## Itron, Inc.

REVISED TEST REPORT FOR ORRN
Model: RN-EGS

Tested To The Following Standards:
FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(FHSS 902-928 MHz)

Report No.: 100138-6A

Date of issue: January 10, 2018


Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information ..... 3
Test Report Information .....  3
Revision History .....  3
Report Authorization .....  3
Test Facility Information ..... 4
Software Versions .....  4
Site Registration \& Accreditation Information .....  .4
Summary of Results ..... 5
Modifications During Testing ..... 5
Conditions During Testing .....  5
Equipment Under Test ..... 6
General Product Information ..... 6
FCC Part 15 Subpart C ..... 7
15.247(a) Transmitter Characteristics .....  7
15.247(a)(1) 20 dB Bandwidth ..... 8
15.247(a)(1) Carrier Separation ..... 12
15.247(a)(1)(i) Number of Hopping Channels ..... 13
15.247(b)(2) Output Power ..... 16
15.35(c) Duty Cycle Correction Factor ..... 23
15.247(d) RF Conducted Emissions \& Band Edge ..... 25
15.247(d) Radiated Emissions \& Band Edge ..... 35
15.207 AC Conducted Emissions ..... 55
Appendix A: Customer Provided Information ..... 67
Manufacturer's Declaration: 15.247(a)(1)(i) Average Time of Occupancy ..... 67
DCCF Plot Data ..... 67
Supplemental Information. ..... 68
Measurement Uncertainty ..... 68
Emissions Test Details ..... 68

# ADMINISTRATIVE INFORMATION 

## Test Report Information

## REPORT PREPARED FOR:

Itron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

REPRESENTATIVE: Jay Holcomb
Customer Reference Number: 135282

DATE OF EQUIPMENT RECEIPT:
DATE(S) OF TESTING:

REPORT PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 100138

September 28, 2017
September 28-29, 2017

## Revision History

Original: Testing of the ORRN, Model: RN-EGS to FCC Part 15 Subpart C Section(s) 15.207 \& 15.247. Revision A: Changing one antenna gain from 5.1 dBi to 5.5 dBi .

## Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.


Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

## Test Facility Information



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Canyon Park, Bothell, WA 98021

## Software Versions

| CKC Laboratories Proprietary Software | Version |
| :--- | :---: |
| EMITest Emissions | 5.03 .11 |

Site Registration \& Accreditation Information

| Location | NIST CB \# | TAIWAN | CANADA | FCC | JAPAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Canyon Park <br> Bothell, WA | US0081 | SL2-IN-E-1145R | $3082 \mathrm{C}-1$ | US1022 | A-0148 | LABORATORIES, INC.

## SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

| Test Procedure | Description | Modifications | Results |
| :--- | :--- | :---: | :---: |
| $15.247(\mathrm{a})(1)(\mathrm{i})$ | Occupied Bandwidth | NA | Pass |
| $15.247(\mathrm{a})(1)$ | Carrier Separation | NA | Pass |
| $15.247(\mathrm{a})(1)(\mathrm{i})$ | Number of Hopping Channels | NA | Pass |
| $15.247(\mathrm{a})(1)(\mathrm{i})$ | Average Time of Occupancy | NA | NP |
| $15.247(\mathrm{~b})(2)$ | Output Power | NA | Pass |
| $15.247(\mathrm{~d})$ | RF Conducted Emissions \& Band Edge | NA | Pass |
| $15.247(\mathrm{~d})$ | Radiated Emissions \& Band Edge | NA | Pass |
| 15.207 | AC Conducted Emissions | NA | Pass |

NA = Not Applicable
NP = CKC Laboratories was not contracted to perform test. See Appendix A for Manufacturer's Declaration.

## Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

## Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

## Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

## Summary of Conditions

## None

## EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

## Configuration 1

Equipment Tested:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| ORRN | Itron, Inc. | RN-EGS | 320270235 |

Support Equipment:

| Device | Manufacturer | Model \# | S/N |
| :--- | :--- | :--- | :--- |
| Laptop | Dell | E6430 | NA |
| AC/DC Adapter (for Laptop) | Dell | DA130PE-00 | NA |

## General Product Information:

| Product Information | Manufacturer-Provided Details |
| :---: | :---: |
| Equipment Type: | Stand-Alone Equipment |
| Type of Wideband System: | Proprietary FHSS |
| Operating Frequency Range: | $903-926.9 \mathrm{MHz}$ |
| Number of Hopping Channels: | 120 |
| Modulation Type(s): | $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK), 37.5 Kbit/sec FM (2GFSK) |
| Maximum Duty Cycle: | $23.8 \%$ |
| Number of TX Chains: | 1 |
| Antenna Type(s) and Gain: | External Monopole, 5.15dBi or 5.5dBi |
| Beamforming Type: | NA |
| Antenna Connection Type: | External Connector |
| Nominal Input Voltage: | $115 \mathrm{VAC}, 60 \mathrm{~Hz}$ |
| Firmware / Software used for Test: | Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.14 |
|  | Software: SrTest100 v4.1.1.25 |

LABORATORIES, INC.

## FCC Part 15 Subpart C

### 15.247(a) Transmitter Characteristics

| Test Setup/Conditions |  |  |  |
| :--- | :--- | :--- | :--- |
| Test Location: | Bothell Lab Bench | Test Engineer: | M. Atkinson |
| Test Method: | ANSI C63.10 (2013) | Test Date(s): | $9 / 28 / 2017$ to 9/29/2017 |
| Configuration: | 1 | The EUT ISM port is continuously transmitting with modulation. <br> The EUT ISM port is connected directly to a spectrum analyzer for direct connected <br> measurements. <br> Low, Mid, High channels investigated, all modulation types investigated, worst case <br> reported. |  |


| Environmental Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Temperature (으) | $20-24$ | Relative Humidity (\%): | $34-40$ |

Test Equipment

| Test Equipment |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Asset\# | Description | Manufacturer | Model | Cal Date | Cal Due |  |
| 02872 | Spectrum Analyzer | Agilent | E4440A | $11 / 18 / 2015$ | $11 / 18 / 2017$ |  |
| P06124 | Attenuator | Aeroflex | $18 N-6$ | $5 / 5 / 2017$ | $5 / 5 / 2019$ |  |
| P06219 | Attenuator | Narda | $768-10$ | $4 / 12 / 2016$ | $4 / 12 / 2018$ |  |
| P06540 | Cable | Andrews | Heliax | $10 / 29 / 2015$ | $10 / 29 / 2017$ |  |

### 15.247(a)(1) 20 dB Bandwidth

| Test Data Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency <br> $(\mathrm{MHz})$ | Antenna <br> Port | Modulation | Measured <br> $\mathbf{( k H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Results |
| 903 | 1 | $12.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM} \mathrm{(2GFSK)}$ | 139.12 | $\leq 500$ | Pass |
| 915 | 1 | $12.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM}(2 \mathrm{GFSK})$ | 139.51 | $\leq 500$ | Pass |
| 926.9 | 1 | $12.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM} \mathrm{(2GFSK)}$ | 139.25 | $\leq 500$ | Pass |
| 903 | 1 | $37.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM}(2 \mathrm{GFSK})$ | 84.00 | $\leq 500$ | Pass |
| 915 | 1 | $37.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM} \mathrm{(2GFSK)}$ | 85.02 | $\leq 500$ | Pass |
| 926.9 | 1 | $37.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM}(2 \mathrm{GFSK})$ | 82.53 | $\leq 500$ | Pass |

## Plots



FM 12.5, Low Channel


FM 12.5, Middle Channel


FM 12.5, High Channel


FM 37.5, Low Channel


FM 37.5, Middle Channel


FM 37.5, High Channel

### 15.247(a)(1) Carrier Separation

## Test Data Summary

Limit applied: 20dB bandwidth of the hopping channel.

| Antenna <br> Port | Operational Mode | Measured <br> $\mathbf{( k H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Results |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Continuously Transmitting while Hopping | 200.3 | $>139.51$ | Pass |

## Plot



### 15.247(a)(1)(i) Number of Hopping Channels

| Test Data Summary |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Limit $=\left\{\begin{array}{l}50 \text { Channels } \mid 20 \mathrm{~dB} \\ 25 \text { Channels } \mid 20 \mathrm{~dB} \\ 25 W \geq 250 \mathrm{kHz} \\ \hline \text { Antenna } \\ \text { Port }\end{array}\right.$ | Operational Mode | Measured <br> (Channels) | Limit <br> (Channels) | Results |
| 1 | Continuously Transmitting while Hopping | 120 | $\geq 50$ | Pass |

Plots


902-915.1MHz, 61 channels

915.1-928MHz, 59 channels

Test Setup Photo


LABORATORIES, INC.

### 15.247(b)(2) Output Power

| Test Data Summary - Voltage Variations |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency <br> $(\mathrm{MHz})$ | Modulation / Ant Port | $\mathbf{V}_{\text {Minimum }}$ <br> $(\mathbf{d B m})$ | $\mathbf{V}_{\text {Nominal }}$ <br> $(\mathrm{dBm})$ | $\mathbf{V}_{\text {Maximum }}$ <br> $(\mathrm{dBm})$ | Max Deviation <br> from Vominal <br> $(\mathbf{d B})$ |  |
| 903 | $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | 28.0 | 28.0 | 28.0 | 0.0 |  |
| 915 | $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | 27.8 | 27.8 | 27.8 | 0.0 |  |
| 926.9 | $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | 27.4 | 27.4 | 27.4 | 0.0 |  |

Test performed using operational mode with the highest output power, representing worst case.

## Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

| Parameter | Value |
| :--- | :--- |
| $\mathrm{V}_{\text {Nominal }}:$ | $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ |
| $\mathrm{~V}_{\text {Minimum }}:$ | $102 \mathrm{VAC}, 60 \mathrm{~Hz}$ |
| $\mathrm{~V}_{\text {Maximum }}:$ | $264 \mathrm{VAC}, 60 \mathrm{~Hz}$ |

Test Data Summary - RF Conducted Measurement
Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels (min 25) }\end{array}\right.$

| Frequency <br> $(\mathrm{MHz})$ | Modulation | Ant. Type / Gain <br> $(\mathrm{dBi})$ | Measured <br> $(\mathrm{dBm})$ | Limit <br> $(\mathrm{dBm})$ | Results |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 903 | $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | External Monopole, <br> 5.15 dBi Max | 28.0 | $\leq 30$ | Pass |
| 915 | $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | External Monopole, <br> 5.15 dBi Max | 27.8 | $\leq 30$ | Pass |
| 926.9 | $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | External Monopole, <br> 5.15 dBi Max | 27.4 | $\leq 30$ | Pass |
| 903 | $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | External Monopole, <br> 5.15 dBi Max | 28.0 | $\leq 30$ | Pass |
| 915 | $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | External Monopole, <br> 5.15 dBi Max | 27.8 | $\leq 30$ | Pass |
| 926.9 | $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | External Monopole, <br> 5.15 dBi Max | 27.4 | $\leq 30$ | Pass |

Plots


FM 12.5 Low Channel


FM 12.5 Middle Channel


FM 12.5 High Channel


FM 37.5 Low Channel


FM 37.5 Middle Channel


FM 37.5 High Channel

## Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software: Itron, Inc.
15.247(b) Power Output (902-928 MHz FHSS $>50$ Channels)

100138
Conducted Emissions
Michael Atkinson
EMITest 5.03.11

Date: 9/29/2017
Time: 08:21:35
Sequence\#: 3
115 VAC 60 Hz

Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range: Fundamental
Frequency tested: 903, 915, 926.9 MHz
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at 100\%
Test Location: Bothell Lab Bench
Test Method: ANSI C63.10 (2013)
Temperature ( ${ }^{\circ} \mathrm{C}$ ): 23
Relative Humidity (\%): 42
Setup: The EUT ISM port is continuously transmitting with modulation.
The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.
Low, Mid, High channels investigated, all modulation types investigated, worst case reported.
Investigated voltage variations based on manufacturer specified Vmin and Vmax.

Itron, Inc. WO\#: 100138 Sequence\#: 3 Date: 9/29/2017
15.247 (b) Power Output ( $902-928 \mathrm{MHz}$ FHSS $>50$ Channels) Test Lead: 115 VAC 60 Hz None


## Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | AN02673 | Spectrum Analyzer | E4446A | $10 / 12 / 2015$ | $10 / 12 / 2017$ |
| T2 | AN03565 | Attenuator | $766-20$ | $10 / 7 / 2015$ | $10 / 7 / 2017$ |
| T3 | ANP06540 | Cable | Heliax | $10 / 29 / 2015$ | $10 / 29 / 2017$ |


| Measu | ement Data | Reading listed by margin. |  |  |  |  | Test Lead: None |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Freq <br> MHz | Rdng $\mathrm{dB} \mu \mathrm{V}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | dB | $\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$ | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$ | Polar <br> Ant |
| 1 | 903.018 M | 114.8 | +0.0 | +19.9 | +0.3 |  | +0.0 | 135.0 | 137.0 | $-2.0$ | None |
|  |  |  |  |  |  |  |  |  | FM 37.5 |  |  |
| 2 | 903.059 M | 114.8 | +0.0 | +19.9 | +0.3 |  | +0.0 | 135.0 | 137.0 | -2.1 | None |
|  |  |  |  |  |  |  |  |  | FM 12.5 |  |  |
| 3 | 915.061 M | 114.5 | +0.0 | +19.9 | +0.4 |  | +0.0 | 134.8 | 137.0 | -2.2 | None |
|  |  |  |  |  |  |  |  |  | FM 12.5 |  |  |
| 4 | 915.020M | 114.5 | +0.0 | +19.9 | +0.4 |  | +0.0 | 134.8 | 137.0 | -2.2 | None |
|  |  |  |  |  |  |  |  |  | FM 37.5 |  |  |
| 5 | 926.963M | 114.1 | +0.0 | +19.9 | +0.4 |  | +0.0 | 134.4 | 137.0 | -2.6 | None |
|  |  |  |  |  |  |  |  |  | FM 12.5 |  |  |
| 6 | 926.920M | 114.1 | +0.0 | +19.9 | +0.4 |  | +0.0 | 134.4 | 137.0 | -2.6 | None |
|  |  |  |  |  |  |  |  |  | FM 37.5 |  |  |

### 15.35(c) Duty Cycle Correction Factor

| Test Data Summary |  |  |  |
| :---: | :---: | :---: | :---: |
| Antenna <br> Port | Operational Mode | Measured On Time <br> $(\mathrm{mS} /$ Pobs $)$ | Calculated DCCF <br> (dB) |
| 1 | Longest Pulse Possible | 0.238 | -12.4 |

Observation Period, $\mathrm{P}_{\text {obs }}$ is the duration of the pulse train or maximum 100 mS

Measured results are calculated as follows:

$$
\text { On Time }=\left.\left(\sum_{\text {Bursts }} \text { RF Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{o b s}(\max 100 \mathrm{~ms})}
$$

Measured Values:

| Parameter | Value |
| :--- | :--- |
| Observation Period (Pobs): | 100 |
| Number of RF Bursts / Pobs:: | 1 |
| On time of RF Burst: | 23.8 mS |
| Number of Control or other signals / Pobs: | 0 |
| On time of Control or other Signals: | 0 |
| Total Measured On Time: | 23.8 mS |

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$
D C C F=20 \cdot \log \left(\frac{\text { On Time }}{P_{o b s}}\right)
$$

## Duty Cycle Correction Factor Test Data

DCCF is based on manufacturer measured worst case data, due to the firmware not being available to allow this measurement to be made at the test lab during time of test. See Appendix data for manufacturer provided data.

Test Setup Photo


### 15.247(d) RF Conducted Emissions \& Band Edge

## Plot



## Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

## Itron, Inc.

15.247(d) Conducted Spurious Emissions

100138
Conducted Emissions
Michael Atkinson
EMITest 5.03.11

Date: 9/29/2017
Time: 11:24:25
Sequence\#: 4
115 VAC 60 Hz

Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range:9kHz-9.28GHz
Frequency tested: 903, 915, 926.9MHz
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at $100 \%$
Test Location: Bothell Lab Bench
Test Method: ANSI C63.10 (2013)
Temperature ( ${ }^{\circ} \mathrm{C}$ ): 20-25
Relative Humidity (\%): 35-40
Setup: The EUT ISM port is continuously transmitting with modulation.
The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.
Low, Mid, and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.


Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :---: | :--- | :--- | :--- | :--- | :--- |
|  | AN02673 | Spectrum Analyzer | E4446A | $10 / 12 / 2015$ | $10 / 12 / 2017$ |
| T1 | ANP06540 | Cable | Heliax | $10 / 29 / 2015$ | $10 / 29 / 2017$ |
| T2 | ANP05748 | Attenuator | PE7004-20 | $4 / 11 / 2016$ | $4 / 11 / 2018$ |

Measurement Data: $\quad$ Reading listed by margin. Test Lead: None

| \# | Freq <br> MHz | Rdng $\mathrm{dB} \mu \mathrm{V}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | dB | dB | Dist Table | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | Margin <br> dB | Polar Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8554.000 M | 60.0 | +1.7 | +20.5 |  |  | +0.0 | 82.2 | 115.1 | -32.9 | None |
| 2 | 3152.000 M | 58.5 | +0.7 | +20.1 |  |  | +0.0 | 79.3 | 115.1 | -35.8 | None |
| 3 | 3390.000 M | 58.3 | +0.8 | +20.2 |  |  | +0.0 | 79.3 | 115.1 | -35.8 | None |
| 4 | 5155.000 M | 57.9 | +0.9 | +20.4 |  |  | +0.0 | 79.2 | 115.1 | -35.9 | None |
| 5 | 174.643k | 58.2 | +0.0 | +20.1 |  |  | +0.0 | 78.3 | 115.1 | -36.8 | None |
| 6 | 295.000M | 54.1 | +0.2 | +20.1 |  |  | +0.0 | 74.4 | 115.1 | -40.7 | None |
| 7 | 1805.195M | 53.5 | +0.5 | +20.1 |  |  | +0.0 | 74.1 | 115.1 | -41.0 | None |
| 8 | 105.450M | 53.9 | +0.1 | +20.0 |  |  | +0.0 | 74.0 | 115.1 | -41.1 | None |
| 9 | 1854.843 M | 53.2 | +0.5 | +20.1 |  |  | +0.0 | 73.8 | 115.1 | -41.3 | None |
| 10 | 1.303 M | 53.2 | +0.0 | +20.1 |  |  | +0.0 | 73.3 | 115.1 | -41.8 | None |
| 11 | 1829.195M | 52.1 | +0.5 | +20.1 |  |  | +0.0 | 72.7 | 115.1 | -42.4 | None |
| 12 | 9.349 M | 52.1 | +0.0 | +20.0 |  |  | +0.0 | 72.1 | 115.1 | -43.0 | None |

## Band Edge

## Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.

| Frequency <br> $(\mathrm{MHz})$ | Modulation | Measured <br> $(\mathrm{dBm})$ | Limit <br> $(\mathrm{dBm})$ | Results |
| :---: | :---: | :---: | :---: | :---: |
| 902 | $12.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK) | -7 | $<8.1$ | Pass |
| 928 | $12.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM}(2 \mathrm{GFSK})$ | -11.6 | $<8.1$ | Pass |
| 902 | $37.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM}(2 \mathrm{GFSK})$ | -7.2 | $<8.1$ | Pass |
| 928 | $37.5 \mathrm{Kbit} / \mathrm{sec} \mathrm{FM}(2 \mathrm{GFSK})$ | -11.5 | $<8.1$ | Pass |
| 902 | Hopping with modulation <br> $(37.5 \mathrm{Kbit} /$ sec Modulations worst case) | -7.8 | $<8.1$ | Pass |
| 928 | Hopping with modulation <br> $(37.5 \mathrm{Kbit} /$ sec Modulations worst case) | -14.2 | $<8.1$ | Pass |

## Band Edge Plots








## Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

## Itron, Inc.

15.247(d) Conducted Spurious Emissions

100138
Conducted Emissions
Michael Atkinson
EMITest 5.03.11

Date: 9/29/2017
Time: 10:36:52
Sequence\#: 4
115 VAC 60 Hz

Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range: Band Edge
Frequency tested: 903, 926.9MHz
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at $100 \%$
Test Location: Bothell Lab Bench
Test Method: ANSI C63.10 (2013)
Temperature ( ${ }^{\circ} \mathrm{C}$ ): 20-25
Relative Humidity (\%): 35-40
Setup: The EUT ISM port is continuously transmitting with modulation.
The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.
Low, High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | AN02673 | Spectrum Analyzer | E4446A | $10 / 12 / 2015$ | $10 / 12 / 2017$ |
| T2 | AN03565 | Attenuator | $766-20$ | $10 / 7 / 2015$ | $10 / 7 / 2017$ |
| T3 | ANP06540 | Cable | Heliax | $10 / 29 / 2015$ | $10 / 29 / 2017$ |


| Measu | ement Data: | Reading listed by margin. |  |  |  |  | Test Lead: None |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Freq <br> MHz | Rdng $\mathrm{dB} \mu \mathrm{V}$ | $\begin{aligned} & \mathrm{T} 1 \\ & \text { dB } \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$ | dB | $\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$ | $\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$ | Spec dB $\mu \mathrm{V}$ | $\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$ | Polar Ant |
| 1 | 902.000M | 79.8 | +0.0 | +19.9 | +0.3 |  | +0.0 | 100.0 | $\begin{array}{r} 115.1 \\ \text { FM } 12.5 \end{array}$ | -15.1 | None |
| 2 | 902.000M | 79.6 | +0.0 | +19.9 | +0.3 |  | +0.0 | 99.8 | $\begin{array}{r} 115.1 \\ \text { FM } 37.5 \\ \hline \end{array}$ | -15.3 | None |
| 3 | 902.000M | 79.0 | +0.0 | +19.9 | +0.3 |  | +0.0 | 99.2 | 115.1 <br> Hopping | -15.9 | None |
| 4 | 928.000M | 75.2 | +0.0 | +19.9 | +0.4 |  | +0.0 | 95.5 | $\begin{array}{r} 115.1 \\ \text { FM } 37.5 \end{array}$ | -19.6 | None |
| 5 | 928.000M | 75.1 | +0.0 | +19.9 | +0.4 |  | +0.0 | 95.4 | $\begin{array}{r} 115.1 \\ \text { FM } 12.5 \\ \hline \end{array}$ | -19.7 | None |
| 6 | 928.000M | 72.5 | +0.0 | +19.9 | +0.4 |  | +0.0 | 92.8 | 115.1 <br> Hopping | -22.3 | None |

## Test Setup Photo



LABORATORIES, INC.

### 15.247(d) Radiated Emissions \& Band Edge

## Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

100138 Date: 9/28/2017
Maximized Emissions Time: 15:08:43
Michael Atkinson
Sequence\#: 12

## Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Frequency tested: $903,915 \mathrm{MHz}, 926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100\%
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013)
Temperature ( ${ }^{\circ} \mathrm{C}$ ): 20-25
Relative Humidity (\%): 35-40
Setup: The EUT ISM port is continuously transmitting with modulation.
The EUT ISM port has an external antenna installed, both 5.15 and 5.5 dBi antennas investigated, only worst case reported.
Low and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.
Both Horizontal and Vertical antenna polarities investigated above 30 MHz , only worst case reported.
3 orthogonal axes investigated below 30 MHz , only worst case reported.
All average data points marked Low, Mid, High have duty cycle correction applied (23.8\%, -12.44 dB )

Itron. Inc. WO\#: 100138 Sequence\#: 12 Date: 9/28/2017
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz


[^0]O Peak Readings

* Average Readings
Software Version: 5.03.11

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | ANP06540 | Cable | Heliax | $10 / 29 / 2015$ | $10 / 29 / 2017$ |
| T2 | ANP06515 | Cable | Heliax | $1 / 21 / 2016$ | $1 / 21 / 2018$ |
| T3 | AN03540 | Preamp | 83017 A | $5 / 2 / 2017$ | $5 / 2 / 2019$ |
| T4 | AN01467 | Horn Antenna-ANSI <br> C63.5 Calibration | 3115 | $7 / 21 / 2017$ | $7 / 21 / 2019$ |
|  |  |  |  |  |  |
| T5 | ANP06935 | Cable | $32026-29801-$ | $3 / 11 / 2016$ | $3 / 11 / 2018$ |
|  |  |  | 29801-18 |  |  |
| T6 | AN03170 | High Pass Filter | HM1155-11SS | $12 / 17 / 2015$ | $12 / 17 / 2017$ |
| T7 | AN02673 | Spectrum Analyzer | E4446A | $10 / 12 / 2015$ | $10 / 12 / 2017$ |
| T8 | ANP05963 | Cable | RG-214 | $2 / 15 / 2016$ | $2 / 15 / 2018$ |
| T9 | ANP05360 | Cable | RG214 | $11 / 30 / 2016$ | $11 / 30 / 2018$ |
| T10 | ANP06123 | Attenuator | $18 N-6$ | $5 / 5 / 2017$ | $5 / 5 / 2019$ |
| T11 | AN03628 | Biconilog Antenna | 3142 E | $6 / 7 / 2017$ | $6 / 7 / 2019$ |
| T12 | AN00052 | Loop Antenna | 6502 | $4 / 8 / 2016$ | $4 / 8 / 2018$ |
| T13 | ANDCCF | Test Data Adjustment |  | $5 / 13 / 2016$ | $5 / 13 / 2018$ |

Measurement Data: $\quad$ Reading listed by margin. Test Distance: 3 Meters


| $\begin{aligned} & 6 \text { 4515.023M } \\ & \text { Ave } \end{aligned}$ | 51.3 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +31.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 42.9 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -11.1 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\wedge ~ 4515.000 \mathrm{M}$ | 53.9 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +31.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 45.5 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -8.5 | Horiz |
| 87417.000 M | 45.0 | $\begin{array}{r} +1.3 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -34.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +36.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 42.3 | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -11.7 | Vert |
| $\begin{aligned} & 9 \text { 7319.984M } \\ & \text { Ave } \end{aligned}$ | 45.2 | $\begin{array}{r} +1.2 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +36.5 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$ | -11.7 | Horiz |
| $\wedge 7319.984 \mathrm{M}$ | 47.3 | $\begin{array}{r} +1.2 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +36.5 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$ | -9.6 | Horiz |
| 11 1135.000M | 49.8 | $\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+1.8 \\ & +1.6 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-36.2 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +24.4 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 42.1 | 54.0 | -11.9 | Vert |
| $12 \quad 1144.000 \mathrm{M}$ | 49.9 | $\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+1.8 \\ & +1.4 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -36.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+24.4 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 42.1 | 54.0 | -11.9 | Vert |
| $13 \quad 1153.000 \mathrm{M}$ | 49.1 | $\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+1.8 \\ & +1.3 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-36.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+24.4 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 41.2 | 54.0 | -12.8 | Vert |
| 14 5419.000M | 46.2 | $\begin{array}{r} +1.0 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +34.0 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -13.4 | Horiz |
| $\begin{aligned} & 157415.138 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 43.1 | $\begin{array}{r} +1.3 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-34.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+36.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 40.4 | $\begin{aligned} & \quad 54.0 \\ & \text { High } \end{aligned}$ | -13.6 | Vert |
| $\begin{aligned} & 163707.619 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 50.0 | $\begin{gathered} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{gathered}$ | $\begin{aligned} & +3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.9 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -14.3 | Horiz |
| $\wedge 3707.619 \mathrm{M}$ | 52.2 | $\begin{array}{r} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -12.1 | Horiz |


| $\begin{aligned} & 18 \text { 4515.052M } \\ & \text { Ave } \end{aligned}$ | 47.8 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +31.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 39.4 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -14.6 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\wedge 4515.000 \mathrm{M}$ | 52.2 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +31.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 43.8 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -10.2 | Vert |
| $\wedge 4515.000 \mathrm{M}$ | 51.9 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+31.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 43.5 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -10.5 | Vert |
| $\begin{aligned} & 21 \text { 3659.989M } \\ & \text { Ave } \end{aligned}$ | 49.5 | $\begin{array}{r} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{gathered} \hline-33.4 \\ +0.0 \\ +0.0 \end{gathered}$ | $\begin{array}{r} +30.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & \text { Mid } \\ & \text { Mi.0 } \end{aligned}$ | -14.9 | Horiz |
| $\wedge 3659.989 \mathrm{M}$ | 50.7 | $\begin{array}{r} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{gathered} -33.4 \\ +0.0 \\ +0.0 \end{gathered}$ | $\begin{array}{r} +30.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$ | -13.7 | Horiz |
| $\begin{aligned} & 23 \text { 4575.075M } \\ & \text { Ave } \end{aligned}$ | 47.1 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+32.0 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$ | -15.2 | Horiz |
| $\wedge 4575.075 \mathrm{M}$ | 48.6 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+32.0 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$ | -13.7 | Horiz |
| $\begin{aligned} & 253660.015 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 48.1 | $\begin{array}{r} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.8 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$ | -16.3 | Vert |
| $\wedge 3660.015 \mathrm{M}$ | 48.8 | $\begin{array}{r} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+30.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$ | -15.6 | Vert |
| $\begin{aligned} & 277415.325 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 40.4 | $\begin{array}{r} +1.3 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -34.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+36.8 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -16.3 | Horiz |
| $\wedge 7415.325 \mathrm{M}$ | 45.4 | $\begin{array}{r} +1.3 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-34.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +36.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -11.3 | Horiz |
| $\begin{aligned} & 293611.981 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 48.0 | $\begin{array}{r} +0.8 \\ +0.4 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.7 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -16.7 | Horiz |
| $30 \quad 3610.000 \mathrm{M}$ | 48.0 | $\begin{array}{r} +0.8 \\ +0.4 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +3.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.7 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$ | -16.7 | Vert |


| $\begin{aligned} & 31 \text { 4634.580M } \\ & \text { Ave } \end{aligned}$ | 45.5 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +3.9 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.2 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +32.1 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 37.3 | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -16.7 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\wedge 4634.580 \mathrm{M}$ | 46.9 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +3.9 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{gathered} -33.2 \\ +0.0 \\ +0.0 \end{gathered}$ | $\begin{array}{r} +32.1 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -15.3 | Horiz |
| $\begin{aligned} & 33 \text { 3707.656M } \\ & \text { Ave } \end{aligned}$ | 47.5 | $\begin{array}{r} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+30.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 37.2 | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -16.8 | Vert |
| ^ 3707.656M | 49.6 | $\begin{gathered} +0.7 \\ +0.5 \\ +0.0 \\ -12.4 \end{gathered}$ | $\begin{aligned} & +3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.4 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 39.3 | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -14.7 | Vert |
| $\begin{aligned} & 35 \text { 3612.036M } \\ & \text { Ave } \end{aligned}$ | 47.6 | $\begin{gathered} +0.8 \\ +0.4 \\ +0.0 \\ -12.4 \end{gathered}$ | $\begin{aligned} & \hline+3.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+30.7 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -17.1 | Vert |
| $\wedge 3612.000 \mathrm{M}$ | 51.1 | $\begin{array}{r} +0.8 \\ +0.4 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.7 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -13.6 | Vert |
| $\begin{aligned} & 37 \text { 4575.074M } \\ & \text { Ave } \end{aligned}$ | 44.2 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+32.0 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & \text { Mid } \\ & \\ & \hline 1.0 \\ & \hline \end{aligned}$ | -18.1 | Vert |
| $\wedge ~ 4575.074 \mathrm{M}$ | 46.0 | $\begin{gathered} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{gathered}$ | $\begin{aligned} & +3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +32.0 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & \text { 54.0 } \\ & \text { Mid } \end{aligned}$ | -16.3 | Vert |
| $\begin{aligned} & 394634.508 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 44.1 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +3.9 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.2 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +32.1 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -18.1 | Vert |
| $\wedge 4634.508 \mathrm{M}$ | 47.5 | $\begin{array}{r} +0.9 \\ +0.5 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & +3.9 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{gathered} \hline-33.2 \\ +0.0 \\ +0.0 \end{gathered}$ | $\begin{array}{r} +32.1 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$ | -14.7 | Vert |
| 41 2746.000M | 48.3 | $\begin{gathered} +0.7 \\ +0.4 \\ +0.0 \\ -12.4 \end{gathered}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.8 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+28.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$ | -19.2 | Vert |
| $\begin{aligned} & 423612.072 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 45.1 | $\begin{array}{r} +0.8 \\ +0.4 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+3.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.7 \\ +0.0 \\ +0.0 \end{array}$ |  |  | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -19.6 | Horiz |
| $\wedge 3611.981 \mathrm{M}$ | 52.2 | $\begin{gathered} +0.8 \\ +0.4 \\ +0.0 \\ -12.4 \end{gathered}$ | $\begin{aligned} & \hline+3.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +30.7 \\ +0.0 \\ +0.0 \end{array}$ | $+0.0$ |  | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -12.5 | Horiz |


| $\begin{aligned} & \hline 445418.083 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 39.4 | $\begin{array}{r} \hline+1.0 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.1 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +33.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 33.7 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -20.3 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\wedge 5418.000 \mathrm{M}$ | 45.4 | $\begin{array}{r} \hline+1.0 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +33.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 39.7 | $\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$ | -14.3 | Vert |
| $\begin{aligned} & 462744.986 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 46.5 | $\begin{array}{r} \hline+0.7 \\ +0.4 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +28.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | ${ }^{251.0}$ | -21.0 | Horiz |
| ^ 2745.000M | 49.4 | $\begin{array}{r} \hline+0.7 \\ +0.4 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline+28.8 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 35.9 | $\text { Mid }^{54.0}$ | -18.1 | Horiz |
| 482782.000 M | 45.1 | $\begin{array}{r} \hline+0.7 \\ +0.4 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +28.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 31.7 | $\begin{gathered} 54.0 \\ \text { High } \end{gathered}$ | -22.3 | Vert |
| 492782.000 M | 44.6 | $\begin{array}{r} \hline+0.7 \\ +0.4 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.8 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +28.9 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 31.2 | $\begin{gathered} 54.0 \\ \text { High } \end{gathered}$ | -22.8 | Horiz |
| $\begin{aligned} & 50 \quad 2709.020 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 43.9 | $\begin{array}{r} \hline+0.7 \\ +0.4 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +28.7 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 30.3 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -23.7 | Vert |
| ^ 2709.020M | 49.0 | $\begin{array}{r} \hline+0.7 \\ +0.4 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.8 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+28.7 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 35.4 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -18.6 | Vert |
| $\begin{aligned} & 52 \quad 2708.976 \mathrm{M} \\ & \text { Ave } \end{aligned}$ | 41.6 | $\begin{array}{r} +0.7 \\ +0.4 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -33.8 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +28.7 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 28.0 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -26.0 | Horiz |
| ^ 2709.000M | 48.9 | $\begin{array}{r} \hline+0.7 \\ +0.4 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.8 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} \hline+28.7 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 35.3 | $\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$ | -18.7 | Horiz |
| 54 6319.000M | 54.2 | $\begin{array}{r} +1.3 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & -33.5 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +35.3 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 50.3 | $\begin{aligned} & 111.7 \\ & \text { Low } \end{aligned}$ | -61.4 | Vert |
| $55 \quad 755.600 \mathrm{M}$ | 15.9 | $\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.9 \end{aligned}$ | $\begin{array}{r} +0.0 \\ +0.0 \\ +22.4 \end{array}$ | $\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \end{aligned}$ | +0.0 | 48.5 | 111.7 | -63.2 | Vert |
| 56 336.500M | 23.9 | $\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.9 \end{aligned}$ | $\begin{array}{r} +0.0 \\ +0.0 \\ +14.3 \end{array}$ | $\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$ | +0.0 | 47.1 | 111.7 | -64.6 | Vert |


| 57 | 6490.000M | 50.9 | $\begin{array}{r} \hline+1.2 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.9 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & -33.6 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +35.5 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 111.7 \\ & \text { High } \end{aligned}$ | -64.6 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | 6409.000M | 50.2 | $\begin{array}{r} +1.2 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+4.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.6 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +35.4 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 46.2 | $\begin{aligned} & 111.7 \\ & \text { Mid } \end{aligned}$ | -65.5 | Horiz |
| 59 | 7228.000M | 49.0 | $\begin{array}{r} +1.2 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.9 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +36.3 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 46.1 | $\begin{aligned} & 111.7 \\ & \text { Low } \end{aligned}$ | -65.6 | Vert |
| 60 | 6409.000M | 49.7 | $\begin{array}{r} +1.2 \\ +0.6 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+4.8 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & -33.6 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +35.4 \\ +0.0 \\ +0.0 \end{array}$ | $+0.0$ | 45.7 | $\begin{aligned} & 111.7 \\ & \text { Mid } \end{aligned}$ | -66.0 | Vert |
| 61 | 6490.000M | 47.9 | $\begin{array}{r} \hline+1.2 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & +4.9 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.6 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +35.5 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 111.7 \\ & \text { High } \end{aligned}$ | -67.6 | Vert |
| 62 | 340.400 M | 20.3 | $\begin{aligned} & +0.2 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.9 \end{aligned}$ | $\begin{array}{r} +0.0 \\ +0.0 \\ +14.6 \end{array}$ | $\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$ | +0.0 | 43.8 | 111.7 | -67.9 | Horiz |
| 63 | 8533.000M | 43.6 | $\begin{array}{r} \hline+1.7 \\ +0.7 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+5.7 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-34.2 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +37.2 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 42.3 | $\begin{aligned} & 111.7 \\ & \text { High } \end{aligned}$ | -69.4 | Horiz |
| 64 | 5491.000M | 47.1 | $\begin{array}{r} \hline+1.0 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.1 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +34.2 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 41.7 | $\begin{aligned} & 111.7 \\ & \text { Mid } \end{aligned}$ | -70.0 | Horiz |
| 65 | 5491.000M | 47.0 | $\begin{array}{r} +1.0 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.1 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +34.2 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 41.6 | $\begin{aligned} & \quad 111.7 \\ & \text { Mid } \end{aligned}$ | -70.1 | Vert |
| 66 | 5563.000M | 44.1 | $\begin{array}{r} +1.0 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-33.2 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +34.3 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 38.7 | $\begin{aligned} & 111.7 \\ & \text { High } \end{aligned}$ | -73.0 | Horiz |
| 67 | 5563.000M | 43.0 | $\begin{array}{r} +1.0 \\ +0.6 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline-33.2 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} +34.3 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 |  | $\begin{aligned} & 111.7 \\ & \text { High } \end{aligned}$ | -74.1 | Vert |
| 68 | 1810.000M | 48.4 | $\begin{array}{r} +0.5 \\ +0.3 \\ +0.0 \\ -12.4 \\ \hline \end{array}$ | $\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +26.4 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 31.0 | $\begin{aligned} & 111.7 \\ & \text { Low } \end{aligned}$ | -80.7 | Horiz |
| 69 | 60.100M | 16.3 | $\begin{array}{r} +0.1 \\ +0.0 \\ +0.4 \\ +0.0 \\ \hline \end{array}$ | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.9 \end{aligned}$ | $\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.7 \end{aligned}$ | $\begin{aligned} & \hline+0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$ | +0.0 | 30.1 | 111.7 | -81.6 | Vert |



| 70 | 1828.000M | 46.9 | $\begin{gathered} +0.5 \\ +0.3 \\ +0.0 \\ -12.4 \end{gathered}$ | $\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -34.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +26.6 \\ +0.0 \\ +0.0 \end{array}$ | +0.0 | 29.7 | $\begin{aligned} & 111.7 \\ & \text { Mid } \end{aligned}$ | -82.0 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 71 | 1855.000M | 45.5 | $\begin{array}{r} +0.5 \\ +0.3 \\ +0.0 \\ -12.4 \end{array}$ | $\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{array}{r} -34.5 \\ +0.0 \\ +0.0 \end{array}$ | $\begin{array}{r} +26.8 \\ +0.0 \\ +0.0 \end{array}$ | $+0.0$ | 28.5 | $\begin{aligned} & 111.7 \\ & \text { High } \end{aligned}$ | -83.2 | Vert |
| 72 | 17.494M | 35.4 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +8.4 \end{aligned}$ | -40.0 | 4.1 | 111.7 | -107.6 | Para |
| 73 | 29.940M | 35.7 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.8 \end{aligned}$ | -40.0 | 1.8 | 111.7 | -109.9 | Para |
| 74 | 25.231M | 28.2 | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.8 \end{aligned}$ | -40.0 | -4.7 | 111.7 | -116.4 | Para |

Band Edge

| Band Edge Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency (MHz) | Modulation | Ant. Type | Field Strength (dBuV/m @3m) | Limit (dBuV/m @3m) | Results |
| 614 (QP) | 12.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15 dBi Max | 40.5 | <46 | Pass |
| 902 | 12.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15 dBi Max | 96.1 | <111.0 | Pass |
| 928 | 12.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15dBi Max | 92.8 | <111.0 | Pass |
| 960 (QP) | 12.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15dBi Max | 45.7 | <54 | Pass |
| 614 (QP) | 37.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15 dBi Max | 40.5 | <46 | Pass |
| 902 | 37.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15 dBi Max | 96.3 | <111.0 | Pass |
| 928 | 37.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15 dBi Max | 93.8 | <111.0 | Pass |
| 960 (QP) | 37.5 Kbit/sec FM (2GFSK) | External Monopole, 5.15 dBi Max | 45.7 | <54 | Pass |
| 614 (QP) | Hopping with modulation ( $37.5 \mathrm{Kbit} / \mathrm{sec}$ <br> Modulations worst case) | External Monopole, 5.15dBi Max | 40.4 | <46 | Pass |
| 902 | Hopping with modulation ( $37.5 \mathrm{Kbit} / \mathrm{sec}$ <br> Modulations worst case) | External Monopole, 5.15dBi Max | 93.4 | <111.0 | Pass |
| 928 | Hopping with modulation (37.5 Kbit/sec <br> Modulations worst case) | External Monopole, 5.15 dBi Max | 91.5 | <111.0 | Pass |
| 960 (QP) | Hopping with modulation (37.5 Kbit/sec <br> Modulations worst case) | External Monopole, 5.15dBi Max | 45.5 | <54 | Pass |

LABORATORIES, INC.

## Band Edge Plots







FM37.5 Rad BE 902 MHz (limit corrected for system losses)
Ref Level 106.99 dBuV ATTEN 10 dB
RES BW: 120.0 kHz VD BW: 120.0 kHz SWP: 20.0 msec
Marker: 902 OMHz .61 .7547 dBj V

—15.247(d)/15.209 Radiated Spurious Emissions




FM Hopping Rad BE 902 MHz (Imt corrected for system lesses)
Ref Level 106.99 dBpV ATTEN 10 dB
RES BW: 120.0 kHz VD BW: 120.0 kHz SWP: 20.0 msec
Marker: 902.0 MHz 58.9247 dBuV

—15.247(d)/15.209 Radiated Spurious Emissions


FM Hopping Rad BE 960 MHz (imt corrected for system lesses)
Ref Level 96.99 dBp V ATTEN 0 dB
RES BW: 120.0 NHz VD BW: 120.0 kHz SWP: 20.952sec
Marker: $960.0 \mathrm{MHz} 9.5567 \mathrm{~dB} \mu \mathrm{~V}$

—15.247 (d)/15.209 Radiated Spurious Emissions

## Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

## Itron, Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

100138 Date: 9/28/2017
Maximized Emissions Time: 14:25:41
Michael Atkinson
EMITest 5.03.11

Sequence\#: 14

Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range: Band Edge
Frequency tested: 903, 926.9MHz
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at $100 \%$
Test Location: Bothell Lab C3
Test Method: ANSI C63.10 (2013)
Setup: The EUT ISM port is continuously transmitting with modulation.
The EUT ISM port has an external antenna installed, both 5.15 and 5.5 dBi antennas investigated, only worst case reported.
Low and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.
Both Horizontal and Vertical antenna polarities investigated, only worst case reported.

Test Equipment:

| ID | Asset \# | Description | Model | Calibration Date | Cal Due Date |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | ANP06540 | Cable | Heliax | $10 / 29 / 2015$ | $10 / 29 / 2017$ |
| T2 | ANP05963 | Cable | RG-214 | $2 / 15 / 2016$ | $2 / 15 / 2018$ |
| T3 | ANP05360 | Cable | RG214 | $11 / 30 / 2016$ | $11 / 30 / 2018$ |
| T4 | ANP06123 | Attenuator | 18N-6 | $5 / 5 / 2017$ | $5 / 5 / 2019$ |
| T5 | AN03628 | Biconilog Antenna | 3142E | $6 / 7 / 2017$ | $6 / 7 / 2019$ |
| T6 | AN02673 | Spectrum Analyzer | E4446A | $10 / 12 / 2015$ | $10 / 12 / 2017$ |



## Test Setup Photos



Below 1GHz, 5.5dBi Antenna


Above 1GHz, 5.5dBi Antenna, Cone Placement


Below 1GHz, 5.15dBi Antenna


Above 1GHz, 5.15dBi Antenna, Cone Placement

LABORATORIES, INC.

### 15.207 AC Conducted Emissions

## Test Setup / Conditions / Data

| Test Location: | CKC Laboratories •22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) |  |  |
| :--- | :--- | ---: | :--- |
| Customer: | Itron, Inc. |  |  |
| Specification: | $\mathbf{1 5 . 2 0 7}$ AC Mains - Average |  |  |
| Work Order \#: | $\mathbf{1 0 0 1 3 8}$ | Date: | $9 / 28 / 2017$ |
| Test Type: | Conducted Emissions | Time: | $16: 07: 23$ |
| Tested By: | Michael Atkinson | Sequence\#: | 5 |
| Software: | EMITest 5.03.11 | 115 VAC 60 Hz |  |

## Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range: 150kHz-30MHz
Frequency tested: $903,915,926.9 \mathrm{MHz}$
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)

Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi

Duty Cycle: Tested at 100\%

Setup: The EUT is connected to AC mains through LISN.
The EUT ISM port is continuously transmitting with modulation.
The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.
Low, Mid, and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.

Itron, Inc. WO\#: 100138 Sequence\#: 5 Date: 9/28/2017
15.207 AC Mains - Average Test Lead: 115 VAC 60 Hz Line


[^1]Readings
Average Readings
1-15.207 AC Mains - Average

0 Peak Readings

- Ambient

2-15.207 AC Mains - Quasi-peak

Test Equipment:
$\left.\begin{array}{|llllll|}\hline \text { ID } & \text { Asset \# } & \text { Description } & \text { Model } & \text { Calibration Date } & \text { Cal Due Date } \\ \text { T1 } & \text { AN02611 } & \text { High Pass Filter } & \begin{array}{l}\text { HE9615-150K- } \\ 50-720 B\end{array} & 2 / 18 / 2016\end{array}\right] 2 / 18 / 2018$


| \# | Freq <br> MHz | Rdng $\mathrm{dB} \mu \mathrm{~V}$ | $\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$ | T4 $\mathrm{dB}$ | Dist <br> Table | Corr <br> $\mathrm{dB} \mu \mathrm{V}$ | $\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$ | Margin <br> dB | Polar <br> Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.792M | 32.3 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | +0.0 | +0.2 | +9.1 | +0.0 | 41.8 | 50.0 | -8.2 | Line |
| $2$ | $2.613 \mathrm{M}$ <br> e | 27.0 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 36.4 | 46.0 | -9.6 | Line |
| $\wedge$ | 2.613 M | 43.2 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 52.6 | 46.0 | +6.6 | Line |
| 4 | $2.762 \mathrm{M}$ | 25.8 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 35.2 | 46.0 | -10.8 | Line |
| $\wedge$ | 2.762 M | 43.5 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 52.9 | 46.0 | +6.9 | Line |
| 6 | 10.320 M | 25.7 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.2 | +9.1 | +0.0 | 35.2 | 50.0 | -14.8 | Line |
| 7 | ${ }^{3.197 \mathrm{M}}$ | 21.2 | $\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 30.6 | 46.0 | -15.4 | Line |
| $\wedge$ | 3.197 M | 41.4 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.8 | 46.0 | +4.8 | Line |
| 9 | $3.913 \mathrm{M}$ | 20.0 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 29.4 | 46.0 | -16.6 | Line |
| $\wedge$ | 3.913 M | 40.4 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 49.8 | 46.0 | +3.8 | Line |
|  | $2.936 \mathrm{M}$ | 19.5 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 28.9 | 46.0 | -17.1 | Line |
| $\wedge$ | 2.936 M | 42.6 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 52.0 | 46.0 | +6.0 | Line |
|  | $2.478 \mathrm{M}$ <br> e | 19.4 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 28.8 | 46.0 | -17.2 | Line |
| $\wedge$ | 2.478 M | 40.8 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.2 | 46.0 | +4.2 | Line |
|  | $3.252 \mathrm{M}$ <br> e | 17.6 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | $+0.0$ | 27.0 | 46.0 | -19.0 | Line |
| $\wedge$ | 3.252 M | 40.6 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.0 | 46.0 | +4.0 | Line |
|  | $3.958 \mathrm{M}$ | 17.6 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 27.0 | 46.0 | -19.0 | Line |
| $\wedge$ | 3.958 M | 40.0 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 49.4 | 46.0 | +3.4 | Line |


|  | $3.722 \mathrm{M}$ <br> ve | 17.5 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 26.9 | 46.0 | -19.1 | Line |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\wedge$ | 3.722 M | 40.5 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 49.9 | 46.0 | +3.9 | Line |
| 21 | $2.858 \mathrm{M}$ | 16.7 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 26.1 | 46.0 | -19.9 | Line |
| $\wedge$ | 2.858 M | 40.8 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.2 | 46.0 | +4.2 | Line |
|  | $3.325 \mathrm{M}$ | 16.7 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 26.1 | 46.0 | -19.9 | Line |
| $\wedge$ | 3.325 M | 42.0 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 51.4 | 46.0 | +5.4 | Line |
| 25 | 311.990k | 20.7 | $\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$ | +0.0 | +0.0 | +9.1 | +0.0 | 29.9 | 49.9 | -20.0 | Line |
|  | $2.999 \mathrm{M}$ | 16.0 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 25.4 | 46.0 | -20.6 | Line |
| $\wedge$ | 2.999 M | 42.3 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 51.7 | 46.0 | +5.7 | Line |
| 28 | $\overline{3.466 \mathrm{M}}$ | 15.8 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 25.2 | 46.0 | -20.8 | Line |
| $\wedge$ | 3.466M | 40.1 | $\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | $+0.0$ | $+0.1$ | +9.1 | $+0.0$ | 49.5 | 46.0 | +3.5 | Line |
|  | $2.701 \mathrm{M}$ | 15.8 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | $+0.1$ | +9.1 | +0.0 | 25.2 | 46.0 | -20.8 | Line |
| $\wedge$ | 2.701 M | 41.5 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | $+0.1$ | +9.1 | +0.0 | 50.9 | 46.0 | +4.9 | Line |
|  | $2.987 \mathrm{M}$ | 15.7 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 25.1 | 46.0 | -20.9 | Line |
| $\wedge$ | 2.987 M | 42.4 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 51.8 | 46.0 | +5.8 | Line |
|  | $3.477 \mathrm{M}$ | 15.6 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 25.0 | 46.0 | -21.0 | Line |
| $\wedge$ | 3.477 M | 41.3 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 50.7 | 46.0 | +4.7 | Line |
| 36 | $3.267 \mathrm{M}$ | 14.9 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 24.3 | 46.0 | -21.7 | Line |
| $\wedge$ | 3.267 M | 42.5 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 51.9 | 46.0 | +5.9 | Line |
| 38 | $3.277 \mathrm{M}$ | 14.8 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 24.2 | 46.0 | -21.8 | Line |
| $\wedge$ | 3.277 M | 40.3 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | $+0.1$ | +9.1 | +0.0 | 49.7 | 46.0 | +3.7 | Line |
| 40 | $3.802 \mathrm{M}$ | 14.6 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 24.0 | 46.0 | -22.0 | Line |
| $\wedge$ | 3.802M | 40.8 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 50.2 | 46.0 | +4.2 | Line |
| 42 | 26.722M | 18.0 | $\begin{aligned} & \hline+0.1 \\ & +0.4 \end{aligned}$ | $+0.0$ | +0.3 | +9.1 | +0.0 | 27.9 | 50.0 | -22.1 | Line |
| 43 | $3.762 \mathrm{M}$ <br> ve | 14.3 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 23.7 | 46.0 | -22.3 | Line |
| $\wedge$ | 3.762 M | 41.0 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.4 | 46.0 | +4.4 | Line |

Page 58 of 69

|  | $2.545 \mathrm{M}$ | 14.3 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 23.7 | 46.0 | -22.3 | Line |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\wedge$ | 2.545M | 42.0 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 51.4 | 46.0 | +5.4 | Line |
| 47 | $\begin{aligned} & \text { ve } \\ & \mathrm{ve}^{2.292 \mathrm{M}} \\ & \hline \end{aligned}$ | 14.3 | $\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 23.7 | 46.0 | -22.3 | Line |
| $\wedge$ | 3.292M | 42.0 | $\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 51.4 | 46.0 | +5.4 | Line |
| $49$ | $\begin{aligned} & \hline 3.129 \mathrm{M} \\ & \mathrm{ve}^{2} \\ & \hline \end{aligned}$ | 14.1 | $\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 23.5 | 46.0 | -22.5 | Line |
| $50$ | ve | 13.8 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 23.2 | 46.0 | -22.8 | Line |
| $51$ | $\begin{aligned} & 3.455 \mathrm{M} \\ & \hline \end{aligned}$ | 13.6 | $\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 23.0 | 46.0 | -23.0 | Line |
| $\wedge$ | 3.455M | 40.8 | $\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.2 | 46.0 | +4.2 | Line |
|  | $\mathrm{ve}^{2.963 \mathrm{M}}$ | 13.5 | $\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 22.9 | 46.0 | -23.1 | Line |
| $\wedge$ | 2.963M | 40.4 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 49.8 | 46.0 | +3.8 | Line |
|  | 2.653M | 13.1 | $\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 22.5 | 46.0 | -23.5 | Line |
| $\wedge$ | 2.653M | 40.7 | $\begin{array}{r} \hline+0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.1 | 46.0 | +4.1 | Line |
| $\wedge$ | 2.647M | 40.5 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | $+0.0$ | +0.1 | +9.1 | +0.0 | 49.9 | 46.0 | +3.9 | Line |
|  | $\begin{aligned} & \hline 3.122 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$ | 12.6 | $\begin{array}{r} \hline+0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 22.0 | 46.0 | -24.0 | Line |
| $\wedge$ | 3.129M | 41.3 | $\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.7 | 46.0 | +4.7 | Line |
| $\wedge$ | 3.122M | 41.1 | $\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 50.5 | 46.0 | +4.5 | Line |
|  | ve | 12.3 | $\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 21.7 | 46.0 | -24.3 | Line |
| $\wedge$ | 2.505M | 40.1 | $\begin{aligned} & +0.1 \\ & +0.1 \\ & +0 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 49.5 | 46.0 | +3.5 | Line |
|  | $\begin{aligned} & 2.810 \mathrm{M} \\ & \hline \end{aligned}$ | 11.3 | $\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$ | +0.0 | +0.1 | +9.1 | +0.0 | 20.7 | 46.0 | -25.3 | Line |
| $\wedge$ | 2.810M | 41.7 | $\begin{aligned} & +0.1 \\ & +0.1 \\ & +0 \end{aligned}$ | +0.0 | +0.1 | +9.1 | +0.0 | 51.1 | 46.0 | +5.1 | Line |

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer: Iron, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 100138
Test Type:
Tested By:
Conducted Emissions
Michael Atkinson
EMITest 5.03.11

Date: 9/28/2017
Time: 16:25:39
Sequence\#: 6
115 VAC 60 Hz

Equipment Tested:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

Support Equipment:

| Device | Manufacturer | Model \# |
| :--- | :--- | :--- |
| Configuration 1 |  | S/N |

## Test Conditions / Notes:

Frequency Range: $150 \mathrm{kHz}-30 \mathrm{MHz}$
Frequency tested: 903, 915, 926.9MHz
Firmware power setting: Max
Firmware: ARM 1.0.0.0 DSP 1.0.0.0, FPGA 4.1, Test Software: SrTest100 v4.1.1.25
Modulation: 12.5 Kbit/sec FM (2GFSK), 37.5 Kbit/sec FM (2GFSK)
Antenna type: External Monopole
Antenna Gain: 5.15 dBi or 5.5 dBi
Duty Cycle: Tested at $100 \%$
Setup: The EUT is connected to AC mains through LISN.
The EUT ISM port is continuously transmitting with modulation.
The EUT ISM port is connected directly to a spectrum analyzer for direct connected measurements.
Low, Mid, and High channels investigated, as well as Hopping with modulation, all modulation types investigated, worst case reported.

Itron, Inc. WO\#: 100138 Sequence\#: 6 Date: 9/28/2017 15.207 AC Mains - Average Test Lead: 115 V /AC 60 Hz Return


[^2]0 Peak Readings

- Ambient

2-15.207 AC Mains - Quasi-peak

Test Equipment:
$\left.\begin{array}{|llllll|}\hline \text { ID } & \text { Asset \# } & \text { Description } & \text { Model } & \text { Calibration Date } & \text { Cal Due Date } \\ \text { T1 } & \text { AN02611 } & \text { High Pass Filter } & \begin{array}{l}\text { HE9615-150K- } \\ 50-720 B\end{array} & 2 / 18 / 2016\end{array}\right] 2 / 18 / 2018$


| 16 | 3.340M | 20.6 | $\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$ | $\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$ | +0.1 | +9.1 | +0.0 | 29.9 | 46.0 | -16.1 | Retur |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\wedge$ | 3.340 M | 40.4 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 49.7 | 46.0 | +3.7 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 18 | 2.818 M | 20.0 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 29.3 | 46.0 | -16.7 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.818 M | 41.6 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.9 | 46.0 | +4.9 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 20 | 3.353 M | 20.0 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 29.3 | 46.0 | -16.7 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.353 M | 41.7 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 51.0 | 46.0 | +5.0 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 22 | 3.177 M | 19.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 28.8 | 46.0 | -17.2 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.177 M | 42.0 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 51.3 | 46.0 | +5.3 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 24 | 3.691 M | 19.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 28.8 | 46.0 | -17.2 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.691 M | 41.8 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 51.1 | 46.0 | +5.1 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 26 | 2.850 M | 19.0 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 28.3 | 46.0 | -17.7 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.850 M | 42.3 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 51.6 | 46.0 | +5.6 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 28 | 2.683 M | 18.7 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 28.0 | 46.0 | -18.0 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.683 M | 42.9 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 52.2 | 46.0 | +6.2 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 30 | 3.016M | 18.0 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 27.3 | 46.0 | -18.7 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.016 M | 41.3 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.6 | 46.0 | +4.6 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 32 | 2.557 M | 17.8 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 27.1 | 46.0 | -18.9 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.557 M | 42.0 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 51.3 | 46.0 | +5.3 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 34 | 2.481 M | 17.6 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 26.9 | 46.0 | -19.1 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.481 M | 40.8 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.1 | 46.0 | +4.1 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 36 | 3.908M | 17.4 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 26.7 | 46.0 | -19.3 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.908M | 40.9 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.2 | 46.0 | +4.2 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 38 | 3.986M | 17.4 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 26.7 | 46.0 | -19.3 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.986M | 40.7 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.0 | 46.0 | +4.0 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 40 | 2.526 M | 17.1 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 26.4 | 46.0 | -19.6 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.526 M | 40.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 49.8 | 46.0 | +3.8 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |

Page 63 of 69

| 42 | $3.322 \mathrm{M}$ | 16.9 | +0.1 | $+0.0$ | +0.1 | +9.1 | +0.0 | 26.2 | 46.0 | -19.8 | Retur |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ave |  |  | +0.0 |  |  |  |  |  |  |  |  |
| $\wedge$ | 3.322 M | 41.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.8 | 46.0 | +4.8 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 44 | 3.151M | 16.8 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 26.1 | 46.0 | -19.9 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 45 | 3.303M | 16.7 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 26.0 | 46.0 | -20.0 | Retur |
| Ave |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.303M | 41.4 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.7 | 46.0 | +4.7 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 47 | 2.966M | 16.7 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 26.0 | 46.0 | -20.0 | Retur |
|  | Ave |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.966M | 41.8 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 51.1 | 46.0 | +5.1 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 49 | 4.117M | 16.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 25.8 | 46.0 | -20.2 | Retur |
|  | Ave |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 4.117M | 40.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 49.8 | 46.0 | +3.8 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 51 | 2.996M | 15.9 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 25.2 | 46.0 | -20.8 | Retur |
|  | Ave |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.996M | 41.2 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.5 | 46.0 | +4.5 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 2.990M | 40.7 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.0 | 46.0 | +4.0 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 54 | 3.142M | 15.6 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 24.9 | 46.0 | -21.1 | Retur |
|  | Ave |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.151M | 41.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.8 | 46.0 | +4.8 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.142M | 41.1 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.4 | 46.0 | +4.4 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 57 | 3.123M | 14.5 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 23.8 | 46.0 | -22.2 | Retur |
|  | Ave |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.123M | 41.6 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.9 | 46.0 | +4.9 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 59 | 3.764M | 14.4 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 23.7 | 46.0 | -22.3 | Retur |
|  | Ave |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 3.764M | 41.2 | +0.1 | +0.0 | +0.1 | +9.1 | +0.0 | 50.5 | 46.0 | +4.5 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| 61 | 10.300M | 8.2 | +0.1 | +0.0 | +0.2 | +9.1 | +0.0 | 17.6 | 50.0 | -32.4 | Retur |
|  | Ave |  | +0.0 | +0.0 |  |  |  |  |  |  |  |
| $\wedge$ | 10.300M | 26.2 | +0.1 | +0.0 | +0.2 | +9.1 | +0.0 | 35.6 | 50.0 | -14.4 | Retur |
|  |  |  | +0.0 | +0.0 |  |  |  |  |  |  |  |



## Test Setup Photo



LABORATORIES, INC.

## APPENDIX A: CUSTOMER PROVIDED INFORMATION

Manufacturer's Declaration: 15.247(a)(1)(i) Average Time of Occupancy

The manufacturer declares:
Each transmission is a maximum of 23.8 mS long. Each transmission takes place on one of 120 different channels in a pseudorandom sequence. All 120 channels are used equally on the average. The algorithm that determines the pseudo-random hop sequence does not allow the device to transmit on the same channel more than 6 times in a 20 second period. The maximum possible occupancy time on any one frequency is 142.8 mS ( 6 times) within a 20 second period.

## DCCF Plot Data



DCCF

## SUPPLEMENTAL INFORMATION

## Measurement Uncertainty

| Uncertainty Value | Parameter |
| :---: | :---: |
| 4.73 dB | Radiated Emissions |
| 3.34 dB | Mains Conducted Emissions |
| 3.30 dB | Disturbance Power |

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the $95 \%$ confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

## Emissions Test Details

## TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

## CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

| SAMPLE CALCULATIONS |  |  |  |
| :--- | :--- | :--- | :---: |
|  | Meter reading | $(\mathrm{dB} \mu \mathrm{V})$ |  |
| + | Antenna Factor | $(\mathrm{dB} / \mathrm{m})$ |  |
| + | Cable Loss | $(\mathrm{dB})$ |  |
| - | Distance Correction | $(\mathrm{dB})$ |  |
| - | Preamplifier Gain | $(\mathrm{dB})$ |  |
| $=$ | Corrected Reading | $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ |  |

## TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |  |  |  |
| :---: | :---: | :---: | :---: |
| TEST | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS | 150 kHz | 30 MHz | 9 kHz |
| RADIATED EMISSIONS | 9 kHz | 150 kHz | 200 Hz |
| RADIATED EMISSIONS | 150 kHz | 30 MHz | 9 kHz |
| RADIATED EMISSIONS | 30 MHz | 1000 MHz | 120 kHz |
| RADIATED EMISSIONS | 1000 MHz | $>1 \mathrm{GHz}$ | 1 MHz |

## SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" $\wedge$ ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

## Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

## Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

## Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.


[^0]:    ——Readings
    $\times$ QP Readings

    - Ambient

    1-15.247(d) / 15.209 Radiated Spurious Emissions

[^1]:    Sweep Data
    $\times$ QP Readings
    Software Version: 5.03.11

[^2]:    Sweep Data
    $\times$ QP Readings
    Software Version: 5.03.11

