 15 Subpart C ..... 8
15.247(a) Transmitter Characteristics .....  8
15.247(a)(1) 20 dB Bandwidth .....  9
15.247(a)(1) Carrier Separation ..... 23
15.247(a)(1)(i) Number of Hopping Channels ..... 25
15.247(a)(1)(iii) Average Time of Occupancy ..... 31
15.247(b)(2) Output Power ..... 33
15.247(d) RF Conducted Emissions \& Band Edge ..... 51
15.247(d) Radiated Emissions \& Band Edge ..... 74
15.247(f) Hybrid Systems ..... 187
15.247(f) Average Time of Occupancy ..... 187
15.247(f) Power Spectral Density ..... 188
15.207 AC Conducted Emissions ..... 196
Supplemental Information ..... 204
Measurement Uncertainty ..... 204
Emissions Test Details ..... 204

# ADMINISTRATIVE INFORMATION 

## Test Report Information

## REPORT PREPARED FOR:

Iron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 159196

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Terri Rayle
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 101674

August 20, 2018
August 20-29, 2018

## Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.


Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

## Test Facility Information



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Canyon Park, Bothell, WA 98021

## Software Versions

| CKC Laboratories Proprietary Software | Version |
| :--- | :---: |
| EMITest Emissions | 5.03 .11 |

Site Registration \& Accreditation Information

| Location | NIST CB \# | TAIWAN | CANADA | FCC | JAPAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Canyon Park <br> Bothell, WA | US0081 | SL2-IN-E-1145R | $3082 \mathrm{C}-1$ | US1022 | A-0148 |

(Tessting the Future LABORATORIES, INC.

## SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

| Test Procedure | Description | Modifications | Results |
| :--- | :--- | :--- | :--- |
| $15.247(\mathrm{a})(1)(\mathrm{i})$ | Occupied Bandwidth | NA | Pass |
| $15.247(\mathrm{a})(1)$ | Carrier Separation | NA | Pass |
| $15.247(\mathrm{a})(1)(\mathrm{i})$ | Number of Hopping Channels | NA | Pass |
| $15.247(\mathrm{a})(1)(\mathrm{i})$ | Average Time of Occupancy | NA | NP |
| $15.247(\mathrm{~b})(2)$ | Output Power | NA | Pass |
| $15.247(\mathrm{~d})$ | RF Conducted Emissions \& Band Edge | NA | Pass |
| $15.247(\mathrm{~d})$ | Radiated Emissions \& Band Edge | NA | Pass |
| $15.247(\mathrm{f})$ | Hybrid Systems | NA | Pass |
| $15.247(\mathrm{f})$ | Average Time of Occupancy | NA | NP |
| $15.247(\mathrm{f})$ | Power Spectral Density | NA | Pass |
| 15.207 | AC Conducted Emissions | NA | Pass |

NA = Not Applicable
NP = CKC Laboratories was not contracted to perform test: See Manufacturer's Declaration in Test Section.

## ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

## Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

## Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

## Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

## Summary of Conditions

There are 4 physical configurations tested, and 12 different modulations investigated.

## EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

## Configuration 1

Equipment Tested:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| CGR ACT Module 3 (CAM3) | Itron, Inc. | OW3 | FCC-1 (CGR), CAM3-FCC1 |
|  |  |  | (CAM Module, ID) |

Support Equipment:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Connected Grid Router (Host | Cisco Systems, Inc. | CGR 1240 | FTX2204G01J |
| Laptop | Dell | E6420 | NA |
| AC Adapter (for Laptop) | Dell | DA130PE1-00 | NA |
| USB to Ethernet adapter | Linksys | USB3GIGV1 | NA |

## Configuration 2

Equipment Tested:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| CGR ACT Module 3 (CAM3) | Itron, Inc. | OW3 | FCC-1 (CGR), CAM3-FCC1 |
|  |  |  | (CAM Module, ID) |

Support Equipment:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 2.8dBi Colinear Omni Antenna (attached) | Cisco Systems, Inc. | $07-1140-02$ | NA |
| Connected Grid Router (Host | Cisco Systems, Inc. | CGR 1240 | FTX2204G01J |
| Laptop | Dell | E6420 | NA |
| AC Adapter (for Laptop) | Dell | DA130PE1-00 | NA |
| USB to Ethernet adapter | Linksys | USB3GIGV1 | NA |

## Configuration 3

Equipment Tested:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| CGR ACT Module 3 (CAM3) | Itron, Inc. | OW3 | FCC-1 (CGR) CAM3-FCC1 |
|  |  |  | (CAM Module, ID) |

Support Equipment:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 5.5dBi Colinear Omni Antenna (remote) | Cisco Systems, Inc. | ANT-WPAN-OM- <br> OUT-N | NA |
| Connected Grid Router (Host | Cisco Systems, Inc. | CGR 1240 | FTX2204G01J |
| Laptop | Dell | E6420 | NA |
| AC Adapter (for Laptop) | Dell | DA130PE1-00 | NA |
| USB to Ethernet adapter | Linksys | USB3GIGV1 | NA |

## Configuration 4

Equipment Tested:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| CGR ACT Module 3 (CAM3) | Itron, Inc. | OW3 | FCC-1 (CHR) CAM3-FCC1 |
|  |  |  | (CAM Module, ID) |

Support Equipment:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| 8.15dBi Colinear Omni Antenna (remote) | Antenex | FG9026 | NA |
| Connected Grid Router (Host | Cisco Systems, Inc. | CGR 1240 | FTX2204G01J |
| Laptop | Dell | E6420 | NA |
| AC Adapter (for Laptop) | Dell | DA130PE1-00 | NA |
| USB to Ethernet adapter | Linksys | USB3GIGV1 | NA |
| 3dB Attenuator (for 8.15dBi antenna) | Mini-Circuits | BW-N3W5+ | NA |

## General Product Information:


L.ABORATORIES, INC.

## FCC Part 15 Subpart C

### 15.247(a) Transmitter Characteristics

| Test Setup/Conditions |  |  |  |
| :--- | :--- | :--- | :--- |
| Test Location: | Bothell Lab Bench | Test Engineer: | M. Atkinson |
| Test Method: | ANSI C63.10 (2013) | Test Date(s): | $8 / 20 / 18$ to 8/21/18 |
| Configuration: | 1 | Firmware power setting: Max <br> Firmware: CAM3-DEV Major Number 4, Minor Number 7, Build Number 153, Revision <br> Number 787268 <br> Test Software: CAM3 FCC Test Helper v14 <br> Test Setup: <br> Duty Cycle: Tested at 100\% |  |
| Setup: The EUT is continuously transmitting with modulation on ISM port. <br> The EUT ISM port is connected directly to a spectrum analyzer for direct conducted <br> measurements. <br> Low, Mid, High channels investigated, all modulation types investigated. |  |  |  |


| Environmental Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Temperature (으) | $22-24$ | Relative Humidity (\%): | $38-42$ |

Test Equipment

| Asset\# | Description | Manufacturer | Model | Cal Date | Cal Due |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 02673 | Spectrum Analyzer | Agilent | E4446A | $2 / 3 / 2017$ | $2 / 3 / 2019$ |
| P07228 | Attenuator | Pasternack | PE7004-20 | $11 / 30 / 2017$ | $11 / 30 / 2019$ |
| P07226 | Attenuator | Pasternack | PE7004-6 | $12 / 1 / 2017$ | $12 / 1 / 2019$ |
| P06008 | Cable | Andrew | Heliax | $4 / 10 / 2018$ | $4 / 10 / 2020$ |

LABORATORIES, INC.

### 15.247(a)(1) 20 dB Bandwidth

| Test Data Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency (MHz) | Antenna Port | Modulation | Measured (kHz) | $\begin{aligned} & \hline \text { Limit } \\ & \text { (kHz) } \end{aligned}$ | Results |
| 902.2 | 1 | 10k GFSK | 20.35 | $\leq 500$ | Pass |
| 915.0 | 1 | 10k GFSK | 19.52 |  |  |
| 927.75 | 1 | 10k GFSK | 20.05 |  |  |
| 902.4 | 1 | 50k GFSK | 101.90 | $\leq 500$ | Pass |
| 915.2 | 1 | 50k GFSK | 101.32 |  |  |
| 927.6 | 1 | 50k GFSK | 102.02 |  |  |
| 902.4 | 1 | 150k GFSK | 182.35 | $\leq 500$ | Pass |
| 915.2 | 1 | 150k GFSK | 180.73 |  |  |
| 927.6 | 1 | 150k GFSK | 181.72 |  |  |
| 902.4 | 1 | 6.25k OQPSK | 133.76 | $\leq 500$ | Pass |
| 915.2 | 1 | 6.25k OQPSK | 133.07 |  |  |
| 927.6 | 1 | 6.25k OQPSK | 133.79 |  |  |
| 902.4 | 1 | 12.5k OQPSK | 132.90 | $\leq 500$ | Pass |
| 915.2 | 1 | 12.5k OQPSK | 131.02 |  |  |
| 927.6 | 1 | 12.5k OQPSK | 130.97 |  |  |
| 902.4 | 1 | 200k OFDM | 333.63 | $\leq 500$ | Pass |
| 915.2 | 1 | 200k OFDM | 334.71 |  |  |
| 927.6 | 1 | 200k OFDM | 335.18 |  |  |
| 902.4 | 1 | 600k OFDM | 331.95 | $\leq 500$ | Pass |
| 915.2 | 1 | 600k OFDM | 332.68 |  |  |
| 927.6 | 1 | 600k OFDM | 332.79 |  |  |
| 902.8 | 1 | 1.2M OFDM (Hybrid) | 572.59 | *See Note | Pass |
| 914.8 | 1 | 1.2M OFDM (Hybrid) | 577.51 |  |  |
| 926.8 | 1 | 1.2M OFDM (Hybrid) | 577.22 |  |  |

*This mode a Hybrid mode and is not required to meet the FHSS bandwidth limit. However, the system must pass the DTS PSD limit of 8 dBm in any 3 kHz band. DTS bandwidth was measured for informational purposes.
See Supplemental Section of data in 15.247 (f) Hybrid Systems.

## Plots

GFSK


Low Channel, 10k


Middle Channel, 10k


High Channel, 10k


Low Channel, 50k


Middle Channel, 50k


High Channel, 50k


Low Channel, 150k


Middle Channel, 150k


High Channel, 150k

## OQPSK



Low Channel, 6.25k


Middle Channel, 6.25k


High Channel, 6.25k


Low Channel, 12.5k


Middle Channel, 12.5k


High Channel, 12.5k

## OFDM



Low Channel, 200k


Middle Channel, 200k


High Channel, 200k


Low Channel, 600k


Middle Channel, 600k


High Channel, 600k


Low Channel, 1.2M


Middle Channel, 1.2M


High Channel, 1.2M

### 15.247(a)(1) Carrier Separation

Test Data Summary
Limit applied: 20dB bandwidth of the hopping channel.

| Antenna <br> Port | Operational Mode | Measured <br> $\mathbf{( k H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Results |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 50 kHz Channel Plan (10k GFSK) | 50.0 | $>20.35$ | Pass |
| 1 | 400 kHz Channel Plan (50k GFSK, 150k <br> GFSK, 6.25 OQPSK, 12.5 OQPSK, 200k <br> OFDM, 600k OFDM) | 400.16 | $>335.18$ | Pass |
| 1 | $800 k H z ~ C h a n n e l ~ P l a n ~(1.2 M ~ O F D M ~$ <br> Hybrid Mode) | 800.9 | $>577.51$ | Pass |

## Plots



50 kHz


400kHz


800 kHz

### 15.247(a)(1)(i) Number of Hopping Channels

| Test Data Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Limit $=\left\{\begin{array}{l}50 \text { Channels } \mid 20 \mathrm{~dB} B W<250 \mathrm{kHz} \\ 25 \text { Channels } \mid 20 \mathrm{~dB} B W \geq 250 \mathrm{kHz}\end{array}\right.$ |  |  |  |  |  |
| Antenna <br> Port | Operational Mode | Measured <br> (Channels) | Limit <br> (Channels) | Results |  |
| 1 | 50kHz Channel Plan (10k GFSK) | 512 | $\geq 50$ | Pass |  |
| 1 | 400 kHz Channel Plan (50k GFSK, 150k <br> GFSK, 6.25 OQPSK, 12.5 OQPSK, 200k <br> OFDM, 600k OFDM) | 64 | $\geq 50$ | Pass |  |
| 1 | 800 kHz Channel Plan (1.2M OFDM <br> Hybrid Mode) | 31 | $\geq 25$ | Pass |  |

## Plots


$50 \mathrm{kHz}, 1^{\text {st }}$ x 64ch

$50 \mathrm{kHz}, 2^{\text {nd }} \times 64 \mathrm{ch}$

$50 \mathrm{kHz}, 3^{\text {rd }} \times 64 \mathrm{ch}$

$50 \mathrm{kHz}, 4^{\text {th }} \times 64 \mathrm{ch}$

$50 \mathrm{kHz}, 5^{\text {th }} \times 64 \mathrm{ch}$

$50 \mathrm{kHz}, 6^{\text {th }} \times 64 \mathrm{ch}$

$50 \mathrm{kHz}, 7^{\text {th }} \times 64 \mathrm{ch}$

$50 \mathrm{kHz}, 8^{\text {th }} \times 64 \mathrm{ch}$


400kHz


800kHz

### 15.247(a)(1)(iii) Average Time of Occupancy

## Manufacturer's Declaration

CKC Laboratories was not contracted to perform the testing due to the required equipment and firmware to exercise the EUT's multiple pseudo-random hopping sequences was not available and that the complexity of the different modulations and modes depend on the device to be in a fully operating network environment.

Therefore, the manufacturer declares the following:

With the multiple modulations, modes and hop tables, the mode with the worst-case Time of Occupancy to demonstrate 400 mS compliance is 399.8 mS in 10 seconds, since this modulation is $>250 \mathrm{kHz}$ and $<500 \mathrm{kHz}$ OBW. Each session of multiple short transmissions takes place on one of 64 different channels in a pseudorandom sequence. The algorithm that determines the pseudo-random hop sequence ensures all 64 channels are used equally on the average.

Itron employs hopping patterns based on a pseudo-random sequence generated by an algorithm. The algorithm can have multiple components generated, that each has its own pseudo-random sequence.

The firmware insures the channels are used in the prescribed pseudo random order, therefore, it maintains equal channel usage.

The system has single channel receiver bandwidths that match the transmitter's modulation bandwidth that is enabled.

With the transmitter and receiver in synchronization within the network, transmitters switch frequencies in synchronization with the receiver.

When the transmitter needs to send a continuous or long data stream, total time of the packet transmissions is monitored to comply with dwell time requirement of 400 ms in the appropriate 10 s or 20 s window depending on the modulation/mode enabled.

This device does not employ any hopping avoidance techniques.

## Test Setup Photo



ABORATORIES, INC.

### 15.247(b)(2) Output Power

| Test Data Summary - Voltage Variations |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency <br> $(\mathbf{M H z})$ | Modulation / Ant Port | $\mathbf{V}_{\text {Minimum }}$ <br> $(\mathbf{d B m})$ | $\mathbf{V}_{\text {Nominal }}$ <br> $(\mathbf{d B m})$ | $\mathbf{V}_{\text {Maximum }}$ <br> $(\mathbf{d B m})$ | Max Deviation <br> from $\mathbf{V}_{\text {Nominal }}(\mathbf{d B})$ |  |
| 902.2 | 10k GFSK | 29.4 | 29.3 | 29.3 | 0.1 |  |
| 915 | 10 k GFSK | 29.3 | 29.4 | 29.4 | 0.1 |  |
| 927.75 | 10 k GFSK | 29.2 | 29.2 | 29.2 | 0.1 |  |

Test performed using operational mode with the highest output power, representing worst case.

## Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

| Parameter | Value |
| :--- | :--- |
| $\mathrm{V}_{\text {Nominal }}:$ | 115 VAC |
| $\mathrm{V}_{\text {Minimum: }}:$ | 100 VAC |
| $\mathrm{V}_{\text {Maximum: }}$ | 240 VAC |

## Test Data Summary - RF Conducted Measurement

Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels (min 25) }\end{array}\right.$

| Frequency $(\mathrm{MHz})$ | Modulation | Ant. Type / Gain (dBi) | Measured (dBm) | Limit <br> (dBm) | Results |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 902.2 | 10k GFSK | External Colinear Omni (5.5dBi max) | 29.3 | $\leq 30$ | Pass |
| 915 |  |  | 29.4 |  |  |
| 927.75 |  |  | 29.2 |  |  |
| 902.4 | 50k GFSK | External Colinear Omni (5.5dBi max) | 29.2 | $\leq 30$ | Pass |
| 915.2 |  |  | 29.2 |  |  |
| 927.6 |  |  | 29.1 |  |  |
| 902.4 | 150k GFSK | External Colinear Omni (5.5dBi max) | 29.3 | $\leq 30$ | Pass |
| 915.2 |  |  | 29.3 |  |  |
| 927.6 |  |  | 29.2 |  |  |
| 902.4 | 6.25k OQPSK | External Colinear Omni (5.5dBi max) | 29.4 | $\leq 30$ | Pass |
| 915.2 |  |  | 29.5 |  |  |
| 927.6 |  |  | 29.2 |  |  |
| 902.4 | 12.5k OQPSK | External Colinear Omni (5.5dBi max) | 29.4 | $\leq 30$ | Pass |
| 915.2 |  |  | 29.5 |  |  |
| 927.6 |  |  | 29.3 |  |  |
| 902.4 | 200k OFDM | External Colinear Omni (5.5dBi max) | 24.8 | $\leq 30$ | Pass |
| 915.2 |  |  | 24.8 |  |  |
| 927.6 |  |  | 24.6 |  |  |
| 902.4 | 600k OFDM | External Colinear Omni (5.5dBi max) | 24.6 | $\leq 30$ | Pass |
| 915.2 |  |  | 24.5 |  |  |
| 927.6 |  |  | 24.5 |  |  |
| 902.8 | 1.2M OFDM (Hybrid) | External Colinear Omni (5.5dBi max) | 24.6 | $\leq 30$ | Pass |
| 914.8 |  |  | 24.7 |  |  |
| 926.8 |  |  | 24.6 |  |  |

## Plots

GFSK


Low Channel, 10k


Middle Channel, 10k


High Channel, 10k


Low Channel, 50k


Middle Channel, 50k


High Channel, 50k


Low Channel, 150k


Middle Channel, 150k


High Channel, 150k

OQPSK


Low Channel, 6.25k


Middle Channel, 6.25k


High Channel, 6.25k


Low Channel, 12.5k


Middle Channel, 12.5k


High Channel, 12.5k

## OFDM



Low Channel, 200k


Middle Channel, 200k


High Channel, 200k


Low Channel, 600k


Middle Channel, 600k


High Channel, 600k


Low Channel, 1.2M


Middle Channel, 1.2M


High Channel, 1.2M

LABORATORIES, INC.

## Test Setup / Conditions / Data

| Test Location: | ratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) |
| :---: | :---: |
| Customer: | Itron, Inc. |
| Specification: | 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) |
| Work Order \#: | 101674 Date: 8/21/2018 |
| Test Type: | Conducted Emissions Time: 10:17:53 |
| Tested By: | Michael Atkinson Sequence\#: 1 |
| Software: | EMITest 5.03.11 115VAC 60Hz |

## Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

```
Frequency Range: Fundamental
Frequency tested: Low, Mid, High Channels
Firmware power setting: Max
Firmware: CAM3-DEV Major Number 4, Minor Number 7, Build Number 153, Revision Number }78726
Test Software: CAM3 FCC Test Helper v14
Modulation Types:
10k GFSK, 50k GFSK, 150k GFSK
6.25k OQPSK, 12.5k OQPSK
200k OFDM, 600k OFDM, 1.2M OFDM (Hybrid)
Antenna type: External Colinear Omni
Antenna Gain : 2.8dBi (attached), 5.5dBi (remote), 8.15dBi with 3dB attenuator (remote)
Duty Cycle: Tested at 100%
Test Location: Bothell Lab Bench
Test Method: ANSI C63.10 (2013)
Temperature ( }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ): 22-24
Relative Humidity (%): 38-42
Setup: The EUT is continuously transmitting with modulation on ISM port.
The EUT ISM port is connected directly to a spectrum analyzer for direct conducted measurements.
Low, Mid, High channels investigated, all modulation types investigated
Also, investigated voltage variations based on manufacturer specified Vmin and Vmax.
```

Itron, Inc. WO\#: 101674 Sequence\#: 1 Date: 8/21/2018
15.247 (b) Power Output ( $902-928 \mathrm{MHz}$ FHSS $>50$ Channels) Test Lead: 115 VAC 60 Hz Antenna Port


- Sweep Data
- Readings

0 Peak Readings

* QP Readings
* Average Readings
- Ambient

Software Version: 5.03.11

- 1-15.247(b) Power Output ( $902-928 \mathrm{MHz}$ FHSS $>50$ Channels)

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ANO2673 | Spectrum Analyzer | E4446A | $2 / 3 / 2017$ | $2 / 3 / 2019$ |
| T1 | ANP07228 | Attenuator | PE7004-20 | $11 / 30 / 2017$ | $11 / 30 / 2019$ |
| T2 | ANP07226 | Attenuator | PE7004-6 | $12 / 1 / 2017$ | $12 / 1 / 2019$ |
| T3 | ANP06008 | Cable | Heliax | $4 / 10 / 2018$ | $4 / 10 / 2020$ |

Measurement Data: Reading listed by margin. Test Lead: Antenna Port


| 18 | 914.710 M | -1.9 | +20.0 | +5.8 | +0.8 |  | +0.0 | 24.7 | 30.0 <br> 1.2 M OFDM | -5.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Anten



### 15.247(d) RF Conducted Emissions \& Band Edge

## Test Setup / Conditions / Data

| Test Location: | CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) |  |
| :---: | :---: | :---: |
| Customer: | Itron, Inc. |  |
| Specification: | 15.247(d) Conducted Spurious Emissions |  |
| Work Order \#: | 101674 | Date: 8/29/2018 |
| Test Type: | Conducted Emissions | Time: 09:14:02 |
| Tested By: | Michael Atkinson | Sequence\#: 6 |
| Software: | EMITest 5.03.11 | 115 VAC 60 Hz |

## Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Support Equipment:

| Support Equipment: |  |  |
| :--- | :--- | :--- |
| Device Manufacturer Model \# <br> Configuration 1  S/N |  |  |

## Test Conditions / Notes:

```
Frequency Range: 9kHz-9.28GHz
Frequency tested: Low, Mid, and High Channels
Firmware power setting: Max
Firmware: CAM3-DEV Major Number 4, Minor Number 7, Build Number 153, Revision Number }78726
Test Software: CAM3 FCC Test Helper v14
Modulation Types:
10k GFSK, 50k GFSK, 150k GFSK
6.25k OQPSK, 12.5k OQPSK
200k OFDM, 600k OFDM, 1.2M OFDM (Hybrid)
Hopping modes: 10k GFSK, 6.25k OQPSK, 200k OFDM, 1.2M OFDM.
Antenna type: External Colinear Omni
Antenna Gain : 2.8dBi (attached), 5.5dBi (remote), 8.15dBi with 3dB attenuator (remote)
Duty Cycle: Tested at 100%
Test Location: Bothell Lab Bench
Test Method: ANSI C63.10 (2013)
Temperature ( }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ): 22-24
Relative Humidity (%): 38-42
Setup: The EUT is continuously transmitting with modulation on ISM port.
The EUT ISM port is connected directly to a spectrum analyzer for direct conducted measurements.
Low, Mid, High channels investigated, all modulation types investigated
```



Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | AN02673 | Spectrum Analyzer | E4446A | $2 / 3 / 2017$ | $2 / 3 / 2019$ |
| T2 | ANP07228 | Attenuator | PE7004-20 | $11 / 30 / 2017$ | $11 / 30 / 2019$ |
| T3 | ANP07226 | Attenuator | PE7004-6 | $12 / 1 / 2017$ | $12 / 1 / 2019$ |
| T4 | ANP06008 | Cable | Heliax | $4 / 10 / 2018$ | $4 / 10 / 2020$ |



| \# | Freq <br> MHz | $\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$ | Dist Table | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | Margin dB | Polar Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1855.260M | -59.0 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | 6.25k OQPSK |  |  | RF Po |
| 2 | 1855.505M | -59.0 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -32.0 | $\begin{gathered} 9.5 \\ \text { 10k GFSI } \end{gathered}$ | $-41.5$ | RF Po |
| 3 | 1855.200M | -59.3 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -32.3 | $\begin{gathered} 9.5 \\ \text { 50k GFSI } \\ \hline \end{gathered}$ | $-41.8$ | RF Po |
| 4 | 1855.250M | -59.4 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -32.4 | $\begin{gathered} 9.5 \\ 150 \mathrm{k} \text { GFs } \\ \hline \end{gathered}$ | -41.9 | RF Po |
| 5 | 1855.220M | -59.4 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | 12.5k OQPSK |  |  |  |
| 6 | 1829.991M | -63.0 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -36.0 | $\begin{gathered} 9.5 \\ \text { 10k GFSI } \end{gathered}$ | $-45.5$ | RF Po |
| 7 | 1830.445M | -63.0 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | 6.25k OQPSK |  |  |  |
| 8 | 1830.415M | -63.3 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -36.3 | $\begin{gathered} 9.5 \\ \text { 50k GFSI } \end{gathered}$ | $-45.8$ | RF Po |
| 9 | 1830.455M | -63.7 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -36.7 | $\begin{gathered} 9.5 \\ 150 \mathrm{k} \text { GF } \end{gathered}$ | $-46.2$ | RF Po |
| 10 | 1830.415M | -63.8 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | 12.5k OQPSK |  |  |  |
| 11 | 1855.205M | -72.7 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | 200k OFDM |  |  |  |
| 12 | 1855.250M | -73.2 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -46.2 | $\begin{gathered} \hline 1.0 \\ 600 \mathrm{k} \mathrm{OFI} \end{gathered}$ | $-47.2$ | RF Po |
| 13 | 1804.770M | -66.4 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | 12.5k OQPSK |  |  |  |
| 14 | 1804.417M | -66.4 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | -39.5 | $\begin{gathered} 9.5 \\ \text { 10k GFSI } \end{gathered}$ | $-49.0$ | RF Po |
| 15 | 1804.845M | -66.5 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | 6.25k OQPSK |  |  |  |
| 16 | 1804.810M | -66.8 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | -39.9 | $\begin{gathered} 9.5 \\ \text { 50k GFSI } \end{gathered}$ | $-49.4$ | RF Po |
| 17 | 1804.815M | -67.8 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | -40.9 | $\begin{gathered} 9.5 \\ 150 \mathrm{k} \text { GF } \end{gathered}$ | $\overline{-50.4}$ | RF Po |
| 18 | 1830.385M | -76.9 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -49.9 | $\begin{gathered} \hline 1.0 \\ 200 \mathrm{k} \text { OFI } \\ \hline \end{gathered}$ | $-50.9$ | RF Po |
| 19 | 1830.435M | -77.0 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -50.0 | $\begin{gathered} 1.0 \\ \text { 600k OFI } \end{gathered}$ | $-51.0$ | RF Po |
| 20 | 1804.790M | -77.2 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | -50.3 | $\begin{gathered} 1.0 \\ 200 \mathrm{k} \text { OFI } \\ \hline \end{gathered}$ | $-51.3$ | RF Po |


| 21 | 1853.635M | -78.1 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -51.1 | $\begin{gathered} 1.0 \\ 1.2 \mathrm{M} \text { OFDM } \end{gathered}$ | $-52.1$ | RF Po |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 2745.000M | -70.0 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -42.7 | $\begin{gathered} 9.5 \\ \text { 10k GFSK } \\ \hline \end{gathered}$ |  | RF Po |
| 23 | 2745.665M | -70.1 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -42.8 | $\begin{gathered} 9.5 \\ 6.25 \mathrm{k} \mathrm{OQPS} \\ \hline \end{gathered}$ | $\mathrm{K}^{-52.3}$ | RF Po |
| 24 | 1804.805M | -78.3 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | -51.4 | $\begin{gathered} 1.0 \\ \text { 600k OFDM } \end{gathered}$ |  | RF Po |
| 25 | 1805.535M | -79.8 | +0.0 | +20.0 | +5.9 | +1.0 | +0.0 | -52.9 | $\begin{gathered} 1.0 \\ \text { 1.2M OFDM } \end{gathered}$ | $1^{-53.9}$ | RF Po |
| 26 | 2745.660M | -72.0 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -44.7 | $\begin{gathered} 9.5 \\ 12.5 \mathrm{k} \mathrm{OQPSI} \\ \hline \end{gathered}$ | $\mathrm{K}^{-54.2}$ | RF Po |
| 27 | 2745.640M | -72.1 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -44.8 | $\begin{gathered} 9.5 \\ \text { 50k GFSK } \end{gathered}$ |  | RF Po |
| 28 | 2783.245M | -72.4 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -45.1 | $\begin{gathered} \hline 9.5 \\ \text { 10k GFSK } \\ \hline \end{gathered}$ | -54.6 | RF Po |
| 29 | 2782.685M | -72.4 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -45.1 | $\begin{gathered} 9.5 \\ \text { 50k GFSK } \\ \hline \end{gathered}$ | $-54.6$ | RF Po |
| 30 | 2745.610M | -72.9 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -45.6 | $\begin{gathered} 9.5 \\ \text { 150k GFSK } \end{gathered}$ | -55.1 | RF Po |
| 31 | 1829.640M | -81.2 | +0.0 | +20.0 | +5.9 | +1.1 | +0.0 | -54.2 | 1.0 <br> 1.2M OFDM | $-55.2$ | RF Po |
| 32 | 2707.210M | -73.3 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -46.0 | $\begin{gathered} 9.5 \\ \text { 50k GFSK } \\ \hline \end{gathered}$ | $-55.5$ | RF Po |
| 33 | 2782.850M | -73.9 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -46.6 | $\begin{gathered} 9.5 \\ \text { 150k GFSK } \end{gathered}$ | $-56.1$ | RF Po |
| 34 | 2706.617M | -74.4 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -47.1 | $\begin{gathered} 9.5 \\ \text { 10k GFSK } \end{gathered}$ | $-56.6$ | RF Po |
| 35 | 2782.860M | -74.5 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -47.2 | $\begin{gathered} 9.5 \\ 6.25 \mathrm{k} \text { OQPS } \end{gathered}$ | $K^{-56.7}$ | RF Po |
| 36 | 2707.170M | -75.0 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -47.7 | $\begin{gathered} 9.5 \\ 12.5 \mathrm{k} \text { OQPS } \\ \hline \end{gathered}$ | $\mathrm{K}^{-57.2}$ | RF Po |
| 37 | 2707.245M | -75.4 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -48.1 | $\begin{gathered} 9.5 \\ 6.25 \mathrm{k} \text { OQPS } \end{gathered}$ | $\mathrm{K}^{-57.6}$ | RF Po |
| 38 | 2782.820M | -75.5 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -48.2 | $\begin{gathered} 9.5 \\ 12.5 \mathrm{k} \text { OQPSI } \end{gathered}$ | $\mathrm{K}^{-57.7}$ | RF Po |
| 39 | 2707.215M | -75.8 | +0.0 | +20.0 | +5.8 | +1.5 | +0.0 | -48.5 | $\begin{gathered} 9.5 \\ \text { 150k GFSK } \\ \hline \end{gathered}$ | -58.0 | RF Po |

## Plots








LABORATORIES, INC.

## Band Edge

## Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.

| Frequency <br> $(\mathbf{M H z})$ | Modulation | Measured <br> $(\mathbf{d B m})$ | Limit <br> $(\mathbf{d B m})$ | Results |
| :---: | :---: | :---: | :---: | :---: |
| 902 | $10 k$ GFSK | -18.2 | $<9.5$ | Pass |
| 928 | $10 k$ GFSK | -23.0 | $<9.5$ | Pass |
| 902 | $50 k$ GFSK | -27.8 | $<9.5$ | Pass |
| 928 | $50 k$ GFSK | -28.8 | $<9.5$ | Pass |
| 902 | $150 k$ GFSK | -27.9 | $<9.5$ | Pass |
| 928 | $150 k$ GFSK | -26.0 | $<9.5$ | Pass |
| 902 | $6.25 k$ OQPSK | -27.0 | $<9.5$ | Pass |
| 928 | $6.25 k$ OQPSK | -27.1 | $<9.5$ | Pass |
| 902 | $12.5 k$ OQPSK | -28.9 | $<9.5$ | Pass |
| 928 | $12.5 k$ OQPSK | -27.5 | $<9.5$ | Pass |
| 902 | $200 k$ OFDM | -27.1 | $<1.0$ | Pass |
| 928 | $200 k$ OFDM | -30.7 | $<1.0$ | Pass |
| 902 | $600 k$ OFDM | -27.3 | $<1.0$ | Pass |
| 928 | $600 k$ OFDM | -29.9 | $<1.0$ | Pass |
| 902 | $1.2 M$ OFDM | -28.3 | $<1.0$ | Pass |
| 928 | $1.2 M$ OFDM | -38.6 | $<1.0$ | Pass |
| 902 | Hopping (10k GFSK) | -15.2 | $<9.5$ | Pass |
| 928 | Hopping (10k GFSK) | -32.1 | $<9.5$ | Pass |
| 902 | Hopping (6.25k OQPSK) | -31.0 | $<9.5$ | Pass |
| 928 | Hopping (6.25k OQPSK) | -34.0 | $<9.5$ | Pass |
| 902 | Hopping (200k OFDM) | -30.8 | $<1.0$ | Pass |
| 928 | Hopping (200k OFDM) | -38.4 | $<1.0$ | Pass |
| 902 | Hopping (1.2M OFDM) (Hybrid) | -38.1 | $<1.0$ | Pass |
| 928 | Hopping (1.2M OFDM) (Hybrid) | -38.3 | $<1.0$ | Pass |

## Band Edge Plots

## GFSK








## OQPSK






## OFDM








## GFSK Hopping




## OQPSK Hopping




## OFDM Hopping






LABORATORIES, INC.

## Test Setup / Conditions / Data

| Test Location: | CKC Laboratories •22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) |  |  |
| :--- | :--- | :--- | :--- |
| Customer: | Itron, Inc. |  |  |
| Specification: | $\mathbf{1 5 . 2 4 7 ( d ) \text { Conducted Spurious Emissions }}$ |  |  |
| Work Order \#: | $\mathbf{1 0 1 6 7 4}$ | Date: | $8 / 28 / 2018$ |
| Test Type: | Conducted Emissions | Time: | $14: 58: 40$ |
| Tested By: | Michael Atkinson | Sequence\#: | 5 |
| Software: | EMITest 5.03.11 | $115 \mathrm{VAC} \mathrm{60Hz}$ |  |

Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range: Fundamental
Frequency tested: Low and High Channels
Firmware power setting: Max
Firmware: CAM3-DEV Major Number 4, Minor Number 7, Build Number 153, Revision Number 787268
Test Software: CAM3 FCC Test Helper v14
Modulation Types:
10k GFSK, 50k GFSK, 150k GFSK
6.25k OQPSK, 12.5k OQPSK

200k OFDM, 600k OFDM, 1.2M OFDM (Hybrid)
Hopping modes: 10k GFSK, 6.25k OQPSK, 200k OFDM, 1.2M OFDM.
Antenna type: External Colinear Omni
Antenna Gain : 2.8 dBi (attached), 5.5 dBi (remote), 8.15 dBi with 3 dB attenuator (remote)

Duty Cycle: Tested at 100\%
Test Location: Bothell Lab Bench
Test Method: ANSI C63.10 (2013)
Temperature ( ${ }^{\circ} \mathrm{C}$ ): 22-24
Relative Humidity (\%): 38-42

Setup: The EUT is continuously transmitting with modulation on ISM port.
The EUT ISM port is connected directly to a spectrum analyzer for direct conducted measurements.
Low, Mid, High channels investigated, all modulation types investigated
All modulation types investigated in addition to several modulations investigated as worst case for frequency hopping mode.
Hopping mode followed correct pseudo-random pattern, but Tx on time and time between hops were not controlled at time of test.

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | AN02673 | Spectrum Analyzer | E4446A | $2 / 3 / 2017$ | $2 / 3 / 2019$ |
| T2 | ANP07228 | Attenuator | PE7004-20 | $11 / 30 / 2017$ | $11 / 30 / 2019$ |
| T3 | ANP07226 | Attenuator | PE7004-6 | $12 / 1 / 2017$ | $12 / 1 / 2019$ |
| T4 | ANP06008 | Cable | Heliax | $4 / 10 / 2018$ | $4 / 10 / 2020$ |



| \# | Freq MHz | $\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | Dist <br> Table | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | Spec Margin <br> $\mathrm{dB} \mu \mathrm{V}$ dB | Polar Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 901.960M | -46.4 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -19.8 | ${ }_{\text {200k OFDM }}^{1.0}{ }^{-20.8}$ | RF Po |
| 2 | 928.040M | -47.7 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -21.1 | $\begin{array}{cc} \hline 1.0 & -22.1 \\ \text { 200k OFDM } \end{array}$ | RF Po |
| 3 | 902.000 M | -41.8 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -15.2 | $\quad 9.5{ }^{-24.7}$ Hopping $(10 \mathrm{k}$ GFSK) | RF Po |
| 4 | 902.000 M | -44.8 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -18.2 | $\begin{array}{cc} 9.5 & -27.7 \\ \text { 10k GFSK } & \\ \hline \end{array}$ | RF Po |
| 5 | 902.000 M | -53.7 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -27.1 | 200k OFDM $^{1.0}{ }^{-28.1}$ | RF Po |
| 6 | 902.000 M | -53.9 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -27.3 | $\operatorname{lom}_{\text {600 OFDM }}{ }^{-28.3}$ | RF Po |
| 7 | 928.000 M | -56.3 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -29.7 | $\operatorname{com}_{\text {200 OFDM }}{ }^{-30.7}$ | RF Po |
| 8 | 928.000 M | -56.5 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -29.9 | $\operatorname{lom}_{\text {600 OFDM }}{ }^{-30.9}$ | RF Po |
| 9 | 902.000 M | -57.4 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -30.8 | $\quad 1.0 \quad-31.8$ Hopping $(200 \mathrm{k}$ OFDM) | RF Po |
| 10 | 928.000 M | -49.6 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -23.0 | $\begin{array}{cc} \hline 9.5 & -32.5 \\ \text { 10k GFSK } & \\ \hline \end{array}$ | RF Po |
| 11 | 928.000 M | -52.6 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -26.0 | 9.5 -35.5 <br> 150k GFSK  | RF Po |
| 12 | 902.000 M | -53.6 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -27.0 | 9.5 $^{9.5 \mathrm{k}^{-36.5}}$ | RF Po |
| 13 | 928.000 M | -53.7 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -27.1 | $9.5{ }^{-36.6}$ 6.25 OQPSK | RF Po |
| 14 | 928.000 M | -54.1 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -27.5 | $\begin{array}{cc} \hline 9.5 & -37.0 \\ 12.5 \mathrm{k} \text { OQPSK } \end{array}$ | RF Po |
| 15 | 928.000 M | -54.4 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -27.8 | 9.5 -37.3 <br> 50k GFSK  | RF Po |
| 16 | 902.000 M | -54.5 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -27.9 | 9.5 -37.4 <br> 150k GFSK  | RF Po |
| 17 | 902.000 M | -55.4 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -28.8 | 9.5 -38.3 <br> 50k GFSK  | RF Po |
| 18 | 902.000M | -55.5 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -28.9 | ${ }^{9.5}{ }^{12.5 \mathrm{k}^{-38.4}}$ | RF Po |
| 19 | 902.000M | -64.7 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -38.1 | $\quad 1.0 \quad-39.1$ Hopping $(1.2 \mathrm{M}$ OFDM) | RF Po |


| 20 | 902.000M | -64.9 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -38.3 | $\begin{array}{cc} 1.0 & -39.3 \\ \text { 1.2M OFDM } \end{array}$ | RF Po |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 928.000M | -64.9 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -38.3 | $1.0 \quad-39.3$ Hopping $(1.2 \mathrm{M}$ OFDM) | RF Po |
| 22 | 928.000M | -65.0 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -38.4 | $1.0 \quad-39.4$ Hopping (200k OFDM) | RF Po |
| 23 | 928.000M | -65.2 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -38.6 | $\begin{array}{ll} 1.0 & -39.6 \\ \text { 1.2M OFDM } \end{array}$ | RF Po |
| 24 | 902.000M | -57.6 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -31.0 | $\begin{aligned} & 9.5 \quad-40.5 \\ & \text { Hopping (6.25k } \\ & \text { OQPSK) } \\ & \hline \end{aligned}$ | RF Po |
| 25 | 928.000M | -58.7 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -32.1 | $\begin{aligned} & 9.5{ }^{-41.6} \\ & \text { Hopping (10k } \\ & \text { GFSK) } \end{aligned}$ | RF Po |
| 26 | 928.000M | -60.6 | +0.0 | +20.0 | +5.8 | +0.8 | +0.0 | -34.0 | $\begin{aligned} & 9.5 \\ & \text { Hopping ( } 6.25 \mathrm{k} \\ & \text { OQPSK) } \\ & \hline \end{aligned}$ | RF Po |

## Test Setup Photo



LABORATORIES, INE.

### 15.247(d) Radiated Emissions \& Band Edge

## Test Setup / Conditions / Data

| Test Location: | CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) |
| :---: | :---: |
| Customer: | Itron, Inc. |
| Specification: | 15.247(d) / 15.209 Radiated Spurious Emissions |
| Work Order \#: | 101674 Date: 8/28/2018 |
| Test Type: | Radiated Scan Time: 11:16:04 |
| Tested By: | Michael Atkinson Sequence\#: 6 |
| Software: | EMITest 5.03.11 |

## Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 2 |  | S/N |

## Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 2 |  | S/N |

## Test Conditions / Notes:

```
Frequency Range: 9kHz-9.28GHz
Frequency tested: Low, Mid, High Channels
Firmware power setting: Max
Firmware: CAM3-DEV Major Number 4, Minor Number 7, Build Number 153, Revision Number }78726
Test Software: CAM3 FCC Test Helper v14
Modulation Types:
10k GFSK, 50k GFSK, 150k GFSK
6.25k OQPSK, 12.5k OQPSK
200k OFDM, 600k OFDM, 1.2M OFDM (Hybrid)
Antenna type: External Colinear Omni
Antenna Gain :2.8dBi (attached)
Duty Cycle: Tested at 100%
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013)
Temperature ('}\mp@subsup{}{}{\circ}\textrm{C}): 22-2
Relative Humidity (%): 38-42
Setup: The EUT is continuously transmitting with modulation on ISM port.
The EUT is connected to external antenna.
Low, Mid, and High channels investigated, worst case reported.
All modulation types investigated.
Horizontal and Vertical measurement antennas investigated above 30MHz, worst case reported.
3 orthogonal axes investigated below 30MHz, worst case reported.
Fundamental of separate Wi-Fi module marked as ambient, and is to be ignored for this measurement.

Itron, Inc. WO\#\#: 101674 Sequence\#: 6 Date: 8/28/2018 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert


\footnotetext{
——Readings
\(\times\) QP Readings
- Ambient
_1-15.247(d) / 15.209 Radiated Spurious Emissions
}
O Peak Readings
* Average Readings
Software Version: 5.03.11

Test Equipment:
\begin{tabular}{|llllll|}
\hline ID & Asset \# & Description & Model & Calibration Date & Cal Due Date \\
T1 & AN02673 & Spectrum Analyzer & E4446A & \(2 / 3 / 2017\) & \(2 / 3 / 2019\) \\
\hline T2 & ANP06540 & Cable & Heliax & \(10 / 30 / 2017\) & \(10 / 30 / 2019\) \\
\hline T3 & ANP05305 & Cable & ETSI-50T & \(10 / 24 / 2017\) & \(10 / 24 / 2019\) \\
\hline T4 & ANP05360 & Cable & RG214 & \(1 / 31 / 2018\) & \(1 / 31 / 2020\) \\
\hline T5 & AN03628 & Biconilog Antenna & \(3142 E\) & \(6 / 7 / 2017\) & \(6 / 7 / 2019\) \\
\hline T6 & ANP06515 & Cable & Heliax & \(6 / 29 / 2018\) & \(6 / 29 / 2020\) \\
\hline T7 & AN00052 & Loop Antenna & 6502 & \(5 / 7 / 2018\) & \(5 / 7 / 2020\) \\
\hline T8 & AN02871 & Spectrum Analyzer & E4440A & \(2 / 24 / 2017\) & \(2 / 24 / 2019\) \\
\hline T9 & AN03540 & Preamp & 83017 A & \(5 / 2 / 2017\) & \(5 / 2 / 2019\) \\
\hline T10 & ANP06934 & Cable & \(32026-29801-\) & \(3 / 13 / 2018\) & \(3 / 13 / 2020\) \\
& & & \(29801-18\) & & \\
\hline T11 & AN01467 & Horn Antenna-ANSI & 3115 & \(7 / 21 / 2017\) & \(7 / 21 / 2019\) \\
\hline T12 & AN03170 & High Pass Filter & HM1155-11SS & \(11 / 27 / 2017\) & \(11 / 27 / 2019\) \\
\hline T13 & ANP07226 & Attenuator & PE7004-6 & \(12 / 1 / 2017\) & \(12 / 1 / 2019\) \\
\hline T14 & ANP06503 & Cable & \(32026-29801-\) & \(3 / 13 / 2018\) & \(3 / 13 / 2020\) \\
\hline
\end{tabular}

Measurement Data: \(\quad\) Reading listed by margin.
Test Distance: 3 Meters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# Freq
\[
\mathrm{MHz}
\] & Rdng
\[
\mathrm{dB} \mu \mathrm{~V}
\] & \[
\begin{gathered}
\hline \text { T1 } \\
\text { T5 } \\
\text { T9 } \\
\text { T13 } \\
\text { dB } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { T2 } \\
\text { T6 } \\
\text { T10 } \\
\text { T14 } \\
\text { dB } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T} 3 \\
\mathrm{~T} 7 \\
\mathrm{~T} 11 \\
\\
\mathrm{~dB} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{T} 4 \\
\mathrm{~T} 8 \\
\mathrm{~T} 12 \\
\\
\mathrm{~dB} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Dist \\
Table
\end{tabular} & Corr
\[
\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}
\] & \[
\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}
\] & Margin
\[
\mathrm{dB}
\] & \begin{tabular}{l}
Polar \\
Ant
\end{tabular} \\
\hline \[
\begin{aligned}
& 1 \quad 963.745 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 18.7 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 47.6 & \[
\begin{gathered}
54.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -6.4 & Vert \\
\hline \[
\mathrm{QP}^{37.700 \mathrm{M}}
\] & 21.1 & \[
\begin{array}{r}
+0.0 \\
+11.7 \\
+0.0 \\
+0.0
\end{array}
\] & \[
\begin{aligned}
& \hline+0.1 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 33.5 & 40.0 & -6.5 & Vert \\
\hline \[
\begin{aligned}
& 3963.613 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 18.6 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 47.5 & \[
\begin{gathered}
54.0 \\
\text { 12.5 OQPSK }
\end{gathered}
\] & \[
K^{-6.5}
\] & Vert \\
\hline \[
\begin{aligned}
& 4963.613 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 18.5 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 47.4 & \[
\begin{gathered}
54.0 \\
6.25 \mathrm{k} \text { OQPSK }
\end{gathered}
\] & \[
\mathrm{SK}^{-6.6}
\] & Vert \\
\hline \[
\begin{aligned}
& 5 \quad 963.603 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 18.5 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 47.4 & 54.0
50k GFSK & \[
-6.6
\] & Vert \\
\hline \[
\begin{aligned}
& 6 \quad 963.623 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 18.4 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
+0.0
\] & 47.3 & \[
\begin{gathered}
\hline 54.0 \\
\text { 150k GFSK }
\end{gathered}
\] & \[
-6.7
\] & Vert \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 7 \quad 962.908 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 14.6 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 43.5 & \[
\begin{gathered}
54.0 \\
1.2 \mathrm{M} \mathrm{OFDM}
\end{gathered}
\] & -10.5 & Vert \\
\hline \[
\begin{aligned}
& 8963.613 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 14.6 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 43.5 & \[
\begin{gathered}
\hline 54.0 \\
200 \mathrm{k} \text { OFDM }
\end{gathered}
\] & -10.5 & Vert \\
\hline \[
\begin{aligned}
& 9963.658 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 14.6 & \[
\begin{array}{r}
+0.0 \\
+24.8 \\
+0.0 \\
+0.0
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 43.5 & \[
\begin{gathered}
\hline 54.0 \\
\text { 600k OFDM }
\end{gathered}
\] & -10.5 & Vert \\
\hline \[
\begin{gathered}
10 \quad 116.155 \mathrm{M} \\
\mathrm{QP}
\end{gathered}
\] & 20.5 & \[
\begin{aligned}
& +0.0 \\
& +7.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.2 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \(+0.0\) & 29.5 & 43.5 & -14.0 & Horiz \\
\hline \[
\begin{aligned}
& 112783.240 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 28.3 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-33.8 \\
+5.8
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.6 \\
& +0.0 \\
& +1.1
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.9
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & \(+0.0\) & 34.0 & \[
\begin{gathered}
54.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -20.0 & Vert \\
\hline \[
\begin{aligned}
& 12 \text { 2430.000M } \\
& \text { Ambient }
\end{aligned}
\] & 84.6 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.0 \\
+5.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.6 \\
& +0.0 \\
& +1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.1
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & +0.0 & 89.1 & 110.0 & -20.9 & Vert \\
\hline \[
\begin{aligned}
& 132706.628 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 26.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-33.8 \\
+5.8
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.6 \\
& +0.0 \\
& +1.1
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.7
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & +0.0 & 32.0 & \[
\begin{gathered}
54.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -22.0 & Vert \\
\hline \(\wedge 2706.628 \mathrm{M}\) & 39.1 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-33.8 \\
+5.8
\end{array}
\] & \[
\begin{aligned}
& \hline+0.5 \\
& +2.6 \\
& +0.0 \\
& +1.1
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.7
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & +0.0 & 44.6 & \[
\begin{gathered}
\hline 54.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -9.4 & Vert \\
\hline \[
\begin{aligned}
& 15 \text { 2430.000M } \\
& \text { Ambient }
\end{aligned}
\] & 81.6 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.0 \\
+5.8
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +2.6 \\
& +0.0 \\
& +1.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.1
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & +0.0 & 86.1 & 110.0 & -23.9 & Horiz \\
\hline \[
\begin{gathered}
16963.600 \mathrm{M} \\
\mathrm{QP}
\end{gathered}
\] & 19.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-37.1 \\
+5.8
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +1.7 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+30.1
\end{array}
\] & \(+0.0\) & 21.0 & 54.0 & -33.0 & Vert \\
\hline \[
\begin{gathered}
17963.604 \mathrm{M} \\
\mathrm{QP}
\end{gathered}
\] & 19.7 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-37.1 \\
+5.8
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +1.7 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+30.1
\end{array}
\] & \(+0.0\) & 20.9 & 54.0 & -33.1 & Vert \\
\hline \[
\begin{aligned}
& 18 \text { 1855.490M } \\
& \text { Ave }
\end{aligned}
\] & 54.2 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.9
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 56.6 & \[
\begin{gathered}
102.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -45.4 & Vert \\
\hline \[
\begin{aligned}
& 191855.240 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 54.1 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
+0.0
\] & \[
\overline{56.4}
\] & \[
\begin{gathered}
102.0 \\
\text { 50k GFSK }
\end{gathered}
\] & -45.6 & Vert \\
\hline
\end{tabular}

Page 77 of 205
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 20 \quad 1855.192 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 54.0 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 56.3 & \[
\begin{array}{cc}
\hline 102.0 & -45.7 \\
12.5 \mathrm{k} \text { OQPSK }
\end{array}
\] & Vert \\
\hline \[
\begin{aligned}
& 21 \quad 1855.124 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 53.9 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 56.2 & \(\operatorname{lom}^{102.0}{ }^{-45.8}\) & Vert \\
\hline \[
\begin{aligned}
& 221855.308 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.9
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 55.8 & \begin{tabular}{cl} 
102.0 & -46.2 \\
150k GFSK &
\end{tabular} & Vert \\
\hline \[
\begin{aligned}
& 23 \begin{array}{l}
1830.040 \mathrm{M} \\
\text { Ave }
\end{array}
\end{aligned}
\] & 50.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 52.9 & \begin{tabular}{cc}
102.0 & -49.1 \\
10k GFSK &
\end{tabular} & Vert \\
\hline 246115.000 M & 37.2 & \[
\begin{array}{r}
\hline+0.0 \\
+0.0 \\
-33.4 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& +0.7 \\
& +4.8 \\
& +0.0 \\
& +1.9
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+35.0
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.5
\end{aligned}
\] & +0.0 & 52.6 & 102.0 -49.4 & Vert \\
\hline \[
\begin{aligned}
& 25 \text { 1830.409M } \\
& \text { Ave }
\end{aligned}
\] & 49.2 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 51.3 & \(\operatorname{12.5k~OQPSK~}^{-50.7}\) & Vert \\
\hline \[
\begin{aligned}
& 26 \begin{array}{l}
1830.373 \mathrm{M} \\
\text { Ave }
\end{array}
\end{aligned}
\] & 49.2 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & & 51.3 & \(\log ^{102.0}{ }^{-50.7}\) & Vert \\
\hline \[
\begin{aligned}
& 27 \text { 1830.445M } \\
& \text { Ave }
\end{aligned}
\] & 48.9 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 51.0 & \begin{tabular}{cc}
102.0 & -51.0 \\
50k GFSK &
\end{tabular} & Vert \\
\hline \[
\begin{aligned}
& 28 \quad 1830.461 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 48.8 & \[
\begin{array}{r}
\hline+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 50.9 & \begin{tabular}{cl}
102.0 & -51.1 \\
150k GFSK &
\end{tabular} & Vert \\
\hline \[
\begin{aligned}
& 291804.420 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 46.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 48.7 & \[
\begin{array}{cc}
\hline 102.0 & -53.3 \\
\text { 10k GFSK } & \\
\hline
\end{array}
\] & Vert \\
\hline \(30 \quad 2514.000 \mathrm{M}\) & 42.7 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.0 \\
+5.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +2.7 \\
& +0.0 \\
& +1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.1
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & +0.0 & 47.3 & 102.0 -54.7 & Vert \\
\hline \[
\begin{aligned}
& 31 \quad 1804.860 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 46.3 & 6.25k OQPSK \({ }^{-55.7}\) & Vert \\
\hline \[
\begin{aligned}
& 321804.830 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 44.4 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 46.3 & \(102.0 \mathrm{k}^{-55.7}\) & Vert \\
\hline
\end{tabular}

Page 78 of 205
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
33 \begin{array}{l}
1804.830 \mathrm{M} \\
\text { Ave }
\end{array}
\end{gathered}
\] & 44.3 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 46.2 & \[
\begin{gathered}
102.0 \\
\text { 50k GFSK }
\end{gathered}
\] & -55.8 & Vert \\
\hline \[
\begin{aligned}
& 34 \begin{array}{l}
1804.905 \mathrm{M} \\
\text { Ave }
\end{array}
\end{aligned}
\] & 44.0 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 45.9 & \[
\begin{gathered}
\hline 102.0 \\
\text { 150k GFSK }
\end{gathered}
\] & -56.1 & Vert \\
\hline \[
\begin{gathered}
351830.128 \mathrm{M} \\
\text { Ave }
\end{gathered}
\] & 42.4 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 44.5 & \[
\begin{aligned}
& 102.0 \\
& R x^{10}
\end{aligned}
\] & -57.5 & Vert \\
\hline \[
\begin{gathered}
36 \quad 556.200 \mathrm{M} \\
\mathrm{QP}
\end{gathered}
\] & 14.7 & \[
\begin{array}{r}
+0.0 \\
+20.2 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.3 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.2 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 37.8 & 102.0 & -64.2 & Vert \\
\hline \[
\begin{aligned}
& 37 \text { 1804.432M } \\
& \text { Ave }
\end{aligned}
\] & 34.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 36.4 & \[
\begin{gathered}
102.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -65.6 & Horiz \\
\hline \[
\begin{gathered}
38{ }^{91.505 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & 24.7 & \[
\begin{aligned}
& +0.0 \\
& +7.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.1 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 32.9 & 102.0 & -69.1 & Vert \\
\hline \[
\begin{gathered}
39{ }^{91.505 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & 24.7 & \[
\begin{aligned}
& +0.0 \\
& +7.1 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.1 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 32.9 & 102.0 & -69.1 & Vert \\
\hline \[
\begin{gathered}
40{ }^{57.000 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & 22.5 & \[
\begin{aligned}
& +0.0 \\
& +6.6 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.1 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 30.0 & 102.0 & -72.0 & Vert \\
\hline \[
\begin{aligned}
& 41 \quad 1855.247 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 31.7 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 34.0 & \[
\begin{gathered}
\hline 110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & -76.0 & Vert \\
\hline \[
\begin{aligned}
& 42 \quad 1855.267 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 31.6 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 33.9 & \[
\begin{gathered}
\hline 110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & -76.1 & Vert \\
\hline \[
\begin{aligned}
& 43 \text { 1853.580M } \\
& \text { Ave }
\end{aligned}
\] & 30.4 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 32.7 & \[
\begin{gathered}
110.0 \\
1.2 \mathrm{M} \mathrm{OFDM}
\end{gathered}
\] & \[
-77.3
\] & Vert \\
\hline \[
\begin{aligned}
& 44 \begin{array}{l}
1804.830 \mathrm{M} \\
\text { Ave }
\end{array}
\end{aligned}
\] & 30.1 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 32.0 & \[
\begin{gathered}
\hline 110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & -78.0 & Vert \\
\hline \[
\begin{aligned}
& 451829.570 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 29.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 31.9 & \[
\begin{gathered}
\hline 110.0 \\
1.2 \mathrm{M} \mathrm{OFDM}
\end{gathered}
\] & -78.1 & Vert \\
\hline
\end{tabular}

Page 79 of 205

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 46 \text { 1830.415M } \\
& \text { Ave }
\end{aligned}
\] & 29.4 & \[
\begin{array}{r}
\hline+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 31.5 & \[
\begin{gathered}
110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & & Vert \\
\hline \[
\begin{aligned}
& 47 \text { 1830.409M } \\
& \text { Ave }
\end{aligned}
\] & 29.4 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 31.5 & \[
\begin{gathered}
110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & -78.5 & Vert \\
\hline \[
\begin{aligned}
& 48 \text { 1805.480M } \\
& \text { Ave }
\end{aligned}
\] & 29.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & +0.0 & 31.4 & \[
\begin{gathered}
110.0 \\
1.2 \mathrm{M} \mathrm{OFDM}
\end{gathered}
\] & \({ }^{-78.6}\) & Vert \\
\hline \[
\begin{aligned}
& \hline 491804.724 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 29.4 & \[
\begin{array}{r}
\hline+0.0 \\
+0.0 \\
-34.5 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \(+0.0\) & 31.3 & \[
\begin{gathered}
\hline 110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & -78.7 & Vert \\
\hline \[
\begin{array}{cc}
50 & 19.739 \mathrm{M} \\
\mathrm{QP}
\end{array}
\] & 28.4 & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +8.1 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -3.3 & 102.0 & -105.3 & Groun \\
\hline \[
\begin{array}{ll}
51 & 28.116 \mathrm{M} \\
\mathrm{QP}
\end{array}
\] & 27.6 & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.1 \\
& +0.3 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +6.1 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -5.9 & 102.0 & -107.9 & Para \\
\hline \[
{ }^{52} \mathrm{QP}^{19.711 \mathrm{M}}
\] & 24.2 & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +8.1 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -7.5 & 102.0 & -109.5 & Para \\
\hline \[
{ }^{53} \mathrm{QP}^{9.096 \mathrm{M}}
\] & 12.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+0.0 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +9.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -18.0 & 102.0 & -120.0 & Perp \\
\hline \[
{ }^{54} \mathrm{QP}^{72.622 \mathrm{k}}
\] & 31.8 & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +9.6 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -80.0 & -38.6 & 102.0 & -140.6 & Para \\
\hline
\end{tabular}

LABORATORIES, INC.

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Iron, Inc.
Specification: 15.247(d)/15.209 Radiated Spurious Emissions
Work Order \#: 101674 Date: 8/28/2018
Test Type:
Tested By:
Software:

Radiated Scan
Michael Atkinson
EMITest 5.03.11

Time: 10:34:12
Sequence\#: 6

Equipment Tested:
\begin{tabular}{|lll|}
\hline Device & Manufacturer & Model \# \\
Configuration 3 & & S/N \\
\hline
\end{tabular}

Support Equipment:
\begin{tabular}{|lll|}
\hline Device & Manufacturer & Model \# \\
Configuration 3 & & S/N \\
\hline
\end{tabular}

\section*{Test Conditions / Notes:}

Frequency Range: \(9 \mathrm{kHz}-9.28 \mathrm{GHz}\)
Frequency tested: Low, Mid, High Channels
Firmware power setting: Max
Firmware: CAM3-DEV Major Number 4, Minor Number 7, Build Number 153, Revision Number 787268
Test Software: CAM3 FCC Test Helper v14
Modulation Types:
10k GFSK, 50k GFSK, 150k GFSK
6.25k OQPSK, 12.5 k OQPSK

200k OFDM, 600k OFDM, 1.2M OFDM (Hybrid)
Antenna type: External Colinear Omni
Antenna Gain : 5.5 dBi (remote)
Duty Cycle: Tested at \(100 \%\)
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013)
Temperature ( \({ }^{\circ} \mathrm{C}\) ): 22-24
Relative Humidity (\%): 38-42
Setup: The EUT is continuously transmitting with modulation on ISM port.
The EUT is connected to external antenna.
Low, Mid, and High channels investigated, worst case reported.
All modulation types investigated.
Horizontal and Vertical measurement antennas investigated above 30 MHz , worst case reported.
3 orthogonal axes investigated below 30 MHz , worst case reported.
Fundamental of separate \(\mathrm{Wi}-\mathrm{Fi}\) module marked as ambient, and is to be ignored for this measurement.
No additional peak emissions observed within 20 dB of the peak limit.

Itron, Inc. WO\#: 101674 Sequence\#: 6 Date: 8/28/2018 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert


\footnotetext{
- Readings
\(\times\) QP Readings
- Ambient
_1-15.247(d) / 15.209 Radiated Spurious Emissions
}
O Peak Readings
* Average Readings
Software Version: 5.03.11

Test Equipment:
\begin{tabular}{|llllll|}
\hline ID & Asset \# & Description & Model & Calibration Date & Cal Due Date \\
& AN02673 & Spectrum Analyzer & E4446A & \(2 / 3 / 2017\) & \(2 / 3 / 2019\) \\
\hline T1 & ANP06540 & Cable & Heliax & \(10 / 30 / 2017\) & \(10 / 30 / 2019\) \\
\hline T2 & ANP05305 & Cable & ETSI-50T & \(10 / 24 / 2017\) & \(10 / 24 / 2019\) \\
\hline T3 & ANP05360 & Cable & RG214 & \(1 / 31 / 2018\) & \(1 / 31 / 2020\) \\
\hline T4 & AN03628 & Biconilog Antenna & 3142 E & \(6 / 7 / 2017\) & \(6 / 7 / 2019\) \\
\hline T5 & ANP06515 & Cable & Heliax & \(6 / 29 / 2018\) & \(6 / 29 / 2020\) \\
\hline T6 & AN00052 & Loop Antenna & 6502 & \(5 / 7 / 2018\) & \(5 / 7 / 2020\) \\
\hline T7 & AN02871 & Spectrum Analyzer & E4440A & \(2 / 24 / 2017\) & \(2 / 24 / 2019\) \\
\hline T8 & AN03540 & Preamp & 83017 A & \(5 / 2 / 2017\) & \(5 / 2 / 2019\) \\
\hline T9 & AN01467 & Horn Antenna-ANSI & 3115 & \(7 / 21 / 2017\) & \(7 / 21 / 2019\) \\
& & C63.5 Calibration & & & \\
\hline T10 & AN03170 & High Pass Filter & HM1155-11SS & \(11 / 27 / 2017\) & \(11 / 27 / 2019\) \\
\hline T11 & ANP07226 & Attenuator & PE7004-6 & \(12 / 1 / 2017\) & \(12 / 1 / 2019\) \\
\hline T12 & ANP06503 & Cable & \(32026-29801-\) & \(3 / 13 / 2018\) & \(3 / 13 / 2020\) \\
\hline
\end{tabular}

Measurement Data: \(\quad\) Reading listed by margin.
Test Distance: 3 Meters

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(10 \quad 983.320 \mathrm{M}\) & 9.4 & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+24.4 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & +0.0 & 37.9 & 54.0 & -16.1 & Vert \\
\hline \(11 \quad 982.720 \mathrm{M}\) & 9.2 & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+24.4 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & +0.0 & 37.7 & 54.0 & -16.3 & Vert \\
\hline \[
\begin{gathered}
12 \text { 2434.000M } \\
\text { Ambient }
\end{gathered}
\] & 83.3 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.1
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.8 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
+0.0 \\
-34.0 \\
+1.0 \\
\hline
\end{gathered}
\] & +0.0 & 84.8 & 102.0 & -17.2 & Vert \\
\hline \[
\begin{gathered}
13 \quad 2434.000 \mathrm{M} \\
\text { Ambient }
\end{gathered}
\] & 78.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.0 \\
+1.0 \\
\hline
\end{array}
\] & \(+0.0\) & 80.3 & 102.0 & -21.7 & Horiz \\
\hline \(14 \quad 545.100 \mathrm{M}\) & 23.0 & \[
\begin{aligned}
& +0.3 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.2 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +1.4 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+21.0 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & +0.0 & 46.9 & 102.0 & -55.1 & Vert \\
\hline \[
\begin{aligned}
& 15 \text { 1855.194M } \\
& \text { Ave }
\end{aligned}
\] & 45.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 45.4 & \[
\begin{gathered}
\hline 102.0 \\
12.5 \mathrm{k} \text { OQPSK }
\end{gathered}
\] & \[
-56.6
\] & Vert \\
\hline \[
\begin{aligned}
& 161855.224 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 45.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline+0.0 \\
+0.0 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & \(+0.0\) & 45.4 & \[
\begin{gathered}
102.0 \\
6.25 \mathrm{k} \text { OQPSK }
\end{gathered}
\] & \[
-56.6
\] & Vert \\
\hline \[
\begin{aligned}
& 17 \text { 1855.200M } \\
& \text { Ave }
\end{aligned}
\] & 45.7 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 45.3 & \[
\begin{gathered}
102.0 \\
\text { 50k GFSK }
\end{gathered}
\] & & Vert \\
\hline \[
\begin{aligned}
& 18 \text { 1855.170M } \\
& \text { Ave }
\end{aligned}
\] & 45.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & \(+0.0\) & 45.1 & \[
\begin{gathered}
\hline 102.0 \\
\text { 150k GFSK }
\end{gathered}
\] & -56.9 & Vert \\
\hline \[
\begin{aligned}
& 19 \text { 1804.882M } \\
& \text { Ave }
\end{aligned}
\] & 45.0 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7
\end{array}
\] & +0.0 & 44.2 & \[
\begin{gathered}
102.0 \\
6.25 \mathrm{k} \text { OQPSK }
\end{gathered}
\] & \[
-57.8
\] & Vert \\
\hline \[
\begin{gathered}
20 \quad 1804.910 \mathrm{M} \\
\text { Ave }
\end{gathered}
\] & 44.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7
\end{array}
\] & +0.0 & 44.0 & \[
\begin{gathered}
\hline 102.0 \\
12.5 \mathrm{k} \text { OQPSK }
\end{gathered}
\] & \[
\begin{aligned}
& \text { K }{ }^{-58.0} \\
& \hline
\end{aligned}
\] & Vert \\
\hline \[
\begin{aligned}
& 21 \quad 1804.440 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 44.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7
\end{array}
\] & \(+0.0\) & 43.7 & \[
\begin{gathered}
102.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -58.3 & Vert \\
\hline \[
\begin{aligned}
& 22 \text { 1804.889M } \\
& \text { Ave }
\end{aligned}
\] & 44.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & \(+0.0\) & 43.7 & \[
\begin{gathered}
\hline 102.0 \\
\text { 150k GFSK }
\end{gathered}
\] & -58.3 & Vert \\
\hline \[
\begin{aligned}
& 23 \begin{array}{l}
1804.800 \mathrm{M} \\
\text { Ave }
\end{array}
\end{aligned}
\] & 44.5 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7
\end{array}
\] & \(+0.0\) & 43.7 & 102.0
50k GFSK & -58.3 & Vert \\
\hline \(24 \quad 957.860 \mathrm{M}\) & 14.7 & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +1.6 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +2.1 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+24.9 \\
+0.0 \\
+0.0 \\
\hline
\end{array}
\] & \(+0.0\) & 43.7 & 102.0 & -58.3 & Vert \\
\hline \[
\begin{aligned}
& 251855.520 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 44.0 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 43.7 & 102.0
10k GFSK & -58.3 & Vert \\
\hline \[
\begin{aligned}
& 26 \quad 1830.024 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 43.8 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline+0.0 \\
+0.0 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 43.2 & 102.0
10k GFSK & \[
-58.8
\] & Vert \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(44 \quad 53.970 \mathrm{M}\) & 21.0 & \[
\begin{aligned}
& +0.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +6.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 28.4 & 102.0 & -73.6 & Horiz \\
\hline \[
\begin{gathered}
45{ }^{59.917 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & & \[
\begin{aligned}
& \hline+0.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +6.7 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 25.0 & 102.0 & -77.0 & Horiz \\
\hline \[
\begin{aligned}
& 46 \text { 1830.255M } \\
& \text { Ave }
\end{aligned}
\] & 29.3 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 28.7 & \[
\begin{gathered}
\hline 110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & -81.3 & Vert \\
\hline \[
\begin{aligned}
& 47 \text { 1830.405M } \\
& \text { Ave }
\end{aligned}
\] & 29.0 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 28.4 & \[
\begin{gathered}
\hline 110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & -81.6 & Vert \\
\hline \[
\begin{aligned}
& 48 \quad 1829.700 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 29.0 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 28.4 & \[
\begin{gathered}
\hline 110.0 \\
\text { 1.2M OFDM }
\end{gathered}
\] & \[
-81.6
\] & Vert \\
\hline \[
\begin{aligned}
& 49 \text { 1804.861M } \\
& \text { Ave }
\end{aligned}
\] & 29.1 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7
\end{array}
\] & +0.0 & 28.3 & \[
\begin{gathered}
\hline 110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & \[
\overline{-81.7}
\] & Vert \\
\hline \[
\begin{aligned}
& 50 \quad 1804.820 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 29.1 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 28.3 & \[
\begin{gathered}
\hline 110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & -81.7 & Vert \\
\hline \[
\begin{aligned}
& 51 \quad 1855.237 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 27.9 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +5.9
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 27.5 & \[
\begin{gathered}
\hline 110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & \[
\overline{-82.5}
\] & Vert \\
\hline \[
\begin{aligned}
& 521855.060 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 27.9 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7 \\
\hline
\end{array}
\] & +0.0 & 27.5 & \[
\begin{gathered}
\hline 110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & \[
\overline{-82.5}
\] & Vert \\
\hline \[
\begin{aligned}
& 53 \text { 1853.610M } \\
& \text { Ave }
\end{aligned}
\] & 27.9 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +5.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+0.7
\end{array}
\] & +0.0 & 27.5 & \[
\begin{gathered}
\hline 110.0 \\
1.2 \mathrm{M} \mathrm{OFDM}
\end{gathered}
\] & \[
-82.5
\] & Vert \\
\hline \[
\begin{aligned}
& 54 \begin{array}{l}
1902.500 \mathrm{M} \\
\text { Ave }
\end{array}
\end{aligned}
\] & 26.2 & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+27.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+5.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+0.0 \\
-34.4 \\
+0.8 \\
\hline
\end{array}
\] & +0.0 & 26.5 & \[
\begin{gathered}
\hline 110.0 \\
1.2 \mathrm{M} \mathrm{OFDM}
\end{gathered}
\] & \[
-83.5
\] & Vert \\
\hline \[
\begin{gathered}
55{ }^{18.873 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & 27.3 & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +8.2 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & -40.0 & -4.3 & 102.0 & -106.3 & Para \\
\hline \(\wedge 18.873 \mathrm{M}\) & 31.2 & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +8.2 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & -40.0 & -0.4 & 102.0 & -102.4 & Para \\
\hline \(57 \quad 1.868 \mathrm{M}\) & 23.8 & \[
\begin{aligned}
& +0.0 \\
& +0.1 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +9.7 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -6.4 & 102.0 & -108.4 & Para \\
\hline \(58 \quad 29.370 \mathrm{M}\) & 26.9 & \[
\begin{aligned}
& \hline+0.1 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +5.8 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & -40.0 & -6.9 & 102.0 & -108.9 & Para \\
\hline \(59 \quad 24.632 \mathrm{M}\) & 21.2 & \[
\begin{aligned}
& \hline+0.1 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +7.1 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -11.3 & 102.0 & -113.3 & Groun \\
\hline \(60 \quad 16.144 \mathrm{M}\) & 19.5 & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +8.8 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -11.5 & 102.0 & -113.5 & Perp \\
\hline
\end{tabular}

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#: 101674
Test Type:
Tested By:
Software:

Radiated Scan
Michael Atkinson
EMITest 5.03.11

Date: 8/28/2018
Time: 11:04:00
Sequence\#: 7

Equipment Tested:
\begin{tabular}{|lll|}
\hline Device & Manufacturer & Model \# \\
Configuration 4 & & S/N \\
\hline
\end{tabular}

Support Equipment:
\begin{tabular}{|lll|}
\hline Device & Manufacturer & Model \# \\
Configuration 4 & & S/N \\
\hline
\end{tabular}

\section*{Test Conditions / Notes:}

Frequency Range: \(9 \mathrm{kHz}-9.28 \mathrm{GHz}\)
Frequency tested: Low, Mid, High Channels
Firmware power setting: Max
Firmware: CAM3-DEV Major Number 4, Minor Number 7, Build Number 153, Revision Number 787268
Test Software: CAM3 FCC Test Helper v14

Modulation Types:
10k GFSK, 50k GFSK, 150k GFSK
6.25k OQPSK, 12.5 k OQPSK

200k OFDM, 600k OFDM, 1.2M OFDM (Hybrid)
Antenna type: External Colinear Omni
Antenna Gain : 8.15dBi with 3 dB attenuator (remote)
Duty Cycle: Tested at \(100 \%\)
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013)
Temperature ( \({ }^{\circ} \mathrm{C}\) ): 22-24
Relative Humidity (\%): 38-42
Setup: The EUT is continuously transmitting with modulation on ISM port.
The EUT is connected to external antenna.
Low, Mid, and High channels investigated, worst case reported.
All modulation types investigated.
Horizontal and Vertical measurement antennas investigated above 30 MHz , worst case reported.
3 orthogonal axes investigated below 30 MHz , worst case reported.
Note: Base of external antenna is below 1.5 m height for testing above 1 GHz , this is to keep antenna inside of test volume.
Fundamental of separate Wi-Fi module marked as ambient, and is to be ignored for this measurement.
No additional peak emissions observed within 20 dB of the peak limit.

Itron, Inc. WO\#: 101674 Sequence\#f: 7 Date: 8/28/2018 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert


\footnotetext{
- Readings
\(\times\) QP Readings
- Ambient
_1-15.247(d) / 15.209 Radiated Spurious Emissions
}
O Peak Readings
* Average Readings
Software Version: 5.03.11

Test Equipment:
\begin{tabular}{|llllll|}
\hline ID & Asset \# & Description & Model & Calibration Date & Cal Due Date \\
T1 & ANP06540 & Cable & Heliax & \(10 / 30 / 2017\) & \(10 / 30 / 2019\) \\
\hline T2 & ANP05305 & Cable & ETSI-50T & \(10 / 24 / 2017\) & \(10 / 24 / 2019\) \\
\hline T3 & ANP05360 & Cable & RG214 & \(1 / 31 / 2018\) & \(1 / 31 / 2020\) \\
\hline T4 & AN03628 & Biconilog Antenna & \(3142 E\) & \(6 / 7 / 2017\) & \(6 / 7 / 2019\) \\
\hline T5 & ANP06515 & Cable & Heliax & \(6 / 29 / 2018\) & \(6 / 29 / 2020\) \\
\hline T6 & AN00052 & Loop Antenna & 6502 & \(5 / 7 / 2018\) & \(5 / 7 / 2020\) \\
\hline T7 & AN02871 & Spectrum Analyzer & E4440A & \(2 / 24 / 2017\) & \(2 / 24 / 2019\) \\
\hline T8 & AN03540 & Preamp & \(83017 A\) & \(5 / 2 / 2017\) & \(5 / 2 / 2019\) \\
\hline T9 & ANP06934 & Cable & \(32026-29801-\) & \(3 / 13 / 2018\) & \(3 / 13 / 2020\) \\
& & & \(29801-18\) & & \\
\hline T10 & AN01467 & Horn Antenna-ANSI & 3115 & \(7 / 21 / 2017\) & \(7 / 21 / 2019\) \\
\hline T11 & AN03170 & C63.5 Calibration & & & \\
\hline T12 & ANP07226 & Attenuator & HM1155-11SS & \(11 / 27 / 2017\) & \(11 / 27 / 2019\) \\
\hline T13 & ANP06503 & Cable & PE7004-6 & \(12 / 1 / 2017\) & \(12 / 1 / 2019\) \\
\hline & & & \(29801-36\) & \(3 / 13 / 2018\) & \(3 / 13 / 2020\) \\
\hline
\end{tabular}

Measurement Data: \(\quad\) Reading listed by margin.
Test Distance: 3 Meters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\# Freq \\
MHz
\end{tabular} & Rdng
\[
\mathrm{dB} \mu \mathrm{~V}
\] & \[
\begin{gathered}
\text { T1 } \\
\text { T5 } \\
\text { T9 } \\
\text { T13 } \\
\text { dB } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T} 2 \\
\mathrm{~T} 6 \\
\mathrm{~T} 10 \\
\\
\mathrm{~dB} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T} 3 \\
\text { T7 } \\
\mathrm{T} 11 \\
\\
\mathrm{~dB} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{T} 4 \\
\mathrm{~T} 8 \\
\mathrm{~T} 12 \\
\\
\mathrm{~dB} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Dist \\
Table
\end{tabular} & Corr
\[
\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}
\] & Spec
\[
\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}
\] & Margin
\[
\mathrm{dB}
\] & \begin{tabular}{l}
Polar \\
Ant
\end{tabular} \\
\hline \[
\begin{aligned}
& 1 \quad 963.678 \mathrm{M} \\
& \mathrm{QP}
\end{aligned}
\] & 14.5 & \[
\begin{aligned}
& \hline+0.4 \\
& +1.7 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+2.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
\hline+24.8 \\
+0.0 \\
+0.0
\end{array}
\] & +0.0 & 45.1 & \[
\begin{gathered}
54.0 \\
\text { 10k GFSK }
\end{gathered}
\] & -8.9 & Vert \\
\hline \[
\begin{aligned}
& 2 \text { 2434.000M } \\
& \text { Ambient }
\end{aligned}
\] & 84.7 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.6 \\
& +0.4 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.1
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.0 \\
+5.8
\end{array}
\] & +0.0 & 87.7 & 102.0 & -14.3 & Vert \\
\hline \[
\begin{aligned}
& 3 \text { 2434.000M } \\
& \text { Ambient }
\end{aligned}
\] & 80.7 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.6 \\
& +0.4 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+28.1
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.6
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.0 \\
+5.8
\end{array}
\] & +0.0 & 83.7 & 102.0 & -18.3 & Horiz \\
\hline \[
\begin{aligned}
& 4 \text { 1830.060M } \\
& \text { Ave }
\end{aligned}
\] & 41.5 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 44.2 & \[
\begin{gathered}
102.0 \\
\text { 10k GFSK }
\end{gathered}
\] & \(-57.8\) & Vert \\
\hline \[
\begin{aligned}
& 51830.180 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 40.6 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
+0.0
\] & 43.3 & \[
\begin{gathered}
102.0 \\
\text { 50k GFSK }
\end{gathered}
\] & -58.7 & Vert \\
\hline \[
\begin{aligned}
& 6 \text { 1804.247M } \\
& \text { Ave }
\end{aligned}
\] & 40.4 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.3
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
+0.0
\] & 43.1 & \[
\begin{gathered}
\hline 102.0 \\
\text { 12.5 OQPSK }
\end{gathered}
\] & \[
K^{-58.9}
\] & Vert \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 71804.395 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 40.2 & \[
\begin{aligned}
& \hline+0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.9 & \[
\begin{gathered}
\hline 102.0 \\
\text { 150k GFSK }
\end{gathered}
\] & \[
\overline{-59.1}
\] & Vert \\
\hline \[
\begin{aligned}
& 81804.438 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 40.2 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \(+0.0\) & 42.9 & \[
\begin{gathered}
\hline 102.0 \\
\text { 6.25k OQPSK }
\end{gathered}
\] & \[
-59.1
\] & Vert \\
\hline \[
\begin{aligned}
& 9 \text { 1804.800M } \\
& \text { Ave }
\end{aligned}
\] & 40.1 & \[
\begin{aligned}
& \hline+0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.8 & \[
\begin{gathered}
\hline 102.0 \\
\text { 50k GFSK }
\end{gathered}
\] & \[
-59.2
\] & Vert \\
\hline \[
\begin{aligned}
& 10 \quad 1830.022 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 42.6 & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.4 & 102.0 & -59.6 & Vert \\
\hline \[
\begin{aligned}
& 11 \quad 1831.144 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 39.6 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.3 & \[
\begin{gathered}
102.0 \\
\text { 12.5 OQPSK }
\end{gathered}
\] & \[
-59.7
\] & Vert \\
\hline \[
\begin{aligned}
& 121855.514 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 39.6 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.9
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.3 & \[
\begin{gathered}
\hline 102.0 \\
\text { 10k GFSK }
\end{gathered}
\] & \[
-59.7
\] & Vert \\
\hline \[
\begin{aligned}
& 131830.244 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 39.6 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.3 & \[
\begin{gathered}
\hline 102.0 \\
6.25 \mathrm{k} \text { OQPSK }
\end{gathered}
\] & \[
-59.7
\] & Vert \\
\hline \[
\begin{aligned}
& 141855.246 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 39.5 & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.2 & \[
\begin{gathered}
102.0 \\
\text { 50k GFSK }
\end{gathered}
\] & & Vert \\
\hline \[
\begin{aligned}
& 151830.292 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 39.5 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 42.2 & \[
\begin{gathered}
\hline 102.0 \\
\text { 150k GFSK }
\end{gathered}
\] & -59.8 & Vert \\
\hline \[
\begin{aligned}
& 161804.360 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 39.1 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.3
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 41.8 & \[
\begin{gathered}
\hline 102.0 \\
\text { 10k GFSK }
\end{gathered}
\] & \[
\overline{-60.2}
\] & Vert \\
\hline \[
\begin{aligned}
& 17 \text { 1855.225M } \\
& \text { Ave }
\end{aligned}
\] & 38.9 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 41.6 & \[
\begin{gathered}
\hline 102.0 \\
\text { 150k GFSK }
\end{gathered}
\] & \[
-60.4
\] & Vert \\
\hline \[
\begin{aligned}
& 18 \quad 1855.258 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 38.9 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 41.6 & \[
\begin{gathered}
\hline 102.0 \\
\text { 6.25k OQPSK }
\end{gathered}
\] & \[
-60.4
\] & Vert \\
\hline \[
\begin{aligned}
& 191855.234 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 38.9 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 41.6 & \[
\begin{gathered}
\hline 102.0 \\
12.5 \mathrm{k} \text { OQPSK }
\end{gathered}
\] & \[
\overline{-60.4}
\] & Vert \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
20 \text { 6409.000M } \\
\text { Ave }
\end{gathered}
\] & 25.3 & \[
\begin{aligned}
& +0.6 \\
& +5.4 \\
& +0.8 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+35.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.5
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-33.6 \\
+5.9
\end{array}
\] & +0.0 & 40.3 & 102.0 & -61.7 & Vert \\
\hline \(\wedge 16409.000 \mathrm{M}\) & 36.0 & \[
\begin{aligned}
& \hline+0.6 \\
& +5.4 \\
& +0.8 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+35.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.5
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-33.6 \\
+5.9
\end{array}
\] & +0.0 & 51.0 & 102.0 & -51.0 & Vert \\
\hline \[
\begin{array}{cl}
22 & 462.400 \mathrm{M} \\
\mathrm{QP}
\end{array}
\] & 14.5 & \[
\begin{aligned}
& +0.2 \\
& +1.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
\hline+17.9 \\
+0.0 \\
+0.0
\end{array}
\] & +0.0 & 36.1 & 102.0 & -65.9 & Vert \\
\hline \(\wedge 462.400 \mathrm{M}\) & 19.7 & \[
\begin{aligned}
& +0.2 \\
& +1.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.1 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+1.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
\hline+17.9 \\
+0.0 \\
+0.0
\end{array}
\] & \(+0.0\) & 41.3 & 102.0 & -60.7 & Vert \\
\hline \[
\begin{gathered}
24 \mathrm{QP}^{30.000 \mathrm{M}} \\
\hline
\end{gathered}
\] & 17.3 & \[
\begin{aligned}
& +0.1 \\
& +0.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
\hline+15.9 \\
+0.0 \\
+0.0
\end{array}
\] & \(+0.0\) & 34.2 & 102.0 & -67.8 & Vert \\
\hline \[
\begin{gathered}
25{ }_{\mathrm{QP}}{ }^{89.900 \mathrm{M}} \\
\hline
\end{gathered}
\] & 24.2 & \[
\begin{aligned}
& +0.1 \\
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +6.9 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 32.7 & 102.0 & -69.3 & Vert \\
\hline \(\wedge 89.900 \mathrm{M}\) & 26.4 & \[
\begin{aligned}
& +0.1 \\
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +6.9 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \(+0.0\) & 34.9 & 102.0 & -67.1 & Vert \\
\hline \(27 \quad 58.490 \mathrm{M}\) & 23.9 & \[
\begin{aligned}
& +0.1 \\
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +6.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 31.8 & 102.0 & -70.2 & Horiz \\
\hline \[
\begin{gathered}
28{ }^{50.300 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & 23.7 & \[
\begin{aligned}
& \hline+0.1 \\
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+6.8 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 31.8 & 102.0 & -70.2 & Vert \\
\hline \(\wedge 50.300 \mathrm{M}\) & 26.8 & \[
\begin{aligned}
& +0.1 \\
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+6.8 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 34.9 & 102.0 & -67.1 & Vert \\
\hline \[
\begin{gathered}
30{ }^{58.028 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & 21.7 & \[
\begin{aligned}
& \hline+0.1 \\
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.4 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +6.6 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \(+0.0\) & 29.6 & 102.0 & -72.4 & Horiz \\
\hline \[
\begin{aligned}
& 31 \text { 1804.410M } \\
& \text { Ave }
\end{aligned}
\] & 29.9 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & +0.0 & 32.6 & \[
\begin{gathered}
\hline 110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & -77.4 & Vert \\
\hline \[
\begin{gathered}
321804.313 \mathrm{M} \\
\text { Ave }
\end{gathered}
\] & 29.8 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.3
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
\hline+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \[
+0.0
\] & 31.2 & \[
\begin{gathered}
110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & -78.8 & Vert \\
\hline
\end{tabular}

Page 91 of 205
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
331805.620 \mathrm{M} \\
\text { Ave }
\end{gathered}
\] & 29.7 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.4
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 31.2 & \[
\begin{gathered}
110.0 \\
\text { 1.2M OFDM }
\end{gathered}
\] & \[
-78.8
\] & Vert \\
\hline \[
\begin{aligned}
& 34 \begin{array}{l}
1804.349 \mathrm{M} \\
\text { Ave }
\end{array}
\end{aligned}
\] & 29.7 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.3
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 31.1 & \[
\begin{gathered}
\hline 110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & \[
-78.9
\] & Vert \\
\hline \[
\begin{gathered}
351804.360 \mathrm{M} \\
\text { Ave }
\end{gathered}
\] & 29.7 & \[
\begin{aligned}
& +0.5 \\
& +2.2 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.3
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 31.1 & \[
\begin{gathered}
110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & \[
-78.9
\] & Vert \\
\hline \[
\begin{gathered}
36 \text { 1829.660M } \\
\text { Ave }
\end{gathered}
\] & 29.2 & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.6
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
\hline+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 30.9 & \[
\begin{gathered}
110.0 \\
\text { 1.2M OFDM }
\end{gathered}
\] & \[
-79.1
\] & Vert \\
\hline \[
\begin{aligned}
& 37 \text { 1855.239M } \\
& \text { Ave }
\end{aligned}
\] & 28.7 & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 30.6 & \[
\begin{gathered}
\hline 110.0 \\
\text { 200k OFDM }
\end{gathered}
\] & \[
-79.4
\] & Vert \\
\hline \[
\begin{aligned}
& 38 \text { 1855.192M } \\
& \text { Ave }
\end{aligned}
\] & 28.7 & \[
\begin{aligned}
& +0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & +0.0 & 30.6 & \[
\begin{gathered}
110.0 \\
\text { 600k OFDM }
\end{gathered}
\] & \[
-79.4
\] & Vert \\
\hline \[
\begin{aligned}
& 391853.600 \mathrm{M} \\
& \text { Ave }
\end{aligned}
\] & 28.6 & \[
\begin{aligned}
& \hline+0.4 \\
& +2.3 \\
& +0.3 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
+0.0 \\
+26.8
\end{array}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.7
\end{aligned}
\] & \[
\begin{array}{r}
+0.0 \\
-34.5 \\
+5.9
\end{array}
\] & \(+0.0\) & 30.5 & \[
\begin{gathered}
\hline 110.0 \\
\text { 1.2M OFDM }
\end{gathered}
\] & \[
-79.5
\] & Vert \\
\hline \[
\begin{gathered}
40{ }^{19.293 \mathrm{M}} \\
\mathrm{QP}
\end{gathered}
\] & 28.9 & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +8.1 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -2.8 & 102.0 & -104.8 & Para \\
\hline \(\wedge 19.293 \mathrm{M}\) & 33.5 & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +8.1 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & 1.8 & 102.0 & -100.2 & Para \\
\hline \(42 \quad 28.051 \mathrm{M}\) & 27.2 & \[
\begin{aligned}
& +0.1 \\
& +0.3 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +6.1 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -6.3 & 102.0 & -108.3 & Para \\
\hline \(43 \quad 15.574 \mathrm{M}\) & 23.2 & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +9.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -7.6 & 102.0 & -109.6 & Groun \\
\hline 449.396 M & 19.6 & \[
\begin{aligned}
& +0.0 \\
& +0.2 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +9.2 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline+0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -11.0 & 102.0 & -113.0 & Perp \\
\hline \(45 \quad 7.357 \mathrm{M}\) & 17.1 & \[
\begin{aligned}
& +0.0 \\
& +0.1 \\
& +0.0 \\
& +0.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +9.4 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & \[
\begin{aligned}
& +0.0 \\
& +0.0 \\
& +0.0
\end{aligned}
\] & -40.0 & -13.4 & 102.0 & -115.4 & Para \\
\hline
\end{tabular}

Page 92 of 205

LABORATORIES, INE.

\section*{Band Edge}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Band Edge Summary - Configuration 2} \\
\hline Frequency (MHz) & Modulation & Ant. Type & Field Strength (dBuV/m @3m) & Limit (dBuV/m@3m) & Results \\
\hline 614 & \multirow{4}{*}{10k GFSK} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 39.9 & <46 & Pass \\
\hline 902 & & & 98.3 & <110 & Pass \\
\hline 928 & & & 81.5 & <110 & Pass \\
\hline 960 & & & 46.7 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{50k GFSK} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.7 & <46 & Pass \\
\hline 902 & & & 71.4 & <110 & Pass \\
\hline 928 & & & 72.9 & <110 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{150k GFSK} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.7 & <46 & Pass \\
\hline 902 & & & 72.0 & <110 & Pass \\
\hline 928 & & & 73.8 & \(<110\) & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{6.25k OQPSK} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.8 & <46 & Pass \\
\hline 902 & & & 71.7 & \(<110\) & Pass \\
\hline 928 & & & 73.5 & <110 & Pass \\
\hline 960 & & & 43.6 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{12.5 OQPSK} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.7 & <46 & Pass \\
\hline 902 & & & 72.1 & <110 & Pass \\
\hline 928 & & & 73.2 & <110 & Pass \\
\hline 960 & & & 43.6 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{200k OFDM} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.7 & <46 & Pass \\
\hline 902 & & & 80.7 & <102 & Pass \\
\hline 928 & & & 82.2 & <102 & Pass \\
\hline 960 & & & 43.3 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{600k OFDM} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.7 & <46 & Pass \\
\hline 902 & & & 77.7 & <102 & Pass \\
\hline 928 & & & 73.8 & <102 & Pass \\
\hline 960 & & & 43.2 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{\begin{tabular}{l}
1.2M OFDM \\
(Hybrid)
\end{tabular}} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.5 & <46 & Pass \\
\hline 902 & & & 61.0 & <102 & Pass \\
\hline 928 & & & 52.1 & <102 & Pass \\
\hline 960 & & & 43.2 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{\[
\begin{aligned}
& \text { Hopping (10k } \\
& \text { GFSK) }
\end{aligned}
\]} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.5 & <46 & Pass \\
\hline 902 & & & 74.2 & \(<110\) & Pass \\
\hline 928 & & & 75.9 & <110 & Pass \\
\hline 960 & & & 43.1 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{\[
\begin{aligned}
& \text { Hopping ( } 6.25 \mathrm{k} \\
& \text { OQPSK) }
\end{aligned}
\]} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.5 & <46 & Pass \\
\hline 902 & & & 72.0 & <110 & Pass \\
\hline 928 & & & 64.7 & <110 & Pass \\
\hline 960 & & & 43.1 & <54 & Pass \\
\hline 614 & \multirow[t]{3}{*}{Hopping (200k OFDM)} & \multirow[t]{3}{*}{External Attached Colinear Omni 2.8dBi} & 38.6 & <46 & Pass \\
\hline 902 & & & 66.3 & \(<102\) & Pass \\
\hline 928 & & & 64.7 & <102 & Pass \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency (MHz) & Modulation & Ant. Type & Field Strength (dBuV/m@3m) & Limit (dBuV/m@3m) & Results \\
\hline 960 & & & 43.2 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{Hopping (1.2M OFDM) (Hybrid)} & \multirow{4}{*}{External Attached Colinear Omni 2.8dBi} & 38.5 & <46 & Pass \\
\hline 902 & & & 51.4 & <102 & Pass \\
\hline 928 & & & 47.3 & <102 & Pass \\
\hline 960 & & & 43.2 & <54 & Pass \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Band Edge Summary - Configuration 3} \\
\hline Frequency (MHz) & Modulation & Ant. Type & Field Strength (dBuV/m @3m) & Limit
(dBuV/m@3m) & Results \\
\hline 614 & \multirow{4}{*}{10k GFSK} & \multirow{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.8 & <46 & Pass \\
\hline 902 & & & 80.4 & <110 & Pass \\
\hline 928 & & & 77.3 & <110 & Pass \\
\hline 960 & & & 43.6 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{50k GFSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5 dBI} & 38.8 & <46 & Pass \\
\hline 902 & & & 73.4 & <110 & Pass \\
\hline 928 & & & 70.8 & <110 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{150k GFSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.9 & <46 & Pass \\
\hline 902 & & & 70.9 & <110 & Pass \\
\hline 928 & & & 72.8 & <110 & Pass \\
\hline 960 & & & 43.6 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{6.25k OQPSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.8 & <46 & Pass \\
\hline 902 & & & 72.3 & \(<110\) & Pass \\
\hline 928 & & & 74.5 & <110 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{12.5 OQPSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.8 & <46 & Pass \\
\hline 902 & & & 73.1 & <110 & Pass \\
\hline 928 & & & 73.4 & <110 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{200k OFDM} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.7 & <46 & Pass \\
\hline 902 & & & 76.2 & <102 & Pass \\
\hline 928 & & & 72.9 & <102 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{600k OFDM} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5 dBI} & 38.8 & <46 & Pass \\
\hline 902 & & & 76.2 & <102 & Pass \\
\hline 928 & & & 72.7 & <102 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{\begin{tabular}{l}
1.2M OFDM \\
(Hybrid)
\end{tabular}} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5 dBI} & 38.7 & <46 & Pass \\
\hline 902 & & & 59.5 & <102 & Pass \\
\hline 928 & & & 50.5 & <102 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{Hopping (10k GFSK)} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.7 & <46 & Pass \\
\hline 902 & & & 74.4 & <110 & Pass \\
\hline 928 & & & 74.9 & <110 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency (MHz) & Modulation & Ant. Type & Field Strength (dBuV/m@3m) & Limit (dBuV/m@3m) & Results \\
\hline 614 & \multirow{4}{*}{\[
\begin{aligned}
& \text { Hopping (6.25k } \\
& \text { OQPSK) }
\end{aligned}
\]} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.7 & <46 & Pass \\
\hline 902 & & & 65.3 & <110 & Pass \\
\hline 928 & & & 67.5 & <110 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{Hopping (200k OFDM)} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.7 & <46 & Pass \\
\hline 902 & & & 70.3 & <102 & Pass \\
\hline 928 & & & 63.8 & <102 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{Hopping (1.2M OFDM) (Hybrid)} & \multirow[t]{4}{*}{External Remote Colinear Omni 5.5dBI} & 38.8 & <46 & Pass \\
\hline 902 & & & 52.9 & \(<102\) & Pass \\
\hline 928 & & & 47.5 & <102 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline
\end{tabular}

Band Edge Summary - Configuration 4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency (MHz) & Modulation & Ant. Type & Field Strength (dBuV/m@3m) & Limit (dBuV/m@3m) & Results \\
\hline 614 & \multirow{4}{*}{10k GFSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15 dBi with 3 dB attenuator} & 38.9 & <46 & Pass \\
\hline 902 & & & 94.7 & <110 & Pass \\
\hline 928 & & & 76.55 & <110 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{50k GFSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15 dBi with 3dB attenuator} & 39.0 & <46 & Pass \\
\hline 902 & & & 71.0 & <110 & Pass \\
\hline 928 & & & 70.1 & <110 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{150k GFSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15 dBi with 3dB attenuator} & 38.9 & <46 & Pass \\
\hline 902 & & & 71.3 & <110 & Pass \\
\hline 928 & & & 71.0 & <110 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{6.25k OQPSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15 dBi with 3dB attenuator} & 38.9 & <46 & Pass \\
\hline 902 & & & 71.1 & <110 & Pass \\
\hline 928 & & & 71.2 & <110 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{12.5 OQPSK} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15 dBi with 3dB attenuator} & 38.9 & <46 & Pass \\
\hline 902 & & & 70.6 & \(<110\) & Pass \\
\hline 928 & & & 71.7 & <110 & Pass \\
\hline 960 & & & 43.6 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{200k OFDM} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15dBi with 3dB attenuator} & 38.8 & <46 & Pass \\
\hline 902 & & & 73.4 & <102 & Pass \\
\hline 928 & & & 67.3 & <102 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{600k OFDM} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15dBi with 3 dB attenuator} & 38.8 & <46 & Pass \\
\hline 902 & & & 73.0 & <102 & Pass \\
\hline 928 & & & 65.8 & <102 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & 1.2M OFDM & External Remote & 38.8 & <46 & Pass \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency (MHz) & Modulation & Ant. Type & Field Strength (dBuV/m@3m) & Limit (dBuV/m@3m) & Results \\
\hline 902 & \multirow[t]{3}{*}{(Hybrid)} & \multirow[t]{3}{*}{Colinear Omni 8.15 dBi with 3dB attenuator} & 58.2 & <102 & Pass \\
\hline 928 & & & 47.5 & <102 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{\[
\begin{aligned}
& \text { Hopping (10k } \\
& \text { GFSK) }
\end{aligned}
\]} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15dBi with 3dB attenuator} & 38.7 & <46 & Pass \\
\hline 902 & & & 73.3 & \(<110\) & Pass \\
\hline 928 & & & 70.9 & <110 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{\[
\begin{aligned}
& \text { Hopping (6.25k } \\
& \text { OQPSK) }
\end{aligned}
\]} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15dBi with 3 dB attenuator} & 38.8 & <46 & Pass \\
\hline 902 & & & 65.4 & <110 & Pass \\
\hline 928 & & & 67.2 & <110 & Pass \\
\hline 960 & & & 43.4 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{\[
\begin{aligned}
& \text { Hopping (200k } \\
& \text { OFDM) }
\end{aligned}
\]} & \multirow[t]{4}{*}{External Remote
Colinear Omni 8.15 dBi
with 3 dB attenuator} & 38.7 & <46 & Pass \\
\hline 902 & & & 67.9 & <102 & Pass \\
\hline 928 & & & 61.0 & <102 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline 614 & \multirow{4}{*}{Hopping (1.2M OFDM) (Hybrid)} & \multirow[t]{4}{*}{External Remote Colinear Omni 8.15dBi with 3dB attenuator} & 38.8 & <46 & Pass \\
\hline 902 & & & 55.4 & <102 & Pass \\
\hline 928 & & & 45.8 & <102 & Pass \\
\hline 960 & & & 43.5 & <54 & Pass \\
\hline
\end{tabular}

\section*{Band Edge Plots} Configuration 2

GFSK













\section*{OQPSK}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Ref Level 102.99 OBpV ATTEN 6 dB RES BW: 120.0 kHz VD BW: 120.0 kHz SWP: 41.905 sec Warker: 614.0 MHz 14.4627dBuV} \\
\hline \\
\hline
\end{tabular}

-15.247(d) / 15.209 Radiated Spurious Emissions








\section*{OFDM}













\section*{GFSK Hopping}





\section*{OQPSK Hopping}





\section*{OFDM Hopping}









\section*{Configuration 3}

\section*{GFSK}













\section*{OQPSK}





```

