Itron, Inc.

EMC TEST REPORT FOR

MC3 & MC4Max Model: MC3C*

*(See Appendix A for Manufacturer's Declaration)

Tested to The Following Standards:

FCC Part 101 Subpart C

Report No.: 107795-3

Date of issue: January 26, 2023

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 44 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part(s) 101 Subpart C	11
2.1051 / 101.111(a)(5) Emissions Limitations – Conducted	11
2.1053 / 101.111(a)(5) Emission limitations - Radiated emission	21
2.1046 / 101.113(a) Transmitter Power Limitations	36
Appendix A: Manufacturer Declaration	41
Appendix B: Measurement Uncertainties	42
Supplemental Information	43
Measurement Uncertainty	43
Emissions Test Details	/12

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc.Viviana Prado2111 N. Molter RoadCKC Laboratori

2111 N. Molter Road CKC Laboratories, Inc.
Liberty Lake, WA 99019 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Jack McPeck Project Number: 107795

Customer Reference Number: 269629

DATE OF EQUIPMENT RECEIPT: December 14, 2022

DATE(S) OF TESTING: December 14 and 16-23, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Below

Page 3 of 44 Report No.: 107795-3

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19
EMITest Immunity	5.03.10

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 44 Report No.: 107795-3

SUMMARY OF RESULTS

Standard / Specification: FCC Part 2 / 101

Test Procedure	Description	Modifications	Results
2.1055 / 101.107(a)	Frequency Tolerance	NA	NP
2.1049 / 101.109(c)	Bandwidth	NA	NP
2.1051 / 101.111 (a)(5)	Emissions Limitations - Conducted	NA	Pass
2.1053 / 101.111 (a)(5)	Emissions Limitations- Radiated	NA	Pass
2.1046 / 101.113(a)	Transmitter Power Limitations	NA	Pass
2.1047	Modulation Characteristics	NA	NA1

NA = Not Applicable

NA1 = Not applicable because the equipment does not support voice communication.

NP = CKC Laboratories was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of	Conditions

None

Page 5 of 44 Report No.: 107795-3

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 (Radiated Laptop)

Equipment Tested:

Device	Manufacturer	Model #	S/N
MC3 & MC4Max	Itron, Inc.	MC3C	74008263

Support Equipment:

Device	Manufacturer	Model #	S/N
12VDC Power Supply	Lamda	LUS-10A-12	91K121691
5dBi Antenna	PCTEL	Generic	NA
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Laptop	Panasonic	CF-33	1GTSA65082

Configuration 2 (Radiated Tablet)

Equipment Tested:

Device	Manufacturer	Model #	S/N
MC3 & MC4Max	Itron, Inc.	MC3C	74008263

Support Equipment:

Device	Manufacturer	Model #	S/N
12VDC Power Supply	Lamda	LUS-10A-12	91K121691
5dBi Antenna	PCTEL	Generic	NA
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Tablet	Panasonic	FZ-G1	990005071111034

Configuration 3 (Conducted Laptop)

Equipment Tested:

Device	Manufacturer	Model #	S/N
MC3 & MC4Max	Itron, Inc.	MC3C	74008263

Support Equipment:

Device	Manufacturer	Model #	S/N
12VDC Power Supply	Lamda	LUS-10A-12	91K121691
Laptop	Panasonic	CF-33	1GTSA65082

Page 6 of 44 Report No.: 107795-3

General Product Information:

Product Information	Manufacturer-Provided Details	
Equipment Type:	Stand-Alone Equipment	
Type of Wideband System:	Land-Mobile Transmitter and Receiver (27.41-960 MHz) (MAS transmitter)	
Operating Frequency Range:	952.0-959.85MHz	
Number of Hopping Channels:	NA	
Modulation Type(s):	24.76-57.78Hz AM	
Maximum Duty Cycle:	Tested as 100% worst case	
Number of TX Chains:	1	
Antenna Gain:	5dbi	
Beamforming Type:	NA	
Antenna Connection Type:	External Connector	
Nominal Input Voltage:	13.8VDC from vehicle battery	
	ARM version: 7.73.00.09	
	DSP version: 5.76.00.13	
	FPGA version: 3.02	
Firmware / Software used for Test:	TX version: 1.03	
	PSoC version: 3.01	
	MC3 Test 4.2.0.0 and 4.0.2.3	

EUT Photo(s)

Page 7 of 44 Report No.: 107795-3

Support Equipment Photo(s)

Laptop

Tablet

2xReceiver Antenna

5dBi and GPS Antenna

Block Diagram(s) of Test Setup

Test Setup Block Diagram

DC Power to simulate fresh battery

Radiated (Configuration 1 and 2)

Test Setup Block Diagram

DC Power to simulate fresh battery

RF Conducted (Configuration 3)

FCC PART(S) 101 Subpart C

2.1051 / 101.111(a)(5) Emissions Limitations – Conducted

	Test Setup	/Conditions	
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson
Test Method:	FCC CFR 47 Part 101.111, ANSI C63.26 (2015)	Test Date(s):	12/14/2022
Configuration:	3		
Test Setup:	•	r. The EUT is contin	ternal power supply. USB port is uously transmitting. The EUT is cables and attenuation.

Test Data Summary

Limit applied: Part 101.111 (a) (2) (i)

Max Power -(35 + 0.8(P - 50) + 10Log10 B) down to -13dBm

P = Percent removed from the center frequency of the transmitter bandwidth.

B = Authorized bandwidth in MHz

Conversion to Limit (dB μ V) = Limit (dBm) +107

Page 11 of 44 Report No.: 107795-3

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 101.111(a)(5) Antenna Conducted Emissions (Low Channel)

Work Order #: 107795 Date: 12/14/2022
Test Type: Conducted Emissions Time: 15:37:07
Tested By: Michael Atkinson Sequence#: 20
Software: EMITest 5.03.20 13.8VDC

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 21°C Humidity: 39% Pressure: 102.7

Mask was created assuming worst case 35.7dBm output power.

Page 12 of 44 Report No.: 107795-3

Itron, Inc. WO#: 107795 Sequence#: 20 Date: 12/14/2022 101.111(a)(5) Antenna Conducted Emissions (Low Channel) Test Lead: 13.8VDC RF Port

Sweep Data

Readings

O Peak Readings QP Readings

Average Readings

Ambient

Software Version: 5.03.20

- 1 - 101.111(a)(5) Antenna Conducted Emissions (Low Channel)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP07623	Attenuator	47-20-34	3/16/2022	3/16/2024
T2	ANP07746	Attenuator	PE7004-6	2/11/2021	2/11/2023

Page 13 of 44 Report No.: 107795-3

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: RF Port		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	952.015M	42.5	+19.7	+5.8			+0.0	68.0	71.8	-3.8	RF Po
									24.76		
2	951.985M	42.1	+19.7	+5.8			+0.0	67.6	71.8	-4.2	RF Po
									24.76		
3	951.985M	36.4	+19.7	+5.8			+0.0	61.9	71.8	-9.9	RF Po
									57.78		
4	952.015M	35.5	+19.7	+5.8			+0.0	61.0	71.8	-10.8	RF Po
									57.78		
5	5712.005M	37.0	+19.9	+6.0			+0.0	62.9	87.0	-24.1	RF Po
6	1904.002M	36.7	+19.8	+5.9			+0.0	62.4	87.0	-24.6	RF Po
									24.76		
7	1903.997M	35.6	+19.8	+5.9			+0.0	61.3	87.0	-25.7	RF Po
8	5712.025M	35.4	+19.9	+6.0			+0.0	61.3	87.0	-25.7	RF Po
									24.76		

Page 14 of 44 Report No.: 107795-3

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 101.111(a)(5) Antenna Conducted Emissions (High Channel)

Work Order #: 107795 Date: 12/14/2022
Test Type: Conducted Emissions Time: 15:38:04
Tested By: Michael Atkinson Sequence#: 21

Software: EMITest 5.03.20 13.8VDC

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 21°C Humidity: 39% Pressure: 102.7

Mask was created assuming worst case 35.7dBm output power.

Page 15 of 44 Report No.: 107795-3

Itron, Inc. WO#: 107795 Sequence#: 21 Date: 12/14/2022 101.111(a)(5) Antenna Conducted Emissions (High Channel) Test Lead: 13.8VDC RF Port

Sweep Data

Readings

O Peak Readings

QP Readings Average Readings

Ambient

Software Version: 5.03.20

- 1 - 101.111(a)(5) Antenna Conducted Emissions (High Channel)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP07623	Attenuator	47-20-34	3/16/2022	3/16/2024
T2	ANP07746	Attenuator	PE7004-6	2/11/2021	2/11/2023

Page 16 of 44 Report No.: 107795-3

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: RF Port		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	959.835M	42.3	+19.7	+5.8			+0.0	67.8	71.8	-4.0	RF Po
									24.76		
2	959.865M	41.8	+19.7	+5.8			+0.0	67.3	71.8	-4.5	RF Po
									24.76		
3	959.835M	37.0	+19.7	+5.8			+0.0	62.5	71.8	-9.3	RF Po
									57.78		
4	959.865M	36.6	+19.7	+5.8			+0.0	62.1	71.8	-9.7	RF Po
									57.78		
5	5759.100M	47.3	+19.9	+6.0			+0.0	73.2	87.0	-13.8	RF Po
									57.78		
6	5759.100M	46.5	+19.9	+6.0			+0.0	72.4	87.0	-14.6	RF Po
									24.76		
7	144.600k	42.8	+19.5	+5.8			+0.0	68.1	87.0	-18.9	RF Po
8	145.600k	41.8	+19.5	+5.8			+0.0	67.1	87.0	-19.9	RF Po
9	1919.700M	37.5	+19.9	+5.9			+0.0	63.3	87.0	-23.7	RF Po
									24.76		
10	1919.703M	36.4	+19.9	+5.9			+0.0	62.2	87.0	-24.8	RF Po
									57.78		

Page 17 of 44 Report No.: 107795-3

Plot(s)

Test Setup Photo(s)

Page 20 of 44 Report No.: 107795-3

2.1053 / 101.111(a)(5) Emission limitations - Radiated emission

	Test Setup	/Conditions	
Test Location:	Bothell Lab C3	Test Engineer:	Michael Atkinson
Test Method:	ANSI C63.26 (2015), section 5.5	Test Date(s):	12/16/2022 to 12/23/2022
Configuration:	1 and 2		
Test Setup:	port is connected to an external	antenna. Main antenn	c from external power supply. GPS a port is terminated with 50-ohm tablet. The EUT is continuously

Test Data Summary

Limit applied for Radiated Emissions outside of mask:

-20dBm worst case at any power level

Conversion to EIRP limit

E(dBuV/m)=P(dBm)-20log(3)+104.77=-20-20log(3)+104.77=75.2dbuV/m

Page 21 of 44 Report No.: 107795-3

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 101.111(a)(5) Radiated Emissions (non-mask)

Work Order #: 107795 Date: 12/21/2022
Test Type: Maximized Emissions Time: 18:02:58
Tested By: Michael Atkinson Sequence#: 51

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 37% Pressure: 102.2kPa

Test Method: ANSI C63.26 (2015)

Frequency: 9kHz-10GHz

Test Setup: EUT is continuously transmitting with modulation; antenna port is terminated. Horizontal and vertical measurement antenna polarities investigated above 30MHz, 3 x orthogonal axes investigated below 30MHz, worst-case reported. EUT XYZ axes investigated, worst-case reported. Investigated with received boards removed, fully loaded unit is representative of worst-case.

Power supply is remotely located outside of chamber with filter caps at chamber wall.

Investigated with antennas at 1.5m height, as well as moving the entire setup so the EUT is at 1.5m height, worst-case reported. Left the Tx antenna in chamber as the antenna based is shared with the EUT's GPS antenna.

Investigated 24.76 and 57.78Hz modulation, worst-case reported.

MC4Max with Laptop

Page 22 of 44 Report No.: 107795-3

Itron, Inc. WO#: 107795 Sequence#: 51 Date: 12/21/2022 101.111(a)(5) Radiated Emissions (non-mask) Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 101.111(a)(5) Radiated Emissions (non-mask)

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023

Page 23 of 44 Report No.: 107795-3

	rement Data:			ted by ma	_	T-4			ce: 3 Meter		D.1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5 T9	T6 T10	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	3808.030M	65.2	+0.0	+0.6	+3.3	+0.0	+0.0	68.3	75.2	-6.9	Vert
•	2000.02011	03.2	+0.0	+0.0	+0.3	-33.8	10.0	00.5	952	0.7	, 611
			+0.3	+32.4	. 0.2	22.0			, c <u>-</u>		
2	57.597k	57.9	+0.0	+0.1	+0.0	+0.0	+0.0	67.7	75.2	-7.5	Para
_	0,10,7,1		+0.0	+9.7	+0.0	+0.0					
			+0.0	+0.0							
3	57.597k	55.0	+0.0	+0.1	+0.0	+0.0	+0.0	64.8	75.2	-10.4	Groui
			+0.0	+9.7	+0.0	+0.0					
			+0.0	+0.0							
4	3839.440M	58.9	+0.0	+0.6	+3.3	+0.0	+0.0	62.1	75.2	-13.1	Vert
			+0.0	+0.0	+0.3	-33.8			959.85		
			+0.3	+32.5							
5	3807.920M	57.0	+0.0	+0.6	+3.3	+0.0	+0.0	60.1	75.2	-15.1	Horiz
			+0.0	+0.0	+0.3	-33.8			952		
			+0.3	+32.4							
6	3839.440M	54.2	+0.0	+0.6	+3.3	+0.0	+0.0	57.4	75.2	-17.8	Horiz
			+0.0	+0.0	+0.3	-33.8			959.85		
			+0.3	+32.5							
7	6664.100M	44.7	+0.0	+0.9	+4.6	+0.0	+0.0	52.8	75.2	-22.4	Vert
			+0.0	+0.0	+0.7	-34.1			952		
			+0.6	+35.4							
8	6664.010M	44.3	+0.0	+0.9	+4.6	+0.0	+0.0	52.4	75.2	-22.8	Horiz
			+0.0	+0.0	+0.7	-34.1			952		
			+0.6	+35.4							
9	5759.060M	45.3	+0.0	+0.8	+4.1	+0.0	+0.0	52.0	75.2	-23.2	Vert
			+0.0	+0.0	+0.5	-33.6			959.85		
			+0.5	+34.4							
10	6718.840M	43.4	+0.0	+0.9	+4.6	+0.0	+0.0	51.8	75.2	-23.4	Vert
			+0.0	+0.0	+1.0	-34.1			959.85		
			+0.5	+35.5							
11	2879.480M	52.1	+0.0	+0.5	+2.8	+0.0	+0.0	51.6	75.2	-23.6	Vert
			+0.0	+0.0	+0.4	-34.1			959.85		
10	0560 00016	10.1	+0.4	+29.5		0.0	0.0		75.0	22.7	T 7 .
12	8568.000M	40.1		+1.1	+5.2	+0.0	+0.0	51.5	75.2	-23.7	Vert
			+0.0	+0.0	+0.6	-34.9			952		
1.0	0.620.760\4	40.4	+0.7	+38.7	. 7.1	. 0. 0	. 0. 0	51.5	75.0	22.7	T7 .
13	8638.760M	40.4	+0.0	+1.0	+5.1	+0.0	+0.0	51.5		-23.7	Vert
			+0.0	+0.0	+0.5	-34.9			959.85		
1 /	2070 (00) 4	£1 £	+0.7	+38.7	12.0	100	100	51.0	75.0	24.2	II'
14	2879.600M	51.5	+0.0	+0.5	+2.8	+0.0	+0.0	51.0	75.2	-24.2	Horiz
			+0.0	+0.0	+0.4	-34.1			959.85		
1.5	4760 120N	157	+0.4	+29.5	12.6	100	100	50.2	75.0	24.0	17
15	4760.120M	45.7	+0.0 +0.0	$+0.6 \\ +0.0$	+3.6 +0.3	+0.0 -33.6	+0.0	50.3	75.2 952	-24.9	Vert
				40.0		3 5 0					

Page 24 of 44 Report No.: 107795-3

16 2856.18	OM 50.	6 +0.0	+0.5	+2.7	+0.0	+0.0	50.0	75.2	-25.2	Horiz
		+0.0	+0.0	+0.4	-34.1			952		
		+0.4	+29.5							
17 8567.97	OM 38	5 + 0.0	+1.1	+5.2	+0.0	+0.0	49.9	75.2	-25.3	Horiz
		+0.0	+0.0	+0.6	-34.9			952		
		+0.7	+38.7							
18 6718.97	OM 41.		+0.9	+4.6	+0.0	+0.0	49.6	75.2	-25.6	Horiz
		+0.0	+0.0	+1.0	-34.1			959.85		
		+0.5	+35.5							
19 2856.01	OM 50.		+0.5	+2.7	+0.0	+0.0	49.6	75.2	-25.6	Vert
		+0.0	+0.0	+0.4	-34.1			952		
		+0.4	+29.5							
20 5759.14	OM 42.		+0.8	+4.1	+0.0	+0.0	49.5	75.2	-25.7	Horiz
		+0.0	+0.0	+0.5	-33.6			959.85		
		+0.5	+34.4							
21 5712.10	OM 42.	8 +0.0	+0.8	+4.1	+0.0	+0.0	49.5	75.2	-25.7	Vert
		+0.0	+0.0	+0.6	-33.6			952		
		+0.5	+34.3							
22 29.565	M 44.	9 +0.0	+0.1	+0.3	+0.0	+0.0	49.1	75.2	-26.1	Groun
		+0.0	+3.8	+0.0	+0.0					
		+0.0	+0.0							
23 4799.25	OM 44.		+0.6	+3.6	+0.0	+0.0	49.0		-26.2	Vert
		+0.0	+0.0	+0.3	-33.6			959.85		
		+0.5	+33.2							
24 7678.82	OM 39.	0.0+	+1.4	+4.7	+0.0	+0.0	48.8	75.2	-26.4	Horiz
		+0.0	+0.0	+0.6	-34.9			959.85		
		+0.6	+37.4							
25 1904.09	OM 51.	9 +0.0	+0.4	+2.2	+0.0	+0.0	48.7	75.2	-26.5	Horiz
		+0.0	+0.0	+0.5	-34.6			952		
		+0.3	+28.0							
26 7616.08	OM 39.		+1.4	+4.6	+0.0	+0.0	48.7	75.2	-26.5	Horiz
		+0.0	+0.0	+0.6	-34.9			952		
		+0.6	+37.4							
27 8638.67	OM 37.	1 +0.0	+1.0	+5.1	+0.0	+0.0	48.2	75.2	-27.0	Horiz
		+0.0	+0.0	+0.5	-34.9			959.85		
		+0.7	+38.7							
28 7678.69	OM 38.	4 +0.0	+1.4	+4.7	+0.0	+0.0	48.2	75.2	-27.0	Vert
		+0.0	+0.0	+0.6	-34.9			959.85		
		+0.6	+37.4							
29 1903.97	OM 51.	3 +0.0	+0.4	+2.2	+0.0	+0.0	48.1	75.2	-27.1	Vert
		+0.0	+0.0	+0.5	-34.6			952		
		+0.3	+28.0							
30 4799.35	OM 43.	5 +0.0	+0.6	+3.6	+0.0	+0.0	48.1	75.2	-27.1	Horiz
		+0.0	+0.0	+0.3	-33.6			959.85		
		+0.5	+33.2							
31 7616.10	OM 38.	4 +0.0	+1.4	+4.6	+0.0	+0.0	48.1	75.2	-27.1	Vert
		+0.0	+0.0	+0.6	-34.9			952		
		+0.6	+37.4							
32 1919.68	OM 50.	8 +0.0	+0.4	+2.2	+0.0	+0.0	47.7	75.2	-27.5	Vert
		+0.0	+0.0	+0.5	-34.6			959.85		
		+0.3	+28.1							

Page 25 of 44 Report No.: 107795-3

33 4759.990M 42.6 +0.0 +0.6 +3.6 +0.0 +0.0 47.2 75.2 -28.0 Ho
+0.5 +33.2 34 5712.020M
34 5712.020M
+0.0 +0.0 +0.6 -33.6 952 +0.5 +34.3 35 663.400M 15.5 +0.0 +0.3 +1.2 +2.1 +0.0 46.2 75.2 -29.0 Ho +27.1 +0.0 +0.0 +0.0 +0.0 36 1919.730M 46.9 +0.0 +0.4 +2.2 +0.0 +0.0 43.8 75.2 -31.4 Ho +0.0 +0.0 +0.5 -34.6 959.85 +0.3 +28.1 37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
+0.5 +34.3 35 663.400M 15.5 +0.0 +0.3 +1.2 +2.1 +0.0 46.2 75.2 -29.0 Ho +27.1 +0.0 +0.0 +0.0 36 1919.730M 46.9 +0.0 +0.4 +2.2 +0.0 +0.0 43.8 75.2 -31.4 Ho +0.0 +0.0 +0.5 -34.6 959.85 +0.3 +28.1 37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0 +0.0
35 663.400M 15.5 +0.0 +0.3 +1.2 +2.1 +0.0 46.2 75.2 -29.0 Ho +27.1 +0.0 +0.0 +0.0 36 1919.730M 46.9 +0.0 +0.4 +2.2 +0.0 +0.0 43.8 75.2 -31.4 Ho +0.0 +0.0 +0.0 +0.5 -34.6 959.85 +0.3 +28.1 37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
+27.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 43.8 75.2 -31.4 Ho +0.0 +0.0 +0.0 +0.5 -34.6 959.85 +0.3 +28.1 37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0
+0.0 +0.0 36 1919.730M
36 1919.730M 46.9 +0.0 +0.4 +2.2 +0.0 +0.0 43.8 75.2 -31.4 Ho +0.0 +0.0 +0.5 -34.6 959.85 +0.3 +28.1 37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
+0.0 +0.0 +0.5 -34.6 959.85 +0.3 +28.1 37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
+0.3 +28.1 37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
37 292.900M 21.8 +0.0 +0.2 +0.9 +1.2 +0.0 42.2 75.2 -33.0 Ho +18.1 +0.0 +0.0 +0.0 +0.0 +0.0
+18.1 +0.0 +0.0 +0.0 +0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
+0.0 +0.0 38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
38 291.900M 21.3 +0.0 +0.2 +0.8 +1.2 +0.0 41.6 75.2 -33.6 Ho +18.1 +0.0 +0.0 +0.0
+18.1 $+0.0$ $+0.0$ $+0.0$
+0.0 +0.0
39 43.600M 26.0 +0.0 +0.1 +0.3 +0.5 +0.0 41.2 75.2 -34.0 Ve
+14.3 +0.0 +0.0 +0.0
+0.0 +0.0
40 20.459M 33.4 +0.0 +0.1 +0.2 +0.0 +0.0 40.0 75.2 -35.2 Gro
+0.0 +6.3 +0.0 +0.0
+0.0 +0.0
41 20.372M 33.2 +0.0 +0.1 +0.2 +0.0 +0.0 39.8 75.2 -35.4 Pa
+0.0 +6.3 +0.0 +0.0
+0.0 +0.0
42 1968.000M 42.5 +0.0 +0.4 +2.2 +0.0 +0.0 39.5 75.2 -35.7 Ho
+0.0 +0.0 +0.4 -34.6
+0.3 +28.3
43 71.700M 23.8 +0.0 +0.1 +0.4 +0.5 +0.0 37.7 75.2 -37.5 Ve
+12.9 +0.0 +0.0 +0.0
+0.0 +0.0
44 271.500M 16.5 +0.0 +0.2 +0.8 +1.1 +0.0 37.7 75.2 -37.5 Ho
+19.1 +0.0 +0.0 +0.0
+0.0 +0.0
45 130.900M 21.2 +0.0 +0.1 +0.5 +0.7 +0.0 36.0 75.2 -39.2 Ve
+13.5 +0.0 +0.0 +0.0
+0.0 +0.0
46 106.600M 20.2 +0.0 +0.1 +0.5 +0.6 +0.0 35.6 75.2 -39.6 Ve
+14.2 +0.0 +0.0 +0.0
+0.0 +0.0
47 79.500M 21.8 +0.0 +0.1 +0.4 +0.6 +0.0 35.5 75.2 -39.7 Ve
+12.6 +0.0 +0.0 +0.0
+0.0 +0.0
48 189.100M 18.2 +0.0 +0.1 +0.7 +0.9 +0.0 35.3 75.2 -39.9 Ve
+15.4 +0.0 +0.0 +0.0
+0.0 +0.0
49 71.700M 20.7 +0.0 +0.1 +0.4 +0.5 +0.0 34.6 75.2 -40.6 Ho
+12.9 +0.0 +0.0 +0.0
+0.0 +0.0

Page 26 of 44 Report No.: 107795-3

50	168.700M	16.8	+0.0	+0.1	+0.6	+0.9	+0.0	33.7	75.2	-41.5	Horiz
			+15.3	+0.0	+0.0	+0.0					
			+0.0	+0.0							
51	186.200M	16.2	+0.0	+0.1	+0.7	+0.9	+0.0	33.4	75.2	-41.8	Horiz
			+15.5	+0.0	+0.0	+0.0					
			+0.0	+0.0							
52	52.300M	18.8	+0.0	+0.1	+0.3	+0.5	+0.0	32.0	75.2	-43.2	Vert
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0							

Page 27 of 44 Report No.: 107795-3

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 101.111(a)(5) Radiated Emissions (non-mask)

Work Order #: 107795 Date: 12/21/2022
Test Type: Maximized Emissions Time: 17:16:26
Tested By: Michael Atkinson Sequence#: 52

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 37% Pressure: 102.2kPa

Test Method: ANSI C63.26 (2015)

Frequency: 9kHz-10GHz

Test Setup: EUT is continuously transmitting with modulation; antenna port is terminated. Horizontal and vertical measurement antenna polarities investigated above 30MHz, 3 x orthogonal axes investigated below 30MHz, worst-case reported. EUT XYZ axes investigated, worst-case reported. Investigated with received boards removed, fully loaded unit is representative of worst-case.

Power supply is remotely located outside of chamber with filter caps at chamber wall.

Investigated with antennas at 1.5m height, as well as moving the entire setup so the EUT is at 1.5m height, worst-case reported. Left the Tx antenna in chamber as the antenna based is shared with the EUT's GPS antenna.

Investigated 24.76 and 57.78Hz modulation, worst-case reported.

MC4Max with Tablet

Page 28 of 44 Report No.: 107795-3

Itron, Inc. WO#: 107795 Sequence#: 52 Date: 12/21/2022 101.111(a)(5) Radiated Emissions (non-mask) Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 101.111(a)(5) Radiated Emissions (non-mask)

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023

Page 29 of 44 Report No.: 107795-3

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distan	ce: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	57.597k	59.8	+0.0	+0.1	+0.0	+0.0	+0.0	69.6	75.2	-5.6	Groun
			+0.0	+9.7	+0.0	+0.0					
			+0.0	+0.0							
2	57.597k	58.9	+0.0	+0.1	+0.0	+0.0	+0.0	68.7	75.2	-6.5	Para
			+0.0	+9.7	+0.0	+0.0					
			+0.0	+0.0							
3	3808.000M	64.3	+0.0	+0.6	+3.3	+0.0	+0.0	67.4	75.2	-7.8	Vert
			+0.0	+0.0	+0.3	-33.8			952 57.78		
			+0.3	+32.4							
4	3808.050M	64.1	+0.0	+0.6	+3.3	+0.0	+0.0	67.2	75.2	-8.0	Vert
			+0.0	+0.0	+0.3	-33.8			952 24.76		
			+0.3	+32.4							
5	3839.400M	58.2	+0.0	+0.6	+3.3	+0.0	+0.0	61.4	75.2	-13.8	Vert
			+0.0	+0.0	+0.3	-33.8			959.85		
			+0.3	+32.5							
6	3808.020M	55.9	+0.0	+0.6	+3.3	+0.0	+0.0	59.0	75.2	-16.2	Horiz
			+0.0	+0.0	+0.3	-33.8			952 24.76		
			+0.3	+32.4							
7	3839.370M	55.4	+0.0	+0.6	+3.3	+0.0	+0.0	58.6	75.2	-16.6	Horiz
			+0.0	+0.0	+0.3	-33.8			959.85		
			+0.3	+32.5							
8	4977.180M	48.0	+0.0	+0.7	+3.8	+0.0	+0.0	54.2	75.2	-21.0	Vert
			+0.0	+0.0	+0.6	-33.4					
			+0.7	+33.8							
9	4992.410M	47.9	+0.0	+0.7	+3.8	+0.0	+0.0	54.1	75.2	-21.1	Horiz
			+0.0	+0.0	+0.6	-33.3					
			+0.7	+33.7							
10	6664.020M	45.7	+0.0	+0.9	+4.6	+0.0	+0.0	53.8	75.2	-21.4	Vert
			+0.0	+0.0	+0.7	-34.1			952 24.76		
			+0.6	+35.4							
11	8568.140M	42.4	+0.0	+1.1	+5.2	+0.0	+0.0	53.8	75.2	-21.4	Vert
			+0.0	+0.0	+0.6	-34.9			952 24.76		
			+0.7	+38.7							
12	4991.340M	47.1		+0.7	+3.8	+0.0	+0.0	53.3	75.2	-21.9	Vert
			+0.0	+0.0	+0.6	-33.4					
			+0.7	+33.8							
13	8638.550M	41.3	+0.0	+1.0	+5.1	+0.0	+0.0	52.4	75.2	-22.8	Vert
			+0.0	+0.0	+0.5	-34.9			959.85		
			+0.7	+38.7							
14	5759.100M	45.3	+0.0	+0.8	+4.1	+0.0	+0.0	52.0		-23.2	Vert
			+0.0	+0.0	+0.5	-33.6			959.85		
			+0.5	+34.4							
15	6664.000M	43.8	+0.0	+0.9	+4.6	+0.0	+0.0	51.9		-23.3	Horiz
			+0.0	+0.0	+0.7	-34.1			952 24.76		
			+0.6	+35.4							

Page 30 of 44 Report No.: 107795-3

16 6719.060M	43.5	+0.0		+4.6	+0.0	+0.0	51.9	75.2	-23.3	Vert
		+0.0	+0.0	+1.0	-34.1			959.85		
		+0.5	+35.5							
17 2879.580M	52.1	+0.0	+0.5		+0.0	+0.0	51.6	75.2	-23.6	Vert
		+0.0	+0.0	+0.4	-34.1			959.85		
		+0.4	+29.5							
18 4799.240M	46.3	+0.0	+0.6		+0.0	+0.0	50.9	75.2	-24.3	Vert
		+0.0	+0.0	+0.3	-33.6			959.85		
		+0.5	+33.2							
19 7678.750M	40.8	+0.0	+1.4		+0.0	+0.0	50.6	75.2	-24.6	Vert
		+0.0	+0.0	+0.6	-34.9			959.85		
		+0.6	+37.4							
20 2856.020M	50.9	+0.0	+0.5		+0.0	+0.0	50.3	75.2	-24.9	Vert
		+0.0	+0.0	+0.4	-34.1			952 24.76		
		+0.4	+29.5							
21 4760.010M	45.7	+0.0	+0.6			+0.0	50.3	75.2	-24.9	Vert
		+0.0	+0.0	+0.3	-33.6			952 24.76		
		+0.5	+33.2							
22 6718.970M	41.4	+0.0	+0.9			+0.0	49.8	75.2	-25.4	Horiz
		+0.0	+0.0	+1.0	-34.1			959.85		
		+0.5								
23 8638.680M	38.4	+0.0	+1.0		+0.0	+0.0	49.5	75.2	-25.7	Horiz
		+0.0	+0.0	+0.5	-34.9			959.85		
		+0.7								
24 1919.820M	52.6	+0.0	+0.4		+0.0	+0.0	49.5	75.2	-25.7	Vert
		+0.0	+0.0	+0.5	-34.6			959.85		
		+0.3								
25 5759.230M	42.8	+0.0	+0.8		+0.0	+0.0	49.5	75.2	-25.7	Horiz
		+0.0	+0.0	+0.5	-33.6			959.85		
		+0.5	+34.4							
26 7616.020M	39.6	+0.0	+1.4	+4.6	+0.0	+0.0	49.3	75.2	-25.9	Vert
		+0.0	+0.0	+0.6	-34.9			952 24.76		
		+0.6	+37.4							
27 4759.960M	44.2	+0.0	+0.6			+0.0	48.8	75.2	-26.4	Horiz
		+0.0	+0.0	+0.3	-33.6			952 24.76		
			+33.2							
28 1903.870M	51.9	+0.0	+0.4	+2.2				75.2	-26.5	Vert
			+0.0	+0.5	-34.6			952 24.76		
		+0.3	+28.0							
29 2856.120M	49.3	+0.0	+0.5	+2.7	+0.0	+0.0	48.7		-26.5	Horiz
		+0.0	+0.0	+0.4	-34.1			952 24.76		
		+0.4	+29.5							
30 5712.130M	42.0	+0.0	+0.8	+4.1	+0.0	+0.0	48.7	75.2	-26.5	Vert
		+0.0	+0.0	+0.6	-33.6			952 24.76		
04 = 54 5 1003 =	26.0	+0.5	+34.3			0.0	40.5		2	** .
31 7616.130M	38.9	+0.0	+1.4	+4.6	+0.0	+0.0	48.6		-26.6	Horiz
		+0.0	+0.0	+0.6	-34.9			952 24.76		
22 0500 5003 5	0.7.1	+0.6	+37.4			0.0	40.7		2	**
32 9598.590M	36.4	+0.0	+1.0	+5.1	+0.0	+0.0	48.5	75.2	-26.7	Vert
		+0.0	+0.0	+0.8	-34.1			959.85		
		+0.8	+38.5							

Page 31 of 44 Report No.: 107795-3

33	2879.500M	49.0	+0.0	+0.5	+2.8	+0.0	+0.0	48.5	75.2	-26.7	Horiz
			+0.0	+0.0	+0.4	-34.1			959.85		
			+0.4	+29.5							
34	4799.350M	43.6	+0.0	+0.6	+3.6	+0.0	+0.0	48.2	75.2	-27.0	Horiz
			+0.0	+0.0	+0.3	-33.6			959.85		
			+0.5	+33.2							
35	7678.820M	38.1	+0.0	+1.4	+4.7	+0.0	+0.0	47.9		-27.3	Horiz
			+0.0	+0.0	+0.6	-34.9			959.85		
			+0.6	+37.4							
36	5712.100M	40.2	+0.0	+0.8	+4.1	+0.0	+0.0	46.9	75.2	-28.3	Horiz
			+0.0	+0.0	+0.6	-33.6			952 24.76		
			+0.5	+34.3							
37	29.971M	42.9	+0.0	+0.1	+0.3	+0.0	+0.0	46.9	75.2	-28.3	Groun
			+0.0	+3.6	+0.0	+0.0					
			+0.0	+0.0							
38	950.100k	36.5	+0.0	+0.1	+0.1	+0.0	+0.0	46.2	75.2	-29.0	Para
			+0.0	+9.5	+0.0	+0.0					
			+0.0	+0.0							
39	1919.790M	49.1	+0.0	+0.4	+2.2	+0.0	+0.0	46.0	75.2	-29.2	Horiz
			+0.0	+0.0	+0.5	-34.6			959.85		
			+0.3	+28.1							
40	1903.900M	48.7	+0.0	+0.4	+2.2	+0.0	+0.0	45.5	75.2	-29.7	Horiz
			+0.0	+0.0	+0.5	-34.6			952 24.76		
			+0.3	+28.0							
41	478.100M	15.7	+0.0	+0.2	+1.1	+1.5	+0.0	42.4	75.2	-32.8	Vert
			+23.9	+0.0	+0.0	+0.0					
			+0.0	+0.0							
42	1776.000M	45.3	+0.0	+0.4	+2.1	+0.0	+0.0	40.7	75.2	-34.5	Horiz
			+0.0	+0.0	+0.6	-34.8					
			+0.3	+26.8							
43	303.500M	19.0	+0.0	+0.2	+0.9	+1.2	+0.0	40.0	75.2	-35.2	Horiz
			+18.7	+0.0	+0.0	+0.0					
			+0.0	+0.0							
44	28.840M	35.0	+0.0	+0.1	+0.2	+0.0	+0.0	39.4	75.2	-35.8	Para
			+0.0	+4.1	+0.0	+0.0					
			+0.0	+0.0							
45	103.700M	22.9	+0.0	+0.1	+0.5	+0.6	+0.0	38.2	75.2	-37.0	Vert
			+14.1	+0.0	+0.0	+0.0					
			+0.0	+0.0							
46	145.400M	22.1	+0.0	+0.1	+0.5	+0.8	+0.0	37.5	75.2	-37.7	Vert
			+14.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
47	324.900M	15.3	+0.0	+0.2	+0.9	+1.2	+0.0	36.8	75.2	-38.4	Horiz
			+19.2	+0.0	+0.0	+0.0					
			+0.0	+0.0							
48	187.100M	19.4	+0.0	+0.1	+0.7	+0.9	+0.0	36.6	75.2	-38.6	Vert
	10,,1001,1	-/	+15.5	+0.0	+0.0	+0.0	. 0.0	20.0	. 5.2	20.0	. 011
				+0.0							
			+0.0	().()							
49	145.400M	20.2	+0.0		+0.5	+0.8	+0.0	35.6	75.2	-39 6	Horiz
49	145.400M	20.2	+0.0 +0.0 +14.0	+0.1 +0.0	+0.5 +0.0	+0.8 +0.0	+0.0	35.6	75.2	-39.6	Horiz

Page 32 of 44 Report No.: 107795-3

50	71.700M	21.5	+0.0	+0.1	+0.4	+0.5	+0.0	35.4	75.2	-39.8	Vert
			+12.9	+0.0	+0.0	+0.0					
			+0.0	+0.0							
51	221.100M	17.0	+0.0	+0.1	+0.7	+1.0	+0.0	35.4	75.2	-39.8	Vert
			+16.6	+0.0	+0.0	+0.0					
			+0.0	+0.0							
52	79.500M	21.5	+0.0	+0.1	+0.4	+0.6	+0.0	35.2	75.2	-40.0	Vert
			+12.6	+0.0	+0.0	+0.0					
			+0.0	+0.0							
53	292.900M	14.7	+0.0	+0.2	+0.9	+1.2	+0.0	35.1	75.2	-40.1	Vert
			+18.1	+0.0	+0.0	+0.0					
			+0.0	+0.0							
54	93.000M	19.0	+0.0	+0.1	+0.5	+0.6	+0.0	33.2	75.2	-42.0	Vert
			+13.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
55	86.300M	16.7	+0.0	+0.1	+0.4	+0.6	+0.0	30.2	75.2	-45.0	Horiz
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0							
56	19.415M	19.5	+0.0	+0.1	+0.2	+0.0	+0.0	26.3	75.2	-48.9	Para
			+0.0	+6.5	+0.0	+0.0					
			+0.0	+0.0							

Page 33 of 44 Report No.: 107795-3

Test Setup Photo(s)

Below 1GHz; Laptop

Above 1GHz; Laptop

Below 1GHz; Tablet

Above 1GHz; Tablet

2.1046 / 101.113(a) Transmitter Power Limitations

Test Setup/Conditions								
Test Location:	Brea Lab D	Test Engineer:	Michael Atkinson					
Test Method:	ANSI C63.26 (2015), section 5.2	Test Date(s):	12/2/2022 to 12/12/2022					
Configuration:	3							
Test Setup:	The EUT is placed on test benc connected to support computer connected to a spectrum analyzer	r. The EUT is contin	uously transmitting. The EUT is					

Environmental Cond	litions		
Temperature (°C)	20.5	Relative Humidity (%):	31-41

	Test Equipment										
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due						
02872	Spectrum Analyzer	Agilent	E4440A	11/29/2021	11/29/2023						
P07746	Attenuator	Pasternack	PE7004-6	2/11/2021	2/11/2023						
P07623	Attenuator	API Weinschel	47-20-34	3/16/2022	3/16/2024						
P06452	Cable	Andrews	Heliax	1/17/2022	1/17/2024						

	Test Data Summary - RF Conducted Measurement											
Frequency (MHz)	Modulation	Ant. Gain (dBi)	Measured (dBm)	EIRP (dBm)	Limit (dBm)	Limit (dBW)	Results					
952.0	24.76 Hz AM	5	35.91	40.91	≤44	≤14	Pass					
956.0	24.76 Hz AM	5	36.09	41.09	≤44	≤14	Pass					
959.85	24.76 Hz AM	5	36.13	41.13	≤44	≤14	Pass					
952.0	57.78 Hz AM	5	35.67	40.67	≤44	≤14	Pass					
956.0	57.78 Hz AM	5	35.86	40.86	≤44	≤14	Pass					
959.85	57.78 Hz AM	5	36.26	41.26	≤44	≤14	Pass					

Page 36 of 44 Report No.: 107795-3

Plot(s)

24.76Hz AM Mod

Low Channel

Page 37 of 44 Report No.: 107795-3

Middle Channel

High Channel

57.78Hz AM Mod

Low Channel

Middle Channel

High Channel

Test Setup Photo(s)

Page 40 of 44 Report No.: 107795-3

Appendix A: Manufacturer Declaration

The manufacturer declares that the MC3C model applies to device names: MC3 and MC4Max.

These are identical hardware configurations and the only difference is in the name. Testing on the MC3C is representative of testing on the following model(s):

MC3C1 (device name MC3Lite)

Page 41 of 44 Report No.: 107795-3

APPENDIX B: MEASUREMENT UNCERTAINTIES

Uncertainty Parameter	Actual	Limit	Unit of Measure
Occupied Channel Bandwidth	1	5	%
RF output power, conducted	0.67	1.5	dB
Power Spectral Density, conducted	0.67	3	dB
Unwanted Emissions, conducted	0.67	3	dB
All emissions, radiated	3.73	6	dB
Temperature	1	3	ōC
Humidity	3.4	5	%
DC and low frequency voltages	2	3	%
Time	1.1	5	%

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Page 42 of 44 Report No.: 107795-3

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBμV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBμV/m)		

Page 43 of 44 Report No.: 107795-3

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz		
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 44 of 44 Report No.: 107795-3