Itron, Inc.

TEST REPORT FOR

AMR Transceiver Device For Communicating With Utility Meters Model: IMRB

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.231a (PERIODIC OPERATION >70MHZ)

Report No.: 102014-6

Date of issue: March 8, 2019

Test Certificate # 803.05

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 37 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.231 (c) Occupied Bandwidth (20dB BW)	7
15.231(b) Field Strength of Fundamental	10
15.231(a) Periodic Operation Requirements	16
15.231(a)(1) Manual Triggered Deactivation Time	16
15.231(b) Radiated Emissions	19
15.207 AC Conducted Emissions	27
Supplemental Information	36
Measurement Uncertainty	36
Emissions Test Details	36

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc. Terri Rayle

2111 N. Molter Road CKC Laboratories, Inc. Liberty Lake WA 99019 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Jay Holcomb Project Number: 102014

Customer Reference Number: 165609

DATE OF EQUIPMENT RECEIPT:December 11, 2018 **DATE(S) OF TESTING:**December 11-17, 2018

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve I Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 37 Report No.: 102014-6

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park Bothell, WA	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148

Page 4 of 37 Report No.: 102014-6

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.231a

Test Procedure	Description	Modifications	Results
15.231(c)	Occupied Bandwidth	NA	Pass
15.231(b)	Field Strength of Fundamental	NA	Pass
15.231(a)	Periodic Operation Requirements	NA	Pass
15.231(b)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 37 Report No.: 102014-6

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
AMR transceiver device for	Itron, Inc.	IMRB	IMR007894
communicating with utility meters			

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	E6410	46TXXN1
AC Adapter for Laptop	Dell	DA130PE1-00	NA
AC Adapter	DVE	DV-51AR	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Modulation Type(s):	OOK
Maximum Duty Cycle:	100%
Antenna Type(s) and Gain:	Internal PIFA 2.0dBi
Antenna Connection Type:	Integral
Operational Trigger Type:	Manually Activated Trigger
Nominal Input Voltage:	120VAC, 60Hz
Firmware / Software used for Test:	DPS Firmware 5.71 / MC3 Test v4.0.3.4

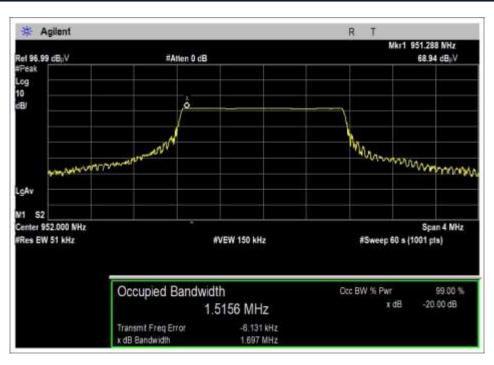
Page 6 of 37 Report No.: 102014-6

FCC Part 15 Subpart C

15.231(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison / S. Pittsford		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/13/2018		
Configuration:	1				
Test Setup:	Frequency Range: 952-953MHz Frequency tested: 952MHz Firmware power setting: Max Pov EUT Firmware: 5.71 Protocol /MCS/Modulation: OOK	ver			
	Antenna type: Internal PIFA Antenna Gain: 2.0 dBi				
	Duty Cycle: 100% (Test Mode) Test Mode: Continuously transmitting Test Setup: EUT is transmitting sitting on foam table. Modifications Added: None				

Environmental Conditions				
Temperature (°C) 20-22 Relative Humidity (%): 30-40				


Test Equipment						
Asset#	Description	Cal Date	Cal Due			
02307	Preamp	HP	8447D	1/15/2018	1/15/2020	
P05305	Cable	Andrews	ETSI-50T	10/24/2017	10/24/2019	
P05360	Cable	Belden	RG214	1/31/2018	1/31/2020	
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2017	2/3/2019	
P06123	Attenuator	Aeroflex	18N-6	5/5/2017	5/5/2019	
P06540	Cable	Andrews	Heliax	10/30/2017	10/30/2019	
03628	Biconilog Antenna	ETS	3142E	6/7/2017	6/7/2019	

Page 7 of 37 Report No.: 102014-6

Test Data Summary					
$Limit = \begin{cases} 0.2 \\ 0.5 \end{cases}$	$Limit = \begin{cases} 0.25\% f_c \mid 70 \text{ MHz} < f_c < 900 \text{MHz} \\ 0.5\% f_c \mid f_c > 900 \text{MHz} \end{cases}$				
Frequency Antenna Modulation Measured Limit Results					Results
952	1	OOK	1697	≤4760	Pass

Plot(s)

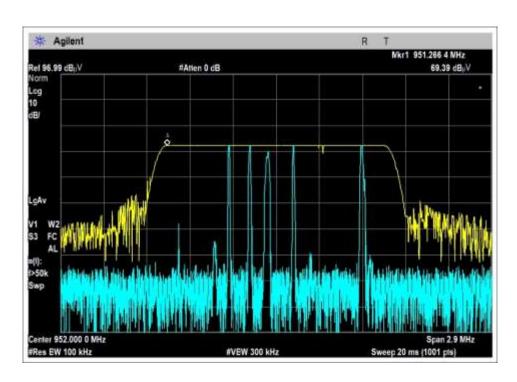
Page 8 of 37 Report No.: 102014-6

Test Setup Photo(s)

Page 9 of 37 Report No.: 102014-6

15.231(b) Field Strength of Fundamental

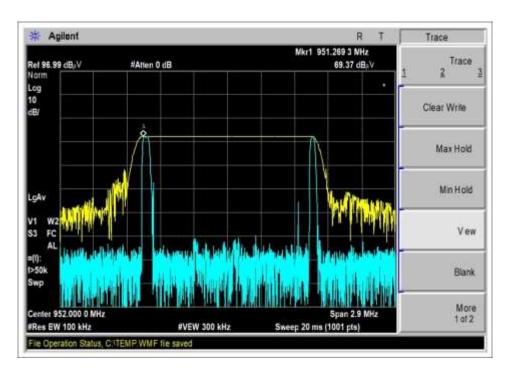
Test Data Summary - Voltage Variations											
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m@3m)	V _{Nominal} (dBuV/m@3m)	V _{Maximum} (dBuV/m@3m)	Max Deviation from V _{Nominal} (dB)						
952	ООК	77.1	77.1	77.1	0.0						

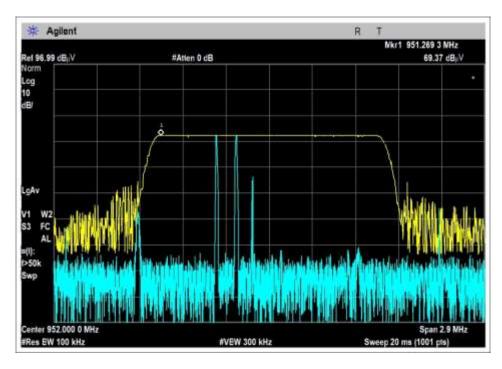

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	120 VAC
V _{Minimum} :	102.00 VAC
V _{Maximum} :	138.00 VAC


Plot(s)


Z Axis, Vnom

Page 10 of 37 Report No.: 102014-6

Z Axis, Vmin

Z Axis, Vmax

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Itron, Inc.**

Specification: 15.231(b) Fundamental Field Strength

Work Order #: 102014 Date: 12/13/2018
Test Type: Maximized Emissions Time: 14:29:59
Tested By: Matthew Harrison / Steven Pittsford Sequence#: 20

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 23°C Humidity: 33%

Pressure: 100.8-102.7kPa

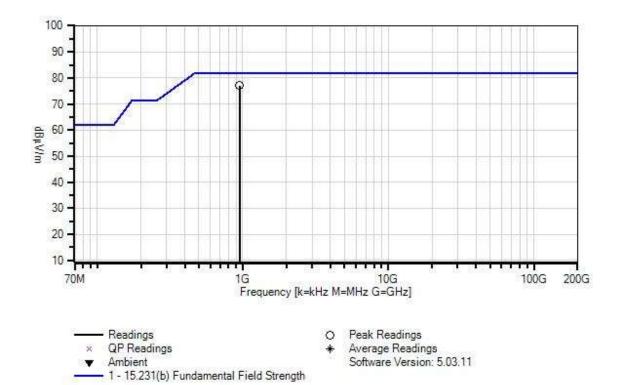
Frequency Range: 9kHz to 10GHz Frequency tested: 952MHz

Firmware power setting: Low Power

Protocol /MCS/Modulation: Continuous OOK

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting OOK on single channel, worst case data reported.


Test Setup: EUT is transmitting sitting on foam table. X, Y, Z axis investigated, both antenna polarities investigated,

worst case data reported.
Modifications Added: None
Test Method: ANSI C63.10 (2013)
Plots are uncorrected/raw data

Page 12 of 37 Report No.: 102014-6

Itron, Inc WO#: 102014 Sequence#: 20 Date: 12/13/2018 15.231(b) Fundamental Field Strength Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
T2	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T3	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
T4	ANP05360	Cable	RG214	1/31/2018	1/31/2020
T5	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T6	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T7	AN02307	Preamp	8447D	1/15/2018	1/15/2020

Measu	Measurement Data: Reading listed by margin					Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6	T7							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	951.266M	69.4	+25.0	+5.9	+1.6	+2.0	+0.0	77.1	81.9	-4.8	Vert	
			+0.4	+0.0	-27.2		360		Z-Axis, Vı	nom	102	
2	951.269M	69.4	+25.0	+5.9	+1.6	+2.0	+0.0	77.1	81.9	-4.8	Vert	
			+0.4	+0.0	-27.2		360	Z-Axis, Vmax			102	
3	951.269M	69.4	+25.0	+5.9	+1.6	+2.0	+0.0	77.1	81.9	-4.8	Vert	
			+0.4	+0.0	-27.2		360		Z-Axis, Vı	nin	102	

Page 13 of 37 Report No.: 102014-6

Test Setup Photo(s)

Below 1GHz

X Axis

Y Axis

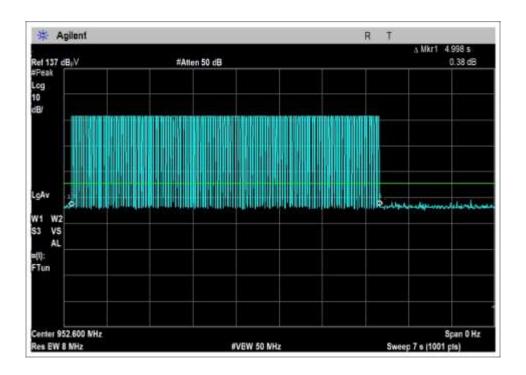
Z Axis

15.231(a) Periodic Operation Requirements

	Test Setup	/Conditions								
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison / S. Pittsford							
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/13/2018							
Configuration:	1									
Test Setup:	Frequency Range: 952-953MHz Frequency tested: 952MHz Firmware power setting: Max Power EUT Firmware: 5.71 Protocol /MCS/Modulation: OOK Antenna type: Internal PIFA									
	Antenna Gain: 2.0 dBi Duty Cycle: 100% (Test Mode) Test Mode: Continuously transmir Test Setup: EUT is transmitting sit Modifications Added: None	•								

Environmental Conditions									
Temperature (ºC)	20-22	Relative Humidity (%):	30-40						

Test Equipment												
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due							
02307	Preamp	HP	8447D	1/15/2018	1/15/2020							
P05305	Cable	Andrews	ETSI-50T	10/24/2017	10/24/2019							
P05360	Cable	Belden	RG214	1/31/2018	1/31/2020							
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2017	2/3/2019							
P06123	Attenuator	Aeroflex	18N-6	5/5/2017	5/5/2019							
P06540	Cable	Andrews	Heliax	10/30/2017	10/30/2019							
03628	Biconilog Antenna	ETS	3142E	6/7/2017	6/7/2019							


15.231(a)(1) Manual Triggered Deactivation Time

	Test Data Summary										
Frequency (MHz)	Antenna Port	Modulation	Measured (s)	Limit (s)	Results						
952	1	ООК	4.998	≤5	Pass						

Page 16 of 37 Report No.: 102014-6

Plot(s)

Test Setup Photo(s)

15.231(a)(2) Automatic Triggered Deactivation Time

NA = Not applicable because the EUT cannot be activated automatically

15.231(a)(3) Polling or Supervision Transmission Duration

NA = Not applicable because the EUT has no polling or supervision transmission mode.

15.231(a)(4) Alarm Condition Transmission Duration

NA = Not applicable because the EUT has no alarm condition transmission mode.

15.231(a)(5) Setup Transmission Duration

NA = Not applicable because the EUT has no setup transmission duration

Page 18 of 37 Report No.: 102014-6

15.231(b) Radiated Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

(4362)

Customer: Itron, Inc.

Specification: 15.231(b) Spurious Field Strength (>470 MHz Transmitter)

Work Order #: 102014 Date: 12/17/2018
Test Type: Maximized Emissions Time: 07:30:08
Tested By: Matthew Harrison / Steven Pittsford Sequence#: 21

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 20-23°C Humidity: 33-37% Pressure: 100.8-102.7kPa

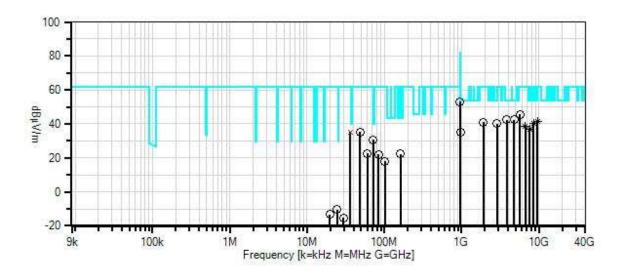
Frequency Range: 9kHz to 10GHz Frequency tested: 952MHz

Firmware power setting: Low Power

Protocol /MCS/Modulation: Continuous OOK

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting OOK on single channel, worst case data reported.


Test Setup: EUT is transmitting sitting on foam table. X, Y, Z axis investigated, both antenna polarities investigated,

worst case data reported. Modifications Added: None Test Method: ANSI C63.10 (2013)

> Page 19 of 37 Report No.: 102014-6

Itron, Inc WO#: 102014 Sequence#: 21 Date: 12/17/2018 15.231(b) Spurious Field Strength (>470 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings Peak Readings 0
- QP Readings
- Average Readings
- Ambient

Software Version: 5.03.11

1 - 15.231(b) Spurious Field Strength (>470 MHz Transmitter)

Test Equipment:

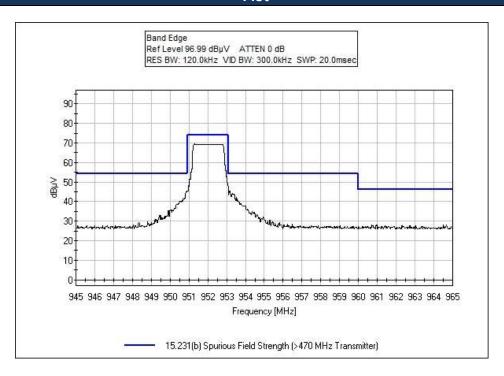
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
T2	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T3	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
T4	ANP05360	Cable	RG214	1/31/2018	1/31/2020
T5	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T6	AN02673	Spectrum	E4446A	2/3/2017	2/3/2019
		Analyzer			
T7	AN02307	Preamp	8447D	1/15/2018	1/15/2020
T8	AN00052	Loop Antenna	6502	5/7/2018	5/7/2020
Т9	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T10	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T11	AN01467	Horn Antenna-	3115	7/21/2017	7/21/2019
		ANSI C63.5			
		Calibration			
T12	ANP06503	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-36		

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	}	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	950.900M	45.3	+25.0	+5.9	+1.6	+2.0	+0.0	53.0	61.9	-8.9	Vert
			+0.4	+0.0	-27.2	+0.0	360				102
			+0.0	+0.0	+0.0	+0.0					
2	953.100M	45.3	+25.0	+5.9	+1.6	+2.0	+0.0	53.0	61.9	-8.9	Vert
			+0.4	+0.0	-27.2	+0.0	360				102
			+0.0	+0.0	+0.0	+0.0					
3	4758.883M	37.3	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	54.0	-11.5	Vert
			+0.5	+0.0	+0.0	+0.0					154
			+4.1	-33.2	+32.3	+1.5					
4	3807.983M	39.3	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	54.0	-11.6	Vert
			+0.4	+0.0	+0.0	+0.0	332				154
			+3.8	-33.4	+31.0	+1.3					
5	2854.117M	40.6	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Horiz
			+0.5	+0.0	+0.0	+0.0					154
			+2.7	-33.8	+29.1	+1.1					
6	5712.875M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	45.7	61.9	-16.2	Horiz
			+0.7	+0.0	+0.0	+0.0	166				154
			+4.5	-33.4	+34.5	+1.8					
	7614.420M	25.4	+0.0	+0.0	+0.0	+0.0	+0.0	36.6	54.0	-17.4	Vert
	Ave		+1.2	+0.0	+0.0	+0.0	267				142
			+5.5	-34.6	+36.9	+2.2					
^	7614.420M	39.6	+0.0	+0.0	+0.0	+0.0	+0.0	50.8	54.0	-3.2	Vert
			+1.2	+0.0	+0.0	+0.0	360				168
			+5.5	-34.6	+36.9	+2.2					

Page 21 of 37 Report No.: 102014-6

9 9519	0.465M 2	8.0	+0.0	+0.0	+0.0	+0.0	+0.0	41.6	61.9	-20.3	Vert
Ave			+0.9	+0.0	+0.0	+0.0	360				136
			+6.2	-33.5	+37.4	+2.6					
^ 9519	0.465M 3	9.2	+0.0	+0.0	+0.0	+0.0	+0.0	52.8	61.9	-9.1	Vert
			+0.9	+0.0	+0.0	+0.0					155
			+6.2	-33.5	+37.4	+2.6					
11 1904	.433M 4	4.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.9	61.9	-21.0	Vert
			+0.4	+0.0	+0.0	+0.0	147		Y		112
			+2.3	-34.4	+27.3	+0.8					
12 162	.550M 3	2.6	+9.7	+5.9	+0.6	+0.7	+0.0	22.2	43.5	-21.3	Vert
			+0.2	+0.0	-27.5	+0.0					103
			+0.0	+0.0	+0.0	+0.0					
13 8565	5.605M 2	8.2	+0.0	+0.0	+0.0	+0.0	+0.0	40.4	61.9	-21.5	Vert
Ave			+0.9	+0.0	+0.0	+0.0					142
			+5.9	-34.1	+37.2	+2.3					
^ 8565	5.605M 3	8.2	+0.0	+0.0	+0.0	+0.0	+0.0	50.4	61.9	-11.5	Vert
			+0.9	+0.0	+0.0	+0.0	136				159
			+5.9	-34.1	+37.2	+2.3					
15 6663	3.500M 2	8.4	+0.0	+0.0	+0.0	+0.0	+0.0	38.3	61.9	-23.6	Vert
Ave			+0.6	+0.0	+0.0	+0.0					161
			+5.5	-33.7	+35.5	+2.0					
^ 6663	3.500M 3	9.4	+0.0	+0.0	+0.0	+0.0	+0.0	49.3	61.9	-12.6	Vert
			+0.6	+0.0	+0.0	+0.0	360				181
			+5.5	-33.7	+35.5	+2.0					
17 48.	.110M 4	9.2	+7.2	+5.9	+0.4	+0.4	+0.0	35.3	61.9	-26.6	Vert
			+0.1	+0.0	-27.9	+0.0	326				103
			+0.0	+0.0	+0.0	+0.0					
18 35.	.970M 4	4.0	+12.6	+5.9	+0.3	+0.3	+0.0	35.2	61.9	-26.7	Vert
QP			+0.1	+0.0	-28.0	+0.0					103
			+0.0	+0.0	+0.0	+0.0					
^ 35.	.970M 4	6.4	+12.6	+5.9	+0.3	+0.3	+0.0	37.6	61.9	-24.3	Vert
			+0.1	+0.0	-28.0	+0.0	360				103
			+0.0	+0.0	+0.0	+0.0					
20 958	.900M 2	7.4	+24.9	+5.9	+1.6	+2.1	+0.0	35.1	61.9	-26.8	Vert
			+0.4	+0.0	-27.2	+0.0	360				102
			+0.0	+0.0	+0.0	+0.0					
21 72.	.121M 4	4.8	+7.0	+5.9	+0.4	+0.5	+0.0	30.8	61.9	-31.1	Vert
			+0.1	+0.0	-27.9	+0.0					109
			+0.0	+0.0	+0.0	+0.0					
22 60.	.340M 3	7.0	+6.7	+5.9	+0.4	+0.4	+0.0	22.6	61.9	-39.3	Vert
			+0.1	+0.0	-27.9	+0.0					103
			+0.0	+0.0	+0.0	+0.0					
-											

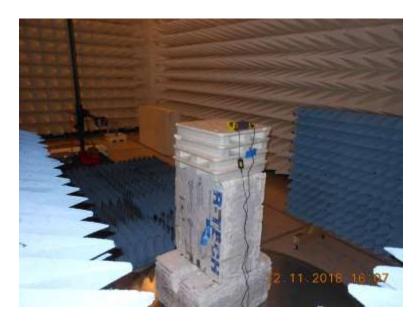
Page 22 of 37 Report No.: 102014-6


23	84.290M	36.3	+6.6	+5.9	+0.5	+0.5	+0.0	22.1	61.9	-39.8	Vert
			+0.1	+0.0	-27.8	+0.0					103
			+0.0	+0.0	+0.0	+0.0					
24	101.880M	30.6	+8.1	+5.9	+0.5	+0.6	+0.0	18.1	61.9	-43.8	Vert
			+0.1	+0.0	-27.7	+0.0					103
			+0.0	+0.0	+0.0	+0.0					
25	24.448M	22.2	+0.0	+0.0	+0.0	+0.0	-40.0	-10.3	61.9	-72.2	Perpe
			+0.1	+0.0	+0.0	+7.1	360				99
			+0.3	+0.0	+0.0	+0.0					
26	19.552M	18.4	+0.0	+0.0	+0.0	+0.0	-40.0	-13.3	61.9	-75.2	Perpe
			+0.0	+0.0	+0.0	+8.1	360				99
			+0.2	+0.0	+0.0	+0.0					
27	29.493M	18.6	+0.0	+0.0	+0.0	+0.0	-40.0	-15.3	61.9	-77.2	Perpe
			+0.1	+0.0	+0.0	+5.7	360				99
			+0.3	+0.0	+0.0	+0.0					
28	18.165k	46.1	+0.0	+0.0	+0.0	+0.0	-80.0	-21.7	61.9	-83.6	Paral
			+0.0	+0.0	+0.0	+12.2	121				99
			+0.0	+0.0	+0.0	+0.0					

Page 23 of 37 Report No.: 102014-6

Band Edge

Plot



Test Setup Photo(s)

Below 1GHz

Above 1GHz, Cone placement

X Axis

Y Axis

Z Axis

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Itron, Inc.**

Specification: 15.207 AC Mains - Average

Work Order #: 102014 Date: 12/11/2018
Test Type: Conducted Emissions Time: 11:59:50
Tested By: Steven Pittsford Sequence#: 12

Software: EMITest 5.03.11 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 22°C Humidity: 33% Pressure: 101.4kPa

Frequency Range: 0.15-30MHz

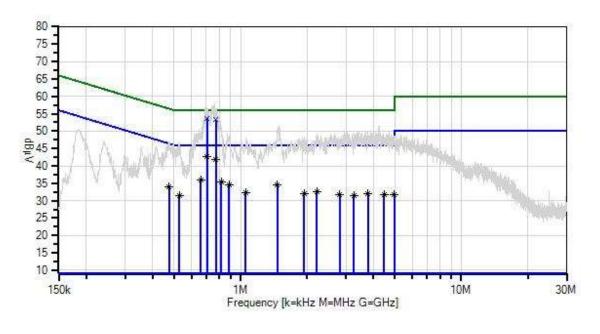
Frequency tested: 952MHz

Firmware power setting: Low Power Protocol /MCS/Modulation: OOK

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: EUT connected to USB AC Adapter via USB cable. USB AC Adapter connected to AC mains through


LISN.

Modifications Added: None Test Method: ANSI C63.10 (2013)

> Page 27 of 37 Report No.: 102014-6

Itron, Inc WO#: 102014 Sequence#: 12 Date: 12/11/2018 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Sweep Data
 QP Readings
 Software Version: 5.03.11

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/13/2018	4/13/2020
T2	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T3	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T4	AN01311	50uH LISN-Line1 (L)	3816/2	3/16/2018	3/16/2020
	AN01311	50uH LISN-Line2 (N)	3816/2	3/16/2018	3/16/2020
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T5	AN02611	High Pass Filter	HE9615-150K- 50-720B	1/15/2018	1/15/2020

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		10. 11	T5	15	15	15		1D 11	15. 11	15	
	MHz	dBμV	dB	dB	dB	dB	Table	dBμV	dΒμV	dB	Ant
1	707.100k	44.1	+9.1	+0.0	+0.0	+0.3	+0.0	53.7	56.0	-2.3	Line
	QP	10.5	+0.2	0.0	0.0	0.2	0.0		7 6 0	•	<u> </u>
2	772.300k	43.6	+9.1	+0.0	+0.0	+0.3	+0.0	53.2	56.0	-2.8	Line
	QP	22.1	+0.2	0.0	0.0	0.0	0.0	10.5	460		<u> </u>
3	707.100k	33.1	+9.1	+0.0	+0.0	+0.3	+0.0	42.7	46.0	-3.3	Line
٨	Ave 707 1001	47.0	+0.2	. 0. 0	. 0. 0	.0.2	. 0. 0	56.0	16.0	. 10.0	т
	707.100k	47.2	+9.1 +0.2	+0.0	+0.0	+0.3	+0.0	56.8	46.0	+10.8	Line
5	772.300k	32.2	+9.1	+0.0	+0.0	+0.3	+0.0	41.8	46.0	-4.2	Line
	772.300k Ave	32.2	+9.1	+0.0	+0.0	+0.3	+0.0	41.0	40.0	-4.2	Lille
^	772.300k	48.0	+9.1	+0.0	+0.0	+0.3	+0.0	57.6	46.0	+11.6	Line
	772.300K	-10.0	+0.2	10.0	10.0	10.5	10.0	37.0	70.0	111.0	Line
7	661.800k	26.1	+9.1	+0.0	+0.0	+0.4	+0.0	35.8	46.0	-10.2	Line
	Ave	20.1	+0.2	10.0	10.0	10.1	10.0	55.0	10.0	10.2	Eme
٨	661.800k	42.9	+9.1	+0.0	+0.0	+0.4	+0.0	52.6	46.0	+6.6	Line
			+0.2								
9	819.000k	25.9	+9.1	+0.0	+0.0	+0.3	+0.0	35.5	46.0	-10.5	Line
	Ave		+0.2								
٨	819.000k	41.2	+9.1	+0.0	+0.0	+0.3	+0.0	50.8	46.0	+4.8	Line
			+0.2								
11	885.500k	24.9	+9.1	+0.0	+0.0	+0.3	+0.0	34.5	46.0	-11.5	Line
	Ave		+0.2								
٨	885.500k	40.3	+9.1	+0.0	+0.0	+0.3	+0.0	49.9	46.0	+3.9	Line
			+0.2								
13	1.468M	24.8	+9.1	+0.1	+0.0	+0.3	+0.0	34.4	46.0	-11.6	Line
	Ave		+0.1								
^	1.468M	42.3	+9.1	+0.1	+0.0	+0.3	+0.0	51.9	46.0	+5.9	Line
			+0.1								

Page 29 of 37 Report No.: 102014-6

15	474.800k	24.2	+9.1	+0.0	+0.0	+0.4	+0.0	33.9	46.4	-12.5	Line
	Ave		+0.2								
^	474.800k	36.6	+9.1	+0.0	+0.0	+0.4	+0.0	46.3	46.4	-0.1	Line
17	2 21 03 4	22.0	+0.2	0.1	0.0	0.2	0.0	22.6	460	10.4	т.
17	2.210M	23.0	+9.1	+0.1	+0.0	+0.3	+0.0	32.6	46.0	-13.4	Line
<i>F</i>	Ave	41.0	+0.1	+0.1	+0.0	+0.3	+0.0	50.6	46.0	+4.6	T in a
	2.210M	41.0	+9.1 +0.1	+0.1	+0.0	+0.3	+0.0	30.0	40.0	+4.0	Line
19	1.056M	22.7	+9.1	+0.0	+0.0	+0.3	+0.0	32.3	46.0	-13.7	Line
	Ave	22.7	+0.2	10.0	10.0	10.5	10.0	32.3	10.0	13.7	Line
٨	1.056M	39.4	+9.1	+0.0	+0.0	+0.3	+0.0	49.0	46.0	+3.0	Line
			+0.2								
21	3.779M	22.5	+9.1	+0.1	+0.0	+0.3	+0.0	32.1	46.0	-13.9	Line
	Ave		+0.1								
^	3.779M	40.5	+9.1	+0.1	+0.0	+0.3	+0.0	50.1	46.0	+4.1	Line
			+0.1								
23	1.942M	22.3	+9.1	+0.1	+0.0	+0.3	+0.0	31.9	46.0	-14.1	Line
	Ave	20.2	+0.1	. 0.1	. 0. 0	.0.2	. 0. 0	40.0	46.0	. 2. 0	т,
	1.942M	39.2	+9.1	+0.1	+0.0	+0.3	+0.0	48.8	46.0	+2.8	Line
25	2.810M	22.2	+0.1	+0.1	+0.0	+0.3	+0.0	31.8	46.0	-14.2	Line
	Ave	22.2	+0.1	+0.1	+0.0	+0.5	+0.0	31.6	40.0	-14.2	Line
^	2.810M	40.4	+9.1	+0.1	+0.0	+0.3	+0.0	50.0	46.0	+4.0	Line
			+0.1								
27	4.967M	22.1	+9.1	+0.1	+0.0	+0.3	+0.0	31.7	46.0	-14.3	Line
A	Ave		+0.1								
٨	4.967M	38.8	+9.1	+0.1	+0.0	+0.3	+0.0	48.4	46.0	+2.4	Line
			+0.1								
29	4.463M	22.1	+9.1	+0.1	+0.0	+0.3	+0.0	31.7	46.0	-14.3	Line
	Ave		+0.1								
^	4.463M	40.5	+9.1	+0.1	+0.0	+0.3	+0.0	50.1	46.0	+4.1	Line
21	520 0001	21.0	+0.1	.0.0	+0.0	.0.4	.0.0	21.6	46.0	1.4.4	T :
31	528.900k	21.9	+9.1	+0.0	+0.0	+0.4	+0.0	31.6	46.0	-14.4	Line
<i>F</i>	Ave 528.900k	37.0	+0.2	+0.0	+0.0	+0.4	+0.0	46.7	46.0	+0.7	Line
	320.700K	31.0	+9.1	±0.0	+0.0	±0. 4	+0.0	40.7	+0.0	+0.7	LIIIC
33	3.254M	21.8	+9.1	+0.1	+0.0	+0.3	+0.0	31.4	46.0	-14.6	Line
	Ave	21.0	+0.1	10.1	10.0	. 0.3	10.0	51.1	10.0	11.0	Line
٨	3.254M	40.4	+9.1	+0.1	+0.0	+0.3	+0.0	50.0	46.0	+4.0	Line
			+0.1								
								_			

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Itron, Inc.**

Specification: 15.207 AC Mains - Quasi-peak

Work Order #: 102014 Date: 12/11/2018
Test Type: Conducted Emissions Time: 11:45:39
Tested By: Steven Pittsford Sequence#: 11

Software: EMITest 5.03.11 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 22°C Humidity: 33% Pressure: 101.4kPa

Frequency Range: 0.15-30MHz

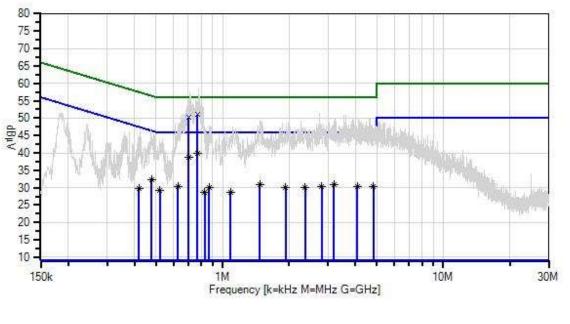
Frequency tested: 952MHz

Firmware power setting: Low Power Protocol /MCS/Modulation: OOK

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: EUT connected to USB AC Adapter via USB cable. USB AC Adapter connected to AC mains through


LISN.

Modifications Added: None Test Method: ANSI C63.10 (2013)

> Page 31 of 37 Report No.: 102014-6

Itron, Inc WO#: 102014 Sequence#: 11 Date: 12/11/2018 15.207 AC Mains - Quasi-peak Test Lead: 115VAC 60Hz Neutral

× QP Readings Software Version: 5.03.11 Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/13/2018	4/13/2020
T2	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
Т3	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
	AN01311	50uH LISN-Line1 (L)	3816/2	3/16/2018	3/16/2020
T4	AN01311	50uH LISN-Line2 (N)	3816/2	3/16/2018	3/16/2020
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T5	AN02611	High Pass Filter	HE9615-150K- 50-720B	1/15/2018	1/15/2020

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV	dΒμV	dB	Ant
1	770.600k	41.5	+9.1	+0.0	+0.0	+0.3	+0.0	51.1	56.0	-4.9	Neutr
	QP		+0.2								
2	703.700k	40.6	+9.1	+0.0	+0.0	+0.3	+0.0	50.2	56.0	-5.8	Neutr
	QP		+0.2								
3	770.600k	30.3	+9.1	+0.0	+0.0	+0.3	+0.0	39.9	46.0	-6.1	Neutr
	Ave		+0.2								
^	770.600k	48.3	+9.1	+0.0	+0.0	+0.3	+0.0	57.9	46.0	+11.9	Neutr
			+0.2								
5	703.700k	29.2	+9.1	+0.0	+0.0	+0.3	+0.0	38.8	46.0	-7.2	Neutr
	Ave		+0.2								
^	703.700k	48.9	+9.1	+0.0	+0.0	+0.3	+0.0	58.5	46.0	+12.5	Neutr
			+0.2								
7	476.400k	22.6	+9.1	+0.0	+0.0	+0.4	+0.0	32.3	46.4	-14.1	Neutr
	Ave		+0.2								
^	476.400k	37.2	+9.1	+0.0	+0.0	+0.4	+0.0	46.9	46.4	+0.5	Neutr
			+0.2								
9	3.191M	21.2	+9.1	+0.1	+0.0	+0.3	+0.0	30.8	46.0	-15.2	Neutr
	Ave		+0.1								
^	3.191M	38.6	+9.1	+0.1	+0.0	+0.3	+0.0	48.2	46.0	+2.2	Neutr
			+0.1								
11	1.477M	21.2	+9.1	+0.1	+0.0	+0.3	+0.0	30.8	46.0	-15.2	Neutr
	Ave		+0.1								
^	1.477M	39.4	+9.1	+0.1	+0.0	+0.3	+0.0	49.0	46.0	+3.0	Neutr
			+0.1								
13	4.076M	20.8	+9.1	+0.1	+0.0	+0.3	+0.0	30.4	46.0	-15.6	Neutr
	Ave		+0.1								
^	4.076M	40.1	+9.1	+0.1	+0.0	+0.3	+0.0	49.7	46.0	+3.7	Neutr
			+0.1								

Page 33 of 37 Report No.: 102014-6

_											
15	2.807M	20.8	+9.1	+0.1	+0.0	+0.3	+0.0	30.4	46.0	-15.6	Neutr
	Ave		+0.1								
^	2.807M	40.0	+9.1	+0.1	+0.0	+0.3	+0.0	49.6	46.0	+3.6	Neutr
			+0.1								
17	4.829M	20.7	+9.1	+0.1	+0.0	+0.3	+0.0	30.3	46.0	-15.7	Neutr
	Ave		+0.1								
٨	4.829M	40.5	+9.1	+0.1	+0.0	+0.3	+0.0	50.1	46.0	+4.1	Neutr
			+0.1								
19	626.600k	20.5	+9.1	+0.0	+0.0	+0.4	+0.0	30.2	46.0	-15.8	Neutr
	Ave		+0.2								
٨	626.600k	40.2	+9.1	+0.0	+0.0	+0.4	+0.0	49.9	46.0	+3.9	Neutr
			+0.2								
21	1.931M	20.5	+9.1	+0.1	+0.0	+0.3	+0.0	30.1	46.0	-15.9	Neutr
	Ave		+0.1								
٨	1.931M	39.1	+9.1	+0.1	+0.0	+0.3	+0.0	48.7	46.0	+2.7	Neutr
			+0.1								
23	870.500k	20.5	+9.1	+0.0	+0.0	+0.3	+0.0	30.1	46.0	-15.9	Neutr
	Ave		+0.2								
٨	870.500k	39.8	+9.1	+0.0	+0.0	+0.3	+0.0	49.4	46.0	+3.4	Neutr
			+0.2								
25	2.369M	20.4	+9.1	+0.1	+0.0	+0.3	+0.0	30.0	46.0	-16.0	Neutr
	Ave		+0.1								
٨	2.369M	40.5	+9.1	+0.1	+0.0	+0.3	+0.0	50.1	46.0	+4.1	Neutr
			+0.1								
27	520.400k	19.5	+9.1	+0.0	+0.0	+0.4	+0.0	29.2	46.0	-16.8	Neutr
	Ave		+0.2								
٨	520.400k	35.0	+9.1	+0.0	+0.0	+0.4	+0.0	44.7	46.0	-1.3	Neutr
			+0.2								
29	1.089M	19.0	+9.1	+0.0	+0.0	+0.3	+0.0	28.6	46.0	-17.4	Neutr
	Ave		+0.2								
٨	1.089M	39.2	+9.1	+0.0	+0.0	+0.3	+0.0	48.8	46.0	+2.8	Neutr
			+0.2								
31	832.300k	19.0	+9.1	+0.0	+0.0	+0.3	+0.0	28.6	46.0	-17.4	Neutr
	Ave		+0.2								
^	832.300k	38.2	+9.1	+0.0	+0.0	+0.3	+0.0	47.8	46.0	+1.8	Neutr
			+0.2								
33	417.100k	19.9	+9.1	+0.0	+0.0	+0.5	+0.0	29.6	47.5	-17.9	Neutr
	Ave		+0.1								
^	417.100k	36.0	+9.1	+0.0	+0.0	+0.5	+0.0	45.7	47.5	-1.8	Neutr
			+0.1								

Test Setup Photo(s)

Page 35 of 37 Report No.: 102014-6

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS							
	Meter reading (dBμV)							
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

Page 36 of 37 Report No.: 102014-6

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 37 of 37 Report No.: 102014-6