Itron, Inc.

TEST REPORT FOR

ORRNA Model: RN-EGS

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(FHSS 902-928 MHz)

Report No.: 100619-5

Date of issue: December 15, 2017

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information4
Summary of Results 5
Modifications During Testing5
Conditions During Testing5
Equipment Under Test 6
General Product Information 6
FCC Part 15 Subpart C 7
15.247(a) Transmitter Characteristics 7
15.247(a)(1)(i) 20 dB Bandwidth 7
15.247(a)(1) Carrier Separation 12
15.247(a)(1)(i) Number of Channels 13
15.247(b)(2) Output Power 16
15.35(c) Duty Cycle Correction Factor 24
15.247(d) RF Conducted Emissions \& Band Edge 26
15.247(d) Radiated Emissions \& Band Edge 34
15.207 AC Conducted Emissions 53
Appendix A: Customer Provided Information 64
Manufacturer's Declaration: 15.247(a)(1)(i) Average Time of Occupancy 64
DCCF Plot Data 64
Supplemental Information 65
Measurement Uncertainty 65
Emissions Test Details. 65

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Iron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 135842

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 100619

November 27, 2017
November 27-29, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
Canyon Park
22116 23rd Drive S.E., Suite A
Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .11

Site Registration \& Accreditation Information

Location	NIST CB \#	TAIWAN	CANADA	FCC	JAPAN
Canyon Park Bothell, WA	US0081	SL2-IN-E-1145R	$3082 \mathrm{C}-1$	US1022	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	Pass
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable
NP = CKC Laboratories was not contracted to perform test. See Appendix A for Manufacturer's Declaration.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing
This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EXT)

The following device has been tested by CKC Laboratories: ORRN

Since the time of testing the manufacturer has updated the device name from ORRN to ORRNA and declares the device is identical electrically, any differences between them do not affect their EMC characteristics, and therefore meets the level of testing equivalent to the tested device.

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
ORRNA	Itron, Inc.	RN-EGS	321128365

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	Dell	E6430	NA
AC/DC Adapter (for Laptop)	Dell	DA130PE-00	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	Proprietary FHSS
Operating Frequency Range:	$903-926.9 \mathrm{MHz}$
Number of Hopping Channels:	120
Modulation Types):	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK), $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)
Maximum Duty Cycle:	23.8%
Number of TX Chains:	1
Antenna Types) and Gain:	External Monopole, 5.15 or 5.5 dBi
Beamforming Type:	N/A
Antenna Connection Type:	External Connector
Nominal Input Voltage:	$115-230 \mathrm{VAC}, 60 \mathrm{~Hz}$
Firmware / Software used for Test:	Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.14
	Software: SrTest100 v4.1.1.25

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions			
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$11 / 27 / 17$
Configuration:	1	The EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements. Low, Mid, High channels investigated, all modulation types investigated, worst case reported.	
Test Setup:			

Environmental Conditions			
Temperature (으)	21	Relative Humidity (\%):	37

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02871	Spectrum Analyzer	Agilent	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$	
P06219	Attenuator	Narda	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$	
02871	Spectrum Analyzer	Agilent	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$	

15.247(a)(1)(i) 20 dB Bandwidth

Test Data Summary					
Frequency $(\mathbf{M H z})$	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $(\mathbf{k H z})$	Results
903	1	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	138.92	≤ 500	Pass
915	1	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	138.79	≤ 500	Pass
926.9	1	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	138.98	≤ 500	Pass
903	1	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	83.82	≤ 500	Pass
915	1	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	84.52	≤ 500	Pass
926.9	1	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	85.07	≤ 500	Pass

LABORATORIES, INC.

Plots)

12.5 k 903 MHz

12.5k 915MHz

12.5k 926.9MHz

37.5k 903MHz

37.5k 915MHz

37.5 k 926.9 MHz

15.247(a)(1) Carrier Separation

Test Data Summary				
Limit applied: 20dB bandwidth of the hopping channel.				
Antenna Port	Operational Mode	Measured $\mathbf{(k H z)}$	Limit $(\mathbf{k H z})$	Results
1	Continuously Transmitting while Hopping	200.3	$\geq 138.98 \mathrm{kHz}$	Pass

Plot (s)

15.247(a)(1)(i) Number of Channels

Test Data Summary				
Limit $=\left\{\begin{array}{l}50 \text { Channels } \mid 20 d B \quad B W<250 \mathrm{kHz} \\ 25 \text { Channels } \mid 20 d B \quad B W \geq 250 \mathrm{kHz}\end{array}\right.$				
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results
1	Continuously Transmitting while Hopping	120	≥ 50	Pass

Plot(s)

902-914.9MHz, 60 Channels

914.9-928MHz, 60 Channels

Test Setup Photo(s)

15.247(b)(2) Output Power

Test Setup/Conditions			
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$11 / 27 / 17$
Configuration:	1		
Test Setup:	See data sheet below.		

Environmental Conditions			
Temperature (으)	22	Relative Humidity (\%):	36

Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Nominal }}$ (dBm)	$\mathbf{V}_{\text {Maximum }}$ (dBm)	Max Deviation from V $_{\text {Nominal }}(\mathbf{d B})$	
903	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	28.9	28.9	28.9	0.0	
915	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	28.7	28.7	28.7	0.0	
926.9	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	28.7	28.7	28.7	0.0	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.
The EUT does not operate beyond the listed Vminimum and Vmaximum

Parameter	Value
V $_{\text {Nominal }}:$	$115-230 \mathrm{VAC}, 60 \mathrm{~Hz}$
V Minimum:	$85 \mathrm{VAC}, 60 \mathrm{~Hz}$
V Maximum:	$264 \mathrm{VAC}, 60 \mathrm{~Hz}$

Test Data Summary - RF Conducted Measurement
Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels (min 25) }\end{array}\right.$

Frequency (MHz)	Modulation	Ant. Type $/$ Gain (dBi)	Measured (dBm)	Limit $(\mathbf{d B m})$	Results
903	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM $(2 \mathrm{GFSK})$	External Monopole, 5.5 dBi Max	28.9	≤ 30	Pass
915	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM $(2 \mathrm{GFSK})$	External Monopole, 5.5 dBi Max	28.8	≤ 30	Pass
926.9	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM $(2 \mathrm{GFSK})$	External Monopole, 5.5 dBi Max	28.6	≤ 30	Pass
903	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM $(2 \mathrm{GFSK})$	External Monopole, 5.5 dBi Max	28.9	≤ 30	Pass
915	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM $(2 \mathrm{GFSK})$	External Monopole, 5.5 dBi Max	28.7	≤ 30	Pass
926.9	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM $(2 \mathrm{GFSK})$	External Monopole, 5.5 dBi Max	28.7	≤ 30	Pass

LABORATORIES, INC.

Plots

12.5k 903MHz

12.5 k 915 MHz

12.5k 926.9MHz

37.5 k 903 MHz

37.5 k 915 MHz

37.5k 926.9MHz

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.
Specification:	15.247(b) Power Output (902-928 MHz FHSS >50 Channels)
Work Order \#:	100619 Date: 11/27/2017
Test Type:	Conducted Emissions Time: 12:02:13
Tested By:	Michael Atkinson Sequence\#: 4
Software:	EMITest 5.03.11 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Frequency Range: Fundamental
Frequency tested: $903,915,926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK), $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100%
Setup: EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a
spectrum analyzer for direct connected measurements. Low, Mid, High channels investigated, all modulation types
investigated, worst case reported. Also investigated voltage variations based on manufacturer specified Vmin and
Vmax.

Itron, Inc. WO\#: 100619 Sequence\#: 4 Date: 11/27/2017
15.247 (b) Power Output ($902-928 \mathrm{MHz}$ FHSS >50 Channels) Test Lead: 115 VAC 60 Hz None

- Sweep Data
- Readings

0 Peak Readings

* QP Readings
* Average Readings
- Ambient

Software Version: 5.03.11

- 1 - 15.247(b) Power Output ($902-928 \mathrm{MHz}$ FHSS >50 Channels)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$
T2	ANP06219	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$
T3	ANP06011	Cable	Heliax	$10 / 25 / 2017$	$10 / 25 / 2019$

Measurement Data:
\# Freq MHz Rdng $\mathrm{dB} \mu \mathrm{V}$ T 1 dB T 2 dB T 3 dB dB Dist Table Corr dBm Spec dBm Margin dB Polar Ant 1 903.004 M 19.3 +0.0 +9.1 +0.5 +0.0 28.9 30.0 FM 37.5 K
2

15.35(c) Duty Cycle Correction Factor

Test Data Summary			
Antenna Port	Operational Mode	Measured On Time $(\mathrm{mS} /$ Pobs)	Calculated DCCF (dB)
1	Longest Pulse Possible	0.238	-12.4

Observation Period, Pobs is the duration of the pulse train or maximum 100 mS
Measured results are calculated as follows:

$$
\text { On Time }=\left.\left(\sum_{\text {Bursts }} R F \text { Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{o b s}(\max 100 \mathrm{~ms})}
$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100
Number of RF Bursts / Pobs::	1
On time of RF Burst:	23.8 mS
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	23.8 mS

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$
D C C F=20 \cdot \log \left(\frac{\text { On Time }}{P_{\text {obs }}}\right)
$$

Duty Cycle Correction Factor Test Data

DCCF is based on manufacturer measured worst case data, due to the firmware not being available to allow this measurement to be made at the test lab during time of test. See Appendix A, Customer Provided Information for manufacturer provided data.

Test Setup Photo(s)

15.247(d) RF Conducted Emissions \& Band Edge

Test Setup/Conditions				
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$11 / 27 / 17$	
Configuration:	1			
Environmental Conditions Temperature (oC) 22 Relative Humidity (\%): 36				

See data sheets for test setup and test equipment.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) Conducted Spurious Emissions

100619
Conducted Emissions
Michael Atkinson
EMITest 5.03.11

Date: 11/27/2017
Time: 13:54:50
Sequence\#: 3
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range:9kHz-9.28GHz
Frequency tested: $903,915,926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK), $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100%
Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly
to a spectrum analyzer for direct connected measurements.
Low, Mid, and High channels investigated. In addition to the Low/Mid/High investigation, spurious emissions also
investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported.

Itron, Inc. WO\#t: 100619 Sequence\#: 3 Date: 11/27/2017 15.247 (d) Conducted Spurious Emissions Test Lead: 115 VAC 60 Hz RF Output

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$
T1	ANP06219	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$
T2	ANP06011	Cable	Heliax	$10 / 25 / 2017$	$10 / 25 / 2019$

Band Edge

Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.

Frequency $(\mathbf{M H z})$	Modulation	Measured $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Results
902	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	-4.2	<8.9	Pass
928	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	-8.9	<8.9	Pass
902	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	-4.7	<8.9	Pass
928	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	-9.2	<8.9	Pass
902	Hopping with modulation $(12.5 \mathrm{Kbit} / \mathrm{sec}$ Modulations worst case)	-5.1	<8.9	Pass
928	Hopping with modulation $(12.5$ Kbit/sec Modulations worst case)	-12.0	<8.9	Pass

Band Edge Plots

LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) Conducted Spurious Emissions

100619
Conducted Emissions
Michael Atkinson
EMITest 5.03.11

Date: 11/27/2017
Time: 13:43:46
Sequence\#: 2
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Frequency Range: Band Edge
Frequency tested: $903,926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK), $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100%
Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly
to a spectrum analyzer for direct connected measurements.
Low, Mid, and High channels investigated. In addition to the Low/Mid/High investigation, spurious emissions also
investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$
T2	ANP06219	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$
T3	ANP06011	Cable	Heliax	$10 / 25 / 2017$	$10 / 25 / 2019$

Measurement Data: Reading listed by margin. Test Lead: RF Output

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr dBm	Spec dBm	Margin dB	Polar Ant
1	902.000 M	-13.8	+0.0	+9.1	+0.5		+0.0	-4.2	8.9 12.5 k	-13.1	RF Ou
2	902.000 M	-14.3	+0.0	+9.1	+0.5	+0.0	-4.7	8.9 37.5 k	-13.6	RF Ou	
3	902.000 M	-14.7	+0.0	+9.1	+0.5	+0.0	-5.1	8.9 Hopping	-14.0	RF Ou	
4	928.000 M	-18.6	+0.0	+9.2	+0.5	+0.0	-8.9	8.9	-17.8	RF Ou	
5	928.000 M	-18.9	+0.0	+9.2	+0.5	+0.0	-9.2	8.9 37.5 k	-18.1	RF Ou	
6	928.000 M	-21.7	+0.0	+9.2	+0.5	+0.0	-12.0	8.9 Hopping	-20.9	RF Ou	

Test Setup Photo(s)

LABORATORIES, INE.

15.247(d) Radiated Emissions \& Band Edge

Test Setup/Conditions			
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$11 / 27 / 17$ to 11/29/17
Configuration:	1		
Environmental Conditions Temperature (으) $21-23$ Relative Humidity (\%):			

See data sheets for test setup and test equipment.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

100619 Date: 11/28/2017
Maximized Emissions Time: 13:34:53
Michael Atkinson Sequence\#: 8
EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Frequency Range: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Frequency tested: $903,915 \mathrm{MHz}, 926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100\%
Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port has an external antenna installed, both 5.15 and 5.5 dBi antennas investigated, only worst case reported.
Low, Mid, and High channels investigated. In addition to Low/Mid/High channel investigation, spurious emissions also investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported. Both Horizontal and Vertical antenna polarities investigated above 30 MHz , only worst case reported. 3 orthogonal axes investigated below 30 MHz , only worst case reported.

All average data points marked Low, Mid, High have duty cycle correction applied ($23.8 \%,-12.44 \mathrm{~dB}$)

Itron, Inc. WO\#: 100619 Sequence\#: 8 Date: 11/28/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

[^0]O Peak Readings

* Average Readings
Software Version: 5.03.11

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$
T1	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T2	ANP06515	Cable	Heliax	$1 / 21 / 2016$	$1 / 21 / 2018$
T3	AN03540	Preamp	83017 A	$5 / 2 / 2017$	$5 / 2 / 2019$
T4	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	$7 / 21 / 2017$	$7 / 21 / 2019$
		Cable			
T5	ANP06934		$32026-29801-$	$3 / 11 / 2016$	$3 / 11 / 2018$
T6	AN03170	High Pass Filter	HM1155-11SS	$11 / 27 / 2017$	$11 / 27 / 2019$
T7	ANDCCF	Test Data Adjustment		$5 / 13 / 2016$	$5 / 13 / 2018$
T8	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T9	ANP05360	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T10	ANP06123	Attenuator	$18 N-6$	$5 / 5 / 2017$	$5 / 5 / 2019$
T11	AN03628	Biconilog Antenna	3142 E	$6 / 7 / 2017$	$6 / 7 / 2019$
T12	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
FreqMHz	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
		T9	T10	T11	T12					
	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
$1 \quad 37.547 \mathrm{M}$	18.4	+0.1	+0.0	+0.0	+0.0	+0.0	37.0	40.0	-3.0	Vert
QP		+0.0	+0.0	+0.0	+0.5					
		+0.3	+5.9	+11.8	+0.0					
$2 \quad 37.619 \mathrm{M}$	17.5	+0.1	+0.0	+0.0	+0.0	+0.0	36.0	40.0	-4.0	Vert
QP		+0.0	+0.0	+0.0	+0.5					
		+0.3	+5.9	+11.7	+0.0					
$\wedge 37.547 \mathrm{M}$	20.9	+0.1	+0.0	+0.0	+0.0	+0.0	39.5	40.0	-0.5	Vert
		+0.0	+0.0	+0.0	+0.5					
		+0.3	+5.9	+11.8	+0.0					
$\wedge 37.619 \mathrm{M}$	20.5	+0.1	+0.0	+0.0	+0.0	+0.0	39.0	40.0	-1.0	Vert
		+0.0	+0.0	+0.0	+0.5					
		+0.3	+5.9	+11.7	+0.0					
$\begin{aligned} & 5 \text { 4515.027M } \\ & \text { Ave } \end{aligned}$	56.8	+0.5	+3.8	-33.1	+31.9	+0.0	48.8	54.0	-5.2	Horiz
		+0.5	+0.8	-12.4	+0.0		Low			
		+0.0	+0.0	+0.0	+0.0					
$\wedge 4515.027 \mathrm{M}$	58.8	+0.5	+3.8	-33.1	+31.9	+0.0	50.8	54.0	-3.2	Horiz
		+0.5	+0.8	-12.4	+0.0		Low			
		+0.0	+0.0	+0.0	+0.0					

$\begin{aligned} & 75417.965 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.4	$\begin{aligned} & \hline+0.6 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.3 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline-33.1 \\ -12.4 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+33.9 \\ +0.0 \\ +0.0 \end{array}$	+0.0	47.2	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-6.8	Horiz
$\wedge 5417.965 \mathrm{M}$	54.1	$\begin{aligned} & +0.6 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} -33.1 \\ -12.4 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+33.9 \\ +0.0 \\ +0.0 \end{array}$	+0.0		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-5.1	Horiz
$\begin{aligned} & 9 \text { 4634.480M } \\ & \text { Ave } \end{aligned}$	53.0	$\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.9 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{gathered} -33.2 \\ -12.4 \\ +0.0 \\ \hline \end{gathered}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$	45.2	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-8.8	Horiz
$\wedge ~ 4634.480 \mathrm{M}$	55.8	$\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.9 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{gathered} -33.2 \\ -12.4 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-6.0	Horiz
$\begin{aligned} & 11 \quad 1007.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	33.5	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.7 \\ +22.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -36.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0	45.1	54.0	-8.9	Horiz
$\begin{aligned} & 12 \text { 4574.900M } \\ & \text { Ave } \end{aligned}$	52.8	$\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.8 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{gathered} -33.1 \\ -12.4 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+32.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0		$\begin{aligned} & \text { 54.0 } \\ & \text { Mid } \end{aligned}$	-9.1	Horiz
$\wedge 4574.900 \mathrm{M}$	56.1	$\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.8 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -33.1 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+32.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0	48.2	$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-5.8	Horiz
$\begin{aligned} & 14 \quad 995.440 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	8.8	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +24.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.3	54.0	-9.7	Vert
^ 995.440M	12.4	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +24.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	47.9	54.0	-6.1	Vert
$\begin{aligned} & 162708.999 \mathrm{M} \\ & \text { Ave } \end{aligned}$	56.6	$\begin{aligned} & +0.5 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.8 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.8 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+28.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-10.6	Vert
^ 2708.999M	57.4	$\begin{aligned} & +0.5 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.8 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.8 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+28.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-9.8	Vert
$\begin{aligned} & 182709.027 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.3	$\begin{aligned} & \hline+0.5 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.8 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.8 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+28.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-11.9	Horiz
$\wedge 2709.010 \mathrm{M}$	57.3	$\begin{aligned} & +0.5 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.8 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.8 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+28.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-9.9	Horiz
$20 \quad 7320.120 \mathrm{M}$	43.2	$\begin{aligned} & +0.9 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.3 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+36.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-13.5	Horiz
21 1128.000M	47.9	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.8 \\ & +1.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -36.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \\ +0.0 \end{array}$	+0.0	40.4	54.0	-13.6	Horiz

Page 37 of 66

$\begin{aligned} & 223707.600 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.4	+0.4	+3.4	-33.4	+30.9	+0.0	39.7	54.0	-14.3	Horiz
		+0.5	+0.9	-12.4	+0.0	High				
		+0.0	+0.0	+0.0	+0.0					
^ 3707.600M	49.2	+0.4	+3.4	-33.4	+30.9	$+0.0$	39.5	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-14.5	Horiz
		+0.5	+0.9	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
24 1482.000M	43.6	+0.4	+2.0	-35.0	+25.5	+0.0	37.6	54.0	-16.4	Horiz
		+0.3	+0.8	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
25 1168.000M	45.1	+0.4	+1.8	-36.0	+24.5	+0.0	37.4	54.0	-16.6	Horiz
		+0.3	+1.3	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
26 2745.060M	50.2	+0.5	+2.8	-33.8	+28.8	+0.0	37.1	$\text { Mid }^{54.0}$	-16.9	Vert
		+0.4	+0.6	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
$\begin{aligned} & 27 \text { 3660.000M } \\ & \text { Ave } \end{aligned}$	46.1	+0.4	+3.4	-33.4	+30.8	+0.0	36.3	$\text { Mid }^{54.0}$	-17.7	Horiz
		+0.5	+0.9	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
^ 3659.920M	48.0	+0.4	+3.4	-33.4	+30.8	+0.0	38.2	$\text { Mid }^{54.0}$	-15.8	Horiz
		+0.5	+0.9	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
$\begin{aligned} & 29 \text { 2745.040M } \\ & \text { Ave } \end{aligned}$	48.8	+0.5	+2.8	-33.8	+28.8	+0.0	35.7	$\begin{aligned} & \text { 54.0 } \\ & \text { Mid } \end{aligned}$	-18.3	Horiz
		+0.4	+0.6	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
^ 2745.040M	51.9	+0.5	+2.8	-33.8	+28.8	+0.0	38.8	$\text { Mid }^{54.0}$	-15.2	Horiz
		+0.4	+0.6	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
$\begin{aligned} & 31 \quad 2744.953 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.0	+0.5	+2.8	-33.8	+28.8	+0.0	34.9	$\text { Mid }{ }^{54.0}$	-19.1	Vert
		+0.4	+0.6	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
$\begin{aligned} & 323612.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.7	+0.4	+3.3	-33.5	+30.7	+0.0	33.4	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-20.6	Horiz
		+0.4	+0.8	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
^ 3612.000M	46.8	+0.4	+3.3	-33.5	+30.7	$+0.0$	36.5	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-17.5	Horiz
		+0.4	+0.8	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
$\begin{aligned} & 34 \text { 7320.000M } \\ & \text { Ave } \end{aligned}$	35.3	+0.9	+5.3	-34.1	+36.5	+0.0	32.6	$\begin{aligned} & \text { Mid } \\ & \text { Mid } \end{aligned}$	-21.4	Horiz
		+0.6	+0.5	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
$\begin{aligned} & 35 \text { 2780.700M } \\ & \text { Ave } \end{aligned}$	45.2	+0.5	+2.8	-33.8	+28.9	+0.0	32.2	$\begin{gathered} 54.0 \\ \text { High } \end{gathered}$	-21.8	Vert
		+0.4	+0.6	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
^ 2780.740M	47.3	+0.5	+2.8	-33.8	+28.9	+0.0	34.3	$\begin{gathered} 54.0 \\ \text { High } \end{gathered}$	-19.7	Vert
		+0.4	+0.6	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
$\begin{aligned} & 37 \text { 7415.200M } \\ & \text { Ave } \end{aligned}$	34.5	+1.1	+5.4	-34.4	+36.8	+0.0	32.1	$\begin{gathered} 54.0 \\ \text { High } \end{gathered}$	-21.9	Horiz
		+0.6	+0.5	-12.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
^ 7415.200M	40.4	+1.1	+5.4	-34.4	+36.8	+0.0	38.0	54.0	-16.0	Horiz
		+0.6	+0.5	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					

Page 39 of 66

56	756.400 M	14.2	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +1.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +22.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \end{aligned}$	+0.0	46.9	111.5	-64.6	Horiz
57	5490.000M	50.9	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.1 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +34.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0	46.0	$\begin{aligned} & 111.5 \\ & \text { Mid } \end{aligned}$	-65.5	Horiz
58	5561.320 M	50.5	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.2 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +34.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0	45.4	$\begin{aligned} & 111.5 \\ & \text { High } \end{aligned}$	-66.1	Horiz
59	569.400 M	14.4	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +19.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.0 \end{aligned}$	+0.0	44.0	111.5	-67.5	Horiz
60	6405.040M	46.1	$\begin{aligned} & +0.6 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.8 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.6 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+35.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0	42.0	$\begin{aligned} & 111.5 \\ & \text { Mid } \end{aligned}$	-69.5	Horiz
61	414.500M	14.7	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +17.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	41.8	111.5	-69.7	Horiz
62	6321.120M	45.2	$\begin{aligned} & +0.6 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.8 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -33.5 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +35.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0	41.1	$\begin{aligned} & 111.5 \\ & \text { Low } \end{aligned}$	-70.4	Horiz
63	38.820M	23.2	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	41.1	111.5	-70.4	Vert
64	7224.040M	43.6	$\begin{aligned} & \hline+0.8 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -33.9 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +36.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$	40.8	$\begin{aligned} & 111.5 \\ & \text { Low } \end{aligned}$	-70.7	Horiz
65	2128.000 M	42.3	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +28.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$	40.1	111.5	-71.4	Vert
66	44.800 M	24.5	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	39.6	111.5	-71.9	Vert
67	9269.040M	38.7	$\begin{aligned} & +0.9 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.7 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-33.8 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +37.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0		$\begin{aligned} & 111.5 \\ & \text { High } \end{aligned}$	-73.8	Horiz
68	57.000M	22.0	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	+0.0	35.6	111.5	-75.9	Horiz
69	105.700M	17.6	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +0.0 \end{aligned}$	+0.0	33.6	111.5	-77.9	Vert
70	144.000M	17.1	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	33.4	111.5	-78.1	Vert
71	1853.840M	47.5	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+26.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0		$\begin{aligned} & 111.5 \\ & \text { High } \end{aligned}$	-80.4	Horiz
72	1830.040M	46.0	$\begin{aligned} & +0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+26.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$	29.4	$\begin{aligned} & 111.5 \\ & \text { Mid } \end{aligned}$	-82.1	Horiz

Page 40 of 66

73	1806.130M	45.7	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ -12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +26.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	+0.0	28.9	$\begin{aligned} & 111.5 \\ & \text { ow } \end{aligned}$	-82.6	Horiz
74	552.070 k	15.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.8 \end{aligned}$	-40.0	-14.4	111.5	-125.9	Perp
75	19.328 M	15.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +8.3 \\ & \hline \end{aligned}$	-40.0	-16.1	111.5	-127.6	Perp
76	19.821 M	14.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +8.3 \\ & \hline \end{aligned}$	-40.0	-16.8	111.5	-128.3	Perp
77	19.803 M	14.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +8.3 \\ & \hline \end{aligned}$	-40.0	-17.5	111.5	-129.0	Para
78	3.068M	12.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.5 \\ & \hline \end{aligned}$	-40.0	-17.6	111.5	-129.1	Para
79	19.792M	13.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +8.3 \\ & \hline \end{aligned}$	-40.0	-17.9	111.5	-129.4	Perp
80	32.196k	32.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +12.0 \\ \hline \end{array}$	-80.0	-35.8	111.5	-147.3	Para
81	83.513 k	22.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +10.1 \\ \hline \end{array}$	-80.0	-47.9	111.5	-159.4	Perp
82	29.113 k	18.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +12.3 \end{array}$	-80.0	-48.8	111.5	-160.3	Para

LABORATORIES, INC.

Band Edge

Band Edge Summary					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m@3m)	Results
614 (QP)	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	External Monopole, 5.15 dBi Max	39.5	< 46.0	Pass
902	$12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	External Monopole, 5.15 dBi Max	98.6	< 111.5	Pass
928	$\begin{gathered} 12.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM} \\ \text { (2GFSK) } \end{gathered}$	External Monopole, 5.15dBi Max	94.0	< 111.5	Pass
960 (QP)	$\begin{aligned} & 12.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM} \\ & \text { (2GFSK) } \end{aligned}$	External Monopole, 5.15 dBi Max	47.4	< 54.0	Pass
614 (QP)	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	External Monopole, 5.15 dBi Max	39.5	< 46.0	Pass
902	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	External Monopole, 5.15 dBi Max	97.5	< 111.5	Pass
928	$37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)	External Monopole, 5.15 dBi Max	93.8	< 111.5	Pass
960 (QP)	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	47.0	< 54.0	Pass
614 (QP)	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15 dBi Max	39.4	< 46.0	Pass
902	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15dBi Max	97.8	< 111.5	Pass
928	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15dBi Max	93.0	< 111.5	Pass
960 (QP)	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15 dBi Max	46.4	< 54.0	Pass

Band Edge Plots

LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
Test Type:
Tested By:
100619
Date: 11/28/2017
Maximized Emissions
Time: 06:38:33

Software:
Michael Atkinson
Sequence\#: 4
EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Frequency Range: Band Edge
Frequency tested: $903,926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100%
Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port has an external antenna installed, both 5.15 and 5.5 d Bi antennas investigated, only worst case reported.
Low, Mid, and High channels investigated. In addition to Low/Mid/High channel investigation, spurious emissions also investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported. Both Horizontal and Vertical antenna polarities investigated above 30 MHz , only worst case reported. 3 orthogonal axes investigated below 30 MHz , only worst case reported.

All average data points marked Low, Mid, High have duty cycle correction applied (23.8\%, -12.44 dB)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$2 / 24 / 2017$	$2 / 24 / 2019$
T2	ANP06540	Cable	Heliax	$10 / 30 / 2017$	$10 / 30 / 2019$
T3	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T4	ANP05360	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T5	ANP06123	Attenuator	18N-6	$5 / 5 / 2017$	$5 / 5 / 2019$
T6	AN03628	Biconilog Antenna	3142E	$6 / 7 / 2017$	$6 / 7 / 2019$

Test Setup Photos)

Below 1GHz, 5.5 dBi

Below 1GHz, 5.15 dBi

Above 1GHz, $5.5 \mathrm{dBi}(150 \mathrm{~cm})$, Cone Placement

Above $1 \mathrm{GHz}, 5.15 \mathrm{dBi}(150 \mathrm{~cm})$, Cone Placement

LABORATORIES, INE.

15.207 AC Conducted Emissions

Test Setup/Conditions			
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$11 / 29 / 2017$
Configuration:	1		
Environmental Conditions Temperature (oC) 22 Relative Humidity (\%): 33			

See data sheets for test setup and test equipment.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.207 AC Mains - Average

100619 Date: 11/29/2017
Conducted Emissions
Michael Atkinson
EMITest 5.03.11

Time: 10:50:25
Sequence\#: 20
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model \#	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range: $150 \mathrm{kHz}-30 \mathrm{MHz}$
Frequency tested: $903,915,926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK), $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100%

Setup: The EUT connected to AC mains through LISN. EUT ISM port is continuously transmitting with
modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.
Low, Mid, and High channels investigated, as well as Hopping with modulation, all modulation types investigated,
worst case reported.

Itron, Inc. WO\#: 100619 Sequence\#: 20 Date: 11/29/2017
15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line

[^1]Readings

* Average Readings
1-15.207 AC Mains - Average

0 Peak Readings

- Ambient

2-15.207 AC Mains - Quasi-peak

Test Equipment:
\(\left.\begin{array}{|llllll|}\hline ID \& Asset \# \& Description \& Model \& Calibration Date \& Cal Due Date

T1 \& AN02871 \& Spectrum Analyzer \& E4440A \& 2 / 24 / 2017 \& 2 / 24 / 2019\end{array}\right]\)| T2 | AN02611 | High Pass Filter | HE9615-150K-
 $50-720 B$ | $2 / 18 / 2016$ |
| :--- | :--- | :--- | :--- | :--- |

Measurement Data: Reading listed by margin. Test Lead: Line

\#		Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	T3 dB	T4 dB	Dist Table	Corr dBuV	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
	1	4.968M	27.4	+0.0	+0.1	+0.0	+0.1	+0.0	36.8	46.0	-9.2	Line
Ave				+9.1	+0.1							
\wedge		4.968M	36.3	+0.0	+0.1	+0.0	+0.1	+0.0	45.7	46.0	-0.3	Line
				+9.1	+0.1							
3		153.700k	35.5	+0.0	+0.7	+0.0	+0.0	+0.0	45.4	55.8	-10.4	Line
				+9.1	+0.1							
4		5.220 M	29.5	+0.0	+0.1	+0.0	+0.1	+0.0	38.9	50.0	-11.1	Line
		Ave		+9.1	+0.1							
	\wedge	5.220 M	38.9	+0.0	+0.1	+0.0	+0.1	+0.0	48.3	50.0	-1.7	Line
				+9.1	+0.1							
	6	5.252M	28.8	+0.0	+0.1	+0.0	+0.1	+0.0	38.2	50.0	-11.8	Line
Ave				+9.1	+0.1							
	\wedge	5.252 M	35.9	+0.0	+0.1	+0.0	+0.1	+0.0	45.3	50.0	-4.7	Line
				+9.1	+0.1							
	8	3.800M	23.2	+0.0	+0.1	+0.0	+0.1	+0.0	32.6	46.0	-13.4	Line
Ave				+9.1	+0.1							
	\wedge	3.800 M	42.4	+0.0	+0.1	+0.0	+0.1	+0.0	51.8	46.0	+5.8	Line
				+9.1	+0.1							
	10	3.369M	22.8	+0.0	+0.1	+0.0	+0.1	+0.0	32.2	46.0	-13.8	Line
Ave				+9.1	+0.1							
\wedge		3.369 M	41.0	+0.0	+0.1	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
				+9.1	+0.1							
12		16.400 M	26.2	+0.0	+0.1	+0.0	+0.3	+0.0	35.8	50.0	-14.2	Line
				+9.1	+0.1							
	13	4.595 M	22.1	+0.0	+0.1	+0.0	+0.1	+0.0	31.5	46.0	-14.5	Line
Ave				+9.1	+0.1							
	\wedge	4.595 M	42.4	+0.0	+0.1	+0.0	+0.1	+0.0	51.8	46.0	+5.8	Line
				+9.1	+0.1							
	15	4.240M	21.9	+0.0	+0.1	+0.0	+0.1	+0.0	31.3	46.0	-14.7	Line
Ave				+9.1	+0.1							
\wedge		4.240M	41.6	+0.0	+0.1	+0.0	+0.1	+0.0	51.0	46.0	+5.0	Line
				+9.1	+0.1							
	17	2.456 M	21.8	+0.0	+0.1	+0.0	+0.1	+0.0	31.2	46.0	-14.8	Line
Ave				+9.1	+0.1							

Page 55 of 66

\wedge	2.456 M	38.5	$\begin{aligned} & +0.0 \\ & +9.1 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.0	47.9	46.0	+1.9	Line
19	3.556M	21.4	+0.0	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Line
Ave			+9.1	+0.1							
\wedge	3.556 M	41.0	+0.0	+0.1	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
			+9.1	+0.1							
21	3.255 M	21.4	+0.0	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Line
Ave			+9.1	+0.1							
\wedge	3.255 M	41.7	+0.0	+0.1	+0.0	+0.1	+0.0	51.1	46.0	+5.1	Line
			+9.1	+0.1							
23	4.218M	20.9	+0.0	+0.1	+0.0	+0.1	+0.0	30.3	46.0	-15.7	Line
Ave			+9.1	+0.1							
\wedge	4.218 M	41.4	+0.0	+0.1	+0.0	+0.1	+0.0	50.8	46.0	+4.8	Line
			+9.1	+0.1							
25	3.994M	19.3	+0.0	+0.1	+0.0	+0.1	+0.0	28.7	46.0	-17.3	Line
Ave			+9.1	+0.1							
\wedge	3.994M	41.1	+0.0	+0.1	+0.0	+0.1	+0.0	50.5	46.0	+4.5	Line
			+9.1	+0.1							
27	2.858 M	19.2	+0.0	+0.1	+0.0	+0.1	+0.0	28.6	46.0	-17.4	Line
Ave			+9.1	+0.1							
\wedge	2.858 M	42.8	+0.0	+0.1	+0.0	+0.1	+0.0	52.2	46.0	+6.2	Line
			+9.1	+0.1							
29	3.676 M	19.2	+0.0	+0.1	+0.0	+0.1	+0.0	28.6	46.0	-17.4	Line
Ave			+9.1	+0.1							
\wedge	3.676 M	42.1	+0.0	+0.1	+0.0	+0.1	+0.0	51.5	46.0	+5.5	Line
			+9.1	+0.1							
31	3.702M	19.1	+0.0	+0.1	+0.0	+0.1	+0.0	28.5	46.0	-17.5	Line
Ave			+9.1	+0.1							
\wedge	3.702 M	41.3	+0.0	+0.1	+0.0	+0.1	+0.0	50.7	46.0	+4.7	Line
			+9.1	+0.1							
33	2.702 M	19.0	+0.0	+0.1	+0.0	+0.1	+0.0	28.4	46.0	-17.6	Line
Ave			+9.1	+0.1							
\wedge	2.702 M	42.9	+0.0	+0.1	+0.0	+0.1	+0.0	52.3	46.0	+6.3	Line
			+9.1	+0.1							
35	4.301 M	18.7	+0.0	+0.1	+0.0	+0.1	+0.0	28.1	46.0	-17.9	Line
Ave			+9.1	+0.1							
\wedge	4.301 M	40.8	+0.0	+0.1	+0.0	+0.1	+0.0	50.2	46.0	+4.2	Line
			+9.1	+0.1							
37	2.992M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave			+9.1	+0.1							
\wedge	2.992M	40.0	+0.0	+0.1	+0.0	+0.1	+0.0	49.4	46.0	+3.4	Line
			+9.1	+0.1							
39	3.335M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave			+9.1	+0.1							
\wedge	3.335 M	40.6	+0.0	+0.1	+0.0	+0.1	+0.0	50.0	46.0	+4.0	Line
			+9.1	+0.1							
41	3.347M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave			+9.1	+0.1							
\wedge	3.347 M	41.2	+0.0	+0.1	+0.0	+0.1	+0.0	50.6	46.0	+4.6	Line
			+9.1	+0.1							
43	4.109M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave			+9.1	+0.1							

Page 56 of 66

\wedge	4.109M	40.9	$\begin{aligned} & +0.0 \\ & +9.1 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.0	50.3	46.0	+4.3	Line
45	3.951 M	18.3	+0.0	+0.1	+0.0	+0.1	+0.0	27.7	46.0	-18.3	Line
Ave			+9.1	+0.1							
\wedge	3.951 M	41.4	+0.0	+0.1	+0.0	+0.1	+0.0	50.8	46.0	+4.8	Line
			+9.1	+0.1							
47	3.308M	18.2	+0.0	+0.1	+0.0	+0.1	+0.0	27.6	46.0	-18.4	Line
Ave			+9.1	+0.1							
\wedge	3.308M	40.7	+0.0	+0.1	+0.0	+0.1	+0.0	50.1	46.0	+4.1	Line
			+9.1	+0.1							
49	3.008M	17.8	+0.0	+0.1	+0.0	+0.1	+0.0	27.2	46.0	-18.8	Line
Ave			+9.1	+0.1							
\wedge	3.008 M	42.1	+0.0	+0.1	+0.0	+0.1	+0.0	51.5	46.0	+5.5	Line
			+9.1	+0.1							
51	2.328 M	17.3	+0.0	+0.1	+0.0	+0.1	+0.0	26.7	46.0	-19.3	Line
Ave			+9.1	+0.1							
\wedge	2.328 M	35.7	+0.0	+0.1	+0.0	+0.1	+0.0	45.1	46.0	-0.9	Line
			+9.1	+0.1							
53	3.486M	17.0	+0.0	+0.1	+0.0	+0.1	+0.0	26.4	46.0	-19.6	Line
Ave			+9.1	+0.1							
\wedge	3.486M	43.9	+0.0	+0.1	+0.0	+0.1	+0.0	53.3	46.0	+7.3	Line
			+9.1	+0.1							
55	4.077 M	16.8	+0.0	+0.1	+0.0	+0.1	+0.0	26.2	46.0	-19.8	Line
Ave			+9.1	+0.1							
\wedge	4.077 M	41.3	+0.0	+0.1	+0.0	+0.1	+0.0	50.7	46.0	+4.7	Line
			+9.1	+0.1							
57	3.128 M	16.1	+0.0	+0.1	+0.0	+0.1	+0.0	25.5	46.0	-20.5	Line
Ave			+9.1	+0.1							
\wedge	3.128 M	42.4	+0.0	+0.1	+0.0	+0.1	+0.0	51.8	46.0	+5.8	Line
			+9.1	+0.1							

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Itron, Inc.
Specification: $\quad \mathbf{1 5 . 2 0 7}$ AC Mains - Average
Work Order \#: 100619
Test Type: Conducted Emissions
Tested By: Michael Atkinson
Software:
EMITest 5.03.11

Date: 11/29/2017
Time: 10:01:40
Sequence\#: 19
115 VAC 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Frequency Range: $150 \mathrm{kHz}-30 \mathrm{MHz}$
Frequency tested: 903, 915, 926.9MHz
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100\%
Setup: The EUT connected to AC mains through LISN. EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements. Low, Mid, and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.

Itron, Inc. WO\#: 100619 Sequence\#: 19 Date: 11/29/2017
15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Return

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T1	AN02611	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$	2/18/2016	2/18/2018
T2	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T3	ANP06515	Cable	Heliax	1/21/2016	1/21/2018
T4	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T5	AN01311	50uH LISN-Line1 (N)	3816/2	3/7/2016	3/7/2018
	AN01311	50uH LISN-Line2 (L)	3816/2	3/7/2016	3/7/2018

Measurement Data: \quad Reading listed by margin. \quad Test Lead: Return

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	181.400k	34.1	$\begin{aligned} & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	43.5	54.4	-10.9	Retur
	$\mathrm{ve}^{3.936 \mathrm{M}}$	24.9	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	34.2	46.0	-11.8	Retur
\wedge	3.936M	41.4	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.7	46.0	+4.7	Retur
	$2.931 \mathrm{M}$	24.1	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	33.4	46.0	-12.6	Retur
\wedge	2.931 M	41.4	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.7	46.0	+4.7	Retur
	$3.674 \mathrm{M}$ ve	23.9	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Retur
\wedge	3.674 M	42.1	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	51.4	46.0	+5.4	Retur
	$3.747 \mathrm{M}$ ve	23.9	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Retur
\wedge	3.747 M	43.2	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	52.5	46.0	+6.5	Retur
	$2.762 \mathrm{M}$ ve	23.6	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.9	46.0	-13.1	Retur
\wedge	2.762 M	41.5	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.8	46.0	+4.8	Retur
	$3.080 \mathrm{M}$ ve	23.2	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.5	46.0	-13.5	Retur
\wedge	3.080M	42.2	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.5	46.0	+5.5	Retur
	$2.716 \mathrm{M}$ ve	23.2	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	32.5	46.0	-13.5	Retur
\wedge	2.716 M	42.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	52.1	46.0	+6.1	Retur
	$3.855 \mathrm{M}$ ve	23.1	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.4	46.0	-13.6	Retur
\wedge	3.855 M	41.9	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Retur

Page 60 of 66

	$\begin{aligned} & 2.600 \mathrm{M} \\ & \hline \end{aligned}$	22.7	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	32.0	46.0	-14.0	Retur
\wedge	2.600 M	41.8	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.1	46.0	+5.1	Retur
20	$2.472 \mathrm{M}$ e	22.5	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	31.8	46.0	-14.2	Retur
\wedge	2.472 M	39.7	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	49.0	46.0	+3.0	Retur
	$\begin{aligned} & 2.748 \mathrm{M} \\ & \hline \text { ve } \\ & \hline \end{aligned}$	22.5	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	31.8	46.0	-14.2	Retur
23	15.700M	26.2	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.3	+9.1	$+0.0$	35.7	50.0	-14.3	Retur
	3.888M e	22.2	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	31.5	46.0	-14.5	Retur
\wedge	3.888 M	42.4	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.7	46.0	+5.7	Retur
	$\begin{aligned} & \text { 4.004M } \\ & \hline \end{aligned}$	22.1	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	$+0.0$	31.4	46.0	-14.6	Retur
\wedge	4.004 M	40.6	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	49.9	46.0	+3.9	Retur
	$3.386 \mathrm{M}$	21.7	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	31.0	46.0	-15.0	Retur
\wedge	3.386M	41.2	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	50.5	46.0	+4.5	Retur
	$3.014 \mathrm{M}$ e	21.4	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	30.7	46.0	-15.3	Retur
\wedge	3.014 M	43.1	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	52.4	46.0	+6.4	Retur
	$2.639 \mathrm{M}$	21.2	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	30.5	46.0	-15.5	Retur
\wedge	2.639 M	42.1	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.0	$+0.1$	+9.1	$+0.0$	51.4	46.0	+5.4	Retur
	$3.359 \mathrm{M}$	21.0	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	30.3	46.0	-15.7	Retur
\wedge	3.359 M	41.5	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	50.8	46.0	+4.8	Retur
	$3.371 \mathrm{M}$	20.9	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	$+0.0$	+0.1	+9.1	$+0.0$	30.2	46.0	-15.8	Retur
\wedge	3.371 M	41.4	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	$+0.1$	+9.1	+0.0	50.7	46.0	+4.7	Retur
	$4.460 \mathrm{M}$	20.5	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	29.8	46.0	-16.2	Retur
\wedge	4.460M	36.7	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+9.1	+0.0	46.0	46.0	+0.0	Retur
	$3.788 \mathrm{M}$ e	20.5	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	29.8	46.0	-16.2	Retur
\wedge	3.788 M	42.3	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.6	46.0	+5.6	Retur
	$3.052 \mathrm{M}$	20.5	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.1	+9.1	$+0.0$	29.8	46.0	-16.2	Retur
\wedge	3.052 M	41.3	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	50.6	46.0	+4.6	Retur

Page 61 of 66

44	$2.739 \mathrm{M}$	20.2	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	29.5	46.0	-16.5	Retur
\wedge	2.739 M	42.4	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.7	46.0	+5.7	Retur
\wedge	2.748 M	41.7	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.0	46.0	+5.0	Retur
	$2.889 \mathrm{M}$	19.5	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	28.8	46.0	-17.2	Retur
\wedge	2.889 M	41.9	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Retur
	$2.308 \mathrm{M}$	18.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	+0.0	28.1	46.0	-17.9	Retur
\wedge	2.308 M	36.7	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+9.1	$+0.0$	46.0	46.0	+0.0	Retur
	$4.288 \mathrm{M}$ ve	18.3	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	27.6	46.0	-18.4	Retur
\wedge	4.288M	38.5	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	47.8	46.0	+1.8	Retur
	$3.325 \mathrm{M}$	17.3	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	26.6	46.0	-19.4	Retur
\wedge	3.325 M	41.7	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	51.0	46.0	+5.0	Retur
55	$\begin{aligned} & \text { 5.076M } \\ & \mathrm{ve}^{2} \\ & \hline \end{aligned}$	15.0	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	+0.1	+9.1	+0.0	24.3	50.0	-25.7	Retur
\wedge	5.076M	37.1	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	46.4	50.0	-3.6	Retur
57	$159.800 \mathrm{k}$ ve	5.2	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+9.1	+0.0	14.9	55.5	-40.6	Retur
\wedge	159.800k	38.1	$\begin{aligned} & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	+9.1	+0.0	47.8	55.5	-7.7	Retur

Test Setup Photo(s)

LABORATORIES, INC.

APPENDIX A: CUSTOMER PROVIDED INFORMATION

Manufacturer's Declaration: 15.247(a)(1)(i) Average Time of Occupancy

The manufacturer declares:
Each transmission is a maximum of 23.8 mS long. Each transmission takes place on one 120 different channels in a pseudorandom sequence. All 120 channels are used equally on the average. The algorithm that determines the pseudo-random hop sequence does not allow the device to transmit on the same channel more than 6 times in a 20 second period. The maximum possible occupancy time on any one frequency is 142.8 mS (6 times) within a 20 second period.

DCCF Plot Data

DCCF Plot

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QP Readings
 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

[^1]: weep Data
 \times QP Readings
 Software Version: 5.03.11

