Itron, Inc.

TEST REPORT FOR

MC4Pro Model: MC4C*

*(See Appendix A for Manufacturer's Declaration)

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (FHSS 902-928MHz)

Report No.: 107795-7

Date of issue: January 26, 2023

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 50 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
General Product Information	
FCC Part 15 Subpart C	12
15.247(b)(2) Output Power	12
15.247(d) Radiated Emissions & Band Edge	18
Appendix A: Manufacturer Declaration	47
Appendix B: Manufacturer Provided Data	48
Supplemental Information	49
Measurement Uncertainty	49
Emissions Test Details	40

ADMINISTRATIVE INFORMATION

Test Report Information

Viviana Prado

CKC Laboratories, Inc. 5046 Sierra Pines Drive

Mariposa, CA 95338

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019

Customer Reference Number: 269629

Representative: Jack McPeck Project Number: 107795

DATE OF EQUIPMENT RECEIPT: December 2, 2022

DATE(S) OF TESTING: December 2-12 and 16-23, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve 7 Belon

Page 3 of 50 Report No.: 107795-7

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 50 Report No.: 107795-7

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NP
15.247(a)(1)	Carrier Separation	NA	NP
15.247(a)(1)(i)	Number of Hopping Channels	NA	NP
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NP
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA1

NA = Not applicable

NA1 = Not applicable because the unit is battery powered from a vehicle only.

NP = CKC Laboratories was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

_		
Summary	/ Ot CO	nditions
Juli III I ai Y	יטו עט	папачтэ

None

Page 5 of 50 Report No.: 107795-7

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 (Radiated Laptop)

Equipment Tested:

Device	Manufacturer	Model #	S/N
MC4Pro	Itron, Inc.	MC4C	74008260

Support Equipment:

Device	Manufacturer	Model #	S/N
12VDC Power Supply	Lamda	LUS-10A-12	91K121691
5dBi Antenna	PCTEL	Generic	NA
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Laptop	Panasonic	CF-33	1GTSA65082

Configuration 2 (Radiated Tablet)

Equipment Tested:

Device	Manufacturer	Model #	S/N
MC4Pro	Itron, Inc.	MC4C	74008260

Support Equipment:

Device	Manufacturer	Model #	S/N
12VDC Power Supply	Lamda	LUS-10A-12	91K121691
5dBi Antenna	PCTEL	Generic	NA
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Tablet	Panasonic	FZ-G1	990005071111034

Configuration 3 (Conducted Laptop)

Equipment Tested:

Device	Manufacturer	Model #	S/N
MC4Pro	Itron, Inc.	MC4C	74008260

Support Equipment:

Device	Manufacturer	Model #	S/N
12VDC Power Supply	Lamda	LUS-10A-12	91K121691
Laptop	Panasonic	CF-33	1GTSA65082

Page 6 of 50 Report No.: 107795-7

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	908-924MHz
Number of Hopping Channels:	81
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	12.5kbps FM
Maximum Duty Cycle:	45mS
Number of TX Chains:	1
Antenna Type(s) and Gain:	External Omni / 5dbi
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	13.8VDC from car battery
Firmware / Software used for Test:	ARM version: 7.73.00.09 DSP version: 5.76.00.13 FPGA version: 3.02
	MC3 Test 4.2.0.0 and 4.0.2.3

The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

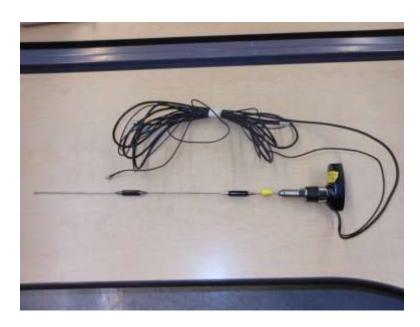
Page 7 of 50 Report No.: 107795-7

EUT Photo(s)

Page 8 of 50 Report No.: 107795-7

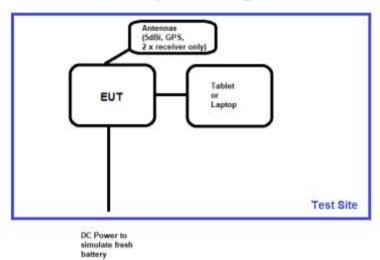
Support Equipment Photo(s)

Laptop

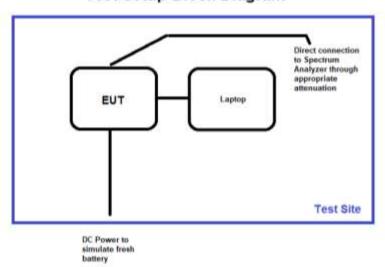


Tablet

2xReceiver Antenna



5dBi and GPS Antenna


Block Diagram of Test Setup(s)

Test Setup Block Diagram

Radiated (Configuration 1 & 2)

Test Setup Block Diagram

RF Conducted (Configuration 3)

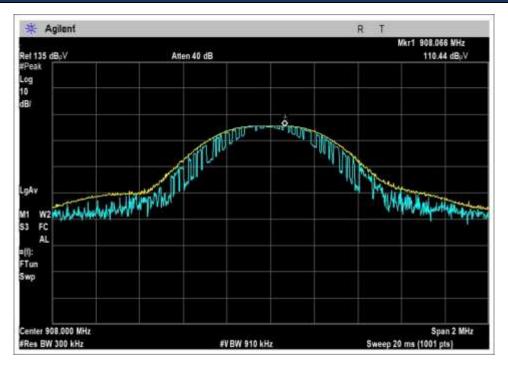
FCC Part 15 Subpart C

15.247(b)(2) Output Power

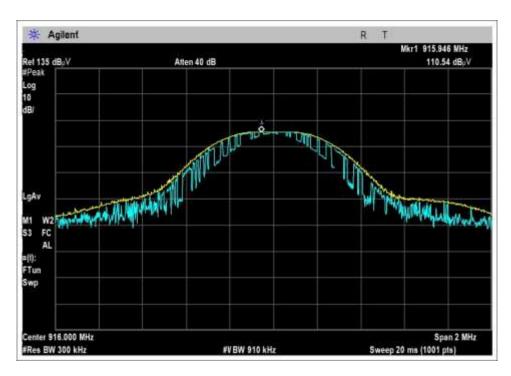
Test Setup/Conditions									
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson						
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/2/2022 – 12/12/2022						
Configuration:	3								
Test Setup:	connected to support computer.	The EUT is placed on test bench. Powered from external power supply. USB port is connected to support computer. The EUT is continuously transmitting. The EUT is connected to a spectrum analyzer through appropriate cables and attenuation.							

Environmental Conditions							
Temperature (ºC)	20.5-22	Relative Humidity (%):	31-42				

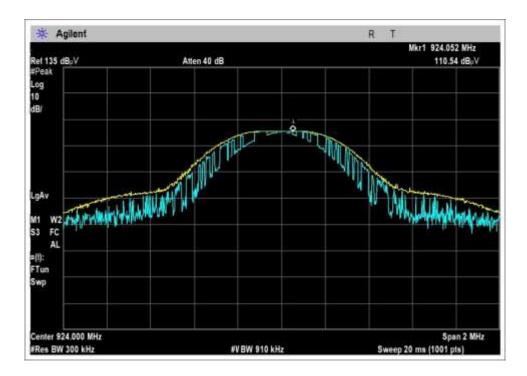
Test Data Summary - Voltage Variations


This equipment is battery powered. Power output tests were performed using an external power supply to simulate a fresh battery (13.8VDC).

	Test Data Summary - RF Conducted Measurement									
$Limit = \begin{cases} 30 \\ 24 \end{cases}$	$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \geq 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min \ 25) \end{cases}$									
Frequency		Ant. Type /	Measured	Limit						
(MHz)	Modulation	Modulation Ant. Type / Measured Limit Resu								
908	12.5k FM	Omni, 5dBi	29.6	≤30	Pass					
916	12.5k FM	Omni, 5dBi	29.8	≤30	Pass					
924	12.5k FM	Omni, 5dBi	29.8	≤30	Pass					


Page 12 of 50 Report No.: 107795-7

Plots



Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Work Order #:107795Date:12/12/2022Test Type:Conducted EmissionsTime:13:57:59Tested By:Michael AtkinsonSequence#:2Software:EMITest 5.03.2013.8VDC

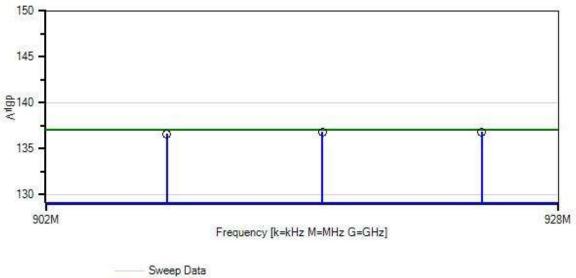
Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:


Frequency: Fundamental

Test Setup: Conducted Measurement, LMH channels.

Page 15 of 50 Report No.: 107795-7

Itron, Inc. WO#: 107795 Sequence#: 2 Date: 12/12/2022 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) Test Lead: 13.8VDC RF Port

Readings
O Peak Readings

✓ QP Readings

* Average Readings

▼ Ambient
Software Version: 5.03.20

1 - 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP07623	Attenuator	47-20-34	3/16/2022	3/16/2024
T2	ANP07746	Attenuator	PE7004-6	2/11/2021	2/11/2023
T3	ANP06452	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: RF Port		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	915.946M	110.5	+19.7	+5.8	+0.8		+0.0	136.8	137.0	-0.2	RF Po
2	924.052M	110.5	+19.7	+5.8	+0.8		+0.0	136.8	137.0	-0.2	RF Po
3	908.066M	110.4	+19.7	+5.8	+0.7		+0.0	136.6	137.0	-0.4	RF Po

Page 16 of 50 Report No.: 107795-7

Test Setup Photo(s)

Page 17 of 50 Report No.: 107795-7

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 107795 Date: 12/21/2022
Test Type: Maximized Emissions Time: 18:50:51
Tested By: Michael Atkinson Sequence#: 43

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 37% Pressure: 102.2kPa

Test Method: ANSI C63.10 (2013)

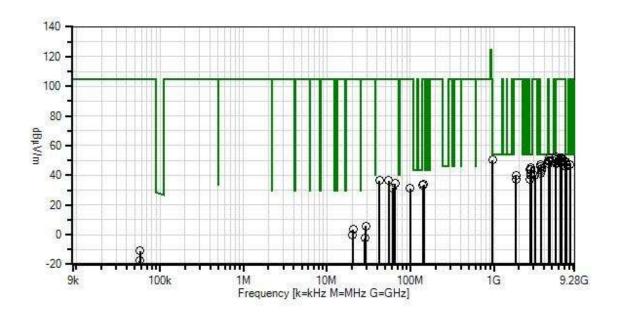
Frequency: 9kHz-10GHz

Test Setup: EUT is continuously transmitting with modulation. Horizontal and vertical measurement antenna polarities investigated above 30MHz, 3 x orthogonal axes investigated below 30MHz, worst-case reported. EUT XYZ axes investigated, worst-case reported. Also investigated with receiver only boards removed, the fully loaded unit is representative of worst-case.

Power supply is remotely located outside of chamber with filter caps at chamber wall.

Investigated with antenna at 1.5m height, as well as moving the entire setup so the EUT is at 1.5m height, worst-case reported.

MC4Pro with Laptop


Duty correction factor is applied to harmonics of the fundamental above 1GHz.

Correction factor = $20\log(44.67 \text{ms}/100 \text{ms}) = -7.0 \text{dB}$

Page 18 of 50 Report No.: 107795-7

Itron, Inc. WO#: 107795 Sequence#: 43 Date: 12/21/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ReadingsQP Readings

▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T5	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T6	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T7	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023

Page 19 of 50 Report No.: 107795-7

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB			$dB\mu V/m$	dB	Ant
1	5448.500M	45.2	+0.8	+4.0	+0.0	+0.0	+0.0	52.0	54.0	-2.0	Horiz
			+0.0	-33.6	+0.5	+34.7			908		
			+0.4								<u> </u>
2	4580.400M	47.8	+0.6	+3.5	+0.0	+0.0	+0.0	51.5	54.0	-2.5	Horiz
			+0.0	-33.6	+0.4	+32.3			916		
2	4520 67014	16.6	+0.5	.2.5	. 0. 0	. 0. 0	. 0. 0	50 1	540	2.0	X7 4
3	4539.670M	46.6	+0.6	+3.5 -33.6	+0.0 +0.3	+0.0 +32.1	+0.0	50.1	54.0	-3.9	Vert
			+0.0 +0.6	-33.0	+0.3	+32.1			908		
1	4620.140M	46.0	+0.6	+3.5	+0.0	+0.0	+0.0	49.7	54.0	-4.3	Horiz
4	4020.140M	40.0	+0.0	-33.6	+0.0	+32.4	+0.0	47.7	924	-4.5	HOHZ
			+0.4	33.0	10.4	132.4			724		
5	7327.450M	39.6	+1.3	+4.5	+0.0	+0.0	+0.0	49.3	54.0	-4.7	Horiz
3	7327.130141	37.0	+0.0	-34.9	+0.7	+37.5	10.0	17.3	916	1.,	HOHE
			+0.6	2.17					,10		
6	4619.900M	45.4	+0.6	+3.5	+0.0	+0.0	+0.0	49.1	54.0	-4.9	Vert
			+0.0	-33.6	+0.4	+32.4		.,	924		
			+0.4								
7	4580.090M	45.4	+0.6	+3.5	+0.0	+0.0	+0.0	49.0	54.0	-5.0	Vert
			+0.0	-33.6	+0.4	+32.2			916		
			+0.5								
8	7263.580M	40.0	+1.2	+4.5	+0.0	+0.0	+0.0	49.0	54.0	-5.0	Horiz
			+0.0	-34.9	+0.7	+37.2			908		
			+0.3								
9	7264.190M	39.6	+1.2	+4.5	+0.0	+0.0	+0.0	48.6	54.0	-5.4	Vert
			+0.0	-34.9	+0.7	+37.2			908		
			+0.3								
10	4540.020M	44.3	+0.6	+3.5	+0.0	+0.0	+0.0	47.8	54.0	-6.2	Horiz
			+0.0	-33.6	+0.3	+32.1			908		
1.1	2664 2103 4	45.1	+0.6	. 2.2	. 0. 0	. 0. 0	. 0. 0	47.5	710		X7
11	3664.210M	45.1	+0.6	+3.3	+0.0	+0.0	+0.0	47.5	54.0	-6.5	Vert
			$+0.0 \\ +0.2$	-33.8	+0.4	+31.7			916		
12	9171 940M	26.2		. 5 1	ι Ο Ο	ι Ο Ο	+0.0	17.5	540	6.5	Homin
12	8171.840M	36.2	$+1.2 \\ +0.0$	+5.1 -35.0	+0.0	+0.0 +38.6	+0.0	47.3	54.0 908	-6.5	Horiz
			+0.0	-55.0	+0.7	+36.0			200		
12	8172.190M	36.1	+1.2	+5.1	+0.0	+0.0	+0.0	Δ7 Λ	54.0	-6.6	Vert
13	01/2.1901	30.1	+0.0	-35.0	+0.0	+38.6	10.0	- 7/. -1	908	-0.0	v CI t
			+0.7	33.0	10.7	1 20.0			700		
14	7391.910M	37.5	+1.3	+4.5	+0.0	+0.0	+0.0	47.2	54.0	-6.8	Vert
1 1	, 5, 1,, 10141	37.3	+0.0	-34.9	+0.7	+37.4	. 0.0	. , . 2	924	0.0	, 011
			+0.7								

Page 20 of 50 Report No.: 107795-7

15	5448.360M	40.3	+0.8	+4.0	+0.0	+0.0	+0.0	47.1	54.0	-6.9	Vert
A	Ave		+0.0	-33.6	+0.5	+34.7			908		
			+0.4								
^	5448.360M	47.0	+0.8	+4.0	+0.0	+0.0	+0.0	53.8	54.0	-0.2	Vert
			+0.0	-33.6	+0.5	+34.7			908		
			+0.4								
17	7327.860M	36.3	+1.3	+4.5	+0.0	+0.0	+0.0	46.0	54.0	-8.0	Vert
			+0.0	-34.9	+0.7	+37.5			916		
			+0.6								
18	3664.160M	43.1	+0.6	+3.3		+0.0	+0.0	45.5	54.0	-8.5	Horiz
10 200 11100112		+0.0	-33.8	+0.4	+31.7			916			
			+0.2								
19	2771.890M	46.0	+0.5	+2.7	+0.0	+0.0	+0.0	45.2	54.0	-8.8	Vert
			+0.0	-34.1	+0.5	+29.3			924		
			+0.3								
20	3695.840M	42.2	+0.6	+3.3	+0.0	+0.0	+0.0	44.7	54.0	-9.3	Vert
		+0.0	-33.8	+0.3	+31.9			924			
			+0.2								
21	2723.810M	44.5	+0.5	+2.7	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
			+0.0	-34.1	+0.5	+29.4			908		
			+0.2								
22	2748.250M	44.5	+0.5	+2.7	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
			+0.0	-34.1	+0.5	+29.3			916		
			+0.3								
23	3695.860M	40.9	+0.6	+3.3	+0.0	+0.0	+0.0	43.4	54.0	-10.6	Horiz
			+0.0	-33.8	+0.3	+31.9			924		
			+0.2								
24 :	2747.730M	42.1	+0.5	+2.7	+0.0	+0.0	+0.0	41.3	54.0	-12.7	Horiz
			+0.0	-34.1	+0.5	+29.3			916		
			+0.3								
25	3631.940M	38.7	+0.6	+3.3	+0.0	+0.0	+0.0	41.2	54.0	-12.8	Vert
			+0.0	-33.8	+0.4	+31.7			908		
			+0.3								
26	2772.110M	41.0	+0.5	+2.7	+0.0	+0.0	+0.0	40.2	54.0	-13.8	Horiz
			+0.0	-34.1	+0.5	+29.3			924		
			+0.3								
27 :	2724.090M	38.0	+0.5	+2.7	+0.0	+0.0	+0.0	37.2	54.0	-16.8	Horiz
			+0.0	-34.1	+0.5	+29.4			908		
			+0.2								
28 :	5543.930M	45.5	+0.8	+4.0	+0.0	+0.0	+0.0	52.3	104.5	-52.2	Vert
		-	+0.0	-33.6	+0.5	+34.6			924	•	
			+0.5								
29	6411.470M	44.5	+0.9	+4.5	+0.0	+0.0	+0.0	52.0	104.5	-52.5	Vert
			+0.0	-34.0	+0.6	+35.0			916		
			+0.5								
	6467.710M	43.9	+0.9	+4.5	+0.0	+0.0	+0.0	51.5	104.5	-53.0 Vert	
30 -	J . J 1 U171	13.7	+0.0	-34.0	+0.7	+34.9	10.0	51.5	924	23.0	, 011
30				20	,						
30			+0.6								
	6356.370M	43.9	+0.6	+4 4	+0.0	+0.0	+0.0	51.3	104 5	-53.2	Vert
	6356.370M	43.9	+0.6 +0.9 +0.0	+4.4 -34.0	+0.0 +0.6	+0.0 +35.1	+0.0	51.3	104.5 908	-53.2	Vert

Page 21 of 50 Report No.: 107795-7

32	5495.990M	43.7	+0.8	+4.0	+0.0	+0.0	+0.0	50.5	104.5	-54.0	Horiz
			+0.0	-33.6	+0.5	+34.7			916		
			+0.4								
33	6467.990M	42.8	+0.9	+4.5	+0.0	+0.0	+0.0	50.4	104.5	-54.1	Horiz
			+0.0	-34.0	+0.7	+34.9			924		
			+0.6								
34	957.300M	15.2	+0.3	+1.5	+2.4	+30.8	+0.0	50.2	104.5	-54.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
35	6355.690M	42.5	+0.9	+4.4	+0.0	+0.0	+0.0	49.9	104.5	-54.6	Horiz
			+0.0	-34.0	+0.6	+35.1			908		
			+0.4								
36	6412.530M	42.2	+0.9	+4.5	+0.0	+0.0	+0.0	49.7	104.5	-54.8	Horiz
			+0.0	-34.0	+0.6	+35.0			916		
			+0.5								
37	5496.600M	41.9	+0.8	+4.0	+0.0	+0.0	+0.0	48.7	104.5	-55.8	Vert
			+0.0	-33.6	+0.5	+34.7			916		
			+0.4								
38	5544.170M	41.0	+0.8	+4.0	+0.0	+0.0	+0.0	47.8	104.5	-56.7	Horiz
			+0.0	-33.6	+0.5	+34.6			924		
			+0.5								
39	3090.000M	39.0	+0.5	+2.9	+0.0	+0.0	+0.0	40.1	104.5	-64.4	Vert
			+0.0	-34.0	+0.3	+30.8					
			+0.6								
40	1848.110M	43.8	+0.4	+2.1	+0.0	+0.0	+0.0	40.1	104.5	-64.4	Vert
			+0.0	-34.7	+0.3	+27.6			924		
			+0.6								
41	1831.850M	41.3	+0.4	+2.1	+0.0	+0.0	+0.0	37.5	104.5	-67.0	Vert
			+0.0	-34.7	+0.3	+27.5			916		
			+0.6								
42	55.200M	23.2	+0.1	+0.3	+0.5	+12.3	+0.0	36.4	104.5	-68.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
43	42.600M	20.8	+0.1	+0.3	+0.5	+14.7	+0.0	36.4	104.5	-68.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
44	65.900M	20.5	+0.1	+0.4	+0.5	+12.9	+0.0	34.4	104.5	-70.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
45	144.500M	18.5	+0.1	+0.5	+0.8	+14.0	+0.0	33.9	104.5	-70.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
46	141.600M	17.8	+0.1	+0.5	+0.8	+13.9	+0.0	33.1	104.5	-71.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
47	61.000M	18.0	+0.1	+0.4	+0.5	+12.6	+0.0	31.6	104.5	-72.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
48	98.900M	16.4	+0.1	+0.5	+0.6	+13.7	+0.0	31.3	104.5	-73.2	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 22 of 50 Report No.: 107795-7

49	29.217M	41.6	+0.1	+0.3	+0.0	+0.0	-40.0	5.9	104.5	-98.6	Groun
			+3.9	+0.0	+0.0	+0.0					
			+0.0								
50	20.662M	36.9	+0.1	+0.2	+0.0	+0.0	-40.0	3.5	104.5	-101.0	Groun
			+6.3	+0.0	+0.0	+0.0					
			+0.0								
51	20.401M	33.4	+0.1	+0.2	+0.0	+0.0	-40.0	0.0	104.5	-104.5	Para
			+6.3	+0.0	+0.0	+0.0					
			+0.0								
52	28.463M	32.9	+0.1	+0.2	+0.0	+0.0	-40.0	-2.5	104.5	-107.0	Para
			+4.3	+0.0	+0.0	+0.0					
			+0.0								
53	57.597k	59.3	+0.1	+0.0	+0.0	+0.0	-80.0	-10.9	104.5	-115.4	Para
			+9.7	+0.0	+0.0	+0.0					
			+0.0								
54	57.506k	52.8	+0.1	+0.0	+0.0	+0.0	-80.0	-17.4	104.5	-121.9	Groun
			+9.7	+0.0	+0.0	+0.0					
			+0.0								

Page 23 of 50 Report No.: 107795-7

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 107795 Date: 12/21/2022
Test Type: Maximized Emissions Time: 19:28:01
Tested By: Michael Atkinson Sequence#: 44

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 37% Pressure: 102.2kPa

Test Method: ANSI C63.10 (2013)

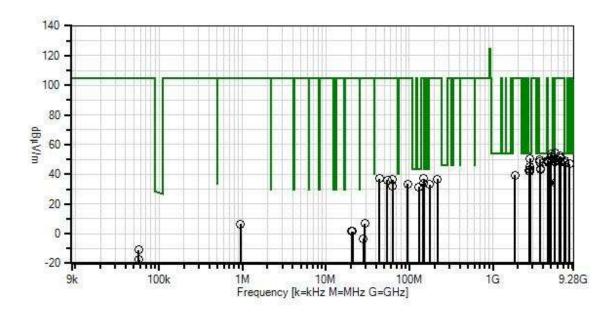
Frequency: 9kHz-10GHz

Test Setup: EUT is continuously transmitting with modulation. Horizontal and vertical measurement antenna polarities investigated above 30MHz, 3 x orthogonal axes investigated below 30MHz, worst-case reported. EUT XYZ axes investigated, worst-case reported. Also investigated with receiver only boards removed, the fully loaded unit is representative of worst-case.

Power supply is remotely located outside of chamber with filter caps at chamber wall.

Investigated with antenna at 1.5m height, as well as moving the entire setup so the EUT is at 1.5m height, worst-case reported.

MC4Pro with Tablet


Duty correction factor is applied to harmonics of the fundamental above 1GHz.

Correction factor = $20\log(44.67\text{ms}/100\text{ms}) = -7.0\text{dB}$

Page 24 of 50 Report No.: 107795-7

Itron, Inc. WO#: 107795 Sequence#: 44 Date: 12/21/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ReadingsQP Readings

▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T8	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
Т9	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023

Page 25 of 50 Report No.: 107795-7

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	_		T5	T6	T7	T8			_	_	
			T9	T10							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	4980.000M	47.4	+0.0	+0.7	+3.8	+0.0	+0.0	53.6	54.0	-0.4	Horiz
			+0.0	+0.0	-33.4	+0.7					
			+33.8	+0.6							
2	4983.000M	45.8	+0.0	+0.7	+3.8	+0.0	+0.0	52.0	54.0	-2.0	Vert
			+0.0	+0.0	-33.4	+0.7					
			+33.8	+0.6							
3	2772.210M	51.5	+0.0	+0.5	+2.7	+0.0	+0.0	50.7	54.0	-3.3	Vert
			+0.0	+0.0	-34.1	+0.5			924		
			+29.3	+0.3							
4	3664.180M	47.6	+0.0	+0.6	+3.3	+0.0	+0.0	50.0	54.0	-4.0	Vert
			+0.0	+0.0	-33.8	+0.4			916		
			+31.7	+0.2							
5	4539.330M	45.9	+0.0	+0.6	+3.5	+0.0	+0.0	49.4	54.0	-4.6	Vert
			+0.0	+0.0	-33.6	+0.3			908		
			+32.1	+0.6							
6	4580.440M	45.6	+0.0	+0.6	+3.5	+0.0	+0.0	49.3	54.0	-4.7	Vert
			+0.0	+0.0	-33.6	+0.4			916		
			+32.3	+0.5							
7	4540.400M	45.6	+0.0	+0.6	+3.5	+0.0	+0.0	49.1	54.0	-4.9	Horiz
			+0.0	+0.0	-33.6	+0.3			908		
			+32.1	+0.6							
8	7264.460M	40.0	+0.0	+1.2	+4.5	+0.0	+0.0	49.0	54.0	-5.0	Horiz
			+0.0	+0.0	-34.9	+0.7			908		
	7227.7603.6	20.2	+37.2	+0.3	1.5	0.0	0.0	40.0	740		T 7
9	7327.760M	39.2	+0.0	+1.3	+4.5	+0.0	+0.0	48.9	54.0	-5.1	Vert
			+0.0	+0.0	-34.9	+0.7			916		
10	5 4 4 0 4 0 0) 4	41.0	+37.5	+0.6	. 1.0	. 0. 0	. 0. 0	40.7	540	<i>5</i> 2	TT
10	5448.400M	41.9	+0.0	+0.8	+4.0	+0.0	+0.0	48.7	54.0	-5.3	Horiz
			+0.0	+0.0	-33.6	+0.5			908		
11	4C10.040M	44.0	+34.7	+0.4	.25	+ O O	.00	10.6	540	<i>E</i> 1	V 4
11	4619.940M	44.9	+0.0	+0.6	+3.5 -33.6	+0.0 +0.4	+0.0	48.6	54.0 924	-5.4	Vert
			+0.0 +32.4	$+0.0 \\ +0.4$	-33.0	+0.4			74 4		
12	3664.080M	46.1		+0.4	+3.3	+0.0	+0.0	19.5	54.0	-5.5	Horiz
12	2004.000M	40.1	+0.0 +0.0	+0.0	+3.3 -33.8	+0.0	+0.0	40.3	916	-3.3	HOHZ
			+31.7	+0.0	-33.6	+0.4			710		
13	4620.110M	44.7	+0.0	+0.2	+3.5	+0.0	+0.0	48 1	54.0	-5.6	Horiz
13	7020.110W	77./	+0.0	+0.0	-33.6	+0.0	10.0	70.7	924	-5.0	HUHL
			+32.4	+0.4	55.0	10.4			<i>></i> 2¬		
14	5447.730M	41.4	+0.0	+0.8	+4.0	+0.0	+0.0	48.2	54.0	-5.8	Vert
	Ave	r1.7	+0.0	+0.0	-33.6	+0.5	10.0	10.2	908	5.0	, 011
	· v		+34.7	+0.4	22.0	. 0.5			- 00		
^	5447.730M	46.6	+0.0	+0.8	+4.0	+0.0	+0.0	53.4	54.0	-0.6	Vert
	2		+0.0	+0.0	-33.6	+0.5	. 0.0	22	908	0.0	. 510
			+34.7	+0.4	22.0	. 0.5			- 00		

Page 26 of 50 Report No.: 107795-7

16 7263.440N	1 38.9	+0.0	+1.2	+4.5	+0.0	+0.0	47.9	54.0	-6.1	Vert
		+0.0	+0.0	-34.9	+0.7			908		
		+37.2	+0.3							
17 4580.160N	1 44.3	+0.0	+0.6	+3.5	+0.0	+0.0	47.9	54.0	-6.1	Horiz
		+0.0	+0.0	-33.6	+0.4			916		
		+32.2	+0.5							
18 8316.060N	1 35.1	+0.0	+1.2	+5.2	+0.0	+0.0	46.9		-7.1	Horiz
		+0.0	+0.0	-34.9	+0.7			924		
		+38.7	+0.9							
19 2748.190N	1 46.0	+0.0	+0.5	+2.7	+0.0	+0.0	45.2		-8.8	Vert
		+0.0	+0.0	-34.1	+0.5			916		
		+29.3	+0.3							
20 3696.320N	I 41.6	+0.0	+0.6	+3.3	+0.0	+0.0	44.1	54.0	-9.9	Horiz
		+0.0	+0.0	-33.8	+0.3			924		
		+31.9	+0.2							
21 2771.970N	1 43.7	+0.0	+0.5	+2.7	+0.0	+0.0	42.9	54.0	-11.1	Horiz
		+0.0	+0.0	-34.1	+0.5			924		
		+29.3	+0.3							
22 3696.070N	1 40.4	+0.0	+0.6	+3.3	+0.0	+0.0	42.9		-11.1	Vert
		+0.0	+0.0	-33.8	+0.3			924		
		+31.9	+0.2							
23 2723.950N	1 43.5	+0.0	+0.5	+2.7	+0.0	+0.0	42.7		-11.3	Vert
		+0.0	+0.0	-34.1	+0.5			908		
		+29.4	+0.2							
24 129.900M	16.8	+0.0	+0.1	+0.5	+0.7	+0.0	31.6	43.5	-11.9	Vert
		+13.5	+0.0	+0.0	+0.0					
		+0.0	+0.0							
25 2747.770N	1 42.4	+0.0	+0.5	+2.7	+0.0	+0.0	41.6		-12.4	Horiz
		+0.0	+0.0	-34.1	+0.5			916		
26 4000 5543		+29.3	+0.3	2.0			27.2	7.1.0	40.5	
26 4989.574N	1 29.1	+0.0	+0.7	+3.8	+0.0	+0.0	35.3	54.0	-18.7	Horiz
Ave		+0.0	+0.0	-33.4	+0.7					
27 4000 5741	7 07 1	+33.8	+0.6	. 2.0	. 0. 0	. 0. 0	22.2	740	20.7	X 7
27 4989.574N	1 27.1	+0.0	+0.7	+3.8	+0.0	+0.0	33.3	54.0	-20.7	Vert
Ave		+0.0	+0.0	-33.4	+0.7					
20 5544 100	<i>I</i> 47.2	+33.8	+0.6	. 1.0	. 0. 0	. 0. 0	<i>51</i> 1	104.5	50.4	X 74
28 5544.190N	1 47.3	+0.0	+0.8	+4.0	+0.0	+0.0		104.5	-50.4	Vert
		+0.0	+0.0	-33.6	+0.5			924		
20 (255 440)	<i>f</i> 447	+34.6	+0.5	. 1. 1	. 0. 0	. 0. 0	<i>5</i> 2.1	104.5	50.4	X 7
29 6355.440N	1 44.7	+0.0	+0.9	+4.4	+0.0	+0.0	52.1	104.5 908	-52.4	Vert
		+0.0	+0.0	-34.0	+0.6			908		
20 (411 510)	M 44.6	+35.1	+0.4	. 1 5	.00	. 0. 0	50.1	104 5	52.4	1 7
30 6411.510N	I 44.6	+0.0	+0.9	+4.5	+0.0	+0.0	52.1	104.5 916	-52.4	Vert
		+0.0 +35.0	+0.0 +0.5	-34.0	+0.6			710		
21 6/60 5101	1 12 6		+0.5	. 15	ι Ο Ο	ι Ο Ο	51.2	104.5	52.2	Vant
31 6468.510N	1 43.6	$+0.0 \\ +0.0$	$+0.9 \\ +0.0$	+4.5	$+0.0 \\ +0.7$	+0.0	51.2	104.5 924	-53.3	Vert
		+0.0 +34.9		-34.0	+0.7			J24		
32 6468.410N	1 125		+0.6	115		+0.0	51 1	104.5	52 /	Цотіс
34 0408.410N	1 43.5	+0.0 +0.0	$+0.9 \\ +0.0$	+4.5 -34.0	$+0.0 \\ +0.7$	+0.0	51.1	104.5 924	-53.4	Horiz
		+34.9	+0.0	-54.0	+0.7			74 1		
		+34. 7	+0.0							

Page 27 of 50 Report No.: 107795-7

33	6412.410M	43.3	+0.0	+0.9	+4.5	+0.0	+0.0	50.8	104.5	-53.7	Horiz
			+0.0	+0.0	-34.0	+0.6			916		
			+35.0	+0.5							
34	5543.460M	43.5	+0.0	+0.8	+4.0	+0.0	+0.0	50.3	104.5	-54.2	Horiz
			+0.0	+0.0	-33.6	+0.5			924		
			+34.6	+0.5							
35	5495.570M	41.9	+0.0	+0.8	+4.0	+0.0	+0.0	48.7	104.5	-55.8	Vert
			+0.0	+0.0	-33.6	+0.5			916		
			+34.7	+0.4							
36	6356.400M	40.8	+0.0	+0.9	+4.4	+0.0	+0.0	48.2	104.5	-56.3	Horiz
			+0.0	+0.0	-34.0	+0.6			908		
			+35.1	+0.4							
37	5496.080M	41.4	+0.0	+0.8	+4.0	+0.0	+0.0	48.2	104.5	-56.3	Horiz
			+0.0	+0.0	-33.6	+0.5			916		
			+34.7	+0.4							
38	1847.840M	43.1	+0.0	+0.4	+2.1	+0.0	+0.0	39.4	104.5	-65.1	Vert
			+0.0	+0.0	-34.7	+0.3			924		
			+27.6	+0.6							
39	43.600M	21.8	+0.0	+0.1	+0.3	+0.5	+0.0	37.0	104.5	-67.5	Vert
			+14.3	+0.0	+0.0	+0.0					
			+0.0	+0.0							
40	148.300M	20.9	+0.0	+0.1	+0.6	+0.8	+0.0	37.0	104.5	-67.5	Horiz
			+14.6	+0.0	+0.0	+0.0					
			+0.0	+0.0							
41	217.200M	18.5	+0.0	+0.1	+0.7	+1.0	+0.0	36.8	104.5	-67.7	Horiz
			+16.5	+0.0	+0.0	+0.0					
			+0.0	+0.0							
42	216.200M	18.3	+0.0	+0.1	+0.7	+1.0	+0.0	36.6	104.5	-67.9	Vert
			+16.5	+0.0	+0.0	+0.0					
			+0.0	+0.0							
43	63.000M	22.7	+0.0	+0.1	+0.4	+0.5	+0.0	36.4	104.5	-68.1	Vert
			+12.7	+0.0	+0.0	+0.0					
			+0.0	+0.0							
44	54.200M	23.0	+0.0	+0.1	+0.3	+0.5	+0.0	36.2	104.5	-68.3	Vert
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0							
45	147.400M	17.8	+0.0	+0.1	+0.6	+0.8	+0.0	33.7	104.5	-70.8	Vert
			+14.4	+0.0	+0.0	+0.0					
			+0.0	+0.0							
46	96.000M	19.1	+0.0	+0.1	+0.5	+0.6	+0.0	33.6	104.5	-70.9	Vert
			+13.3	+0.0	+0.0	+0.0					
			+0.0	+0.0							
47	173.600M	16.1	+0.0	+0.1	+0.6	+0.9	+0.0	33.3	104.5	-71.2	Vert
			+15.6	+0.0	+0.0	+0.0					
			+0.0	+0.0							
48	63.000M	18.3	+0.0	+0.1	+0.4	+0.5	+0.0	32.0	104.5	-72.5	Horiz
			+12.7	+0.0	+0.0	+0.0					
			+0.0	+0.0							
49	29.246M	42.4	+0.0	+0.1	+0.3	+0.0	-40.0	6.7	104.5	-97.8	Groun
			+0.0	+3.9	+0.0	+0.0					
			+0.0	+0.0							

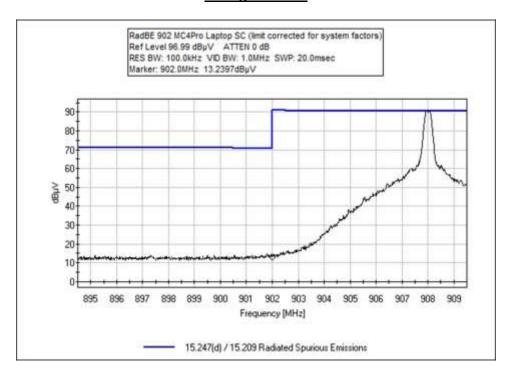
Page 28 of 50 Report No.: 107795-7

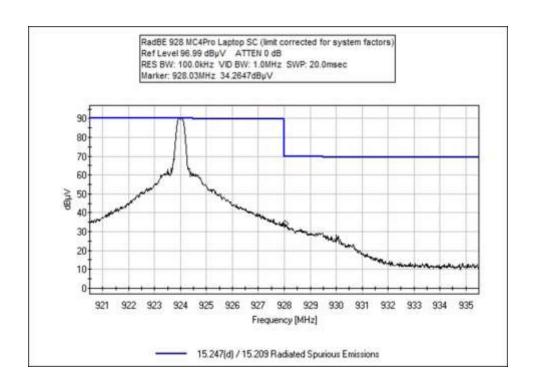
50	950.100k	36.9	+0.0	+0.1	+0.1	+0.0	-40.0	6.6	104.5	-97.9	Groun
			+0.0	+9.5	+0.0	+0.0					
			+0.0	+0.0							
51	20.836M	35.2	+0.0	+0.1	+0.2	+0.0	-40.0	1.7	104.5	-102.8	Groun
			+0.0	+6.2	+0.0	+0.0					
			+0.0	+0.0							
52	20.401M	34.9	+0.0	+0.1	+0.2	+0.0	-40.0	1.5	104.5	-103.0	Para
			+0.0	+6.3	+0.0	+0.0					
			+0.0	+0.0							
53	28.115M	31.9	+0.0	+0.1	+0.2	+0.0	-40.0	-3.3	104.5	-107.8	Para
			+0.0	+4.5	+0.0	+0.0					
			+0.0	+0.0							
54	57.415k	59.1	+0.0	+0.1	+0.0	+0.0	-80.0	-11.1	104.5	-115.6	Para
			+0.0	+9.7	+0.0	+0.0					
			+0.0	+0.0							
55	57.597k	52.6	+0.0	+0.1	+0.0	+0.0	-80.0	-17.6	104.5	-122.1	Groun
			+0.0	+9.7	+0.0	+0.0					
			+0.0	+0.0							

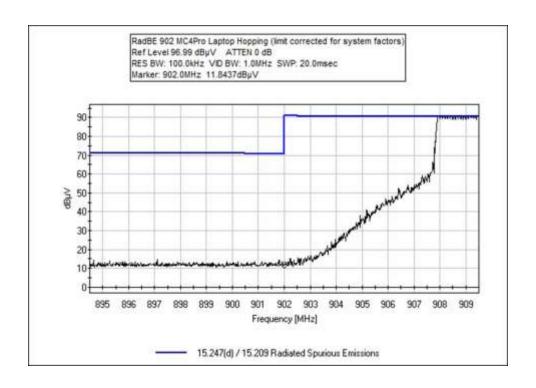
Page 29 of 50 Report No.: 107795-7

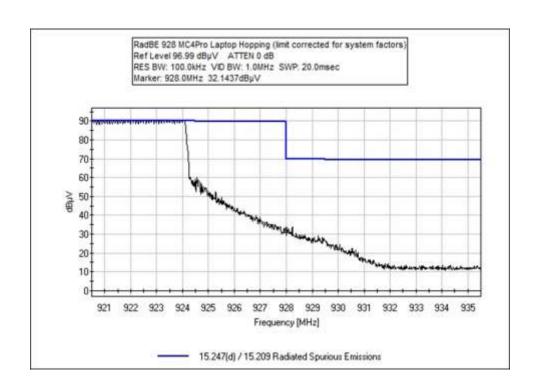
Band Edge

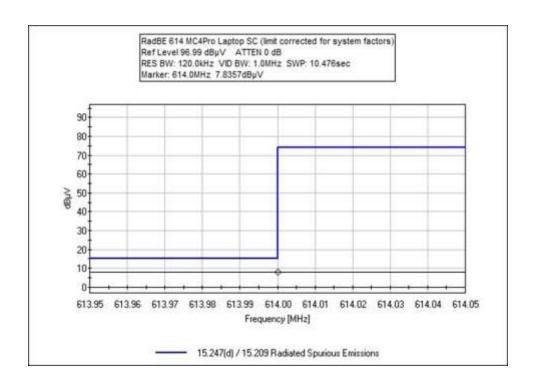
	Band Edge Summary											
Configuration	Configuration 1 (MC4Pro and Laptop)											
Frequency (MHz)	SC or Hopping	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results							
902	SC	Omni	46.8	104.5	Pass							
928	SC	Omni	69.1	104.5	Pass							
902	Hopping	Omni	45.4	104.5	Pass							
928	Hopping	Omni	66.9	104.5	Pass							
614	SC	Omni	38.4	46	Pass							
960	SC	Omni	42.8	54	Pass							
614	Hopping	Omni	38.5	46	Pass							
960	Hopping	Omni	42.8	54	Pass							

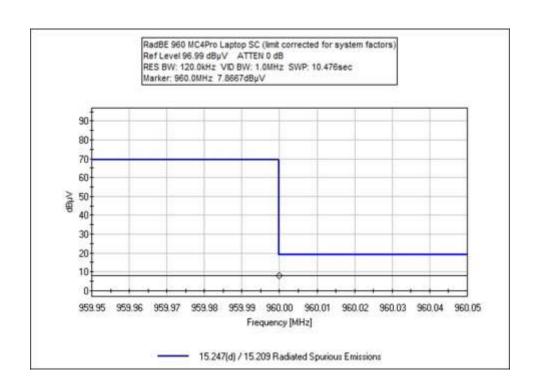

	Band Edge Summary											
Configuration	Configuration 2 (MC4Pro and Tablet)											
Frequency (MHz)	SC or Hopping	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results							
902	SC	Omni	45.9	104.5	Pass							
928	SC	Omni	67.9	104.5	Pass							
902	Hopping	Omni	46.5	104.5	Pass							
928	Hopping	Omni	63.9	104.5	Pass							
614	SC	Omni	38.5	46	Pass							
960	SC	Omni	42.8	54	Pass							
614	Hopping	Omni	38.5	46	Pass							
960	Hopping	Omni	42.8	54	Pass							

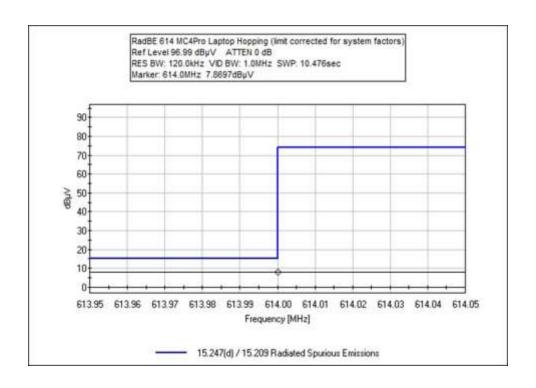

Page 30 of 50 Report No.: 107795-7

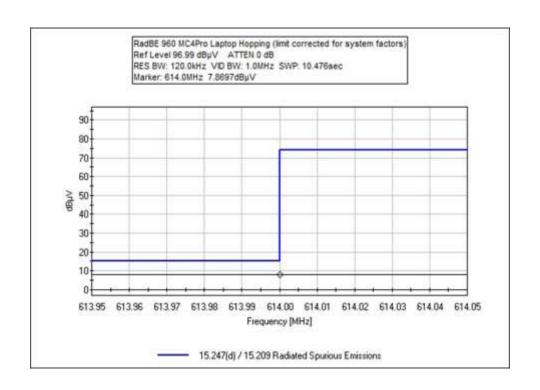

Band Edge Plots

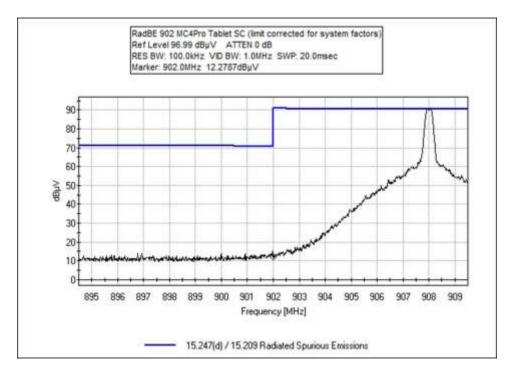

Configuration 1

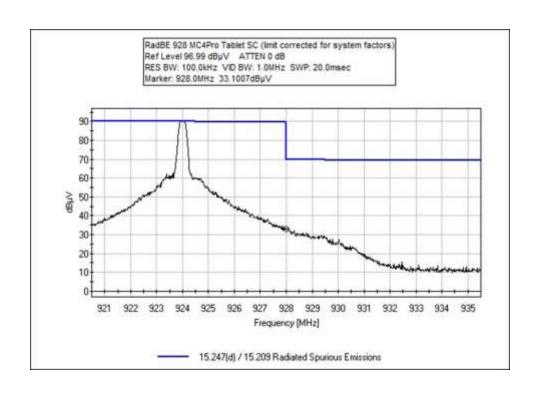


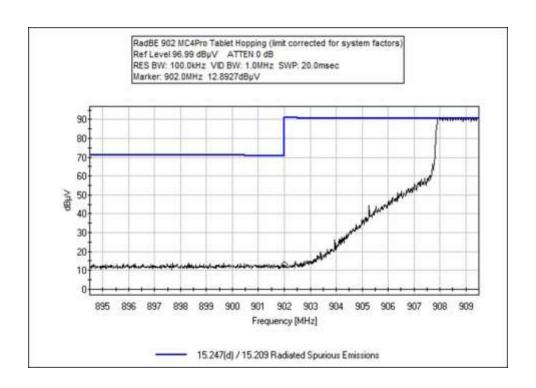


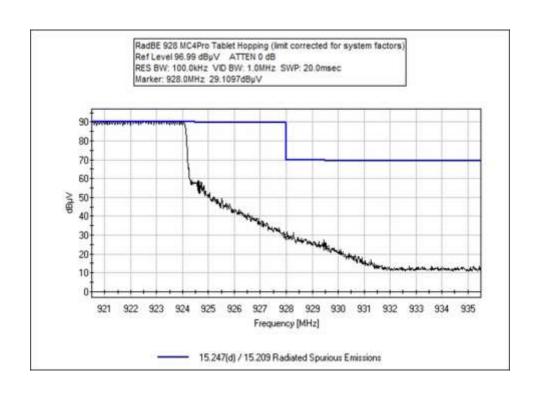


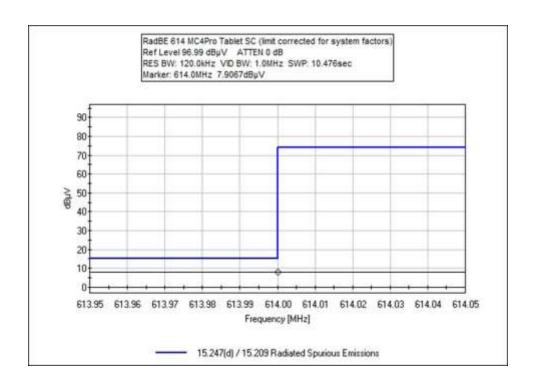


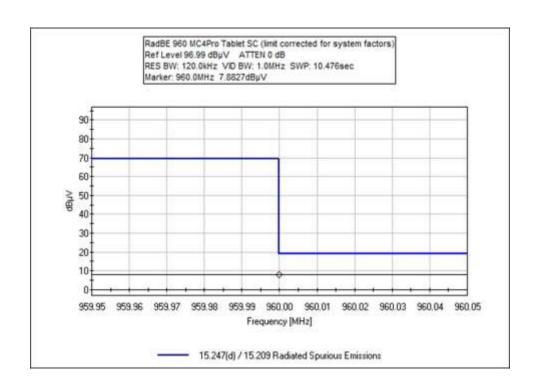


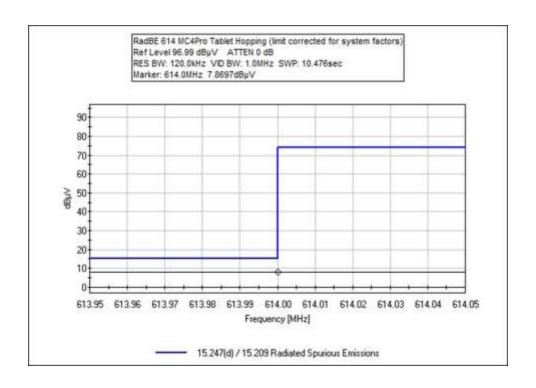


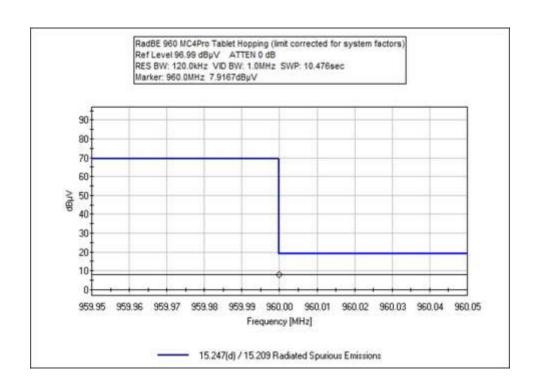



Configuration 2









Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 107795 Date: 12/16/2022
Test Type: Maximized Emissions Time: 18:10:19
Tested By: Michael Atkinson Sequence#: 33

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 37% Pressure: 102.2kPa

Frequency: Band Edge

Test Setup: EUT is continuously transmitting with modulation. Horizontal and vertical measurement antenna polarities investigated, worst-case reported. EUT XYZ axes investigated, worst-case reported. Also investigated with MAS boards removed, as well as receiver only boards removed, the fully loaded unit is representative of worst-case.

Power supply is remotely located outside of chamber with filter caps at chamber wall.

MC4Pro with Laptop

Page 39 of 50 Report No.: 107795-7

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Meast	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	,	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP										
2	614.000M	7.8	+0.3	+1.2	+1.9	+27.2	+0.0	38.4	46.0	-7.6	Vert
	QP										
3	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP										
4	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP										
5	928.030M	34.3	+0.3	+1.5	+2.4	+30.6	+0.0	69.1	104.5	-35.4	Vert
6	928.000M	32.1	+0.3	+1.5	+2.4	+30.6	+0.0	66.9	104.5	-37.6	Vert
7	902.000M	13.2	+0.3	+1.4	+2.3	+29.6	+0.0	46.8	104.5	-57.7	Vert
8	902.000M	11.8	+0.3	+1.4	+2.3	+29.6	+0.0	45.4	104.5	-59.1	Vert

Page 40 of 50 Report No.: 107795-7

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 107795 Date: 12/16/2022
Test Type: Maximized Emissions Time: 17:35:49
Tested By: Michael Atkinson Sequence#: 34

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 37% Pressure: 102.2kPa

Frequency: Band Edge

Test Setup: EUT is continuously transmitting with modulation. Horizontal and vertical measurement antenna polarities investigated, worst-case reported. EUT XYZ axes investigated, worst-case reported. Also investigated with MAS boards removed, as well as receiver only boards removed, the fully loaded unit is representative of worst-case.

Power supply is remotely located outside of chamber with filter caps at chamber wall.

MC4Pro with Tablet

Page 41 of 50 Report No.: 107795-7

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	S	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								SC		
3	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								SC		
4	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								Hopping		
5	928.000M	33.1	+0.3	+1.5	+2.4	+30.6	+0.0	67.9	104.5	-36.6	Vert
									SC		
6	928.000M	29.1	+0.3	+1.5	+2.4	+30.6	+0.0	63.9	104.5	-40.6	Vert
									Hopping		
7	902.000M	12.9	+0.3	+1.4	+2.3	+29.6	+0.0	46.5	104.5	-58.0	Vert
									Hopping		
8	902.000M	12.3	+0.3	+1.4	+2.3	+29.6	+0.0	45.9	104.5	-58.6	Vert
									SC		

Page 42 of 50 Report No.: 107795-7

Test Setup Photo(s)

Below 1GHz; Laptop

Above 1GHz; Laptop

Below 1GHz; Tablet

Above 1GHz; Laptop

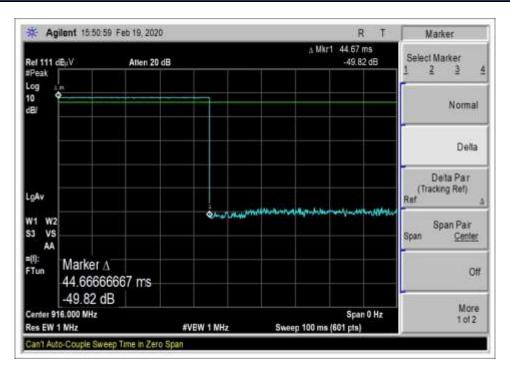
X-Axis

Y-Axis

Z-Axis

Page 46 of 50 Report No.: 107795-7

Appendix A: Manufacturer Declaration


The manufacturer declares that the MC4Pro model: MC4C tested is representative of the MC4Core model: MC4C1.

Page 47 of 50 Report No.: 107795-7

Appendix B: Manufacturer Provided Data

Duty Cycle Plot

Page 48 of 50 Report No.: 107795-7

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS						
	Meter reading (dBμV)						
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBμV/m)					

Page 49 of 50 Report No.: 107795-7

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 50 of 50 Report No.: 107795-7