Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { T7 } \\ & \\ & \mathrm{dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 12748.047 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.2	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	50.5	54.0	-3.5	Vert
$\wedge 2748.047 \mathrm{M}$	62.2	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	57.5	54.0	+3.5	Vert
$\begin{aligned} & 32723.857 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.1	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	50.3	54.0	-3.7	Vert
$\wedge 2723.857 \mathrm{M}$	62.1	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	57.3	54.0	+3.3	Vert
$5 \quad 109.173 \mathrm{M}$	20.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.6 \\ +0.0 \end{array}$	+0.0	39.2	43.5	-4.3	Vert
$6 \quad 111.123 \mathrm{M}$	20.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.7 \\ +0.0 \end{array}$	+0.0	38.5	43.5	-5.0	Vert
7 7263.477M	43.0	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	48.9	54.0	-5.1	Vert
8 7391.383M	42.5	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.3 \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	48.6	54.0	-5.4	Vert
$\begin{aligned} & 92771.353 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.7	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	48.1	54.0	-5.9	Vert
$\wedge 2771.353 \mathrm{M}$	59.7	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	55.1	54.0	+1.1	Vert
$11 \quad 7328.590 \mathrm{M}$	41.8	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.2 \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	47.8	54.0	-6.2	Vert
$12 \quad 113.423 \mathrm{M}$	18.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.8 \\ +0.0 \end{array}$	+0.0	36.8	43.5	-6.7	Vert
13 2747.727M	51.1	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	46.4	54.0	-7.6	Horiz
14 2771.687M	50.9	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	46.3	54.0	-7.7	Horiz
$15 \quad 2723.950 \mathrm{M}$	50.9	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \end{array}$	$\begin{gathered} +0.0 \\ -38.5 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	46.1	54.0	-7.9	Horiz

16	4539.690M	45.3	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.6 \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.0	45.9	54.0	-8.1	Vert
17	278.220M	15.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+12.9 \\ +0.0 \end{array}$	+0.0	37.8	46.0	-8.2	Vert
18	4619.720M	45.0	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.7 \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$+0.0$	45.7	54.0	-8.3	Vert
19	4579.967 M	44.0	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	44.6	54.0	-9.4	Vert
20	270.000M	14.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+12.7 \\ +0.0 \end{array}$	+0.0	36.2	46.0	-9.8	Horiz
21	75.423M	20.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+7.0 \\ & +0.0 \end{aligned}$	$+0.0$	35.4	105.5	-70.1	Vert
22	60.323 M	20.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	$+0.0$	34.2	105.5	-71.3	Vert
23	214.323 M	15.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	+0.0	33.6	105.5	-71.9	Vert
24	61.023 M	19.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	32.8	105.5	-72.7	Vert
25	195.000M	13.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+8.9 \\ & +0.0 \end{aligned}$	+0.0	30.8	105.5	-74.7	Horiz
26	183.000M	12.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +9.1 \\ & +0.0 \end{aligned}$	+0.0	30.2	105.5	-75.3	Horiz

Test Location: CKC Laboratories • 100 North Olinda Place • Brea CA 92823•714 993-6112
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#: 103955 Date: 6/25/2020
Test Type: Maximized Emissions
Time: 09:50:27
Tested By:
Don Nguyen
Sequence\#: 5
Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:
The EUT is placed on Styrofoam platform and connected to DC power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor
Test ver.4.0.3.5.

The EUT is set to continuously transmit.
Operating frequency: $908 \mathrm{MHz}, 916 \mathrm{MHz}, 924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
$R B W=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}(-20 \mathrm{~dB}$ limit $)$
Duty cycle correction is $20 \log (.0445 / .1)=-7.0 \mathrm{~dB}$

Itron, Inc. WO\#: 103955 Sequence\#: 5 Date: 6/25/2020

15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

\times
\times

Readings
QP Readings
Ambient
1-15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.19

Test Equipment:

ID	Asset \#	Description	Model	Cal Date	Cal Due Date
	AN00314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
T1	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T2	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
	AN00309	Preamp	$8447 D$	$12 / 24 / 2019$	$12 / 24 / 2021$
	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T4	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T5	AN00786	Preamp	$83017 A$	$5 / 20 / 2020$	$5 / 20 / 2022$
T6	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T7	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T8	ANP07243	Cable	32022-29094K-29094K-	$5 / 29 / 2020$	$5 / 29 / 2022$
			$24 T C$		
T9	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { T7 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~dB} \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
1	74.500M	21.6	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	35.9	40.0	-4.1	Vert
2	74.800M	21.0	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	35.3	40.0	-4.7	Vert
3	74.350M	20.8	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	35.1	40.0	-4.9	Horiz
4	2724.000 M	53.5	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	48.7	54.0	-5.3	Vert
5	2772.000 M	52.6	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	48.0	54.0	-6.0	Vert
6	7264.000M	42.1	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	+0.0	48.0	54.0	-6.0	Horiz
7	74.050M	18.8	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	33.1	40.0	-6.9	Horiz
8	7264.000M	41.1	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	+0.0	47.0	54.0	-7.0	Vert
9	109.100M	18.1	$\begin{aligned} & \hline+1.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	36.4	43.5	-7.1	Vert
10	111.400M	17.8	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	36.3	43.5	-7.2	Vert
11	4540.000M	46.0	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	46.6	54.0	-7.4	Vert
12	244.800M	17.5	$\begin{aligned} & +2.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+12.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	38.3	46.0	-7.7	Horiz
13	4580.000M	45.4	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	46.0	54.0	-8.0	Horiz
	$2748.000 \mathrm{M}$ Ave	50.2	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	45.5	54.0	-8.5	Vert
\wedge	2748.000 M	57.2	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$+0.0$	52.5	54.0	-1.5	Vert

16	111.200M	15.5	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	34.0	43.5	-9.5	Horiz
17	4540.000M	43.7	$\begin{array}{r} +0.0 \\ \hline-37.4 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +32.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	44.3	54.0	-9.7	Horiz
18	112.600 M	14.8	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	33.4	43.5	-10.1	Horiz
19	2748.000M	48.1	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$+0.0$	43.4	54.0	-10.6	Horiz
20	109.900M	14.5	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	32.9	43.5	-10.6	Horiz
21	2772.000 M	47.1	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	42.5	54.0	-11.5	Horiz
22	2724.000M	46.4	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	41.6	54.0	-12.4	Horiz
23	6468.000M	52.6	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$+0.0$	56.6	106.3	-49.7	Horiz
24	6412.000M	47.6	$\begin{array}{r} +0.0 \\ -37.1 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	+0.0	51.7	106.3	-54.6	Horiz
25	6412.000M	43.3	$\begin{array}{r} +0.0 \\ -37.1 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$+0.0$	47.4	106.3	-58.9	Vert
26	75.400 M	24.3	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +7.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	38.8	106.3	-67.5	Vert
27	75.300M	21.5	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+7.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	36.0	106.3	-70.3	Horiz
28	200.000 M	18.0	$\begin{aligned} & \hline+2.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +8.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	35.4	106.3	-70.9	Horiz
29	231.100M	15.3	$\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+11.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$+0.0$	35.1	106.3	-71.2	Horiz
30	223.500 M	15.4	$\begin{aligned} & +2.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	34.6	106.3	-71.7	Vert
31	57.100 M	19.1	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+7.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$		33.3	106.3	-73.0	Vert
32	160.400M	13.6	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	32.4	106.3	-73.9	Vert

Test Location: CKC Laboratories • 100 North Olinda Place • Brea CA 92823• 714 993-6112
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#: 103955 Date: 6/24/2020
Test Type: Maximized Emissions
Time: 13:43:08
Tested By:
Don Nguyen
Sequence\#: 4
Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 8		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 8		S/N

Test Conditions / Notes:
The EUT is placed on Styrofoam platform and connected to DC power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor
Test ver.4.0.3.5.

The EUT is set to continuously transmit.

Operating frequency: $908 \mathrm{MHz}, 916 \mathrm{MHz}, 924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}, V B W=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}(-20 \mathrm{~dB}$ limit $)$
Duty cycle correction is $20 \log (.0445 / .1)=-7.0 \mathrm{~dB}$
The worst case emission were verified with power supply on and off the table. No change in emission level was observed.

Itron, Inc. WO\#: 103955 Sequence\#: 4 Date: 6/24/2020
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings
QP Readings
- Ambient

1-15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.19

Test Equipment:

ID	Asset \#	Description	Model	Cal Date	Cal Due Date
	AN00314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T3	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T4	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN00309	Preamp	$8447 D$	$12 / 24 / 2019$	$12 / 24 / 2021$
T6	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T7	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T8	AN00786	Preamp	$83017 A$	$5 / 20 / 2020$	$5 / 20 / 2022$
T9	ANP07243	Cable	$32022-29094 K-$	$5 / 29 / 2020$	$5 / 29 / 2022$
			$29094 K-24 T C$		
T10	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$
T11	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	T4 T8 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \text { 9160.363M } \\ & \text { Ave } \end{aligned}$	41.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.9 \\ +37.9 \end{array}$	$\begin{array}{r} \hline+0.0 \\ -36.6 \end{array}$	+0.0	50.9	54.0	-3.1	Vert
$\wedge 9160.363 \mathrm{M}$	48.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.9 \\ +37.9 \end{array}$	$\begin{array}{r} +0.0 \\ -36.6 \end{array}$	+0.0	57.9	54.0	+3.9	Vert
$\begin{aligned} & 3 \text { 9080.453M } \\ & \text { Ave } \end{aligned}$	41.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.8 \\ +37.9 \end{array}$	$\begin{array}{r} +0.0 \\ -36.7 \end{array}$	+0.0	50.8	54.0	-3.2	Vert
$\wedge 9080.453 \mathrm{M}$	48.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.8 \\ +37.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -36.7 \end{array}$	+0.0	57.8	54.0	+3.8	Vert
57389.723 M	43.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.3 \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	+0.0	49.5	54.0	-4.5	Horiz
67327.223 M	43.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.2 \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	+0.0	49.2	54.0	-4.8	Horiz
7 2724.027M	53.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	+0.0	48.5	54.0	-5.5	Horiz
8 4618.657M	47.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	+0.0	48.2	54.0	-5.8	Vert
9 4618.983M	47.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.7 \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	+0.0	48.2	54.0	-5.8	Horiz
$10 \quad 2747.887 \mathrm{M}$	52.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	+0.0	48.1	54.0	-5.9	Vert
114540.337 M	47.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.6 \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	+0.0	47.8	54.0	-6.2	Horiz
$12 \quad 2748.137 \mathrm{M}$	52.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	+0.0	47.7	54.0	-6.3	Horiz
13 4539.923M	47.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	+0.0	47.7	54.0	-6.3	Vert
$\begin{aligned} & 147263.410 \mathrm{M} \\ & \text { Ave } \end{aligned}$	41.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.0 \end{array}$	$\begin{array}{r} +0.0 \\ -37.2 \end{array}$	+0.0	47.4	54.0	-6.6	Vert
$\wedge 7263.410 \mathrm{M}$	48.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.0 \end{array}$	$\begin{gathered} +0.0 \\ -37.2 \end{gathered}$	+0.0	54.4	54.0	+0.4	Vert

$\begin{aligned} & 167390.223 \mathrm{M} \\ & \text { Ave } \end{aligned}$	41.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	$+0.0$	47.2	54.0	-6.8	Vert
$\wedge 7390.223 \mathrm{M}$	48.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.3 \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	+0.0	54.2	54.0	+0.2	Vert
18 2771.417M	51.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \end{array}$	$\begin{gathered} +0.0 \\ -38.5 \end{gathered}$	+0.0	46.4	54.0	-7.6	Horiz
$\begin{aligned} & 197328.097 \mathrm{M} \\ & \text { Ave } \end{aligned}$	39.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.2 \end{array}$	$\begin{gathered} +0.0 \\ -37.3 \end{gathered}$	$+0.0$	45.4	54.0	-8.6	Vert
$\wedge 7328.097 \mathrm{M}$	46.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	+0.0	52.4	54.0	-1.6	Vert
$\begin{aligned} & 217264.457 \mathrm{M} \\ & \text { Ave } \end{aligned}$	39.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.0 \\ \hline \end{array}$	$\begin{gathered} +0.0 \\ -37.2 \end{gathered}$	+0.0	45.2	54.0	-8.8	Horiz
$\wedge 7264.457 \mathrm{M}$	46.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.0 \\ \hline \end{array}$	$\begin{gathered} +0.0 \\ -37.2 \end{gathered}$	+0.0	52.2	54.0	-1.8	Horiz
23 4579.493M	44.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	$+0.0$	44.9	54.0	-9.1	Vert
$\begin{aligned} & 242771.070 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \\ \hline \end{array}$	$\begin{gathered} +0.0 \\ -38.5 \end{gathered}$	+0.0	43.7	54.0	-10.3	Vert
$\wedge 2771.070 \mathrm{M}$	55.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	+0.0	50.7	54.0	-3.3	Vert
$\begin{aligned} & 262723.807 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	+0.0	43.3	54.0	-10.7	Vert
$\wedge 2723.807 \mathrm{M}$	55.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \end{array}$	$\begin{gathered} +0.0 \\ -38.5 \end{gathered}$	$+0.0$	50.3	54.0	-3.7	Vert
$28 \quad 171.700 \mathrm{M}$	36.5	$\begin{array}{r} +0.0 \\ -28.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +2.4 \\ & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +9.7 \\ & +0.0 \end{aligned}$	+0.0	26.7	43.5	-16.8	Vert
$29 \quad 168.200 \mathrm{M}$	31.7	$\begin{array}{r} +0.0 \\ -28.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.4 \\ & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +9.9 \\ & +0.0 \end{aligned}$	+0.0	22.1	43.5	-21.4	Horiz

| Test Location: | CKC Laboratories •100 North Olinda Place •Brea CA | 92823•714 993-6112 | |
| :--- | :--- | :--- | :--- | :--- |
| Customer: | Itron, Inc. | | |
| Specification: | $\mathbf{1 5 . 2 4 7}(\mathbf{d})$ / 15.209 Radiated Spurious Emissions | | |
| Work Order \#: | $\mathbf{1 0 3 9 5 5}$ | Date: | 6/24/2020 |
| Test Type: | Maximized Emissions | Time: | 17:51:57 |
| Tested By: | Don Nguyen | Sequence\#: | 3 |
| Software: | EMITest 5.03.12 | | |

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 9		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 9		S/N

Test Conditions / Notes:
The EUT is placed on Styrofoam platform and connected to DC power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5.

The EUT is set to continuously transmit.

Operating frequency: $908 \mathrm{MHz}, 916 \mathrm{MHz}, 924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}(-20 \mathrm{~dB}$ limit $)$
Duty cycle correction is $20 \log (.0445 / .1)=-7.0 \mathrm{~dB}$

```
Itron, Inc. WO#: 103955 Sequence#: 3 Date: 6/24/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert
```


Readings
\times QP Readings

- Ambient

1-15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.19

Test Equipment:

ID	Asset \#	Description	Model	Cal Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$3 / 13 / 2019$	$3 / 13 / 2021$
T2	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T3	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T4	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
	AN00309	Preamp	$8447 D$	$12 / 24 / 2019$	$12 / 24 / 2021$
	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T5	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T6	AN00786	Preamp	$83017 A$	$5 / 20 / 2020$	$5 / 20 / 2022$
T7	ANP07243	Cable	$32022-29094 K-$	$5 / 29 / 2020$	$5 / 29 / 2022$
			$29094 K-24$ TC		
T8	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$
T9	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { T7 } \\ & \\ & \mathrm{dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 12748.217 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.8	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.0	51.1	54.0	-2.9	Vert
$\wedge 2748.217 \mathrm{M}$	62.8	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	58.1	54.0	+4.1	Vert
$\begin{aligned} & 32724.163 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.1	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.0	50.3	54.0	-3.7	Vert
$\wedge 2724.163 \mathrm{M}$	62.1	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	57.3	54.0	+3.3	Vert
5 7263.780M	43.3	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.0 \end{array}$	$\begin{array}{r} +0.0 \\ -37.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	49.2	54.0	-4.8	Vert
$6 \quad 110.458 \mathrm{M}$	19.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.7 \\ +0.0 \end{array}$	+0.0	38.4	43.5	-5.1	Vert
7 7391.917M	42.4	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	48.5	54.0	-5.5	Vert
8 7327.807M	42.3	$\begin{array}{r} +0.0 \\ +6.1 \\ +36.2 \end{array}$	$\begin{array}{r} +0.0 \\ -37.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	48.3	54.0	-5.7	Vert
$\begin{aligned} & 92772.057 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.3	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	47.7	54.0	-6.3	Vert
$\wedge 2772.057 \mathrm{M}$	59.3	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	54.7	54.0	+0.7	Vert
$11 \quad 112.428 \mathrm{M}$	18.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.8 \\ +0.0 \end{array}$	+0.0	36.8	43.5	-6.7	Vert
$12 \quad 2748.257 \mathrm{M}$	51.7	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.0	47.0	54.0	-7.0	Horiz
$13 \quad 109.171 \mathrm{M}$	18.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.6 \\ +0.0 \end{array}$	+0.0	36.4	43.5	-7.1	Vert
14 2771.990M	51.3	$\begin{array}{r} +0.0 \\ +3.5 \\ +29.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	46.7	54.0	-7.3	Horiz
15 2724.307M	51.0	$\begin{array}{r} +0.0 \\ +3.4 \\ +29.6 \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$+0.0$	46.2	54.0	-7.8	Horiz

16	115.041 M	16.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.9 \\ +0.0 \end{array}$	+0.0	35.3	43.5	-8.2	Vert
17	4539.180M	45.0	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	45.6	54.0	-8.4	Vert
18	4619.950M	44.8	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	45.5	54.0	-8.5	Vert
19	4580.183M	44.4	$\begin{array}{r} +0.0 \\ +4.5 \\ +32.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	45.0	54.0	-9.0	Vert
20	166.500M	16.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.1 \\ +0.0 \end{array}$	+0.0	34.3	43.5	-9.2	Horiz
21	280.490M	14.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +12.9 \\ +0.0 \end{array}$	+0.0	36.5	46.0	-9.5	Vert
22	165.540M	14.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.1 \\ +0.0 \end{array}$	+0.0	32.4	43.5	-11.1	Vert
23	111.100 M	13.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.7 \\ +0.0 \end{array}$	$+0.0$	32.1	43.5	-11.4	Horiz
24	304.490M	16.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+13.4 \\ +0.0 \end{array}$	+0.0	39.4	105.5	-66.1	Vert
25	75.390 M	22.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+7.0 \\ & +0.0 \end{aligned}$	+0.0	37.3	105.5	-68.2	Vert
26	60.015 M	22.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.2 \\ & +0.0 \end{aligned}$	+0.0	36.0	105.5	-69.5	Vert
27	224.200M	15.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.6 \\ +0.0 \end{array}$	$+0.0$	34.7	105.5	-70.8	Horiz
28	74.790M	20.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.9 \\ & +0.0 \end{aligned}$	+0.0	34.6	105.5	-70.9	Vert
29	75.790 M	19.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+7.0 \\ & +0.0 \end{aligned}$	+0.0	34.1	105.5	-71.4	Vert
30	61.015 M	18.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	32.2	105.5	-73.3	Vert
31	196.700M	14.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +8.9 \\ & +0.0 \end{aligned}$	+0.0	32.2	105.5	-73.3	Horiz
32	59.340 M	17.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.4 \\ & +0.0 \end{aligned}$	+0.0	31.6	105.5	-73.9	Vert

LABORATORIES, INC.

Test Location: CKC Laboratories • 100 North Olinda Place • Bra CA 92823•714 993-6112
Customer: Iron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
Test Type:
Tested By:
103955 Date: 6/25/2020
Maximized Emissions
Time: 09:58:17
Don Nguyen
Sequence\#: 6
Software:
EMIT est 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 10		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 10		S/N

Test Conditions / Notes:
The EUT is placed on Styrofoam platform and connected to DC power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5.

The EUT is set to continuously transmit.
Operating frequency: $908 \mathrm{MHz}, 916 \mathrm{MHz}, 924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}, V B W=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
$R B W=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}(-20 \mathrm{~dB}$ limit $)$

```
Itron, Inc. WO#: 103955 Sequence#: 6 Date: 6/25/2020
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert
```


—— Readings
\times QP Readings

- Ambient
$1-15.247(\mathrm{~d}) / 15.209$ Radiated Spurious Emissions
O Peak Readings
* Average Readings
Software Version: 5.03.19

Test Equipment:

ID	Asset \#	Description	Model	Cal Date	Cal Due Date
	AN00314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
T1	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T2	ANP05281	Attenuator	$1 B$	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
	AN00309	Preamp	$8447 D$	$12 / 24 / 2019$	$12 / 24 / 2021$
T4	AN02672	Spectrum Analyzer	E4446A	$3 / 13 / 2019$	$3 / 13 / 2021$
T5	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T6	AN00786	Preamp	$83017 A$	$5 / 20 / 2020$	$5 / 20 / 2022$
T7	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T8	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T9	ANP07243	Cable	$32022-29094 K-$	$5 / 29 / 2020$	$5 / 29 / 2022$
			$29094 K-24 T C$		
T10	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \end{gathered}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~T} 7 \\ & \\ & \mathrm{~dB} \end{aligned}$	T4 T8 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
1	7264.000M	43.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.0	49.7	54.0	-4.3	Horiz
2	74.800M	21.2	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.0	35.5	40.0	-4.5	Vert
3	74.800M	21.0	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.0	35.3	40.0	-4.7	Vert
4	74.300 M	20.7	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	35.0	40.0	-5.0	Horiz
5	2724.000 M	53.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	+0.0	48.3	54.0	-5.7	Vert
6	7264.000M	41.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.0	47.6	54.0	-6.4	Vert
7	2772.000 M	52.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	+0.0	47.6	54.0	-6.4	Vert
8	74.000M	19.0	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	33.3	40.0	-6.7	Horiz
9	4540.000M	46.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	+0.0	47.1	54.0	-6.9	Vert
10	111.500 M	18.0	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	36.5	43.5	-7.0	Vert
11	109.000 M	18.0	$\begin{aligned} & +1.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	36.3	43.5	-7.2	Vert
12	244.900 M	17.4	$\begin{aligned} & +2.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+12.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	38.2	46.0	-7.8	Horiz
13	4580.000M	45.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +32.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	+0.0	45.8	54.0	-8.2	Horiz
	$\begin{aligned} & \text { 2748.000M } \\ & \text { Ave } \end{aligned}$	50.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	+0.0	45.3	54.0	-8.7	Vert
\wedge	2748.000M	57.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	$+0.0$	52.3	54.0	-1.7	Vert

16	4540.000M	43.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.4 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +32.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	+0.0	44.5	54.0	-9.5	Horiz
17	111.100M	15.4	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	33.9	43.5	-9.6	Horiz
18	2748.000M	48.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	+0.0	43.8	54.0	-10.2	Horiz
19	112.800M	14.5	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.0	33.1	43.5	-10.4	Horiz
20	110.000M	14.6	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +10.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.0	33.0	43.5	-10.5	Horiz
21	2772.000M	47.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.5 \end{aligned}$	+0.0	42.9	54.0	-11.1	Horiz
22	2724.000M	46.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.4 \end{aligned}$	+0.0	41.3	54.0	-12.7	Horiz
23	6468.000M	52.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	+0.0	56.2	106.3	-50.1	Horiz
24	6412.000M	47.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.1 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	+0.0	52.0	106.3	-54.3	Horiz
25	6412.000M	43.1	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.1 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	+0.0	47.2	106.3	-59.1	Vert

Band Edge

Band Edge Summary					
Operating Mode: Single Channel (Low and High) Configuration 5 (Internal Antenna)					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	$\begin{gathered} \text { Limit } \\ \text { (dBuV/m @3m) } \end{gathered}$	Results
614	FSK	Internal directional	22.1	<46	Pass
902	FSK	Internal directional	54.2	<108.5	Pass
928	FSK	Internal directional	55.4	<108.5	Pass
960	FSK	Internal directional	27.3	<54	Pass

Band Edge Summary

Operating Mode: Hopping
Configuration 5 (Internal Antenna)

Frequency $\mathbf{(M H z)}$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m @ 3 m})$	Limit $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Results
614	FSK	Internal directional	22.7	<46	Pass
902	FSK	Internal directional	58.5	<108.5	Pass
928	FSK	Internal directional	56.3	<108.5	Pass
960	FSK	Internal directional	28.0	<54	Pass

Band Edge Summary

Operating Mode: Single Channel (Low and High)
Configuration 6 (3dBi Antenna)

Frequency $\mathbf{(M H z)}$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ \mathbf{3 m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ \mathbf{3 m})$	Results
614	FSK	External 3dBi Rubber Duck	23.9	<46	Pass
902	FSK	External 3dBi Rubber Duck	56.6	<105.5	Pass
928	FSK	External 3dBi Rubber Duck	57.5	<105.5	Pass
960	FSK	External 3dBi Rubber Duck	27.6	<54	Pass

Band Edge Summary

Operating Mode: Hopping
Configuration 6 (3dBi Antenna)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Limit $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Results
614	FSK	External 3dBi Rubber Duck	23.8	<46	Pass
902	FSK	External 3dBi Rubber Duck	55.3	<105.5	Pass
928	FSK	External 3dBi Rubber Duck	57.1	<105.5	Pass
960	FSK	External 3dBi Rubber Duck	29.7	<54	Pass

Band Edge Summary

Operating Mode: Single Channel (Low and High)
Configuration 7 (5dBi Antenna)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m}$ @Bm)	Limit (dBuV/m @3m)	Results
614	FSK	External 5dBi Monopole	27.5	<46	Pass
902	FSK	External 5dBi Monopole	56.4	<106.3	Pass
928	FSK	External 5dBi Monopole	57.0	<106.3	Pass
960	FSK	External 5dBi Monopole	27.7	<54	Pass

Band Edge Summary

Operating Mode: Hopping
Configuration 7 (5dBi Antenna)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m}$ @ $\mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	FSK	External 5dBi Monopole	27.1	<46	Pass
902	FSK	External 5dBi Monopole	55.0	<106.3	Pass
928	FSK	External 5dBi Monopole	56.3	<106.3	Pass
960	FSK	External 5dBi Monopole	28.0	<54	Pass

Band Edge Plots

LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location:
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

CKC Laboratories •100 North Olinda Place • Brea CA 92823•714 993-6112
Itron, Inc.
15.247(d) / 15.209 Radiated Band Edge

103955
Radiated Scan
S. Yamamoto

EMITest 5.03.12

Date: 6/17/2020
Time: 16:52:27
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	ANP05198	Cable-Amplitude +15C to $+45 C ~(d B)$	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T3	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T4	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN00309	Preamp	8447D	$12 / 24 / 2019$	$12 / 24 / 2021$
T6	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$

Test Location: CKC Laboratories • 100 North Olinda Place • Brea CA 92823•714 993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Itron, Inc.
15.247(d) / 15.209 Radiated Band Edge

103955
Radiated Scan
Date: 6/17/2020
Time: 14:30:03
S. Yamamoto

EMITest 5.03.12
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 6		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 6		S/N

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T3	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T4	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN00309	Preamp	8447D	$12 / 24 / 2019$	$12 / 24 / 2021$
T6	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$

Test Location: CKC Laboratories • 100 North Olinda Place • Brea CA 92823•714 993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Itron, Inc.
15.247(d) / 15.209 Radiated Band Edge

103955
Radiated Scan
Date: 6/17/2020
Time: 12:13:34
Sequence\#: 1
S. Yamamoto

EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T3	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T4	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN00309	Preamp	8447D	$12 / 24 / 2019$	$12 / 24 / 2021$
T6	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	T3 dB	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	614.000M	24.1	+0.0	+4.7	+5.9	+19.8	+0.0	27.5	46.0	-18.5	Vert
			-27.4	+0.4				Ext 5dBi, Low CH			
2	614.000M	23.7	+0.0	+4.7	+5.9	+19.8	+0.0	27.1	46.0	-18.9	Vert
			-27.4	+0.4				Ext 5dBi, Low HOP			
3	960.000M	18.3	+0.0	+6.1	+6.0	+24.4	+0.0	Ext 5dBi, High HOP			Vert
			+0.0	+0.0							
4	960.000 M	18.0	+0.0	+6.1	+6.0	+24.4	+0.0	27.7	54.0	-26.3	Vert
			+0.0	+0.0				Ext 5dBi, High CH			
5	928.000M	21.1	+0.0	+6.0	+6.0	+23.9	+0.0	57.0	106.3	-49.3	Vert
			+0.0	+0.0				Ext 5dBi, High CH			
6	902.000M	21.0	+0.0	+5.9	+6.0	+23.5	+0.0	56.4	106.3	-49.9	Vert
			+0.0	+0.0				Ext 5dBi, Low CH			
7	928.000 M	20.4	+0.0	+6.0	+6.0	+23.9	+0.0	56.3	106.3	-50.0	Vert
			+0.0	+0.0				Ext 5dBi, High HOP			
8	902.000M	19.6	+0.0	+5.9	+6.0	+23.5	+0.0	55.0	106.3	-51.3	Vert
			+0.0	+0.0				Ext 5dBi, Low HOP			

15.35(c) Duty Cycle Correction Factor

Test Data Summary			
Antenna	Operational Mode	Measured On Time $(\mathrm{mS} /$ Pobs)	Calculated DCCF (dB)
1	Normal hopping	44.5	-7 dB

Observation Period, $\mathrm{P}_{\text {obs }}$ is the duration of the pulse train or maximum 100 mS
Measured results are calculated as follows:

$$
\text { On Time }=\left.\left(\sum_{\text {Bursts }} R F \text { Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{\text {obs }}(\max 100 \mathrm{~ms})}
$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100 ms
Number of RF Bursts / Pobs::	1
On time of RF Burst:	44.5 ms
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	44.5 ms

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$
D C C F=20 \cdot \log \left(\frac{\text { On Time }}{P_{\text {obs }}}\right)
$$

Plot

Test Setup Photo(s)

X Axis, IMRC-INT

X Axis, IMRC-INT

Y Axis, IMRC-INT

Z Axis, IMRC-INT

Above 1GHz, IMRC-INT

X Axis, IMRC-EXT 3dBi

X Axis, IMRC-EXT 3dBi

Y Axis, IMRC-EXT 3dBi

Z Axis, IMRC-EXT 3dBi

Above 1GHz, IMRC-EXT 3dBi

IMRC-EXT 5dBi

IMRC-EXT 5dBi

X Axis, IMRC-EXT 5dBi

CNC M M Thesting the Future

Y Axis, IMRC-EXT 5dBi

Z Axis, IMRC-EXT 5dBi

Above 1GHz, IMRC-EXT 5dBi

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.207 AC Mains - Average

103955
Conducted Emissions
Don Nguyen
EMITest 5.03.12

Date: 6/12/2020
Time: 09:14:16
Sequence\#: 3
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

The EUT is placed on test bench. USB port is connected to a touchscreen tablet. The EUT is connected to 5Vdc charger. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5.
The EUT is set into transmitting mode.
Operating frequency: 908 MHz (worst case with highest power)
Frequency of measurement: $150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}, \mathrm{VBW}=30 \mathrm{kHz}$
Site A
Temperature: $25^{\circ} \mathrm{C}$
Relative Humidity: 46\%
Test Method: ANSI C63.10:2013

Itron, Inc. WO\#: 103955 Sequence\#: 3 Date: 6/12/2020
15.207 AC Mains - Average Test Lead: 120 V 60 Hz L1-Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	$1 / 18 / 2019$	$1 / 18 / 2021$
T2	ANP07338	Cable	$2249-Y-240$	$12 / 24 / 2019$	$12 / 24 / 2021$
	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T3	AN02610	High Pass Filter	HE9615-150K- 		$10 / 22 / 2019$
			$10 / 22 / 2021$		
T4	AN00847.1	50uH LISN-(L) Line 1	$3816 / 2 N M$	$3 / 10 / 2020$	$3 / 10 / 2021$
	AN00847.1	50uH LISN-(N) Line 2	$3816 / 2 N M$	$3 / 10 / 2020$	$3 / 10 / 2021$
T5	ANP06986	Cable-Line L1(dB)	90 cm -extcord	$3 / 31 / 2020$	$3 / 31 / 2022$
	ANP06986	Cable-Neutral L2(dB)	90 cm -extcord	$3 / 31 / 2020$	$3 / 31 / 2022$

Measurement Data: \quad Reading listed by margin.
Test Lead: L1-Line

	$416.885 \mathrm{k}$	9.1	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.2	+0.0	+0.0	15.1	47.5	-32.4	L1-Li
\wedge	416.884k	41.1	$\begin{array}{r} +5.8 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.2	+0.0	+0.0	47.1	47.5	-0.4	L1-Li
27	536.146k	7.5	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.3	+0.0	+0.0	13.6	46.0	-32.4	L1-Li
\wedge	536.146k	38.2	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.3	+0.0	+0.0	44.3	46.0	-1.7	L1-Li
29	$\begin{aligned} & \text { 530.329k } \\ & \text { Ave } \end{aligned}$	7.4	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.3	+0.0	+0.0	13.5	46.0	-32.5	L1-Li
\wedge	530.328k	40.2	$\begin{array}{r} +5.8 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.3	+0.0	+0.0	46.3	46.0	+0.3	L1-Li
31	$\begin{aligned} & 605.958 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	7.2	$\begin{array}{r} +5.8 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.3	+0.0	+0.0	13.4	46.0	-32.6	L1-Li
\wedge	605.958k	37.9	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.1	+0.3	+0.0	+0.0	44.1	46.0	-1.9	L1-Li
	$343.437 \mathrm{k}$ Ave	10.6	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+0.0	+0.0	16.5	49.1	-32.6	L1-Li
\wedge	343.436k	45.1	$\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.0	+0.0	51.0	49.1	+1.9	L1-Li
	$318.712 \mathrm{k}$	11.1	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.0	+0.0	17.0	49.7	-32.7	L1-Li
\wedge	318.711k	43.5	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+0.0	+0.0	49.4	49.7	-0.3	L1-Li
	$\begin{aligned} & \text { 368.162k } \\ & \text { Ave } \end{aligned}$	9.8	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.2	+0.0	+0.0	15.8	48.5	-32.7	L1-Li
\wedge	368.161k	42.1	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.2	+0.0	+0.0	48.1	48.5	-0.4	L1-Li
	$\begin{aligned} & \begin{array}{c} 263.444 \mathrm{k} \\ \text { Ave } \end{array} \\ & \hline \end{aligned}$	12.3	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+0.0	+0.0	18.2	51.3	-33.1	L1-Li
\wedge	263.444k	46.9	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+0.0	+0.0	52.8	51.3	+1.5	L1-Li
	$\begin{aligned} & \text { 282.351k } \\ & \text { Ave } \end{aligned}$	11.7	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.1	+0.0	+0.0	17.6	50.7	-33.1	L1-Li
\wedge	282.351k	44.7	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+0.0	+0.0	50.6	50.7	-0.1	L1-Li
	$\begin{aligned} & \text { 270.716k } \\ & \text { Ave } \end{aligned}$	11.9	$\begin{array}{r} +5.8 \\ +0.0 \\ +0 . \end{array}$	+0.0	+0.1	+0.0	+0.0	17.8	51.1	-33.3	L1-Li
\wedge	270.716k	45.2	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.1	+0.0	+0.0	51.1	51.1	+0.0	L1-Li
45	$\begin{aligned} & \text { 238.719k } \\ & \text { Ave } \end{aligned}$	12.7	$\begin{array}{r} +5.8 \\ +0.0 \\ +0 . \end{array}$	+0.0	+0.2	+0.0	+0.0	18.7	52.1	-33.4	L1-Li
\wedge	238.719 k	46.8	$\begin{array}{r} +5.8 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.2	+0.0	$+0.0$	52.8	52.1	+0.7	L1-Li

47	$183.451 \mathrm{k}$ Ave	14.7	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	$+0.0$	+0.3	+0.0	+0.0	20.8	54.3	-33.5	L1-Li
\wedge	183.451k	48.9	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.3	+0.0	+0.0	55.0	54.3	+0.7	L1-Li
\wedge	179.088k	48.8	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.3	+0.0	+0.0	54.9	54.5	+0.4	L1-Li
	$\begin{aligned} & 164.544 \mathrm{k} \\ & \text { +ve } \\ & \hline \end{aligned}$	15.4	$\begin{array}{r} +5.8 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.4	+0.0	+0.0	21.6	55.2	-33.6	L1-Li
\wedge	164.544 k	48.9	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	+0.4	+0.0	$+0.0$	55.1	55.2	-0.1	L1-Li
52	$197.268 \mathrm{k}$ Ave	13.9	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.2	+0.0	+0.0	19.9	53.7	-33.8	L1-Li
\wedge	197.268k	48.4	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.2	+0.0	+0.0	54.4	53.7	+0.7	L1-Li

LABORATORIES, INC.

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Itron, Inc.
15.207 AC Mains - Average

103955
Conducted Emissions
Don Nguyen
Software:
EMIT est 5.03.12

Date: 6/12/2020
Time: 09:22:39
Sequence\#: 4
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

The EUT is placed on test bench. USB port is connected to a touchscreen tablet. The EUT is connected to 5Vdc charger. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5.
The EUT is set into transmitting mode.
Operating frequency: 908 MHz (worst case with highest power)
Frequency of measurement: $150 \mathrm{kHz}-30 \mathrm{MHz}$
LBW $=9 \mathrm{kHz}, \mathrm{VBW}=30 \mathrm{kHz}$
Site A
Temperature: $25^{\circ} \mathrm{C}$
Relative Humidity: 46\%
Test Method: ANSI C63.10:2013

Itron, Inc. WO\#: 103955 Sequence\#: 4 Date: 6/12/2020
15.207 AC Mains - Average Test Lead: $120 \mathrm{~V} 60 \mathrm{~Hz} \mathrm{L2-Neutral}$

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	$1 / 18 / 2019$	$1 / 18 / 2021$
T2	ANP07338	Cable	$2249-Y-240$	$12 / 24 / 2019$	$12 / 24 / 2021$
	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T3	AN02610	High Pass Filter	HE9615-150K- 		$10 / 22 / 2019$
			$10 / 22 / 2021$		
T4	AN00847.1	AN00847 LISN-(L) Line 1	$3816 / 2 N M$	$3 / 10 / 2020$	$3 / 10 / 2021$
	ANP06986	50uH LISN-(N) Line 2	Cable-Line L1(dB)	3816/2NM	$3 / 10 / 2020$
T5	ANP06986	Cable-Neutral L2(dB)	90 cm -extcord	$3 / 31 / 2020$	$3 / 10 / 2021$

Measurement Data: \quad Reading listed by margin.
Test Lead: L2-Neutral

LABORATORIES, INC.

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Bra, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Itron, Inc.
15.207 AC Mains - Average

103955
Conducted Emissions
Date: $6 / 12 / 2020$
Time: 10:26:42 AM

Software:
Don Nguyen
EMITest 5.03.12
Sequence\#: 11
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 4		S/N

Test Conditions / Notes:
The EUT is placed on test bench. USB port is connected to a touchscreen tablet. The EUT is connected to 12Vdc charger. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5.
The EUT is set into transmitting mode.
Operating frequency: 908 MHz (worst case)
Frequency of measurement: $150 \mathrm{kHz}-30 \mathrm{MHz}$
$\mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=30 \mathrm{kHz}$
Site A
Temperature: $25^{\circ} \mathrm{C}$
Relative Humidity: 46%
Test Method: ANSI C63.10:2013

