Itron, Inc.

REVISED TEST REPORT TO 103557-12
 Mobile Collection Device, MC3
 Model: DCU5310C

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.247
(FHSS 902-928 MHz)

Report No.: 103557-12A

Date of issue: July 14, 2020

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 8
FCC Part 15 Subpart C 14
15.247(a) Transmitter Characteristics 14
15.247(a)(1) 20 dB Bandwidth 14
15.247(a)(1) Carrier Separation 17
15.247(a)(1)(iii) Number of Hopping Channels 19
15.247(a)(1)(iii) Time of Occupancy 22
15.247(b)(2) Output Power 25
15.247(d) RF Conducted Emissions \& Band Edge 29
15.247(d) Radiated Emissions \& Band Edge 36
15.35(c) Duty Cycle Correction Factor 90
Supplemental Information. 91
Measurement Uncertainty 91
Emissions Test Details 91

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 201865

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Darcy Thompson
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 103557

February 13, 2020
February 13-21, 2020

Revision History

Original: Testing of the Mobile Collection Device, MC3 Model: DCU5310C to FCC Part 15 Subpart C Sections) 15.247 (FHSS 902-928 MHz).

Revision A: Added statement to Radiated Spurious Emissions Test Conditions: Average readings are calculated from formula Average=peak -7. 0db (duty cycle correction factor). Therefore, none of the peak readings are over 20 dB on Configuration 3,4 and 5.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .12

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Japan
Canyon Park, Bothell, WA	US0081	US1022	A-0136
Brea, CA	US0060	US1025	A-0136
Fremont, CA	US0082	US1023	A-0136
Mariposa, CA	US0103	US1024	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	Pass
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	Pass
$15.247(\mathrm{~b})(2)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable
NA1- = Not applicable because the EUT is connected to 12 V car battery and shall not be connected to public utility AC power line.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing
This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

Laboratories, inc.

EQUIPMENT UNDER TEST (EXT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Automobile Adapter	Lind Electronics, Inc.	PA1555-2155 FB	NA
Tablet	Panasonic	FZ-G1	NA
Power Distribution Box	Itron, Inc.	Generic	NA
Mobile Collection Device, MC3	Itron, Inc.	DCU5310C	74007411

| Support Equipment: | | |
| :--- | :--- | :--- | :--- |
| Device Manufacturer Model \# S/N
 Power Supply Topward 6306 D 988614 | | |

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
5dBi Antenna	PCTEL	Generic	NA
Power Distribution Box	Itron, Inc.	Generic	NA
Mobile Collection Device, MC3	Itron, Inc.	DCU5310C	74007707
Automobile Adapter	Lind Electronics, Inc.	PA1555-2155 PB	NA
Tablet	Panasonic	FZ-M1	NA
Support Equipment:			
Device	Manufacturer	Model \#	S/N
Power Supply	Topward	6306D	988614

Configuration 3

Equipment Tested:

Device	Manufacturer	Model \#	S/N
5dBi Antenna	PCTEL	Generic	NA
Power Distribution Box	Itron, Inc.	Generic	NA
Mobile Collection Device, MC3	Itron, Inc.	DCU5310C	74007707
Automobile Adapter	Lind Electronics, Inc.	PA1555-2155 FB	NA
Tablet	Panasonic	FZ-G1	NA
Support Equipment: Device Manufacturer Model \# S/N Power Supply Topward 6306D 988614 \mathbf{l}			

Configuration 4

Equipment Tested:

Device	Manufacturer	Model \#	S/N
5dBi Antenna	PCTEL	Generic	NA
Power Distribution Box	Itron, Inc.	Generic	NA
Automobile Adapter	Lind Electronics, Inc.	PA1555-2155 FB	NA
Tablet	Panasonic	FZ-M1	NA
Mobile Collection Device, MC3	Itron, Inc.	DCU5310C	74007411
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Support Equipment: Device Manufacturer Model \# S/N Power Supply Topward 6306D 988614 \mathbf{l}			

Configuration 5

Equipment Tested:

Device	Manufacturer	Model \#	S/N
5 dBi Antenna	PCTEL	Generic	NA
Power Distribution Box	Itron, Inc.	Generic	NA
Automobile Adapter	Lind Electronics, Inc.	PA1555-2155 FB	NA
Mobile Collection Device, MC3	Itron, Inc.	DCU5310C	74007411
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Tablet	Panasonic	FZ-G1	NA
Support Equipment:			
Device	Manufacturer	Model \#	S/N
Power Supply	Topward	6306D	988614

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	908-924MHz
Number of Hopping Channels:	81
Receiver Bandwidth and	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	12.5kbps FM
Maximum Duty Cycle:	45mS
Number of TX Chains:	1
Antenna Type(s) and Gain:	External/ 5dbi
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	13.8Vdc from car battery
	Arm Version: 7.66.00.01
DSP Version: 5.70.00.00	
Firmware / Software used for Test:	FPGA Version: 3.02
	PSoC Version: 3.01

EUT and Accessory Photo(s)

Tablet 1

Tablet 2

Tablet Power Adapter

Power Distribution

Antennas

Support Equipment Photo(s)

12 Vdc PSU

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$2 / 13 / 2020$
Configuration:	1	The EUT is placed on test bench. Input voltage is 13.8Vdc from external power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5 The EUT is set to continuously transmit. Test Setup: Operating frequency: 908-924MHz Frequency of measurement: 908-924MHz RBW=3kHz, 30kHz, 62kHz VBW=10kHz, 91kHz, 180kHz	
Note: There are two EUTs with the same transmitter. The difference between them is the optional receivers in one of them. The EUT used for this test is the one with optional receivers as it is the worst-case configuration.			

Environmental Conditions			
Temperature (으)	19.7	Relative Humidity (\%):	45

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$	
03432	Attenuator	Aeroflex/Weinschel	$90-30-34$	$10 / 22 / 2019$	$10 / 22 / 2021$	
P07244	Cable	H\&S	$32022-29094 K-$ $29094 K-24 T C ~$	$7 / 5 / 2018$	$7 / 5 / 2020$	

15.247(a)(1) 20 dB Bandwidth

Test Data Summary					
Frequency $(\mathbf{M H z})$	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $\mathbf{(k H z)}$	Results
908	1	12.5 kbps FM	139.728	≤ 500	Pass
916	1	12.5 kbps FM	139.703	≤ 500	Pass
924	1	12.5 kbpsFM	140.608	≤ 500	Pass

Plots)

Low Channel

Middle Channel

High Channel

15.247(a)(1) Carrier Separation

Test Data Summary
Limit applied: 20dB bandwidth of the hopping channel.

Antenna Port	Operational Mode	Measured $\mathbf{(k H z)}$	Limit $\mathbf{(k H z)}$	Results
1	Hopping	200	>140.608	Pass

Plot(s)

Carrier Separation

Single Frequency

15.247(a)(1)(iii) Number of Hopping Channels

Test Data Summary
Limit $=\left\{\begin{array}{l}50 \text { Channels } \mid 20 d B B W<250 \mathrm{kHz} \\ 25 \text { Channels } \mid 20 \mathrm{~dB} B W \geq 250 \mathrm{kHz}\end{array}\right.$

Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results
1	Hopping	81	≥ 50	Pass

Plots)

908-911.4MHz - 18 Channel

911.6-914.8MHz - 17 Channel

915-917. 8MHz - 15 Channel

LABORATORIES, INC.

918-921.8MHz-20 Channel

922-924MHz-11 Channel

15.247(a)(1)(iii) Time of Occupancy

Test Data Summary
Observation Period, Pobs is derived from the following:
$P_{O b s}=\left\{\begin{array}{l}20 \text { Seconds } \mid 20 d B B W<250 \mathrm{kHz} \\ 10 \text { Seconds } \mid 20 \mathrm{~dB} \mathrm{BW} \geq 250 \mathrm{kHz}\end{array}\right.$

Antenna Port	Operational Mode	Measured (ms)	Limit $(\mathrm{ms} / \mathbf{P o b s})$	Results
1	Hopping	357.36	≤ 400	Pass

Measured results are calculated as follows:

$$
\text { Dwell time }=\left.\left(\sum_{\text {Bursts }} R F \text { Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{\text {obs }}}
$$

Actual Calculated Values:

Parameter	Value
Observation Period (Pobs):	20 seconds
Number of RF Bursts / Pobs:	8
On time of RF Burst:	44.67 ms
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	357.36 ms

LABORATORIES, INC.

Plots)

Single Transmission

8 Transmissions in 20 seconds

Test Setup Photo(s)

LABORATORIES, INC.

15.247(b)(2) Output Power

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$2 / 13 / 2020$
Configuration:	1	The EUT is placed on test bench. Input voltage is 13.8Vdc from external power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5 The EUT is set to continuously transmit. Test Setup: Operating frequency: 908-924MHz Frequency of measurement: 902-928MHz RBW=300kHz VBW=910kHz	
Note: There are two EUTs with the same transmitter. The difference between them is the optional receivers in one of them. The EUT used for this test is the one with optional receivers as it is the worst-case configuration.			

Environmental Conditions				
Temperature (으)	19.7	Relative Humidity (\%):	45	

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$	
03432	Attenuator	Aeroflex/Weinschel	$90-30-34$	$10 / 22 / 2019$	$10 / 22 / 2021$	
P07244	Cable	H\&S	$32022-29094 K-$ $29094 K-24 T C ~$	$7 / 5 / 2018$	$7 / 5 / 2020$	

Test Data Summary - Voltage Variations

Frequency $(\mathbf{M H z})$	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ (dBm)	$\mathbf{V}_{\text {Nominal }}$ (dBm)	$\mathbf{V}_{\text {Maximum }}$ (dBm)	Max Deviation from V $_{\text {Nominal }}(\mathbf{d B})$
908	12.5 kbps FM	NA	28.81	NA	NA
916	12.5 kbps FM	NA	29.55	NA	NA
924	12.5 kbps FM	NA	29.51	NA	NA

Test performed using operational mode with the highest output power, representing worst case.
NA: This equipment is battery powered. Power output tests were performed using an external power supply to simulate a fresh battery.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
V $_{\text {Nominal }}:$	13.8
V $_{\text {Minimum }}:$	NA
$\mathrm{V}_{\text {Maximum: }}$	NA

NA: This equipment is battery powered. Power output tests were performed using an external power supply to simulate a fresh battery.

Test Data Summary - Voltage Variations

This equipment is battery powered. Power output tests were performed using an external power supply to simulate a fresh battery.

Test Data Summary - RF Conducted Measurement Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels }(\min 25)\end{array}\right.$

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type / Gain (dBi)	Measured $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Results
908	12.5 kbps FM	5	28.81	≤ 30	Pass
916	12.5 kbps FM	5	29.55	≤ 30	Pass
924	12.5 kbps FM	5	29.51	≤ 30	Pass

Plots

Low Channel

Middle Channel

High Channel

Test Setup Photo(s)

LABORATORIES, INC.

15.247(d) RF Conducted Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) Conducted Spurious Emissions 103557
Conducted Emissions
Don Nguyen
EMITest 5.03.12

Date: 2/14/2020
Time: 09:22:36
Sequence\#: 0

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

The EUT is placed on test bench. Input voltage is 13.8 Vdc from external power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5. The EUT is set to continuously transmit.

Operating frequency: $908 \mathrm{MHz}, 916 \mathrm{MHz}, 924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$
Temperature: $17^{\circ} \mathrm{C}$
Relative Humidity: 41\%
Test Location: Brea Lab A
Test Method: ANSI C63.10 (2013)

Itron, Inc. WO\#: 103557 Sequence\#: 0 Date: 2/14/2020
15.247(d) Conducted Spurious Emissions Test Distance: None Antenna Port

-_Readings
\times QP Readings

- Ambient

1-15.247(d) Conducted Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07244	Cable	32022-29094K-29094K-24TC	$7 / 5 / 2018$	$7 / 5 / 2020$
	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	AN03432	Attenuator	$90-30-34$	$10 / 22 / 2019$	$10 / 22 / 2021$

Measurement Data: Reading listed by margin. Test Distance: None

\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	6411.750M	51.7	+0.3	+29.5			+0.0	81.5	116.6	-35.1	Anten
2	6467.692M	50.0	+0.3	+29.4			+0.0	79.7	116.6	-36.9	Anten
3	7327.692M	49.8	+0.2	+29.4			+0.0	79.4	116.6	-37.2	Anten
4	6355.742M	40.1	+0.3	+29.5			+0.0	69.9	116.6	-46.7	Anten
5	7263.667M	40.0	+0.2	+29.4			+0.0	69.6	116.6	-47.0	Anten
6	5544.433M	36.6	+0.4	+29.9			+0.0	66.9	116.6	-49.7	Anten
7	1847.875M	35.0	+0.2	+29.6			+0.0	64.8	116.6	-51.8	Anten
8	1815.950M	35.0	+0.2	+29.6			+0.0	64.8	116.6	-51.8	Anten
9	1832.100M	34.3	+0.2	+29.6			+0.0	64.1	116.6	-52.5	Anten

Band Edge

Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.
Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Measured (dBm)	Limit (dBm)	Results
902	12.5 kbps FM	-34.18	<9.55	Pass
928	12.5 kbps FM	-28.50	<9.55	Pass

Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.
Operating Mode: Hopping

Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results
902	12.5 kbps FM	-34.18	<9.55	Pass
928	12.5 kbps FM	-28.50	<9.55	Pass

Band Edge Plots

Low Channel

High Channel

14 Testing the Future
LABORATORIES, INC.

Low Channel Hopping

High Channel Hopping

Test Setup Photo(s)

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer: Itron, Inc.
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
15.247(d) / 15.209 Radiated Spurious Emissions

103557 Date: 2/20/2020
Maximized Emissions Time: 09:55:24
Don Nguyen
Sequence\#: 1
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

The EUT is placed on turn table. Input voltage is 13.8 Vdc from external power supply. GPS and main antenna ports are connected to an external antenna. USB port is connected to a touchscreen computer. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5. The EUT is set into transmitter mode. The EUT is rotated in three orthogonal orientations. Data represents the worst case orientation.
The antenna of the EUT is mounted to a 52 " diameter aluminum plate to represent a vehicle roof. The aluminum plate is supported by foam blocks. The EUT is directly below the plate, on the test table.

Operating frequency: $908-924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9280 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$

Temperature $20.3^{\circ} \mathrm{C}$, Relative Humidity 32%

Site A
Test Method: ANSI C63.10 (2013)
Duty correction factor is applied to average reading above 1 GHz per FCC part 15.35 c
Correction factor $=20 \log (44.67 \mathrm{~ms} / 100 \mathrm{~ms})=-7.0 \mathrm{~dB}$

Itron, Inc. WO\#: 103557 Sequence\#f: 1 Date: 2/20/2020
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

[^0]O Peak Readings

* Average Readings
Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$5 / 13 / 2018$	$5 / 13 / 2020$
	AN01995	Biconilog Antenna	CBL6111C	$4 / 23 / 2018$	$4 / 23 / 2020$
	ANP05275	Attenuator	$1 W$	$4 / 5 / 2018$	$4 / 5 / 2020$
	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	AN00786	Preamp	Horn Antenna	$83017 A$	$5 / 12 / 2018$
T3	AN00849	Cable	3115	$3 / 12 / 2020$	
T4	ANP07139	Cable	ANDL1-PNMNM-48	$3 / 4 / 2019$	$3 / 4 / 2021$
T5	ANP07244		$32022-29094 K-$	$7 / 5 / 2018$	$7 / 5 / 2020$
T6	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$
T7	ANDuty Cycle	Test Data Adjustment		$2 / 19 / 2020$	$2 / 19 / 2022$
	Correction Factor				

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7						
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1 4539.667M	60.4	+0.0	-37.8	+32.9	+4.5	+0.0	53.9	54.0	-0.1	Horiz
Ave		+0.7	+0.2	-7.0						
$\wedge ~ 4539.667 \mathrm{M}$	60.4	+0.0	-37.8	+32.9	+4.5	+0.0	60.9	54.0	+6.9	Horiz
		+0.7	+0.2	+0.0						
34580.333 MAve	58.8	+0.0	-37.7	+33.0	+4.6	+0.0	52.6	54.0	-1.4	Vert
		+0.7	+0.2	-7.0						
$\wedge ~ 4580.333 \mathrm{M}$	58.8	+0.0	-37.7	+33.0	+4.6	+0.0	59.6	54.0	+5.6	Vert
		+0.7	+0.2	+0.0						
57327.650 MAveA	54.5	+0.0	-37.4	+36.0	+5.9	+0.0	52.4	54.0	-1.6	Horiz
		+0.2	+0.2	-7.0						
$\wedge 7327.650 \mathrm{M}$	54.5	+0.0	-37.4	+36.0	+5.9	+0.0	59.4	54.0	+5.4	Horiz
		+0.2	+0.2	+0.0						
7 7391.617M	53.8	+0.0	-37.4	+36.2	+5.9	+0.0	52.0	54.0	-2.0	Vert
Ave		+0.3	+0.2	-7.0						
$\wedge 7391.617 \mathrm{M}$	53.8	+0.0	-37.4	+36.2	+5.9	+0.0	59.0	54.0	+5.0	Vert
		+0.3	+0.2	+0.0						
$\begin{aligned} & 97264.283 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	54.1	+0.0	-37.4	+35.7	+5.9	+0.0	51.7	54.0	-2.3	Horiz
		+0.2	+0.2	-7.0						
^ 7264.283M	54.1	+0.0	-37.4	+35.7	+5.9	+0.0	58.7	54.0	+4.7	Horiz
		+0.2	+0.2	+0.0						
$\begin{aligned} & 114620.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.8	+0.0	-37.7	+32.9	+4.6	+0.0	51.5	54.0	-2.5	Horiz
		+0.7	+0.2	-7.0						
$\wedge 4620.400 \mathrm{M}$	57.8	+0.0	-37.7	+32.9	+4.6	+0.0	58.5	54.0	+4.5	Horiz
		+0.7	+0.2	+0.0						
$\begin{aligned} & 13 \text { 4540.103M } \\ & \text { Ave } \end{aligned}$	57.8	+0.0	-37.8	+32.9	+4.5	+0.0	51.3	54.0	-2.7	Vert
		+0.7	+0.2	-7.0						
$\wedge ~ 4540.103 \mathrm{M}$	57.8	+0.0	-37.8	+32.9	+4.5	+0.0	58.3	54.0	+4.3	Vert
		+0.7	+0.2	+0.0						

$\begin{aligned} & 154579.933 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.4	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-37.7 \\ +0.2 \end{array}$	$\begin{array}{r} +33.0 \\ \hline-7.0 \end{array}$	+4.6	+0.0	51.2	54.0	-2.8	Horiz
$\wedge 4579.933 \mathrm{M}$	57.4	+0.0	-37.7	+33.0	+4.6	+0.0	58.2	54.0	+4.2	Horiz
		+0.7	+0.2	+0.0						
17 8244.533MAve	51.6	+0.0	-37.4	+36.9	+6.2	+0.0	51.1	54.0	-2.9	Horiz
		+0.5	+0.3	-7.0						
$\wedge 8244.533 \mathrm{M}$	51.6	+0.0	-37.4	+36.9	+6.2	+0.0	58.1	54.0	+4.1	Horiz
		+0.5	+0.3	+0.0						
198171.533 MAve$\wedge 8171.533 \mathrm{M}$	51.5	+0.0	-37.4	+36.8	+6.2	+0.0	50.9	54.0	-3.1	Horiz
		+0.5	+0.3	-7.0						
$\wedge 8171.533 \mathrm{M}$	51.5	+0.0	-37.4	+36.8	+6.2	+0.0	57.9	54.0	+3.9	Horiz
		+0.5	+0.3	+0.0						
$21 \quad 2772.017 \mathrm{M}$	55.9	+0.0	-38.6	+29.5	+3.5	+0.0	50.9	54.0	-3.1	Vert
		+0.4	+0.2	+0.0						
22 2724.050MAve\wedge ^ 2724.050 M	63.1	+0.0	-38.6	+29.2	+3.4	+0.0	50.7	54.0	-3.3	Vert
		+0.4	+0.2	-7.0						
	63.1	+0.0	-38.6	+29.2	+3.4	+0.0	57.7	54.0	+3.7	Vert
$\wedge 2724.050 \mathrm{M}$		+0.4	+0.2	+0.0						
$\begin{aligned} & 247264.370 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	52.9	+0.0	-37.4	+35.7	+5.9	+0.0	50.5	54.0	-3.5	Vert
		+0.2	+0.2	-7.0						
\wedge 7264.370M	52.9	+0.0	-37.4	+35.7	+5.9	+0.0	57.5	54.0	+3.5	Vert
		+0.2	+0.2	+0.0						
$\begin{gathered} 267391.800 \mathrm{M} \\ \text { Ave } \end{gathered}$	52.3	+0.0	-37.4	+36.2	+5.9	+0.0	50.5	54.0	-3.5	Horiz
		+0.3	+0.2	-7.0						
\wedge 7391.800M	52.3	+0.0	-37.4	+36.2	+5.9	+0.0	57.5	54.0	+3.5	Horiz
		+0.3	+0.2	+0.0						
288172.603 M	51.0	+0.0	-37.4	+36.8	+6.2	+0.0	50.4	54.0	-3.6	Vert
Ave		+0.5	+0.3	-7.0						
$\wedge 8172.603 \mathrm{M}$	51.0	+0.0	-37.4	+36.8	+6.2	+0.0	57.4	54.0	+3.4	Vert
		+0.5	+0.3	+0.0						
$\begin{gathered} 308315.800 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	50.3	+0.0	-37.4	+37.0	+6.2	+0.0	50.0	54.0	-4.0	Vert
		+0.5	+0.4	-7.0						
$\wedge 8315.800 \mathrm{M}$	50.3	+0.0	-37.4	+37.0	+6.2	+0.0	57.0	54.0	+3.0	Vert
		+0.5	+0.4	+0.0						
$\begin{gathered} 328244.300 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	49.4	+0.0	-37.4	+36.9	+6.2	+0.0	48.9	54.0	-5.1	Vert
		+0.5	+0.3	-7.0						
^ 8244.300M	49.4	+0.0	-37.4	+36.9	+6.2	+0.0	55.9	54.0	+1.9	Vert
		+0.5	+0.3	+0.0						
$\begin{aligned} & 34 \text { 8315.900M } \\ & \text { Ave } \end{aligned}$	48.9	+0.0	-37.4	+37.0	+6.2	+0.0	48.6	54.0	-5.4	Horiz
		+0.5	+0.4	-7.0						
$\wedge 8315.900 \mathrm{M}$	48.9	+0.0	-37.4	+37.0	+6.2	+0.0	55.6	54.0	+1.6	Horiz
		+0.5	+0.4	+0.0						
$\begin{gathered} 364620.350 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	54.8	+0.0	-37.7	+32.9	+4.6	+0.0	48.5	54.0	-5.5	Vert
		+0.7	+0.2	-7.0						
$\wedge 4620.350 \mathrm{M}$	54.8	+0.0	-37.7	+32.9	+4.6	+0.0	55.5	54.0	+1.5	Vert
		+0.7	+0.2	+0.0						
387327.633 M	49.7	+0.0	-37.4	+36.0	+5.9	+0.0	47.6	54.0	-6.4	Vert
Ave		+0.2	+0.2	-7.0						
\wedge 7327.633M	49.7	+0.0	-37.4	+36.0	+5.9	+0.0	54.6	54.0	+0.6	Vert
		+0.2	+0.2	+0.0						
$40 \quad 2724.050 \mathrm{M}$	53.0	+0.0	-38.6	+29.2	+3.4	+0.0	47.6	54.0	-6.4	Horiz
		+0.4	+0.2	+0.0						

Page 39 of 92

41	3664.083M	48.8	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.6 \\ +0.0 \end{array}$	+4.1	+0.0	46.9	54.0	-7.1	Vert	
42	2772.100M	51.6	+0.0	-38.6	+29.5	+3.5	+0.0	46.6	54.0	-7.4	Horiz	
			+0.4	+0.2	+0.0							
43	3696.050M	48.2	+0.0	-38.3	+31.8	+4.1	+0.0	46.5	54.0	-7.5	Horiz	
			+0.5	+0.2	+0.0							
$\begin{aligned} & 445448.103 \mathrm{M} \\ & \text { Ave } \end{aligned}$		51.0	+0.0	-37.5	+33.9	+5.4	+0.0	46.4	54.0	-7.6	Vert	
		+0.4	+0.2	-7.0								
\wedge	5448.103M		51.0	+0.0	-37.5	+33.9	+5.4	+0.0	53.4	54.0	-0.6	Vert
		+0.4		+0.2	+0.0							
46	$5448.517 \mathrm{M}$ Ave	50.7	+0.0	-37.5	+33.9	+5.4	+0.0	46.1	54.0	-7.9	Horiz	
			+0.4	+0.2	-7.0							
\wedge	5448.517M	50.7	+0.0	-37.5	+33.9	+5.4	+0.0	53.1	54.0	-0.9	Horiz	
			+0.4	+0.2	+0.0							
48	3696.017M	47.3	+0.0	-38.3	+31.8	+4.1	+0.0	45.6	54.0	-8.4	Vert	
			+0.5	+0.2	+0.0							
49	3632.103M	47.3	+0.0	-38.3	+31.3	+4.1	+0.0	45.1	54.0	-8.9	Vert	
			+0.5	+0.2	+0.0							
50	3632.050 M	47.2	+0.0	-38.3	+31.3	+4.1	+0.0	45.0	54.0	-9.0	Horiz	
			+0.5	+0.2	+0.0							
51	3664.083M	46.9	+0.0	-38.3	+31.6	+4.1	+0.0	45.0	54.0	-9.0	Horiz	
			+0.5	+0.2	+0.0							
52	$\begin{aligned} & 2747.833 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	56.9	+0.0	-38.6	+29.4	+3.4	+0.0	44.7	54.0	-9.3	Vert	
			+0.4	+0.2	-7.0							
\wedge	2747.833M	56.9	+0.0	-38.6	+29.4	+3.4	+0.0	51.7	54.0	-2.3	Vert	
			+0.4	+0.2	+0.0							
54	2748.083M	48.6	+0.0	-38.6	+29.4	+3.4	+0.0	43.4	54.0	-10.6	Horiz	
			+0.4	+0.2	+0.0							
55	6355.937 M	55.7	+0.0	-37.4	+33.8	+5.7	+0.0	58.3	107.2	-48.9	Vert	
			+0.3	+0.2	+0.0							

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer: Itron, Inc.
Specification: 15.247(d) / 15.209 Radiated Spurious Emissions
Work Order \#: 103557 Date: 2/20/2020
Test Type: Maximized Emissions
Time: 13:22:37
Tested By:
Don Nguyen
Software:
EMITest 5.03.12
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

The EUT is placed on turn table. Input voltage is 13.8 Vdc from external power supply. GPS and main antenna ports are connected to an external antenna. USB port is connected to a touchscreen computer. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5. The EUT is set into transmitter mode. The EUT is rotated in three orthogonal orientations. Data represents the worst case orientation.
The antenna of the EUT is mounted to a $52^{\prime \prime}$ diameter aluminum plate to represent a vehicle roof. The aluminum plate is supported by foam blocks. The EUT is directly below the plate, on the test table.

Operating frequency: $908-924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9280 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
Temperature $20.3^{\circ} \mathrm{C}$, Relative Humidity 32%
Site A
Test Method: ANSI C63.10 (2013)
Duty correction factor is applied to average reading above 1 GHz per FCC part 15.35 c
Correction factor $=20 \log (44.67 \mathrm{~ms} / 100 \mathrm{~ms})=-7.0 \mathrm{~dB}$
Average readings are calculated from formula Average=peak -7.0 db (duty cycle correction factor). Therefore, none of the peak readings are over 20dB.

Itron, Inc. WO\#: 103557 Sequence\#: 2 Date: 2/20/2020
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

[^1]O Peak Readings

* Average Readings
Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$5 / 13 / 2018$	$5 / 13 / 2020$
	AN01995	Biconilog Antenna	CBL6111C	$4 / 23 / 2018$	$4 / 23 / 2020$
	ANP05275	Attenuator	1W	$4 / 5 / 2018$	$4 / 5 / 2020$
	ANP05198	Cable-Amplitude +15C to $+45 C ~(d B) ~$	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	AN00786	Preamp	Horn Antenna	$33017 A$	$5 / 12 / 2018$
T3	AN00849	Cable	3115	$3 / 12 / 2020$	
T4	ANP07139	Cable	ANDL1-PNMNM-48	$3 / 4 / 2019$	$3 / 4 / 2021$
T5	ANP07244		$32022-29094 K-$	$7 / 5 / 2018$	$7 / 5 / 2020$
T6	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$
T7	ANDuty Cycle	Test Data Adjustment		$2 / 19 / 2020$	$2 / 19 / 2022$
	Correction Factor				

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7						
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
4539.637Ave	60.0	+0.0	-37.8	+32.9	+4.5	+0.0	53.5	54.0	-0.5	Vert
		+0.7	+0.2	-7.0						
24540.Ave	59.9	+0.0	-37.8	+32.9	+4.5	+0.0	53.4	54.0	-0.6	Horiz
		+0.7	+0.2	-7.0						
$\begin{aligned} & 34580.183 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	58.5	+0.0	-37.7	+33.0	+4.6	+0.0	52.3	54.0	-1.7	Vert
		+0.7	+0.2	-7.0						
$\begin{aligned} & 48244.483 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	52.7	+0.0	-37.4	+36.9	+6.2	+0.0	52.2	54.0	-1.8	Horiz
		+0.5	+0.3	-7.0						
Ave	57.9	+0.0	-37.7	+32.9	+4.6	+0.0	51.6	54.0	-2.4	Horiz
		+0.7	+0.2	-7.0						
	53.1	+0.0	-37.4	+36.2	+5.9	+0.0	51.3	54.0	-2.7	Horiz
Ave		+0.3	+0.2	-7.0						
Ave	53.7	+0.0	-37.4	+35.7	+5.9	+0.0	51.3	54.0	-2.7	Horiz
		+0.2	+0.2	-7.0						
$\begin{aligned} & 87263.633 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	52.9	+0.0	-37.4	+35.7	+5.9	+0.0	50.5	54.0	-3.5	Vert
		+0.2	+0.2	-7.0						
$\begin{aligned} & 92724.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	62.8	+0.0	-38.6	+29.2	+3.4	+0.0	50.4	54.0	-3.6	Vert
		+0.4	+0.2	-7.0						
$\begin{gathered} 108316.633 \mathrm{M} \\ \text { Ave } \end{gathered}$	50.7	+0.0	-37.4	+37.0	+6.2	+0.0	50.4	54.0	-3.6	Vert
		+0.5	+0.4	-7.0						
$\begin{aligned} & 118172.450 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	50.5	+0.0	-37.4	+36.8	+6.2	+0.0	49.9	54.0	-4.1	Vert
		+0.5	+0.3	-7.0						
$\begin{aligned} & 127392.450 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	51.4	+0.0	-37.4	+36.2	+5.9	+0.0	49.6	54.0	-4.4	Vert
		+0.3	+0.2	-7.0						
$\begin{gathered} 138171.800 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	49.6	+0.0	-37.4	+36.8	+6.2	+0.0	49.0	54.0	-5.0	Horiz
		+0.5	+0.3	-7.0						
$\begin{aligned} & 148244.817 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	49.4	+0.0	-37.4	+36.9	+6.2	+0.0	48.9	54.0	-5.1	Vert
		+0.5	+0.3	-7.0						

$\begin{aligned} & 154579.683 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.1	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+33.0 \\ -7.0 \end{array}$	+4.6	+0.0	48.9	54.0	-5.1	Horiz
$\begin{aligned} & 164619.933 \mathrm{M} \\ & \text { Ave } \end{aligned}$	54.6	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.6	+0.0	48.3	54.0	-5.7	Vert
$\begin{aligned} & 175448.350 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.6	$\begin{aligned} & \hline+0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -37.5 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+33.9 \\ -7.0 \end{array}$	+5.4	+0.0	48.0	54.0	-6.0	Vert
$\begin{aligned} & 18 \text { 8315.750M } \\ & \text { Ave } \\ & \hline \end{aligned}$	47.8	$\begin{array}{r} +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} -37.4 \\ +0.4 \end{array}$	$\begin{array}{r} \hline+37.0 \\ -7.0 \\ \hline \end{array}$	+6.2	+0.0	47.5	54.0	-6.5	Horiz
$\begin{aligned} & 197327.550 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.4	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+36.0 \\ -7.0 \end{array}$	+5.9	+0.0	47.3	54.0	-6.7	Vert
$\begin{aligned} & 202772.167 \mathrm{M} \\ & \text { Ave } \end{aligned}$	58.7	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.5 \\ -7.0 \end{array}$	+3.5	+0.0	46.7	54.0	-7.3	Vert
$\begin{aligned} & 212747.817 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	58.9	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.4 \\ -7.0 \\ \hline \end{array}$	+3.4	+0.0	46.7	54.0	-7.3	Vert
$\begin{aligned} & 227327.967 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	48.5	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+36.0 \\ -7.0 \end{array}$	+5.9	+0.0	46.4	54.0	-7.6	Horiz
$\begin{aligned} & 235448.317 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.2	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -37.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +33.9 \\ -7.0 \\ \hline \end{array}$	+5.4	+0.0	44.6	54.0	-9.4	Horiz
$\begin{aligned} & 24 \text { 3696.100M } \\ & \text { Ave } \end{aligned}$	49.0	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.8 \\ -7.0 \end{array}$	+4.1	$+0.0$	40.3	54.0	-13.7	Horiz
$\begin{aligned} & 252772.100 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline-38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.5 \\ -7.0 \end{array}$	+3.5	+0.0	40.3	54.0	-13.7	Horiz
$\begin{aligned} & 263664.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.6 \\ -7.0 \end{array}$	+4.1	+0.0	39.5	54.0	-14.5	Vert
$\begin{aligned} & 27 \text { 3664.217M } \\ & \text { Ave } \end{aligned}$	47.8	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.6 \\ -7.0 \\ \hline \end{array}$	+4.1	+0.0	38.9	54.0	-15.1	Horiz
$\begin{aligned} & 282748.017 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	49.8	$\begin{aligned} & \hline+0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.4 \\ -7.0 \\ \hline \end{array}$	+3.4	+0.0	37.6	54.0	-16.4	Horiz
$\begin{aligned} & 293696.133 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.1	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.8 \\ -7.0 \end{array}$	+4.1	+0.0	37.4	54.0	-16.6	Vert
$\begin{aligned} & 303632.050 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.3 \\ -7.0 \end{array}$	+4.1	+0.0	37.2	54.0	-16.8	Horiz
$\begin{aligned} & 31 \text { 3632.050M } \\ & \text { Ave } \end{aligned}$	46.3	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.3 \\ -7.0 \end{array}$	+4.1	+0.0	37.1	54.0	-16.9	Vert
$\begin{aligned} & 32 \text { 2724.050M } \\ & \text { Ave } \end{aligned}$	49.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.2 \\ -7.0 \end{array}$	+3.4	$+0.0$	36.9	54.0	-17.1	Horiz

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer: Itron, Inc.
Specification: 15.247(d)/15.209 Radiated Spurious Emissions
Work Order \#: 103557 Date: 2/21/2020
Test Type: Maximized Emissions
Time: 09:09:45
Tested By:
Don Nguyen
Sequence\#: 4
Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 4		S/N

Test Conditions / Notes:

The EUT is placed on turn table. Input voltage is 13.8 Vdc from external power supply. GPS and main antenna ports are connected to an external antenna. USB port is connected to a touchscreen computer. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5. The EUT is set into transmitter mode. The EUT is rotated in three orthogonal orientations. Data represents the worst case orientation.
The antenna of the EUT is mounted to a $52^{\prime \prime}$ diameter aluminum plate to represent a vehicle roof. The aluminum plate is supported by foam blocks. The EUT is directly below the plate, on the test table.

Operating frequency: $908-924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9280 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
Temperature $20.3^{\circ} \mathrm{C}$, Relative Humidity 32%
Site A
Test Method: ANSI C63.10 (2013)
Duty correction factor is applied to average reading above 1 GHz per FCC part 15.35 c
Correction factor $=20 \log (44.67 \mathrm{~ms} / 100 \mathrm{~ms})=-7.0 \mathrm{~dB}$
Average readings are calculated from formula Average=peak -7.0 db (duty cycle correction factor). Therefore, none of the peak readings are over 20 dB .

Itron, Inc. WO\#: 103557 Sequence\#: 4 Date: $2 / 21 / 2020$
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

[^2]O Peak Readings

* Average Readings
Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$5 / 13 / 2018$	$5 / 13 / 2020$
	AN01995	Biconilog Antenna	CBL6111C	$4 / 23 / 2018$	$4 / 23 / 2020$
	ANP05275	Attenuator	1W	$4 / 5 / 2018$	$4 / 5 / 2020$
	ANP05198	Cable-Amplitude +15C to $+45 C ~(d B) ~$	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	AN00786	Preamp	Horn Antenna	$33017 A$	$5 / 12 / 2018$
T3	AN00849	Cable	3115	$3 / 12 / 2020$	
T4	ANP07139	Cable	ANDL1-PNMNM-48	$3 / 4 / 2019$	$3 / 4 / 2021$
T5	ANP07244		$32022-29094 K-$	$7 / 5 / 2018$	$7 / 5 / 2020$
T6	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$
T7	ANDuty Cycle	Test Data Adjustment		$2 / 19 / 2020$	$2 / 19 / 2022$
	Correction Factor				

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { T7 } \\ & \text { dB } \end{aligned}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \text { 4580.350M } \\ & \text { Ave } \end{aligned}$	60.0	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+33.0 \\ -7.0 \end{array}$	+4.6	+0.0	53.8	54.0	-0.2	Vert
$\begin{aligned} & 2 \text { 2747.800M } \\ & \text { Ave } \end{aligned}$	66.0	$\begin{aligned} & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.4 \\ -7.0 \end{array}$	+3.4	+0.0	53.8	54.0	-0.2	Vert
$\begin{aligned} & 32772.183 \mathrm{M} \\ & \text { Ave } \end{aligned}$	63.5	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.5 \\ -7.0 \end{array}$	+3.5	+0.0	51.5	54.0	-2.5	Vert
$\begin{aligned} & 47391.767 \mathrm{M} \\ & \text { Ave } \end{aligned}$	53.2	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+36.2 \\ -7.0 \end{array}$	+5.9	+0.0	51.4	54.0	-2.6	Horiz
$\begin{aligned} & 54580.300 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.6	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+33.0 \\ -7.0 \end{array}$	+4.6	+0.0	51.4	54.0	-2.6	Horiz
$\begin{aligned} & \hline 6 \text { 3664.183M } \\ & \text { Ave } \end{aligned}$	60.1	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} \hline+31.6 \\ -7.0 \end{array}$	+4.1	+0.0	51.2	54.0	-2.8	Horiz
$\begin{aligned} & 77327.733 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.6	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+36.0 \\ -7.0 \end{array}$	+5.9	+0.0	50.5	54.0	-3.5	Vert
$\begin{aligned} & \hline 8 \text { 8316.467M } \\ & \text { Ave } \end{aligned}$	49.9	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{gathered} \hline-37.4 \\ +0.4 \end{gathered}$	$\begin{array}{r} \hline+37.0 \\ -7.0 \end{array}$	+6.2	+0.0	49.6	54.0	-4.4	Horiz
$\begin{aligned} & 9 \text { 4539.800M } \\ & \text { Ave } \end{aligned}$	55.9	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.8 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.5	+0.0	49.4	54.0	-4.6	Vert
$\begin{aligned} & 102724.183 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	61.8	$\begin{aligned} & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.2 \\ -7.0 \end{array}$	+3.4	+0.0	49.4	54.0	-4.6	Vert
$\begin{aligned} & 11 \text { 7263.733M } \\ & \text { Ave } \end{aligned}$	51.4	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline-37.4 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+35.7 \\ -7.0 \\ \hline \end{array}$	+5.9	+0.0	49.0	54.0	-5.0	Vert
$\begin{aligned} & 127392.600 \mathrm{M} \\ & \text { Ave } \end{aligned}$	50.1	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} \hline+36.2 \\ -7.0 \end{array}$	+5.9	+0.0	48.3	54.0	-5.7	Vert
$\begin{aligned} & 13 \text { 4539.667M } \\ & \text { Ave } \end{aligned}$	54.5	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.8 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.5	+0.0	48.0	54.0	-6.0	Horiz
$\begin{aligned} & 14 \text { 4619.750M } \\ & \text { Ave } \end{aligned}$	54.1	$\begin{aligned} & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.6	+0.0	47.8	54.0	-6.2	Horiz

$\begin{aligned} & 154619.800 \mathrm{M} \\ & \text { Ave } \end{aligned}$	54.0	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.6	+0.0	47.7	54.0	-6.3	Vert
$\begin{aligned} & 16 \text { 8316.767M } \\ & \text { Ave } \end{aligned}$	47.5	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.4 \end{array}$	$\begin{array}{r} \hline+37.0 \\ -7.0 \end{array}$	+6.2	+0.0	47.2	54.0	-6.8	Vert
$\begin{aligned} & 173663.833 \mathrm{M} \\ & \text { Ave } \end{aligned}$	56.0	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.6 \\ -7.0 \end{array}$	+4.1	+0.0	47.1	54.0	-6.9	Vert
$\begin{aligned} & 18 \text { 8171.617M } \\ & \text { Ave } \\ & \hline \end{aligned}$	47.2	$\begin{array}{r} +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} -37.4 \\ +0.3 \end{array}$	$\begin{array}{r} \hline+36.8 \\ -7.0 \\ \hline \end{array}$	+6.2	+0.0	46.6	54.0	-7.4	Horiz
$\begin{aligned} & 198172.483 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.1	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{gathered} -37.4 \\ +0.3 \end{gathered}$	$\begin{array}{r} \hline+36.8 \\ -7.0 \end{array}$	+6.2	+0.0	46.5	54.0	-7.5	Vert
$\begin{gathered} 20 \text { 8244.433M } \\ \text { Ave } \end{gathered}$	47.0	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{gathered} -37.4 \\ +0.3 \end{gathered}$	$\begin{array}{r} \hline+36.9 \\ -7.0 \end{array}$	+6.2	+0.0	46.5	54.0	-7.5	Horiz
$\begin{aligned} & 217263.600 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	48.8	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +35.7 \\ -7.0 \end{array}$	+5.9	+0.0	46.4	54.0	-7.6	Horiz
$\begin{aligned} & 225447.650 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.0	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -37.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} \hline+33.9 \\ -7.0 \end{array}$	+5.4	$+0.0$	46.4	54.0	-7.6	Vert
$\begin{aligned} & 237327.567 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	48.1	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} \hline+36.0 \\ -7.0 \\ \hline \end{array}$	+5.9	+0.0	46.0	54.0	-8.0	Horiz
$\begin{aligned} & 24 \text { 8244.600M } \\ & \text { Ave } \end{aligned}$	46.1	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.3 \end{array}$	$\begin{array}{r} \hline+36.9 \\ -7.0 \end{array}$	+6.2	$+0.0$	45.6	54.0	-8.4	Vert
$\begin{aligned} & 255448.550 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -37.5 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+33.9 \\ -7.0 \end{array}$	+5.4	+0.0	43.7	54.0	-10.3	Horiz
$\begin{aligned} & 262772.050 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.5 \\ -7.0 \end{array}$	+3.5	+0.0	43.3	54.0	-10.7	Horiz
$\begin{aligned} & 27 \text { 3632.400M } \\ & \text { Ave } \end{aligned}$	51.5	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.3 \\ -7.0 \end{array}$	+4.1	+0.0	42.3	54.0	-11.7	Vert
$\begin{aligned} & 282748.050 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	52.9	$\begin{aligned} & \hline+0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.4 \\ -7.0 \\ \hline \end{array}$	+3.4	+0.0	40.7	54.0	-13.3	Horiz
$\begin{aligned} & 293632.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.3	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} +31.3 \\ -7.0 \end{array}$	+4.1	+0.0	40.1	54.0	-13.9	Horiz
$\begin{aligned} & 303695.617 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.6	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.8 \\ -7.0 \end{array}$	+4.1	+0.0	38.9	54.0	-15.1	Vert
$\begin{aligned} & 31 \text { 2724.000M } \\ & \text { Ave } \end{aligned}$	50.6	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline-38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.2 \\ -7.0 \end{array}$	+3.4	+0.0	38.2	54.0	-15.8	Horiz
$\begin{aligned} & 32 \text { 3696.150M } \\ & \text { Ave } \end{aligned}$	46.3	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} +31.8 \\ -7.0 \end{array}$	+4.1	$+0.0$	37.6	54.0	-16.4	Horiz

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer: Itron, Inc.
Specification: 15.247(d) / 15.209 Radiated Spurious Emissions
Work Order \#: 103557 Date: 2/20/2020
Test Type: Maximized Emissions
Time: 14:48:19
Tested By:
Don Nguyen
Sequence\#: 3
Software:
EMITest 5.03.12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:

The EUT is placed on turn table. Input voltage is 13.8 Vdc from external power supply. GPS and main antenna ports are connected to an external antenna. USB port is connected to a touchscreen computer. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5. The EUT is set into transmitter mode. The EUT is rotated in three orthogonal orientations. Data represents the worst case orientation.
The antenna of the EUT is mounted to a $52^{\prime \prime}$ diameter aluminum plate to represent a vehicle roof. The aluminum plate is supported by foam blocks. The EUT is directly below the plate, on the test table.

Operating frequency: $908-924 \mathrm{MHz}$
Frequency of measurement: $9 \mathrm{kHz}-9280 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
Temperature $20.3^{\circ} \mathrm{C}$, Relative Humidity 32%
Site A
Test Method: ANSI C63.10 (2013)
Duty correction factor is applied to average reading above 1 GHz per FCC part 15.35 c
Correction factor $=20 \log (44.67 \mathrm{~ms} / 100 \mathrm{~ms})=-7.0 \mathrm{~dB}$
Average readings are calculated from formula Average=peak -7.0 db (duty cycle correction factor). Therefore, none of the peak readings are over 20 dB .

Itron, Inc. WO\#: 103557 Sequence\#f: 3 Date: 2/20/2020
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

[^3]O Peak Readings

* Average Readings
Software Version: 5.03.12

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$5 / 13 / 2018$	$5 / 13 / 2020$
	AN01995	Biconilog Antenna	CBL6111C	$4 / 23 / 2018$	$4 / 23 / 2020$
	ANP05275	Attenuator	1W	$4 / 5 / 2018$	$4 / 5 / 2020$
	ANP05198	Cable-Amplitude +15C to $+45 C ~(d B) ~$	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T1	AN02869	Spectrum Analyzer	E4440A	$7 / 25 / 2019$	$7 / 25 / 2020$
T2	AN00786	Preamp	Horn Antenna	$33017 A$	$5 / 12 / 2018$
T3	AN00849	Cable	3115	$3 / 12 / 2020$	
T4	ANP07139	Cable	ANDL1-PNMNM-48	$3 / 4 / 2019$	$3 / 4 / 2021$
T5	ANP07244		$32022-29094 K-$	$7 / 5 / 2018$	$7 / 5 / 2020$
T6	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$
T7	ANDuty Cycle	Test Data Adjustment		$2 / 19 / 2020$	$2 / 19 / 2022$
	Correction Factor				

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7						
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1 7327.450M	56.0	+0.0	-37.4	+36.0	+5.9	+0.0	53.9	54.0	-0.1	Horiz
Ave		+0.2	+0.2	-7.0						
$\begin{aligned} & 22747.900 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	63.4	+0.0	-38.6	+29.4	+3.4	+0.0	51.2	54.0	-2.8	Vert
		+0.4	+0.2	-7.0						
$\begin{aligned} & 32771.867 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	62.4	+0.0	-38.6	+29.5	+3.5	+0.0	50.4	54.0	-3.6	Vert
		+0.4	+0.2	-7.0						
$\begin{aligned} & 47391.800 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	51.3	+0.0	-37.4	+36.2	+5.9	+0.0	49.5	54.0	-4.5	Vert
		+0.3	+0.2	-7.0						
$\begin{aligned} & 57328.633 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.4	+0.0	-37.4	+36.0	+5.9	+0.0	49.3	54.0	-4.7	Vert
		+0.2	+0.2	-7.0						
$\begin{aligned} & 67391.683 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	51.1	+0.0	-37.4	+36.2	+5.9	+0.0	49.3	54.0	-4.7	Horiz
		+0.3	+0.2	-7.0						
$\begin{aligned} & 78171.900 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	49.9	+0.0	-37.4	+36.8	+6.2	+0.0	49.3	54.0	-4.7	Vert
		+0.5	+0.3	-7.0						
$\begin{aligned} & \hline 8 \text { 8244.783M } \\ & \text { Ave } \\ & \hline \end{aligned}$	49.3	+0.0	-37.4	+36.9	+6.2	+0.0	48.8	54.0	-5.2	Horiz
		+0.5	+0.3	-7.0						
$\begin{aligned} & 98315.433 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	48.9	+0.0	-37.4	+37.0	+6.2	+0.0	48.6	54.0	-5.4	Horiz
		+0.5	+0.4	-7.0						
$\begin{aligned} & 102724.267 \mathrm{M} \\ & \text { Ave } \end{aligned}$	60.7	+0.0	-38.6	+29.2	+3.4	+0.0	48.3	54.0	-5.7	Vert
		+0.4	+0.2	-7.0						
$\begin{aligned} & 117263.683 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	50.5	+0.0	-37.4	+35.7	+5.9	+0.0	48.1	54.0	-5.9	Vert
		+0.2	+0.2	-7.0						
$\begin{gathered} 128172.783 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	48.4	+0.0	-37.4	+36.8	+6.2	+0.0	47.8	54.0	-6.2	Horiz
		+0.5	+0.3	-7.0						
$\begin{aligned} & 135447.683 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.2	+0.0	-37.5	+33.9	+5.4	+0.0	47.6	54.0	-6.4	Vert
		+0.4	+0.2	-7.0						
$\begin{aligned} & 14 \begin{array}{l} 7263.633 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	49.9	+0.0	-37.4	+35.7	+5.9	+0.0	47.5	54.0	-6.5	Horiz
		+0.2	+0.2	-7.0						

$\begin{aligned} & 158316.700 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.6	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -37.4 \\ +0.4 \end{array}$	$\begin{array}{r} \hline+37.0 \\ -7.0 \end{array}$	+6.2	+0.0	47.3	54.0	-6.7	Vert
$\begin{aligned} & 164620.517 \mathrm{M} \\ & \text { Ave } \end{aligned}$	53.6	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.6	+0.0	47.3	54.0	-6.7	Vert
$\begin{aligned} & 17 \text { 4619.683M } \\ & \text { Ave } \\ & \hline \end{aligned}$	52.9	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.6	+0.0	46.6	54.0	-7.4	Horiz
$\begin{gathered} \hline 188244.283 \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	46.8	$\begin{array}{r} +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} -37.4 \\ +0.3 \end{array}$	$\begin{array}{r} \hline+36.9 \\ -7.0 \\ \hline \end{array}$	+6.2	+0.0	46.3	54.0	-7.7	Vert
$\begin{aligned} & 194539.717 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.4	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.8 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+32.9 \\ -7.0 \end{array}$	+4.5	+0.0	45.9	54.0	-8.1	Horiz
$\begin{aligned} & 20 \text { 4579.717M } \\ & \text { Ave } \end{aligned}$	51.3	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+33.0 \\ -7.0 \end{array}$	+4.6	+0.0	45.1	54.0	-8.9	Vert
$\begin{aligned} & 214539.650 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	51.2	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -37.8 \\ +0.2 \end{array}$	$\begin{array}{r} +32.9 \\ -7.0 \end{array}$	+4.5	+0.0	44.7	54.0	-9.3	Vert
$\begin{aligned} & 223664.633 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.5	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.6 \\ -7.0 \end{array}$	+4.1	+0.0	43.6	54.0	-10.4	Vert
$\begin{aligned} & 23 \text { 4580.267M } \\ & \text { Ave } \\ & \hline \end{aligned}$	49.4	$\begin{aligned} & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -37.7 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +33.0 \\ \hline-7.0 \\ \hline \end{array}$	+4.6	+0.0	43.2	54.0	-10.8	Horiz
$\begin{aligned} & 245447.667 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.8	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -37.5 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+33.9 \\ -7.0 \end{array}$	+5.4	$+0.0$	42.2	54.0	-11.8	Horiz
$\begin{aligned} & 253664.150 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.0	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.6 \\ -7.0 \end{array}$	+4.1	+0.0	42.1	54.0	-11.9	Horiz
$\begin{aligned} & 262772.017 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.2	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.5 \\ -7.0 \end{array}$	+3.5	+0.0	40.2	54.0	-13.8	Horiz
$\begin{aligned} & 27 \text { 3631.967M } \\ & \text { Ave } \end{aligned}$	48.7	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.3 \\ -7.0 \end{array}$	+4.1	+0.0	39.5	54.0	-14.5	Vert
$\begin{aligned} & 283695.833 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	47.9	$\begin{aligned} & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.8 \\ -7.0 \\ \hline \end{array}$	+4.1	+0.0	39.2	54.0	-14.8	Vert
$\begin{aligned} & 293695.967 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.7	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.8 \\ -7.0 \end{array}$	+4.1	+0.0	38.0	54.0	-16.0	Horiz
$\begin{aligned} & 303632.033 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.2	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -38.3 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+31.3 \\ -7.0 \end{array}$	+4.1	+0.0	38.0	54.0	-16.0	Horiz
$\begin{aligned} & 31 \quad 2723.933 \mathrm{M} \\ & \text { Ave } \end{aligned}$	50.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline-38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.2 \\ -7.0 \end{array}$	+3.4	+0.0	37.9	54.0	-16.1	Horiz
$\begin{aligned} & 32 \text { 2748.083M } \\ & \text { Ave } \end{aligned}$	50.0	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -38.6 \\ +0.2 \end{array}$	$\begin{array}{r} \hline+29.4 \\ -7.0 \\ \hline \end{array}$	+3.4	$+0.0$	37.8	54.0	-16.2	Horiz

Band Edge

Band Edge Summary-Configuration 2					
Operating Mode: Single Channel (Low and High)					
Frequency (MHz)	Modulation	Ant. Type	Field Strength $(\mathrm{dBuV} / \mathrm{m}$ @3m)	Limit (dBuV/m @3m)	Results
614	12.5 kbps FM	External	42.8	<46	Pass
902	12.5 kbps FM	External	47.1	<107.2	Pass
928	12.5 kbps FM	External	73.0	<107.2	Pass
960	12.5 kbps FM	External	46.6	<54	Pass

Band Edge Summary-Configuration 2

Operating Mode: Hopping

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathrm{m} @ 3 \mathrm{~m})$	Limit $(\mathrm{dBuV} / \mathbf{m} @ 3 \mathrm{~m})$	Results
614	12.5 kbps FM	External	41.6	<46	Pass
902	12.5 kbps FM	External	47.5	<107.2	Pass
928	12.5 kbps FM	External	71.3	<107.2	Pass
960	12.5 kbps FM	External	47.1	<54	Pass

Band Edge Summary-Configuration 3

Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Limit $(\mathbf{d B u V} / \mathrm{m}$ @3m)	Results
614	12.5 kbps FM	External	43.6	<46	Pass
902	12.5 kbps FM	External	48.5	<107.2	Pass
928	12.5 kbps FM	External	73.5	<107.2	Pass
960	12.5 kbps FM	External	48.6	<54	Pass

Band Edge Summary-Configuration 3

Operating Mode: Hopping					
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathrm{dBuV} / \mathbf{m} @ 3 \mathrm{~m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	12.5 kbps FM	External	42.1	<46	Pass
902	12.5 kbps FM	External	47.2	<107.2	Pass
928	12.5 kbps FM	External	73.0	<107.2	Pass
960	12.5 kbpsFM	External	47.6	<54	Pass

[^0]: - Readings
 \times QP Readings
 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

[^1]: ——Readings
 \times QP Readings

 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

[^2]: ——Readings
 \times QP Readings

 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

[^3]: - Readings
 \times QP Readings
 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

