Itron, Inc.

TEST REPORT FOR

ORRNA Model: RN-EGS

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928 MHz)

Report No.: 100619-5

Date of issue: December 15, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 66 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.247(a) Transmitter Characteristics	7
15.247(a)(1)(i) 20 dB Bandwidth	7
15.247(a)(1) Carrier Separation	12
15.247(a)(1)(i) Number of Channels	13
15.247(b)(2) Output Power	16
15.35(c) Duty Cycle Correction Factor	24
15.247(d) RF Conducted Emissions & Band Edge	26
15.247(d) Radiated Emissions & Band Edge	34
15.207 AC Conducted Emissions	53
Appendix A: Customer Provided Information	64
Manufacturer's Declaration: 15.247(a)(1)(i) Average Time of Occupancy	64
DCCF Plot Data	64
Supplemental Information	65
Measurement Uncertainty	65
Emissions Test Details	65

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019 **REPORT PREPARED BY:**

Dianne Dudley CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Jay Holcomb Customer Reference Number: 135842

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 100619

November 27, 2017 November 27-29, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park Bothell, WA	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform test. See Appendix A for Manufacturer's Declaration.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

The following device has been tested by CKC Laboratories: ORRN

Since the time of testing the manufacturer has updated the device name from <u>ORRN</u> to <u>ORRNA</u> and declares the device is identical electrically, any differences between them do not affect their EMC characteristics, and therefore meets the level of testing equivalent to the tested device.

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
ORRNA	ltron, Inc.	RN-EGS	321128365
Support Equipment:			
Device	Manufacturer	Model #	S/N
Laptop	Dell	E6430	NA
AC/DC Adapter (for Laptop)	Dell	DA130PE-00	NA

General Product Information:

Product Information	Manufacturer-Provided Details	
Equipment Type:	Stand-Alone Equipment	
Type of Wideband System:	Proprietary FHSS	
Operating Frequency Range:	903-926.9MHz	
Number of Hopping Channels:	120	
Modulation Type(s):	12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)	
Maximum Duty Cycle:	23.8%	
Number of TX Chains:	1	
Antenna Type(s) and Gain:	External Monopole, 5.15 or 5.5 dBi	
Beamforming Type:	N/A	
Antenna Connection Type:	External Connector	
Nominal Input Voltage:	115-230VAC, 60Hz	
Firmware / Seftware used for Test	Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.14	
riffiware / software used for fest.	Software: SrTest100 v4.1.1.25	

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/27/17		
Configuration:	1				
Test Setup:	The EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements. Low, Mid, High channels investigated, all modulation types investigated, worst case reported.				

Environmental Conditions					
Temperature (^o C)	21	Relative Humidity (%):	37		

Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal Due							
02871	Spectrum Analyzer	Agilent	E4440A	2/24/2017	2/24/2019		
P06219	Attenuator	Narda	768-10	4/12/2016	4/12/2018		
02871	Spectrum Analyzer	Agilent	E4440A	2/24/2017	2/24/2019		

15.247(a)(1)(i) 20 dB Bandwidth

Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
903	1	12.5 Kbit/sec FM (2GFSK)	138.92	≤500	Pass	
915	1	12.5 Kbit/sec FM (2GFSK)	138.79	≤500	Pass	
926.9	1	12.5 Kbit/sec FM (2GFSK)	138.98	≤500	Pass	
903	1	37.5 Kbit/sec FM (2GFSK)	83.82	≤500	Pass	
915	1	37.5 Kbit/sec FM (2GFSK)	84.52	≤500	Pass	
926.9	1	37.5 Kbit/sec FM (2GFSK)	85.07	≤500	Pass	

Plot(s)

12.5k 903MHz

12.5k 915MHz

12.5k 926.9MHz

37.5k 903MHz

37.5k 915MHz

37.5k 926.9MHz

15.247(a)(1) Carrier Separation

Test Data Summary						
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.					
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results		
1	Continuously Transmitting while Hopping	200.3	≥138.98kHz	Pass		

Plot(s)

15.247(a)(1)(i) Number of Channels

Test Data Summary						
$Limit = \begin{cases} 50 & 0\\ 25 & 0 \end{cases}$	$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW < 250 kHz \\ 25 \ Channels \ 20 \ dB \ BW \ge 250 kHz \end{cases}$					
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results		
1	Continuously Transmitting while Hopping	120	≥50	Pass		

Plot(s)

902-914.9MHz, 60 Channels

914.9-928MHz, 60 Channels

Test Setup Photo(s)

15.247(b)(2) Output Power

Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/27/17		
Configuration:	1				
Test Setup:	See data sheet below.				

Environmental Conditions					
Temperature (ºC)	22	Relative Humidity (%):	36		

Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)	
903	37.5 Kbit/sec FM (2GFSK)	28.9	28.9	28.9	0.0	
915	37.5 Kbit/sec FM (2GFSK)	28.7	28.7	28.7	0.0	
926.9	37.5 Kbit/sec FM (2GFSK)	28.7	28.7	28.7	0.0	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification. The EUT does not operate beyond the listed Vminimum and Vmaximum

Parameter	Value		
V _{Nominal} :	115-230VAC, 60Hz		
V _{Minimum} :	85VAC, 60Hz		
V _{Maximum} :	264VAC, 60Hz		

	Test Data Summary - RF Conducted Measurement					
$Limit = \begin{cases} 30\\ 24 \end{cases}$	$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \ge 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (\min 25) \end{cases}$					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
903	12.5 Kbit/sec FM (2GFSK)	External Monopole, 5.5dBi Max	28.9	≤30	Pass	
915	12.5 Kbit/sec FM (2GFSK)	External Monopole, 5.5dBi Max	28.8	≤30	Pass	
926.9	12.5 Kbit/sec FM (2GFSK)	External Monopole, 5.5dBi Max	28.6	≤30	Pass	
903	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.5dBi Max	28.9	≤30	Pass	
915	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.5dBi Max	28.7	≤30	Pass	
926.9	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.5dBi Max	28.7	≤30	Pass	

Plots

Testing the Future

LABORATORIES, INC.

CKC

12.5k 926.9MHz

37.5k 903MHz

37.5k 915MHz

37.5k 926.9MHz

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23	rd Drive SE, Suite A • Bothell,	WA 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(b) Power Output (90	2-928 MHz FHSS >50 Chan	nels)
Work Order #:	100619	Date:	11/27/2017
Test Type:	Conducted Emissions	Time:	12:02:13
Tested By:	Michael Atkinson	Sequence#:	4
Software:	EMITest 5.03.11	_	115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Configuration 1

Test Conditions / Notes:

Frequency Range: Fundamental Frequency tested: 903, 915, 926.9MHz Firmware power setting: Max Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25 Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100%

Setup: EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements. Low, Mid, High channels investigated, all modulation types investigated, worst case reported. Also investigated voltage variations based on manufacturer specified Vmin and Vmax.

Itron, Inc. WO#: 100619 Sequence#: 4 Date: 11/27/2017 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) Test Lead: 115VAC 60Hz None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T2	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T3	ANP06011	Cable	Heliax	10/25/2017	10/25/2019

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: None		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	903.004M	19.3	+0.0	+9.1	+0.5		+0.0	28.9	30.0	-1.1	None
									FM 37.5K		
2	903.068M	19.3	+0.0	+9.1	+0.5		+0.0	28.9	30.0	-1.1	None
									FM 12.5K		
3	915.062M	19.1	+0.0	+9.2	+0.5		+0.0	28.8	30.0	-1.2	None
									FM 12.5K		
4	915.020M	19.0	+0.0	+9.2	+0.5		+0.0	28.7	30.0	-1.3	None
									FM 37.5K		
5	926.918M	19.0	+0.0	+9.2	+0.5		+0.0	28.7	30.0	-1.3	None
									FM 37.5K		
6	926.971M	18.9	+0.0	+9.2	+0.5		+0.0	28.6	30.0	-1.4	None
									FM 12.5K		

15.35(c) Duty Cycle Correction Factor

Test Data Summary					
Antenna Port	Operational Mode	Measured On Time (mS / P _{obs})	Calculated DCCF (dB)		
1	Longest Pulse Possible	0.238	-12.4		

Observation Period, P_{obs} is the duration of the pulse train or maximum 100mS

Measured results are calculated as follows:

$$On Time = \left(\sum_{Bursts} RF Burst On Time + \sum_{Control} Control Signal On time\right) \Big|_{P_{obs}(\max 100ms)}$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100
Number of RF Bursts / Pobs::	1
On time of RF Burst:	23.8mS
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	23.8mS

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$DCCF = 20 \cdot Log\left(\frac{On Time}{P_{obs}}\right)$$

Duty Cycle Correction Factor Test Data

DCCF is based on manufacturer measured worst case data, due to the firmware not being available to allow this measurement to be made at the test lab during time of test. See Appendix A, Customer Provided Information for manufacturer provided data.

Test Setup Photo(s)

Page 25 of 66 Report No.: 100619-5

15.247(d) RF Conducted Emissions & Band Edge

Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/27/17		
Configuration:	1				

Environmental Conditions				
Temperature (ºC)	22	Relative Humidity (%):	36	

See data sheets for test setup and test equipment.

Test Setup / Conditions / Data

CKC Laboratories • 22116 23rd Drive SE, Suite	A • Bothell,	WA 98021 • 1-800-500-4EMC (4362)
Itron, Inc.		
15.247(d) Conducted Spurious Emissions		
100619	Date:	11/27/2017
Conducted Emissions	Time:	13:54:50
Michael Atkinson	Sequence#:	3
EMITest 5.03.11		115VAC 60Hz
	CKC Laboratories • 22116 23rd Drive SE, Suite Itron, Inc. 15.247(d) Conducted Spurious Emissions 100619 Conducted Emissions Michael Atkinson EMITest 5.03.11	CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, Itron, Inc. 15.247(d) Conducted Spurious Emissions 100619 Date: Conducted Emissions Time: Michael Atkinson Sequence#: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range:9kHz-9.28GHz Frequency tested: 903, 915, 926.9MHz Firmware power setting: Max Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25 Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100%

Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.

Low, Mid, and High channels investigated. In addition to the Low/Mid/High investigation, spurious emissions also investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported.

Itron, Inc. WO#: 100619 Sequence#: 3 Date: 11/27/2017 15.247(d) Conducted Spurious Emissions Test Lead: 115VAC 60Hz RF Output

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T1	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T2	ANP06011	Cable	Heliax	10/25/2017	10/25/2019

Meası	irement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: RF Outp	out	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	7166.440M	-48.1	+9.8	+1.9			+0.0	-36.4	8.9	-45.3	RF Ou
2	3106.180M	-50.7	+9.3	+1.1			+0.0	-40.3	8.9	-49.2	RF Ou
3	204.670M	-53.9	+9.1	+0.2			+0.0	-44.6	8.9	-53.5	RF Ou

Band Edge

	Band Edge Summary						
Limit applied:	Limit applied: Max Power/100kHz - 20dB.						
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results			
902	12.5 Kbit/sec FM (2GFSK)	-4.2	< 8.9	Pass			
928	12.5 Kbit/sec FM (2GFSK)	-8.9	< 8.9	Pass			
902	37.5 Kbit/sec FM (2GFSK)	-4.7	< 8.9	Pass			
928	37.5 Kbit/sec FM (2GFSK)	-9.2	< 8.9	Pass			
902	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	-5.1	< 8.9	Pass			
928	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	-12.0	< 8.9	Pass			

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suite	A • Bothell, V	WA 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	100619	Date:	11/27/2017
Test Type:	Conducted Emissions	Time:	13:43:46
Tested By:	Michael Atkinson	Sequence#:	2
Software:	EMITest 5.03.11		115VAC 60Hz

Equipment Tested:

<u> </u>			
Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N

Device Configuration 1 Model #

Test Conditions / Notes:

Frequency Range: Band Edge Frequency tested: 903, 926.9MHz Firmware power setting: Max Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25 Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100%

Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.

Low, Mid, and High channels investigated. In addition to the Low/Mid/High investigation, spurious emissions also investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T2	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T3	ANP06011	Cable	Heliax	10/25/2017	10/25/2019

# Freq Rdng T1 T2 T3 Dist Corr	Spec Margin Polar
MHz dBµV dB dB dB dB Table dBm	dBm dB Ant
1 902.000M -13.8 +0.0 +9.1 +0.5 +0.0 -4.2	8.9 -13.1 RF Ou
1	5k
2 902.000M -14.3 +0.0 +9.1 +0.5 +0.0 -4.7	8.9 -13.6 RF Ou
3	5k
3 902.000M -14.7 +0.0 +9.1 +0.5 +0.0 -5.1	8.9 -14.0 RF Ou
H	pping
4 928.000M -18.6 +0.0 +9.2 +0.5 +0.0 -8.9	8.9 -17.8 RF Ou
1	5k
5 928.000M -18.9 +0.0 +9.2 +0.5 +0.0 -9.2	8.9 -18.1 RF Ou
	5k
6 928.000M -21.7 +0.0 +9.2 +0.5 +0.0 -12.0	8.9 -20.9 RF Ou
H	pping

15.247(d) Radiated Emissions & Band Edge

Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/27/17 to 11/29/17		
Configuration:	1				

Environmental Conditions							
Temperature (ºC)	21-23	Relative Humidity (%):	34-38				

See data sheets for test setup and test equipment.

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23	rd Drive SE, Suite A • Bothell,	WA 98021 • 1-800-50	0-4EMC (4362)
Customer:	Itron, Inc.			
Specification:	15.247(d) / 15.209 Radiated	Spurious Emissions		
Work Order #:	100619	Date:	11/28/2017	
Test Type:	Maximized Emissions	Time:	13:34:53	
Tested By:	Michael Atkinson	Sequence#:	8	
Software:	EMITest 5.03.11			

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment: Device Manufacturer Model # S/N Configuration 1

Test Conditions / Notes:

Frequency Range: 9kHz-9.28GHz Frequency tested: 903, 915MHz, 926.9MHz Firmware power setting: Max Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25 Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100%

Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port has an external antenna installed, both 5.15 and 5.5 dBi antennas investigated, only worst case reported.

Low, Mid, and High channels investigated. In addition to Low/Mid/High channel investigation, spurious emissions also investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported. Both Horizontal and Vertical antenna polarities investigated above 30MHz, only worst case reported. 3 orthogonal axes investigated below 30MHz, only worst case reported.

All average data points marked Low, Mid, High have duty cycle correction applied (23.8%, -12.44dB)

Itron, Inc. WD#: 100619 Sequence#: 8 Date: 11/28/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

Test E	Equipment:										
ID	Asset #	#	Descr	iption]	Model		Calibrati	on Date	Cal Due l	Date
	AN028	371	Specti	um Anal	yzer l	E4440A		2/24/2017	1	2/24/2019	
T1	ANP00	5540	Cable]	Heliax		10/30/2017		10/30/2019	
T2	ANP06	5515	Cable]	Heliax		1/21/2016		1/21/2018	
T3	8 AN035	540	Pream	р	5	33017A		5/2/2017		5/2/2019	
T4	AN014	167	Horn	Antenna-		3115		7/21/2017	1	7/21/2019)
			ANSI	C63.5							
			Calibr	ation							
T5	5 ANP06	5934	Cable		-	32026-298	301-	3/11/2016	5	3/11/2018	5
						29801-18					
Te	5 AN031	170	High l	Pass Filte	r l	HM1155-1	11SS	11/27/201	7	11/27/201	9
Τ7	ANDC	CF	Test I	Data				5/13/2016	Ď	5/13/2018	5
			Adjus	tment							
T8	ANP03	5963	Cable]	RG-214		2/15/2016	5	2/15/2018	
T9	ANP03	5360	Cable]	RG214		11/30/201	.6	11/30/201	8
T1	0 ANP00	5123	Atten	lator		18N-6		5/5/2017		5/5/2019	
T1	1 AN036	528	Bicon	ilog Ante	enna 🤅	3142E		6/7/2017		6/7/2019	
T1:	2 AN000)52	Loop	Antenna	(5502		4/8/2016		4/8/2018	
Measu	rement Data: 	Re Re	eading lis	ted by ma	argin.		T	est Distanc	e: 3 Meter	8	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MIT	ID V	19 1D	110		112	T.11.	ID V/		ID	A (
1	MHZ	<u>α</u> Βμν	dB	aB	dB	dB	Table	<u>αβμν/m</u>	<u>αβμν/m</u>	dB	Ant
1	37.54/M	18.4	+0.1	+0.0	+0.0	+0.0	+0.0	37.0	40.0	-3.0	Vert
	QP		+0.0	+0.0	+0.0	+0.5					
2	27.610M	17.5	+0.5	+3.9	+11.0	+0.0		26.0	40.0	4.0	Vort
2	OP 57.019M	17.5	+0.1	+0.0	+0.0	+0.0	+0.0	30.0	40.0	-4.0	ven
	QI		+0.0	+0.0 +5 9	+0.0	+0.3 +0.0					
^	37 547M	20.9	+0.1	+0.0	+11.7	+0.0	+0.0	39.5	40.0	-0.5	Vert
	57.547101	20.7	+0.1	+0.0	+0.0	+0.0	10.0	57.5	+0.0	-0.5	ven
			+0.3	+5.9	+11.8	+0.0					
^	37 619M	20.5	+0.1	+0.0	+0.0	+0.0	+0.0	39.0	40.0	-1.0	Vert
	57.017.01	20.0	+0.0	+0.0	+0.0	+0.5	10.0	57.0	10.0	1.0	ven
			+0.3	+5.9	+11.7	+0.0					
5	4515.027M	56.8	+0.5	+3.8	-33.1	+31.9	+0.0	48.8	54.0	-5.2	Horiz
-	Ave		+0.5	+0.8	-12.4	+0.0			Low		
	-		+0.0	+0.0	+0.0	+0.0					
^	4515.027M	58.8	+0.5	+3.8	-33.1	+31.9	+0.0	50.8	54.0	-3.2	Horiz
		-	+0.5	+0.8	-12.4	+0.0		-	Low		
			+0.0	+0.0	+0.0	+0.0					

7 5417.965M	52.4	+0.6	+4.3	-33.1	+33.9	+0.0	47.2	54.0	-6.8	Horiz
Ave		+0.5	+1.0	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
^ 5417.965M	54.1	+0.6	+4.3	-33.1	+33.9	+0.0	48.9	54.0	-5.1	Horiz
		+0.5	+1.0	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
9 4634.480M	53.0	+0.5	+3.9	-33.2	+32.1	+0.0	45.2	54.0	-8.8	Horiz
Ave		+0.5	+0.8	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0			•		
^ 4634.480M	55.8	+0.5	+3.9	-33.2	+32.1	+0.0	48.0	54.0	-6.0	Horiz
		+0.5	+0.8	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
11 1007.000M	33.5	+0.4	+1.7	-36.8	+23.8	+0.0	45.1	54.0	-8.9	Horiz
Ave		+0.3	+22.2	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
12 4574.900M	52.8	+0.5	+3.8	-33.1	+32.0	+0.0	44.9	54.0	-9.1	Horiz
Ave		+0.5	+0.8	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
^ 4574.900M	56.1	+0.5	+3.8	-33.1	+32.0	+0.0	48.2	54.0	-5.8	Horiz
		+0.5	+0.8	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
14 995.440M	8.8	+0.4	+0.0	+0.0	+0.0	+0.0	44.3	54.0	-9.7	Vert
QP		+0.0	+0.0	+0.0	+2.5					
		+2.3	+5.9	+24.4	+0.0					
^ 995.440M	12.4	+0.4	+0.0	+0.0	+0.0	+0.0	47.9	54.0	-6.1	Vert
		+0.0	+0.0	+0.0	+2.5					
		+2.3	+5.9	+24.4	+0.0					
16 2708.999M	56.6	+0.5	+2.8	-33.8	+28.7	+0.0	43.4	54.0	-10.6	Vert
Ave		+0.4	+0.6	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
^ 2708.999M	57.4	+0.5	+2.8	-33.8	+28.7	+0.0	44.2	54.0	-9.8	Vert
		+0.4	+0.6	-12.4	+0.0			Low		
10.0500.00514		+0.0	+0.0	+0.0	+0.0	0.0			11.0	
18 2709.027M	55.3	+0.5	+2.8	-33.8	+28.7	+0.0	42.1	54.0	-11.9	Horiz
Ave		+0.4	+0.6	-12.4	+0.0			Low		
A 2700 010 V	57 0	+0.0	+0.0	+0.0	+0.0	. 0. 0	4.4.1	54.0	0.0	TT '
^ 2709.010M	57.3	+0.5	+2.8	-33.8	+28.7	+0.0	44.1	54.0	-9.9	Horiz
		+0.4	+0.6	-12.4	+0.0			Low		
20 7220 12014	42.0	+0.0	+0.0	+0.0	+0.0		10 5	E 4 0	105	II.
20 / 320.120M	43.2	+0.9	+5.5	-54.1	+36.5	+0.0	40.5	54.U M: J	-13.5	HOIIZ
		+0.6	+0.5	-12.4	+0.0			IVI10		
01 1100 00015	47.0	+0.0	+0.0	+0.0	+0.0		40.4	E 4 0	10.6	II. '
21 1128.000M	47.9	+0.4	+1.8	-36.2	+24.5	+0.0	40.4	54.0	-13.6	HOIIZ
		+0.5	+1.9	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					

22 3707.600M	49.4	+0.4	+3.4	-33.4	+30.9	+0.0	39.7	54.0	-14.3	Horiz
Ave		+0.5	+0.9	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0			U		
^ 3707.600M	49.2	+0.4	+3.4	-33.4	+30.9	+0.0	39.5	54.0	-14.5	Horiz
		+0.5	+0.9	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0			U		
24 1482.000M	43.6	+0.4	+2.0	-35.0	+25.5	+0.0	37.6	54.0	-16.4	Horiz
		+0.3	+0.8	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
25 1168.000M	45.1	+0.4	+1.8	-36.0	+24.5	+0.0	37.4	54.0	-16.6	Horiz
		+0.3	+1.3	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
26 2745.060M	50.2	+0.5	+2.8	-33.8	+28.8	+0.0	37.1	54.0	-16.9	Vert
		+0.4	+0.6	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
27 3660.000M	46.1	+0.4	+3.4	-33.4	+30.8	+0.0	36.3	54.0	-17.7	Horiz
Ave		+0.5	+0.9	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
^ 3659.920M	48.0	+0.4	+3.4	-33.4	+30.8	+0.0	38.2	54.0	-15.8	Horiz
		+0.5	+0.9	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
29 2745.040M	48.8	+0.5	+2.8	-33.8	+28.8	+0.0	35.7	54.0	-18.3	Horiz
Ave		+0.4	+0.6	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
^ 2745.040M	51.9	+0.5	+2.8	-33.8	+28.8	+0.0	38.8	54.0	-15.2	Horiz
		+0.4	+0.6	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
31 2744.953M	48.0	+0.5	+2.8	-33.8	+28.8	+0.0	34.9	54.0	-19.1	Vert
Ave		+0.4	+0.6	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
32 3612.000M	43.7	+0.4	+3.3	-33.5	+30.7	+0.0	33.4	54.0	-20.6	Horiz
Ave		+0.4	+0.8	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
^ 3612.000M	46.8	+0.4	+3.3	-33.5	+30.7	+0.0	36.5	54.0	-17.5	Horiz
		+0.4	+0.8	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
34 7320.000M	35.3	+0.9	+5.3	-34.1	+36.5	+0.0	32.6	54.0	-21.4	Horiz
Ave		+0.6	+0.5	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
35 2780.700M	45.2	+0.5	+2.8	-33.8	+28.9	+0.0	32.2	54.0	-21.8	Vert
Ave		+0.4	+0.6	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
^ 2780.740M	47.3	+0.5	+2.8	-33.8	+28.9	+0.0	34.3	54.0	-19.7	Vert
		+0.4	+0.6	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
37 7415.200M	34.5	+1.1	+5.4	-34.4	+36.8	+0.0	32.1	54.0	-21.9	Horiz
Ave		+0.6	+0.5	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
^ 7415.200M	40.4	+1.1	+5.4	-34.4	+36.8	+0.0	38.0	54.0	-16.0	Horiz
		+0.6	+0.5	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					

39 2780.740M	44.3	+0.5	+2.8	-33.8	+28.9	+0.0	31.3	54.0	-22.7	Horiz
Ave		+0.4	+0.6	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0			U		
^ 2780.740M	47.7	+0.5	+2.8	-33.8	+28.9	+0.0	34.7	54.0	-19.3	Horiz
		+0.4	+0.6	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0			0		
41 9149.820M	32.3	+0.8	+5.7	-33.9	+37.2	+0.0	31.0	54.0	-23.0	Horiz
Ave		+0.7	+0.6	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
^ 9149.820M	40.9	+0.8	+5.7	-33.9	+37.2	+0.0	39.6	54.0	-14.4	Horiz
		+0.7	+0.6	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
43 8127.000M	31.6	+0.7	+5.7	-34.7	+36.8	+0.0	29.0	54.0	-25.0	Horiz
Ave		+0.7	+0.6	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
^ 8126.960M	41.8	+0.7	+5.7	-34.7	+36.8	+0.0	39.2	54.0	-14.8	Horiz
		+0.7	+0.6	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
45 8342.260M	28.8	+0.8	+5.8	-34.6	+37.0	+0.0	26.6	54.0	-27.4	Horiz
Ave		+0.7	+0.5	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
^ 8342.260M	38.6	+0.8	+5.8	-34.6	+37.0	+0.0	36.4	54.0	-17.6	Horiz
		+0.7	+0.5	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
47 8235.240M	29.1	+0.7	+5.8	-34.8	+36.9	+0.0	26.5	54.0	-27.5	Horiz
Ave		+0.7	+0.5	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
^ 8235.240M	40.4	+0.7	+5.8	-34.8	+36.9	+0.0	37.8	54.0	-16.2	Horiz
		+0.7	+0.5	-12.4	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
49 9030.360M	28.1	+0.6	+5.7	-34.0	+37.1	+0.0	26.3	54.0	-27.7	Horiz
Ave		+0.6	+0.6	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
^ 9030.360M	39.5	+0.6	+5.7	-34.0	+37.1	+0.0	37.7	54.0	-16.3	Horiz
		+0.6	+0.6	-12.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
51 938.000M	25.8	+0.4	+0.0	+0.0	+0.0	+0.0	61.5	111.5	-50.0	Vert
		+0.0	+0.0	+0.0	+2.4					
		+2.2	+5.9	+24.8	+0.0					
52 938.600M	18.7	+0.4	+0.0	+0.0	+0.0	+0.0	54.4	111.5	-57.1	Horiz
		+0.0	+0.0	+0.0	+2.4					
		+2.2	+5.9	+24.8	+0.0					
53 896.500M	18.9	+0.3	+0.0	+0.0	+0.0	+0.0	53.2	111.5	-58.3	Vert
		+0.0	+0.0	+0.0	+2.4					
		+2.1	+5.9	+23.6	+0.0					
54 6488.080M	55.9	+0.6	+4.9	-33.6	+35.5	+0.0	52.1	111.5	-59.4	Horiz
		+0.6	+0.6	-12.4	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
55 829.500M	15.6	+0.3	+0.0	+0.0	+0.0	+0.0	49.8	111.5	-61.7	Vert
		+0.0	+0.0	+0.0	+2.3					
		+1.9	+5.9	+23.8	+0.0					

56	756.400M	14.2	+0.3	+0.0	+0.0	+0.0	+0.0	46.9	111.5	-64.6	Horiz
			+0.0	+0.0	+0.0	+2.2					
			+1.8	+5.9	+22.5	+0.0					
57	5490.000M	50.9	+0.7	+4.3	-33.1	+34.2	+0.0	46.0	111.5	-65.5	Horiz
			+0.5	+0.9	-12.4	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
58	5561.320M	50.5	+0.7	+4.3	-33.2	+34.3	+0.0	45.4	111.5	-66.1	Horiz
			+0.5	+0.7	-12.4	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
59	569.400M	14.4	+0.3	+0.0	+0.0	+0.0	+0.0	44.0	111.5	-67.5	Horiz
			+0.0	+0.0	+0.0	+2.0					
			+1.6	+5.9	+19.8	+0.0					
60	6405.040M	46.1	+0.6	+4.8	-33.6	+35.4	+0.0	42.0	111.5	-69.5	Horiz
			+0.6	+0.5	-12.4	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
61	414.500M	14.7	+0.2	+0.0	+0.0	+0.0	+0.0	41.8	111.5	-69.7	Horiz
			+0.0	+0.0	+0.0	+1.8					
			+1.3	+5.9	+17.9	+0.0					
62	6321.120M	45.2	+0.6	+4.8	-33.5	+35.3	+0.0	41.1	111.5	-70.4	Horiz
			+0.6	+0.5	-12.4	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
63	38.820M	23.2	+0.1	+0.0	+0.0	+0.0	+0.0	41.1	111.5	-70.4	Vert
			+0.0	+0.0	+0.0	+0.5					
			+0.3	+5.9	+11.1	+0.0					
64	7224.040M	43.6	+0.8	+5.3	-33.9	+36.2	+0.0	40.8	111.5	-70.7	Horiz
			+0.6	+0.6	-12.4	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
65	2128.000M	42.3	+0.4	+2.5	-34.2	+28.2	+0.0	40.1	111.5	-71.4	Vert
			+0.3	+0.6	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
66	44.800M	24.5	+0.1	+0.0	+0.0	+0.0	+0.0	39.6	111.5	-71.9	Vert
			+0.0	+0.0	+0.0	+0.5					
			+0.4	+5.9	+8.2	+0.0					
67	9269.040M	38.7	+0.9	+5.7	-33.8	+37.3	+0.0	37.7	111.5	-73.8	Horiz
			+0.7	+0.6	-12.4	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
68	57.000M	22.0	+0.1	+0.0	+0.0	+0.0	+0.0	35.6	111.5	-75.9	Horiz
			+0.0	+0.0	+0.0	+0.6					
			+0.4	+5.9	+6.6	+0.0					
69	105.700M	17.6	+0.1	+0.0	+0.0	+0.0	+0.0	33.6	111.5	-77.9	Vert
			+0.0	+0.0	+0.0	+1.2					
			+0.6	+5.9	+8.2	+0.0					
70	144.000M	17.1	+0.2	+0.0	+0.0	+0.0	+0.0	33.4	111.5	-78.1	Vert
			+0.0	+0.0	+0.0	+1.3					
			+0.7	+5.9	+8.2	+0.0					
71	1853.840M	47.5	+0.4	+2.3	-34.5	+26.8	+0.0	31.1	111.5	-80.4	Horiz
			+0.3	+0.7	-12.4	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
72	1830.040M	46.0	+0.4	+2.3	-34.5	+26.6	+0.0	29.4	111.5	-82.1	Horiz
			+0.3	+0.7	-12.4	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					

73	1806.130M	45.7	+0.5	+2.2	-34.5	+26.4	+0.0	28.9	111.5	-82.6	Horiz
			+0.3	+0.7	-12.4	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
74	552.070k	15.8	+0.0	+0.0	+0.0	+0.0	-40.0	-14.4	111.5	-125.9	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+9.8					
75	19.328M	15.6	+0.0	+0.0	+0.0	+0.0	-40.0	-16.1	111.5	-127.6	Perp
			+0.0	+0.0	+0.0	+0.0					-
			+0.0	+0.0	+0.0	+8.3					
76	19.821M	14.9	+0.0	+0.0	+0.0	+0.0	-40.0	-16.8	111.5	-128.3	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+8.3					
77	19.803M	14.2	+0.0	+0.0	+0.0	+0.0	-40.0	-17.5	111.5	-129.0	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+8.3					
78	3.068M	12.9	+0.0	+0.0	+0.0	+0.0	-40.0	-17.6	111.5	-129.1	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+9.5					
79	19.792M	13.8	+0.0	+0.0	+0.0	+0.0	-40.0	-17.9	111.5	-129.4	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+8.3					
80	32.196k	32.2	+0.0	+0.0	+0.0	+0.0	-80.0	-35.8	111.5	-147.3	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+12.0					
81	83.513k	22.0	+0.0	+0.0	+0.0	+0.0	-80.0	-47.9	111.5	-159.4	Perp
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+10.1					
82	29.113k	18.9	+0.0	+0.0	+0.0	+0.0	-80.0	-48.8	111.5	-160.3	Para
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+12.3					

Band Edge

-	Band Edge Summary								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614 (QP)	12.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	39.5	< 46.0	Pass				
902	12.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	98.6	< 111.5	Pass				
928	12.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	94.0	< 111.5	Pass				
960 (QP)	12.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	47.4	< 54.0	Pass				
614 (QP)	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	39.5	< 46.0	Pass				
902	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	97.5	< 111.5	Pass				
928	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	93.8	< 111.5	Pass				
960 (QP)	37.5 Kbit/sec FM (2GFSK)	External Monopole, 5.15dBi Max	47.0	< 54.0	Pass				
614 (QP)	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15dBi Max	39.4	< 46.0	Pass				
902	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15dBi Max	97.8	< 111.5	Pass				
928	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15dBi Max	93.0	< 111.5	Pass				
960 (QP)	Hopping with modulation (12.5 Kbit/sec Modulations worst case)	External Monopole, 5.15dBi Max	46.4	< 54.0	Pass				

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suit	te A • Bothell, '	WA 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious Emis	sions	
Work Order #:	100619	Date:	11/28/2017
Test Type:	Maximized Emissions	Time:	06:38:33
Tested By:	Michael Atkinson	Sequence#:	4
Software:	EMITest 5.03.11		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range: Band Edge Frequency tested: 903, 926.9MHz Firmware power setting: Max Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25 Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100%

Setup: The EUT ISM port is continuously transmitting with modulation. The EUT ISM port has an external antenna installed, both 5.15 and 5.5d Bi antennas investigated, only worst case reported.

Low, Mid, and High channels investigated. In addition to Low/Mid/High channel investigation, spurious emissions also investigated with EUT channel Hopping with modulation. All modulation types investigated, worst case reported. Both Horizontal and Vertical antenna polarities investigated above 30MHz, only worst case reported. 3 orthogonal axes investigated below 30MHz, only worst case reported.

All average data points marked Low, Mid, High have duty cycle correction applied (23.8%, -12.44dB)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T2	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T3	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
T4	ANP05360	Cable	RG214	11/30/2016	11/30/2018
T5	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T6	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019

Meası	irement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	614.000M	8.4	+0.0	+0.3	+2.1	+1.6	+0.0	39.5	46.0	-6.5	Vert
	QP		+5.9	+21.2					12.5k		
2	614.000M	8.4	+0.0	+0.3	+2.1	+1.6	+0.0	39.5	46.0	-6.5	Vert
	QP		+5.9	+21.2					37.5k		
3	614.000M	8.3	+0.0	+0.3	+2.1	+1.6	+0.0	39.4	46.0	-6.6	Vert
	QP		+5.9	+21.2					Hopping		
4	960.000M	11.5	+0.0	+0.4	+2.5	+2.2	+0.0	47.4	54.0	-6.6	Vert
	QP		+5.9	+24.9					12.5k		
5	960.000M	11.1	+0.0	+0.4	+2.5	+2.2	+0.0	47.0	54.0	-7.0	Vert
	QP		+5.9	+24.9					37.5k		
6	960.000M	10.5	+0.0	+0.4	+2.5	+2.2	+0.0	46.4	54.0	-7.6	Vert
	QP		+5.9	+24.9					Hopping		
7	902.000M	64.1	+0.0	+0.3	+2.4	+2.1	+0.0	98.6	111.5	-12.9	Vert
			+5.9	+23.8					12.5k		
8	902.000M	63.3	+0.0	+0.3	+2.4	+2.1	+0.0	97.8	111.5	-13.7	Vert
			+5.9	+23.8					Hopping		
9	902.000M	63.0	+0.0	+0.3	+2.4	+2.1	+0.0	97.5	111.5	-14.0	Vert
			+5.9	+23.8					37.5k		
10	928.000M	58.6	+0.0	+0.4	+2.4	+2.1	+0.0	94.0	111.5	-17.5	Vert
			+5.9	+24.6					12.5k		
11	928.000M	58.4	+0.0	+0.4	+2.4	+2.1	+0.0	93.8	111.5	-17.7	Vert
			+5.9	+24.6					37.5k		
12	928.000M	57.6	+0.0	+0.4	+2.4	+2.1	+0.0	93.0	111.5	-18.5	Vert
			+5.9	+24.6					Hopping		

Test Setup Photo(s)

Below 1GHz, 5.5 dBi

Below 1GHz, 5.15 dBi

Above 1GHz, 5.5 dBi (150cm), Cone Placement

Above 1GHz, 5.15 dBi (150cm), Cone Placement

15.207 AC Conducted Emissions

Test Setup/Conditions								
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson					
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/29/2017					
Configuration:	1							

Environmental Conditions							
Temperature (ºC)	22	Relative Humidity (%):	33				

See data sheets for test setup and test equipment.

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suit	e A • Bothell,	WA 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	100619	Date:	11/29/2017
Test Type:	Conducted Emissions	Time:	10:50:25
Tested By:	Michael Atkinson	Sequence#:	20
Software:	EMITest 5.03.11	_	115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range: 150kHz-30MHz Frequency tested: 903, 915, 926.9MHz Firmware power setting: Max Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25 Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100%

Setup: The EUT connected to AC mains through LISN. EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements. Low, Mid, and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.

Test	Equipment:										
II	Asset #	#	Descr	iption	Μ	lodel		Calibrati	on Date	Cal Due Date	
Т	1 AN028	371	Spectr	um Anal	yzer E-	4440A		2/24/2017		2/24/2019	
T	2 AN026	511	High I	Pass Filte	r H	E9615-1	50K-	2/18/2016		2/18/2018	
			-		50)-720B					
T	3 ANP00	5540	Cable		Н	Heliax		10/30/201	7	10/30/2019	
T	4 ANP06	5515	Cable	Cable		eliax		1/21/2016		1/21/2018	
T	5 ANP00	5219	Attenu	ator	76	58-10		4/12/2016		4/12/2018	
	AN013	311	50uH	LISN-Liı	nel 38	816/2		3/7/2016		3/7/2018	
			(N)								
T	6 AN013	311	50uH	LISN-Liı	ne2 38	816/2		3/7/2016		3/7/2018	
			(L)								
	-										
Measu	<u>irement Data:</u>	Re Re	eading list	ted by ma	argin.	TF 4	D'	Test Lead	d: Line		D 1
#	Freq	Rdng	TI Te	T2 T6	13	Τ4	Dist	Corr	Spec	Margin	Polar
	MII-	JD. V	10	10 	ЧĿ	ЧĿ	T-h1-	JD. V	JD. V	ΠĻ	A
1		<u>α</u> σμ ν 27.4		UD				<u>ибµ v</u>	<u>ибµ v</u>		Ant
1	4.908M	27.4	+0.0	+0.1	+0.0	+0.1	+0.0	30.8	40.0	-9.2	Line
^	1 968M	36.3	+9.1	+0.1	+0.0	±0.1	+0.0	157	46.0	0.3	Lino
	4.900101	50.5	+0.0 +9.1	+0.1	± 0.0	± 0.1	± 0.0	43.7	40.0	-0.5	Line
3	153 700k	35.5	+0.0	+0.7	+0.0	+0.0	+0.0	45.4	55.8	-10.4	Line
5	155.700K	55.5	+9.1	+0.1	10.0	10.0	10.0	13.1	55.0	10.1	Line
4	5 220M	29.5	+0.0	+0.1	+0.0	+0.1	+0.0	38.9	50.0	-11.1	Line
	Ave	27.5	+9.1	+0.1	10.0	10.1	10.0	50.7	50.0	11.1	Line
^	5.220M	38.9	+0.0	+0.1	+0.0	+0.1	+0.0	48.3	50.0	-1.7	Line
			+9.1	+0.1							
6	5.252M	28.8	+0.0	+0.1	+0.0	+0.1	+0.0	38.2	50.0	-11.8	Line
	Ave		+9.1	+0.1							
^	5.252M	35.9	+0.0	+0.1	+0.0	+0.1	+0.0	45.3	50.0	-4.7	Line
			+9.1	+0.1							
8	3.800M	23.2	+0.0	+0.1	+0.0	+0.1	+0.0	32.6	46.0	-13.4	Line
	Ave		+9.1	+0.1							
^	3.800M	42.4	+0.0	+0.1	+0.0	+0.1	+0.0	51.8	46.0	+5.8	Line
			+9.1	+0.1							
10	3.369M	22.8	+0.0	+0.1	+0.0	+0.1	+0.0	32.2	46.0	-13.8	Line
	Ave		+9.1	+0.1							
^	3.369M	41.0	+0.0	+0.1	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
	1 < 1003 4		+9.1	+0.1		0.0	0.0	25.0	7 0 0	1.1.2	.
12	16.400M	26.2	+0.0	+0.1	+0.0	+0.3	+0.0	35.8	50.0	-14.2	Line
10	4 50 53 6		+9.1	+0.1	0.0	0.1	0.0	01.5	16.0	14.5	x ·
13	4.595M	22.1	+0.0	+0.1	+0.0	+0.1	+0.0	31.5	46.0	-14.5	Line
•	Ave	40.4	+9.1	+0.1	.0.0	.0.1	.0.0	510	16.0	. 5 0	T
	4.393M	42.4	+0.0	+0.1	+0.0	+0.1	+0.0	51.8	40.0	+3.8	Line
15	4 24014	21.0	+9.1	+0.1		LO 1		21.2	16.0	117	Lina
13	4.2401VI	21.9	+0.0 +0.1	+0.1 +0.1	± 0.0	± 0.1	± 0.0	51.5	40.0	-14./	Line
^	4 240M	41.6	+0.0	+0.1	+0.0	+0.1	+0.0	51.0	46.0	+5.0	Line
	7.27011	41.0	+9.1	+0.1	10.0	10.1	10.0	51.0	40.0	13.0	Line
17	2,456M	21.8	+0.0	+0.1	+0.0	+0.1	+0.0	31.2	46.0	-14.8	Line
	Ave	2110	+9.1	+0.1						1.10	

^ 2.456M	38.5	+0.0	+0.1	+0.0	+0.1	+0.0	47.9	46.0	+1.9	Line
		+9.1	+0.1							
19 3.556M	21.4	+0.0	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Line
Ave		+9.1	+0.1							
^ 3.556M	41.0	+0.0	+0.1	+0.0	+0.1	+0.0	50.4	46.0	+4.4	Line
		+9.1	+0.1							
21 3.255M	21.4	+0.0	+0.1	+0.0	+0.1	+0.0	30.8	46.0	-15.2	Line
Ave		+9.1	+0.1							
^ 3.255M	41.7	+0.0	+0.1	+0.0	+0.1	+0.0	51.1	46.0	+5.1	Line
		+9.1	+0.1							
23 4.218M	20.9	+0.0	+0.1	+0.0	+0.1	+0.0	30.3	46.0	-15.7	Line
Ave		+9.1	+0.1							
^ 4.218M	41.4	+0.0	+0.1	+0.0	+0.1	+0.0	50.8	46.0	+4.8	Line
		+9.1	+0.1							
25 3.994M	19.3	+0.0	+0.1	+0.0	+0.1	+0.0	28.7	46.0	-17.3	Line
Ave		+9.1	+0.1							
^ 3.994M	41.1	+0.0	+0.1	+0.0	+0.1	+0.0	50.5	46.0	+4.5	Line
25 2 2 2 2 2 2 2 2	10.0	+9.1	+0.1	0.0	0.1		2 0 4	14.0	1.7.1	.
27 2.858M	19.2	+0.0	+0.1	+0.0	+0.1	+0.0	28.6	46.0	-17.4	Line
Ave	40.0	+9.1	+0.1	.0.0	.0.1	.0.0	50.0	16.0		T ·
7 2.858M	42.8	+0.0	+0.1	+0.0	+0.1	+0.0	52.2	46.0	+6.2	Line
20 2 (7())	10.0	+9.1	+0.1	.0.0	.0.1	.0.0	20.6	16.0	17.4	T ·
29 3.676M	19.2	+0.0	+0.1	+0.0	+0.1	+0.0	28.6	46.0	-1/.4	Line
Ave 2.676M	40.1	+9.1	+0.1	.0.0	+0.1		515	16.0		T in a
· 5.070M	42.1	+0.0	+0.1	+0.0	+0.1	+0.0	51.5	40.0	+3.3	Line
31 3 702M	10.1	+9.1	+0.1	+0.0	<u>⊥0 1</u>	+0.0	28.5	46.0	-17.5	Line
Ave	17.1	+9.1	+0.1	10.0	10.1	10.0	20.5	+0.0	-17.5	Line
^ 3 702M	41.3	+0.0	+0.1	+0.0	+0.1	+0.0	50.7	46.0	+4 7	Line
5.70211	41.5	+9.1	+0.1	10.0	10.1	10.0	50.7	+0.0	1 7.7	Line
33 2.702M	19.0	+0.0	+0.1	+0.0	+0.1	+0.0	28.4	46.0	-17.6	Line
Ave	-,	+9.1	+0.1							
^ 2.702M	42.9	+0.0	+0.1	+0.0	+0.1	+0.0	52.3	46.0	+6.3	Line
		+9.1	+0.1							
35 4.301M	18.7	+0.0	+0.1	+0.0	+0.1	+0.0	28.1	46.0	-17.9	Line
Ave		+9.1	+0.1							
^ 4.301M	40.8	+0.0	+0.1	+0.0	+0.1	+0.0	50.2	46.0	+4.2	Line
		+9.1	+0.1							
37 2.992M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave		+9.1	+0.1							
^ 2.992M	40.0	+0.0	+0.1	+0.0	+0.1	+0.0	49.4	46.0	+3.4	Line
		+9.1	+0.1							
39 3.335M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave		+9.1	+0.1							
^ 3.335M	40.6	+0.0	+0.1	+0.0	+0.1	+0.0	50.0	46.0	+4.0	Line
		+9.1	+0.1							
41 3.347M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave		+9.1	+0.1							
^ 3.347M	41.2	+0.0	+0.1	+0.0	+0.1	+0.0	50.6	46.0	+4.6	Line
40 4 4 0 00 -	40.5	+9.1	+0.1			0.0		4.5.0	10.0	.
43 4.109M	18.6	+0.0	+0.1	+0.0	+0.1	+0.0	28.0	46.0	-18.0	Line
Ave		+9.1	+0.1							

^	4.109M	40.9	+0.0	+0.1	+0.0	+0.1	+0.0	50.3	46.0	+4.3	Line
			+9.1	+0.1							
45	3.951M	18.3	+0.0	+0.1	+0.0	+0.1	+0.0	27.7	46.0	-18.3	Line
I	Ave		+9.1	+0.1							
^	3.951M	41.4	+0.0	+0.1	+0.0	+0.1	+0.0	50.8	46.0	+4.8	Line
			+9.1	+0.1							
47	3.308M	18.2	+0.0	+0.1	+0.0	+0.1	+0.0	27.6	46.0	-18.4	Line
I	Ave		+9.1	+0.1							
^	3.308M	40.7	+0.0	+0.1	+0.0	+0.1	+0.0	50.1	46.0	+4.1	Line
			+9.1	+0.1							
49	3.008M	17.8	+0.0	+0.1	+0.0	+0.1	+0.0	27.2	46.0	-18.8	Line
I	Ave		+9.1	+0.1							
^	3.008M	42.1	+0.0	+0.1	+0.0	+0.1	+0.0	51.5	46.0	+5.5	Line
			+9.1	+0.1							
51	2.328M	17.3	+0.0	+0.1	+0.0	+0.1	+0.0	26.7	46.0	-19.3	Line
I	Ave		+9.1	+0.1							
^	2.328M	35.7	+0.0	+0.1	+0.0	+0.1	+0.0	45.1	46.0	-0.9	Line
			+9.1	+0.1							
53	3.486M	17.0	+0.0	+0.1	+0.0	+0.1	+0.0	26.4	46.0	-19.6	Line
I	Ave		+9.1	+0.1							
^	3.486M	43.9	+0.0	+0.1	+0.0	+0.1	+0.0	53.3	46.0	+7.3	Line
			+9.1	+0.1							
55	4.077M	16.8	+0.0	+0.1	+0.0	+0.1	+0.0	26.2	46.0	-19.8	Line
I	Ave		+9.1	+0.1							
^	4.077M	41.3	+0.0	+0.1	+0.0	+0.1	+0.0	50.7	46.0	+4.7	Line
			+9.1	+0.1							
57	3.128M	16.1	+0.0	+0.1	+0.0	+0.1	+0.0	25.5	46.0	-20.5	Line
I	Ave		+9.1	+0.1							
^	3.128M	42.4	+0.0	+0.1	+0.0	+0.1	+0.0	51.8	46.0	+5.8	Line
			+9.1	+0.1							

Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suite	e A • Bothell,	WA 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	100619	Date:	11/29/2017
Test Type:	Conducted Emissions	Time:	10:01:40
Tested By:	Michael Atkinson	Sequence#:	19
Software:	EMITest 5.03.11		115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N

Configuration 1

Test Conditions / Notes:

Frequency Range: 150kHz-300Hz Frequency tested: 903, 915, 926.9MHz Firmware power setting: Max Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25 Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100%

Setup: The EUT connected to AC mains through LISN. EUT ISM port is continuously transmitting with modulation. The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements. Low, Mid, and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.

Itron, Inc. WO#: 100619 Sequence#: 19 Date: 11/29/2017 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Return

Test 1	Equipment:										
II	Asset :	#	Descr	iption	N	Iodel		Calibrati	on Date	Cal Due l	Date
	AN028	871	Spectr	um Anal	yzer E	4440A		2/24/2017		2/24/2019	
Т	1 AN020	511	High I	Pass Filte	r H 5	IE9615-1 0-720B	50K-	2/18/2016)	2/18/2018	
T	2 ANPO	6540	Cable		H	Ieliax		10/30/201	7	10/30/201	9
T	3 ANP0	6515	Cable		H	Ieliax		1/21/2016)	1/21/2018	
T	4 ANP0	6219	Attenu	ator	7	68-10		4/12/2016)	4/12/2018	
T	5 AN013	311	50uH (N)	LISN-Liı	nel 3	816/2		3/7/2016		3/7/2018	
	AN013	311	50uH (L)	LISN-Lir	ne2 3	816/2		3/7/2016		3/7/2018	
Measu	irement Data.	: Re	eading list	ted by ma	argin.			Test Lead	d: Return		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	181.400k	34.1	+0.3 +0.0	+0.0	+0.0	+9.1	+0.0	43.5	54.4	-10.9	Retur
2	3.936M Ave	24.9	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	34.2	46.0	-11.8	Retur
^	3.936M	41.4	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	50.7	46.0	+4.7	Retur
4	2.931M	24.1	+0.1	+0.0	+0.1	+9.1	+0.0	33.4	46.0	-12.6	Retur
^	2.931M	41.4	+0.0	+0.0	+0.1	+9.1	+0.0	50.7	46.0	+4.7	Retur
6	3.674M	23.9	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Retur
^	3.674M	42.1	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	51.4	46.0	+5.4	Retur
8	3.747M	23.9	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Retur
^	Ave 3.747M	43.2	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	52.5	46.0	+6.5	Retur
10	2.762M	23.6	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	32.9	46.0	-13.1	Retur
^	Ave 2.762M	41.5	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	50.8	46.0	+4.8	Retur
12	3.080M	23.2	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	32.5	46.0	-13.5	Retur
^	Ave 3.080M	42.2	+0.0 +0.1	+0.0	+0.1	+9.1	+0.0	51.5	46.0	+5.5	Retur
14	2.716M	22.2	+0.1 +0.0	+0.0	+0.1	+0.1	+0.0	22.5	46.0	12.5	Dotur
14	Ave	23.2	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	52.5	40.0	-13.3	Retur
^	2.716M	42.8	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	52.1	46.0	+6.1	Retur
16	3.855M Ave	23.1	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	32.4	46.0	-13.6	Retur
^	3.855M	41.9	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Retur

18	2.600M	22.7	+0.1	+0.0	+0.1	+9.1	+0.0	32.0	46.0	-14.0	Retur
^	2.600M	41.8	+0.0 +0.1 +0.0	+0.0	+0.1	+9.1	+0.0	51.1	46.0	+5.1	Retur
20 Av	2.472M ve	22.5	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	31.8	46.0	-14.2	Retur
^	2.472M	39.7	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	49.0	46.0	+3.0	Retur
22 Av	2.748M ve	22.5	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	31.8	46.0	-14.2	Retur
23	15.700M	26.2	+0.1 +0.0	+0.0	+0.3	+9.1	+0.0	35.7	50.0	-14.3	Retur
24 Av	3.888M ve	22.2	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	31.5	46.0	-14.5	Retur
^	3.888M	42.4	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	51.7	46.0	+5.7	Retur
26 Av	4.004M ve	22.1	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	31.4	46.0	-14.6	Retur
^	4.004M	40.6	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	49.9	46.0	+3.9	Retur
28 Av	3.386M ve	21.7	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	31.0	46.0	-15.0	Retur
^	3.386M	41.2	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	50.5	46.0	+4.5	Retur
30 Av	3.014M ve	21.4	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	30.7	46.0	-15.3	Retur
^	3.014M	43.1	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	52.4	46.0	+6.4	Retur
32 Av	2.639M ve	21.2	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	30.5	46.0	-15.5	Retur
^	2.639M	42.1	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	51.4	46.0	+5.4	Retur
34 Av	3.359M ve	21.0	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	30.3	46.0	-15.7	Retur
^	3.359M	41.5	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	50.8	46.0	+4.8	Retur
36 Av	3.371M ve	20.9	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	30.2	46.0	-15.8	Retur
^	3.371M	41.4	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	50.7	46.0	+4.7	Retur
38 Av	4.460M ve	20.5	$^{+0.1}_{+0.0}$	+0.0	+0.1	+9.1	+0.0	29.8	46.0	-16.2	Retur
٨	4.460M	36.7	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	46.0	46.0	+0.0	Retur
40 Av	3.788M ve	20.5	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	29.8	46.0	-16.2	Retur
^	3.788M	42.3	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	51.6	46.0	+5.6	Retur
42 Av	3.052M ve	20.5	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	29.8	46.0	-16.2	Retur
^	3.052M	41.3	+0.1 +0.0	+0.0	+0.1	+9.1	+0.0	50.6	46.0	+4.6	Retur

44	2.739M	20.2	+0.1	+0.0	+0.1	+9.1	+0.0	29.5	46.0	-16.5	Retur
	Ave		+0.0								
^	2.739M	42.4	+0.1	+0.0	+0.1	+9.1	+0.0	51.7	46.0	+5.7	Retur
			+0.0								
^	2.748M	41.7	+0.1	+0.0	+0.1	+9.1	+0.0	51.0	46.0	+5.0	Retur
			+0.0								
47	2.889M	19.5	+0.1	+0.0	+0.1	+9.1	+0.0	28.8	46.0	-17.2	Retur
	Ave		+0.0								
^	2.889M	41.9	+0.1	+0.0	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Retur
			+0.0								
49	2.308M	18.8	+0.1	+0.0	+0.1	+9.1	+0.0	28.1	46.0	-17.9	Retur
	Ave		+0.0								
^	2.308M	36.7	+0.1	+0.0	+0.1	+9.1	+0.0	46.0	46.0	+0.0	Retur
			+0.0								
51	4.288M	18.3	+0.1	+0.0	+0.1	+9.1	+0.0	27.6	46.0	-18.4	Retur
	Ave		+0.0								
^	4.288M	38.5	+0.1	+0.0	+0.1	+9.1	+0.0	47.8	46.0	+1.8	Retur
			+0.0								
53	3.325M	17.3	+0.1	+0.0	+0.1	+9.1	+0.0	26.6	46.0	-19.4	Retur
	Ave		+0.0								
^	3.325M	41.7	+0.1	+0.0	+0.1	+9.1	+0.0	51.0	46.0	+5.0	Retur
			+0.0								
55	5.076M	15.0	+0.1	+0.0	+0.1	+9.1	+0.0	24.3	50.0	-25.7	Retur
	Ave		+0.0								
^	5.076M	37.1	+0.1	+0.0	+0.1	+9.1	+0.0	46.4	50.0	-3.6	Retur
			+0.0								
57	159.800k	5.2	+0.6	+0.0	+0.0	+9.1	+0.0	14.9	55.5	-40.6	Retur
	Ave		+0.0								
^	159.800k	38.1	+0.6	+0.0	+0.0	+9.1	+0.0	47.8	55.5	-7.7	Retur
			+0.0								

Test Setup Photo(s)

APPENDIX A: CUSTOMER PROVIDED INFORMATION

Manufacturer's Declaration: 15.247(a)(1)(i) Average Time of Occupancy

The manufacturer declares:

Each transmission is a maximum of 23.8 mS long. Each transmission takes place on one of 120 different channels in a pseudorandom sequence. All 120 channels are used equally on the average. The algorithm that determines the pseudo-random hop sequence does not allow the device to transmit on the same channel more than 6 times in a 20 second period. The maximum possible occupancy time on any one frequency is 142.8 mS (6 times) within a 20 second period.

DCCF Plot Data

DCCF Plot

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
Meter reading (dBµV)							
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBµV/m)					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.