Itron, Inc.

TEST REPORT FOR

Mobile Collection Device, DCU-5310

Tested To The Following Standards:

FCC Part 15 Subpart C Section 15.207 & 18.209 / 15.247 and RSS-210 Issue No. /93174-6

Date of issue: May 25, 2012

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

indicating that the orting requirements of EMC testing for nships by providing

esting the Future

Ш

Ľ

0

A X O

m

This report contains a total of 31 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	.3
Test Report Information	. 3
Report Authorization	. 3
Test Facility Information	. 4
Site Registration & Accreditation Information	. 4
Summary of Results	. 5
Conditions During Testing	. 5
Equipment Under Test	. 6
Peripheral Devices	. 6
FCC Part 15 Subpart C	.7
FCC §15.247(a)(1)(i) / RSS-210 §A8.1 Time of Occupancy	. 7
FCC §15.247(b)(2) / RSS-210 §8A(1) Peak Power	10
FCC §15.247(d) / RSS-210 Radiated Spurious Emissions	13
Supplemental Information	30
Measurement Uncertainty	30
Emissions Test Details	30

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019 **REPORT PREPARED BY:**

Joyce Walker CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 93174

REPRESENTATIVE: Jay Holcomb Customer Reference Number:

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

May 15, May 15 -2012 Report/Authorizat

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client streeponsibility. This report may not be used to claim product endorsement by A2LA or any government agebeies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Bothell	US0081	SL2-IN-E-1145R	3082C-1	318736	R-2296 C-2506 T-1489 G-284

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C & RSS-210 Issue 8

Description	Test Procedure/Method	Results
Time of Occupancy	FCC Part 15 Subpart C Section 15.247(a)(1)(i) RSS-210 Section A8.1(c)	Pass
Peak Power (902-928 MHz)	FCC Part 15 Subpart C Section 15.247(b)(2) RSS-210 Section A8.4(1)	Pass
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.247(d) RSS-210	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Partial testing per customer requirements.

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Mobile Collection Device

Manuf: Itron, Inc. Model: DCU-5310 Serial: 74005504

PERIPHERAL DEVICES

None

Antenna element

Model: MSE-0122-002

None

Manuf: Max Rad

The EUT was tested with the following peripheral device(s): DC power supply Manuf: HQ Power Model: PS5005U

Anuf: General Dynamics opel: GoBook XR-1 erial: None

<u>Roof mount base</u>

Manuf: Max Rad Model: CBA-0334-001 Serial: None

Side Looker Antenna (right)

Manuf: Max Rad Model: MSE-0233-001 Serial: None

Serial:

Serial:

Side Looker Antenna (left)

Manuf: Max Rad Model: MSE-0233-001 Serial: None

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

FCC §15.247(a)(1)(i) / RSS-210 §A8.1 Time of Occupancy

Engineer Name: A. del Angel

Test Conditions / Setup

EUT has its frequency hopping function enabled. The following spectrum analyzer settings were used: Span = Zero span, centered on the hopping channel

RBW = 1MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire transmission time per hopping channel Detector function = Peak

Trace = MAX hold.

Each transmission is 45ms. Each transmission takes place on one of the 80 different channels in a pseudorandom sequence. The algorithm that determines the pseudo-random hop sequence does not allow the device to transmit on the same channel more than 6 times in a 20 second period. The maximum possible occupancy time on any one frequency is 270 mS or 6 times within a 20 second period.

Test Equipment												
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due							
03227	Cable	32026- 29080- 29080-84	Astrolab	5/2/2011	5/2/2013							
P06131	Attenuator	18N20W-20	Inmet	8/18/2011	8/18/2013							
02871	Spectrum Analyzer	E4440A	Agilent	4/22/2011	4/22/2013							

<u>Test Data</u>

🔆 Agilent 22:30:07 May	* Agilent 22:30:07 May 15, 2012 R L												
Ref 30.9 dBm	Atten 20 dB	Ext PG -20.9 dB		∆ Mkr1 45 ms -0.01 dB									
#Peak													
10 1R dB(
LgAv													
V1 S2													
S3 VC AL													
¤(f): مس FTun				hallhanda									
Center 916.000 MHz				Span 0 Hz									
Res BW 1 MHz	#	#VBW 1 MHz Sweep 50 m s (1001 p											

Transmission Time

Test Setup Photos

FCC §15.247(b)(2) / RSS-210 §8A(1) Peak Power

Engineer Name: A. del Angel

Test Conditions / Setup

The following spectrum analyzer settings were used:

Span = 5x the 20dB BW, centered on the lowest, middle, and highest channel

RBW > 20dB BW of the emission being measured

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = AUTO

Detector function = Peak

Trace = MAX hold

Note: Cable and attenuator loss of 20.9dB was taken into account.

Test Results										
Frequency (MHz)	Output Power (dBm)	Output Power (Watts)								
908	28.13	0.650								
916	28.96	0.787								
923.8	28,5	0.707								

Page 10 of 31 Report No.: 93174-6

High

<u>Test Setup Photo</u>

FCC §15.247(d) / RSS-210 Radiated Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:ItronSpecification:15.24Work Order #:93174Test Type:MaxiEquipment:MobiManufacturer:Itron,Model:DCU-S/N:74005	, Inc. 7(d) / 15.209 Radiated Spr i mized Emissions le Collection Device Inc. 5310 5504	urious Emissions Date: Time: Sequence#: Tested By:	5/16/2012 12:46:11 1 Armando Del Angel		
I est Equipment:	Description	Madal	Colibration Data	Cal Dua Data	
T1 ANO1271	Description		Calibration Date	Cal Due Date $\frac{2}{12}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Horn Antonno ANSI	3115	10/10/2011	0/10/2013	
12 AN01407	C63 5 Calibration		10/19/2011	10/19/2013	
T3 AN03123	Cable	(32026-22/29801-12	10/14/2011	10/14/2013	
T4 AN03227	Cable	32026-29080-29080-84	5/2/2011	5/2/2013	
T5 ANP05542	Cable	Heliax	9/27/2011	9/27/2013	
T6 AN02871	Spectrum Analyzer	E4440A	4/22/2011	4/22/2013	
T7 AN03170	High Pass Filter	HM1155-11SS	9/6/2011	9/6/2013	
T8 AN01316	Preamp	8447D	4/3/2012	4/3/2014	
T9 AN01993	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014	
T10 ANP05360	Cable	RG214	11/8/2010	11/8/2012	
T11 ANP05366	Cable	RG-214	10/14/2011	10/14/2013	
T12 AN00052	Loop Antenna	6502	6/8/2010	6/8/2012	
T13 ANWO93174	Duty Cycle Correction		5/16/2012	5/16/2014	
	Factor				
T14 ANP06130	Attenuator	18N20W-10	8/18/2011	8/18/2013	
Equipment Under Test	(* = EUT):				
Function	Manufacturer	Model #	S/N		
Mobile Collection Devic	e* Itron, Inc.	DCU-5310	74005504		

Support Devices: Function Manufacturer Model # S/N DC power supply HQ Power PS5005U General Dynamics GoBook XR-1 Laptop Antenna element Max Rad MSE-0122-002 Roof mount base Max Rad CBA-0334-001 Side Looker antenna (right) Max Rad MSE-0233-001 MSE-0233-001 Side Looker antenna (left) Max Rad

Test Conditions / Notes:

Temp: 24°C Humidity: 33% Pressure: 102.4kPa Frequency: 9kHz - 10GHz

EUT is located on the center of the test table, 80cm above the ground plane. The Main antenna port is connected to a monopole antenna which is mounted on a metal counter poise which measures 1.32m in diameter. This counter poise is suspended 40cm over the test table by two Styrofoam blocks. EUT is connected to a laptop which is also on the test table.

Duty Cycle Correction Factor of -6.93dB will be applied. DCCF = 20 x Log(TX on / 100ms) RBW/VBW = 100kHz on non-restricted bands RBW/VBW = CISPR Bandwidth on restricted bands.

Ext Attn: 0 dB

Meası	rement Data:	Re	eading lis	ted by ma	rgin.		Tes	st Djstanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	- Corr	Spec	Margin	Polar
			T5	T6	T7	T8	\square	7			
			T9	T10	T11	T12	11				
			T13	T14		\int		1			
	MHz	dBµV	dB	dB	dB	¢₿	Table	dBµV/m	dBµV/m	dB	Ant
1	923.800M	118.5	+0.0	+0.0	₩0.0	/ #0.9/	+0.0	118.0	118.0	+0.0	Vert
	Ambient		+0.0	+0.0	\	/ /29 d	56		Fundamenta	ıl	213
			+23.3	+2.6	+2.3	/ +0 Ø			Readings		
			+0.0	+0.0	11 n \/	11					
2	916.000M	118.5	+0.0	+0 0	// +0.0/	/ +0.9	+0.0	117.9	118.0	-0.1	Vert
	Ambient		+0.0	+0.9 /	#0.0L	-29.0	180		Fundamenta	ıl	216
			+23.2	+2.0/	$V_{+2.3}$	+0.0			Readings		
			+0.0	+0.0							
3	908.055M	118.5	+0.0	+0.0	+0.0	+0.9	+0.0	117.6	118.0	-0.4	Vert
	Ambient		+0.0	+0.0	+0.0	-29.1	70		Fundamenta	ıl	202
			+23.1	+1.9	+2.3	+0.0			Readings		
			+0.0	+0.0							
4	916.000M	114.4	+0.0	+0.0	+0.0	+0.9	+0.0	113.8	118.0	-4.2	Horiz
	Ambient		+0.0	+0.0	+0.0	-29.0	131		Fundamenta	ıl	99
			+23.2	+2.0	+2.3	+0.0			Readings		
			+0.0	+0.0							
5	2723.786M	57.3	-33.9	+27.2	+0.5	+1.6	+0.0	49.2	54.0	-4.8	Horiz
			+3.1	+0.0	+0.3	+0.0	112		Low Channe	el	121
			+0.0	+0.0	+0.0	+0.0					
			-6.9	+0.0							
6	908.055M	113.9	+0.0	+0.0	+0.0	+0.9	+0.0	113.0	118.0	-5.0	Horiz
	Ambient		+0.0	+0.0	+0.0	-29.1	190		Fundamenta	ıl	202
			+23.1	+1.9	+2.3	+0.0			Readings		
			+0.0	+0.0							
7	923.800M	111.8	+0.0	+0.0	+0.0	+0.9	+0.0	111.3	118.0	-6.7	Horiz
	Ambient		+0.0	+0.0	+0.0	-29.0	163		Fundamenta	al	99
			+23.3	+2.0	+2.3	+0.0			Readings		
			+0.0	+0.0							

8	7328.532M	44.1	-34.6	+35.9	+0.5	+3.2	+0.0	47.2	54.0 -6.8	Vert
			+4.8	+0.0	+0.2	+0.0	130		Mid Channel	99
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
9	2723.790M	54.9	-33.9	+27.2	+0.5	+1.6	+0.0	46.8	54.0 -7.2	Vert
			+3.1	+0.0	+0.3	+0.0	116		Low Channel	156
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
10	2747.876M	54.0	-33.9	+27.3	+0.5	+1.6	+0.0	46.1	54.0 -7.9	Vert
			+3.2	+0.0	+0.3	+0.0	149		Mid Channel	105
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
11	7264.620M	42.7	-34.5	+35.7	+0.5	+3.2	+0.0	45.8	54.0 -8.2	Horiz
			+4.8	+0.0	+0.3	+0.0	182		Low Channel	149
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
12	7327.778M	42.5	-34.6	+35.9	+0.5	+3.2	+0.0	45.6	54.0 -8.4	Horiz
			+4.8	+0.0	+0.2	+0.0	187		Mid Channel	135
			+0.0	+0.0	+0.0	+0.0	1			
10	70(0.550)/	41.0	-6.9	+0.0	.0.5			f 110	54.0 0.1	X 7 (
13	/263.552M	41.8	-34.5	+35.7	+0.5	+3,2	+0.0	44.9	54.0 -9.1	Vert
			+4.8	+0.0	+0.3		Lap		Low Channel	121
			+0.0	+0.0	+0.0	/ 10.0/	≥ 1			
14	1570 565M	17 0	-0.9	+0.0	\mathbf{h}			44.0	54.0 0.1	Horiz
14	4379.303WI	47.0	-35.5 -13.6	+31.4		+00	+0.0	44.9	J4.0 -9.1 Mid Channel	170
			+3.0				1//		What Chaliner	1/9
			-6.9		// 78.9/ /	T.0				
15	2747 831M	52.5	-33.9	+17/3	1405	+1.6	+0.0	44.6	54.0 -9.4	Horiz
15	2747.051101	52.5	+3.2	400	$V_{+0.3}^{+0.3}$	+0.0	198	44.0	Mid Channel	99
			+0.0	+0.0	+0.0	+0.0	170			,,,
			-6.9	+0.0	1010	1010				
16	7390.428M	40.8	-34.5	+36.0	+0.6	+3.3	+0.0	44.4	54.0 -9.6	Horiz
_			+4.9	+0.0	+0.2	+0.0	172		High Channel	149
			+0.0	+0.0	+0.0	+0.0			C	
			-6.9	+0.0						
17	4619.064M	46.8	-33.5	+31.5	+0.1	+2.1	+0.0	44.0	54.0 -10.0	Vert
			+3.6	+0.0	+0.3	+0.0	137		High Channel	128
			+0.0	+0.0	+0.0	+0.0			-	
			-6.9	+0.0						
18	8172.000M	38.7	-34.6	+36.1	+0.8	+4.0	+0.0	43.9	54.0 -10.1	Horiz
			+5.6	+0.0	+0.2	+0.0	185		Low Channel	129
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
19	7390.428M	40.0	-34.5	+36.0	+0.6	+3.3	+0.0	43.6	54.0 -10.4	Vert
			+4.9	+0.0	+0.2	+0.0	225		High Channel	107
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
20	8171.905M	37.9	-34.6	+36.1	+0.8	+4.0	+0.0	43.1	54.0 -10.9	Vert
			+5.6	+0.0	+0.2	+0.0	183		Low Channel	179
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						

21	4619.000M	45.8	-33.5	+31.5	+0.1	+2.1	+0.0	43.0	54.0 -11.0	Horiz
			+3.6	+0.0	+0.3	+0.0	141		High Channel	155
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
22	4539.695M	45.8	-33.4	+31.3	+0.2	+2.1	+0.0	42.9	54.0 -11.1	Vert
			+3.5	+0.0	+0.3	+0.0	183		Low Channel	233
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
23	4580.000M	45.6	-33.5	+31.4	+0.1	+2.1	+0.0	42.7	54.0 -11.3	Vert
			+3.6	+0.0	+0.3	+0.0	206		Mid Channel	106
			+0.0	+0.0	+0.0	+0.0				
24	2662.94014	46.0	-6.9	+0.0	.0.4	.1.0	.0.0	12.0	54.0 12.0	N. C. and
24	3003.840M	46.9	-33.0	+29.4	+0.4	+1.9	+0.0	42.0	54.0 -12.0 Mid Channal	vert
			+3.0	+0.0	+0.5	+0.0	203		Mid Channel	105
			+0.0	+0.0	+0.0	+0.0				
25	4540 244M	/3.0	-0.9	+0.0	+0.2	±2.1	+0.0	41.0	54.0 13.0	Horiz
23	4340.244101	43.9	-33. 4 +3.5	+0.0	+0.2	+2.1	+0.0 191	41.0	Low Channel	118
			+0.0	+0.0	+0.0	+0.0	171		Low Channel	110
			-6.9	+0.0	10.0	10.0	1	2		
26	5448.294M	40.0	-33.5	+33.2	+0.4	+2.3	+0.61	40.3	54.0 -13.7	Horiz
			+4.5	+0.0	+0.3	H0.0	180		Low Channel	193
			+0.0	+0.0	+0.0	/+0.0/				
			-6.9	+0.0	$\int d$	////				
27	3695.027M	45.1	-33.6	+29.5	+0.4/	419	+0.0	40.3	54.0 -13.7	Horiz
			+3.6	+þ.ø	+0. 3	+00	145		High Channel	189
			+0.0	+0.0	// #Ø.Q/	10.0				
			-6.9	+0.0	$ \nu$					
28	3695.434M	44.8	-33.6	+29,\$/	J+0.4	+1.9	+0.0	40.1	54.0 -13.9	Vert
			+3.6	+0.9⁄	+0.3	+0.0	199		High Channel	101
			+0.0	H0 .0	+0.0	+0.0				
			-6.9	+0.0				• • • •		
29	2771.074M	47.7	-33.9	+27.4	+0.5	+1.6	+0.0	39.9	54.0 -14.1	Vert
			+3.2	+0.0	+0.3	+0.0	168		High Channel	101
			+0.0	+0.0	+0.0	+0.0				
20	2771 607M	47.0	-0.9	+0.0	10.5	+1.6	+0.0	20.2	540 149	Homia
50	2//1.09/101	47.0	-33.9 	+27.4	+0.3	+1.0	+0.0 105	39.2	J4.0 -14.8 High Channel	123
			+0.0	+0.0	+0.3	+0.0 +0.0	195		Tingii Channei	125
			-6.9	+0.0	10.0	10.0				
31	3663 975M	44.0	-33.6	+29.4	+0.4	+1 9	+0.0	39.1	54.0 -14.9	Horiz
51	3003.97514	11.0	+3.6	+0.0	+0.3	+0.0	136	57.1	Mid Channel	99
			+0.0	+0.0	+0.0	+0.0	100			
			-6.9	+0.0						
32	5447.775M	38.3	-33.5	+33.2	+0.4	+2.3	+0.0	38.6	54.0 -15.4	Vert
			+4.5	+0.0	+0.3	+0.0	178		Low Channel	144
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
33	3632.026M	43.0	-33.6	+29.3	+0.4	+1.9	+0.0	37.9	54.0 -16.1	Horiz
			+3.5	+0.0	+0.3	+0.0	182		Low Channel	199
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						

34	3631.744M	42.2	-33.6	+29.3	+0.4	+1.9	+0.0	37.1	54.0 -16.9	Vert
			+3.5	+0.0	+0.3	+0.0	172		Low Channel	177
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
35	896.100M	49.6	+0.0	+0.0	+0.0	+0.9	+0.0	52.0	98.0 -46.0	Vert
			+0.0	+0.0	+0.0	-29.1	360		Low Channel	171
			+23.0	+1.9	+2.3	+0.0				
			-6.9	+10.3						
36	920.050M	66.8	+0.0	+0.0	+0.0	+0.9	+0.0	69.7	118.0 -48.3	Vert
			+0.0	+0.0	+0.0	-29.0	360		Low Channel	171
			+23.3	+2.0	+2.3	+0.0				
			-6.9	+10.3						
37	927.950M	62.4	+0.0	+0.0	+0.0	+0.9	+0.0	65.4	118.0 -52.6	Vert
			+0.0	+0.0	+0.0	-29.0	360		Mid Channel	151
			+23.4	+2.0	+2.3	+0.0				
			-6.9	+10.3						
38	911.741M	62.6	+0.0	+0.0	+0.0	+0.9	+0.0	65.3	118.0 -52.7	Vert
			+0.0	+0.0	+0.0	-29.1	81		High Channel	175
			+23.2	+2.0	+2.3	+0.0	1	J		
	005 0103 5	10.1	-6.9	+10.3	0.0	0.0		<u> </u>		
39	935.810M	42.1	+0.0	+0.0	+0.0	+0.9	+0.0	45.2	98.0 -52.8	Vert
			+0.0	+0.0	+0.0	12910	126		High Channel	166
			+23.5	+2.0	+2.3	/ 10.0/	≥ 1			
- 10	00405034	(1.6	-6.9	+10.3	HAL			64.1	110.0 50.0	X X .
40	904.050M	61.6	+0.0	$+\varphi.0$	1 + 0.0 / 1		+0.0	64.1	118.0 -53.9 Mid Channel	Vert
			+0.0	+0.0		-29	300		Mid Channel	151
			+23.1		#¥.3	10.0				
41	6256 120M	40.5	-0.9	+10.5	H	1.7.0		12.2	08.0 54.8	Uoria
41	0550.452101	40.5	-54.0	+ p4 p	$V_{10.4}^{\pm 0.3}$	+2.0	+0.0	43.2	90.0 -J4.0	144
			+0.0		+0.4	+0.0	105		Low Channel	144
			-6.9	↓0.0	± 0.0	± 0.0				
42	6355 712M	39.6	-34.0	+34.5	+0.5	+2.8	+0.0	42.3	98.0 -55.7	Vert
72	0555.712101	57.0	-5+.0 +5.4	+0.0	+0.3	+0.0	167	72.5	Low Channel	170
			+0.0	+0.0	+0.0	+0.0	107		Low Chamler	170
			-6.9	+0.0	10.0	10.0				
43	6411.713M	38.3	-34.0	+34.4	+0.5	+2.8	+0.0	40.8	98.0 -57.2	Horiz
	01111/10111	0010	+5.3	+0.0	+0.4	+0.0	165		Mid Channel	145
			+0.0	+0.0	+0.0	+0.0				-
			-6.9	+0.0						
44	6466.318M	37.6	-34.0	+34.4	+0.5	+2.8	+0.0	40.0	98.0 -58.0	Vert
			+5.3	+0.0	+0.3	+0.0	158		High Channel	121
			+0.0	+0.0	+0.0	+0.0			C	
			-6.9	+0.0						
45	5543.147M	39.7	-33.6	+33.4	+0.4	+2.4	+0.0	40.0	98.0 -58.0	Vert
			+4.3	+0.0	+0.3	+0.0	208		High Channel	99
			+0.0	+0.0	+0.0	+0.0			-	
			-6.9	+0.0						
46	920.050M	56.8	+0.0	+0.0	+0.0	+0.9	+0.0	59.7	118.0 -58.3	Horiz
			+0.0	+0.0	+0.0	-29.0	360		Low Channel	173
			+23.3	+2.0	+2.3	+0.0				
			-6.9	+10.3						

47	5496.000M	39.0	-33.5	+33.3	+0.4	+2.4	+0.0	39.4	98.0 -58.6	Vert
			+4.4	+0.0	+0.3	+0.0	44		Mid Channel	103
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
48	6412.440M	35.6	-34.0	+34.4	+0.5	+2.8	+0.0	38.1	98.0 -59.9	Vert
			+5.3	+0.0	+0.4	+0.0	58		Mid Channel	99
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
49	911.747M	55.3	+0.0	+0.0	+0.0	+0.9	+0.0	58.0	118.0 -60.0	Horiz
			+0.0	+0.0	+0.0	-29.1	351		High Channel	163
			+23.2	+2.0	+2.3	+0.0				
			-6.9	+10.3						
50	5543.147M	37.3	-33.6	+33.4	+0.4	+2.4	+0.0	37.6	98.0 -60.4	Horiz
			+4.3	+0.0	+0.3	+0.0	207		High Channel	121
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
51	6466.318M	33.2	-34.0	+34.4	+0.5	+2.8	+0.0	35.6	98.0 -62.4	Horiz
			+5.3	+0.0	+0.3	+0.0	185		High Channel	134
			+0.0	+0.0	+0.0	+0.0	1	J		
			-6.9	+0.0				[
52	927.950M	52.6	+0.0	+0.0	+0.0	+0.9	+0.0	55.6	118.0 -62.4	Horiz
			+0.0	+0.0	+0.0	729.0	Beo		Mid Channel	171
			+23.4	+2.0	+2.3	/ 1010/				
50	00405036	51.6	-6.9	+10.3	HAL			54.1	110.0 (2.0	
53	904.050M	51.6	+0.0	$+\varphi.0$	+00/	1 1-1019	+0.0	54.1	118.0 -63.9	Horiz
			+0.0	+0.0	+0.0	-29	360		Mid Channel	1/1
			+23.1	+1.9	//**¥+.)/	10.0				
54	1947 74014	40.7	-0.9	+10.5	Har	+1.2		200	08.0 60.2	Vort
54	1647.740101	40.7	-54.0	+ + + + + + + + + + + + + + + + + + + +	$\Gamma_{+0.3}^{+0.3}$	+1.3	+0.0	20.0	98.0 -09.2 High Channel	105
			+2.3		+0.4	+0.0	111		rigii Channei	105
			+0.0	₽ 0.0	± 0.0	± 0.0				
55	1831 011M	30.0	34.6	+0.0	+0.3	±1.3	+0.0	27.8	98.0 70.2	Vort
55	1051.9111	39.9	-34.0 ±2.5	+24.9 ±0.0	+0.3	+1.3	+0.0 78	27.0	Mid Channel	00
			+0.0	+0.0	+0.4	+0.0	70		who channel	,,
			-6.9	+0.0	10.0	10.0				
56	1847 720M	38.9	-34.6	+25.1	+0.3	+1.3	+0.0	27.0	98.0 -71.0	Horiz
50	1017.720101	50.7	+2.5	+0.0	+0.4	+0.0	203	27.0	High Channel	99
			+0.0	+0.0	+0.0	+0.0			8	
			-6.9	+0.0						
57	1832.115M	38.6	-34.6	+24.9	+0.3	+1.3	+0.0	26.5	98.0 -71.5	Horiz
			+2.5	+0.0	+0.4	+0.0	206		Mid Channel	99
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
58	1815.936M	36.1	-34.6	+24.8	+0.3	+1.3	+0.0	23.9	98.0 -74.1	Vert
			+2.5	+0.0	+0.4	+0.0	143		Low Channel	155
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
59	1815.896M	34.4	-34.6	+24.8	+0.3	+1.3	+0.0	22.2	98.0 -75.8	Horiz
			+2.5	+0.0	+0.4	+0.0	147		Low Channel	119
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						

60	13.325M	33.5	+0.0	+0.0	+0.0	+0.1	-40.0	-3.8	98.0	-101.8	Perpe
			+0.2	+0.0	+0.0	+0.0	360		Low Chan	inel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
61	13.318M	33.5	+0.0	+0.0	+0.0	+0.1	-40.0	-3.8	98.0	-101.8	Perpe
			+0.2	+0.0	+0.0	+0.0	360		High Chai	nnel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
62	13.321M	33.2	+0.0	+0.0	+0.0	+0.1	-40.0	-4.1	98.0	-102.1	Perpe
			+0.2	+0.0	+0.0	+0.0			Mid Chan	nel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
63	13.325M	22.9	+0.0	+0.0	+0.0	+0.1	-40.0	-14.4	98.0	-112.4	Paral
			+0.2	+0.0	+0.0	+0.0			Low Chan	inel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
64	13.321M	22.6	+0.0	+0.0	+0.0	+0.1	-40.0	-14.7	98.0	-112.7	Paral
			+0.2	+0.0	+0.0	+0.0		1	High Chai	nnel	100
			+0.0	+0.0	+0.0	+9.3	1				
			-6.9	+0.0			$\leq \mid$	\int			
65	13.322M	22.4	+0.0	+0.0	+0.0	+0.1	-40.0	-14.9	98.0	-112.9	Paral
			+0.2	+0.0	+0.0	/+0 <mark>.</mark> 0 /	360		Mid Chan	nel	100
			+0.0	+0.0	+0.0	/ +9.3		1			
			-6.9	+0.0	$\int d d$		ſ				
				\int				,			

CKC Laboratories, Inc. Date: 5/16/2012 Time: 12:46:11 Itron, Inc. WO#: 93174 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perpendicular Sequence#: 1 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Itron, Inc.		
Specification:	RSS-210 - 8 Radiated Spurious Emissions		
Work Order #:	93174	Date:	5/16/2012
Test Type:	Maximized Emissions	Time:	12:46:11
Equipment:	Mobile Collection Device	Sequence#:	1
Manufacturer:	Itron, Inc.	Tested By:	Armando Del Angel
Model:	DCU-5310		
S/N:	74005504		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date		
T1	AN01271	Preamp	83017A	8/18/2011	8/18/2013		
T2	AN01467	Horn Antenna-ANSI C63.5	3115	10/19/2011	10/19/2013		
		Calibration					
T3	AN03123	Cable	32026-2-29801-12	10/14/2011	10/14/2013		
T4	AN03227	Cable	32026-29080-29080-84	5/2/2011	5/2/2013		
T5	ANP05542	Cable	Heliax	9/27/2011	9/27/2013		
T6	AN02871	Spectrum Analyzer	E4440A	J 4/22/2011	4/22/2013		
T7	AN03170	High Pass Filter	HM1155-11 \$ \$	9/6/2011	9/6/2013		
T8	AN01316	Preamp	8447D	4/3/2012	4/3/2014		
T9	AN01993	Biconilog Antenna	CBL6/11C	3/2/2012	3/2/2014		
T10	ANP05360	Cable	RG214	11/8/2010	11/8/2012		
T11	ANP05366	Cable	[RG-214]	10/14/2011	10/14/2013		
T12	AN00052	Loop Antenna	6502	6/8/2010	6/8/2012		
T13	ANWO93174	Duty Cycle Correction		5/16/2012	5/16/2014		
		Factor					
T14	ANP06130	Attenuator	48N20W-10	8/18/2011	8/18/2013		
Equip	ment Under Test	<i>t</i> (* = EUT):					
Functio	n	Manufacturer	Model #	S/N			
Mobile	Collection Devi	ce* Itron, Inc.	DCU-5310	74005504			
Suppor	rt Devices:						
Functio	n	Manufacturer	Model #	S/N			
DC pov	ver supply	HQ Power	PS5005U				
Laptop		General Dynamics	GoBook XR-1				
Antenna	a element	Max Rad	MSE-0122-002				
Roof mount base Max Rad			CBA-0334-001				
Side Lo	oker antenna (ri	ght) Max Rad	MSE-0233-001				
Side Lo	oker antenna (le	ft) Max Rad	MSE-0233-001				

Test Conditions / Notes:

Temp: 24°C Humidity: 33% Pressure: 102.4kPa Frequency: 9kHz - 10GHz

EUT is located on the center of the test table, 80cm above the ground plane. The Main antenna port is connected to a monopole antenna which is mounted on a metal counter poise which measures 1.32m in diameter. This counter poise is suspended 40cm over the test table by two Styrofoam blocks. EUT is connected to a laptop which is also on the test table.

Duty Cycle Correction Factor of -6.93dB will be applied. DCCF = 20 x Log(TX on / 100ms) RBW/VBW = 100kHz on non-restricted bands RBW/VBW = CISPR Bandwidth on restricted bands.

Ext Attn: 0 dB

Measi	irement Data:	Re	eading lis	ted by ma	rgin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8	[]]				
			T9	T10	T11	T/2	$\left[\int_{A} \right]$				
			T13	T14	\square			1			
	MHz	dBµV	dB	dB	dß	/d / B	Table	dBµV/m	dBµV/m	dB	Ant
1	923.800M	118.5	+0.0	+0.0	\/+Ø./	/ /40.9	+0.0	118.0	118.0	+0.0	Vert
	Ambient		+0.0	+Ø.P	/+b.Q//	-290	56		Fundamenta	ıl	213
			+23.3	+ 2. þ	+2.3	(10)0			Readings		
			+0.0	+0 0	ШЦV						
2	916.000M	118.5	+0.0	f0.9 /	+0.0 ^L	+0.9	+0.0	117.9	118.0	-0.1	Vert
	Ambient		+0.0	+0.0/	$\nu_{+0.0}$	-29.0	180		Fundamenta	ıl	216
			+23.2	+2.0	+2.3	+0.0			Readings		
			+0.0	+0.0							
3	908.055M	118.5	+0.0	+0.0	+0.0	+0.9	+0.0	117.6	118.0	-0.4	Vert
	Ambient		+0.0	+0.0	+0.0	-29.1	70		Fundamenta	ıl	202
			+23.1	+1.9	+2.3	+0.0			Readings		
			+0.0	+0.0							
4	916.000M	114.4	+0.0	+0.0	+0.0	+0.9	+0.0	113.8	118.0	-4.2	Horiz
	Ambient		+0.0	+0.0	+0.0	-29.0	131		Fundamenta	ıl	99
			+23.2	+2.0	+2.3	+0.0			Readings		
			+0.0	+0.0							
5	2723.786M	57.3	-33.9	+27.2	+0.5	+1.6	+0.0	49.2	54.0	-4.8	Horiz
			+3.1	+0.0	+0.3	+0.0	112		Low Channe	el	121
			+0.0	+0.0	+0.0	+0.0					
			-6.9	+0.0							
6	908.055M	113.9	+0.0	+0.0	+0.0	+0.9	+0.0	113.0	118.0	-5.0	Horiz
	Ambient		+0.0	+0.0	+0.0	-29.1	190		Fundamenta	ıl	202
			+23.1	+1.9	+2.3	+0.0			Readings		
			+0.0	+0.0							
7	923.800M	111.8	+0.0	+0.0	+0.0	+0.9	+0.0	111.3	118.0	-6.7	Horiz
	Ambient		+0.0	+0.0	+0.0	-29.0	163		Fundamenta	ıl	99
			+23.3	+2.0	+2.3	+0.0			Readings		
			+0.0	+0.0							

8	7328.532M	44.1	-34.6	+35.9	+0.5	+3.2	+0.0	47.2	54.0 -6.8	Vert
			+4.8	+0.0	+0.2	+0.0	130		Mid Channel	99
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
9	2723.790M	54.9	-33.9	+27.2	+0.5	+1.6	+0.0	46.8	54.0 -7.2	Vert
			+3.1	+0.0	+0.3	+0.0	116		Low Channel	156
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
10	2747.876M	54.0	-33.9	+27.3	+0.5	+1.6	+0.0	46.1	54.0 -7.9	Vert
			+3.2	+0.0	+0.3	+0.0	149		Mid Channel	105
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
11	7264.620M	42.7	-34.5	+35.7	+0.5	+3.2	+0.0	45.8	54.0 -8.2	Horiz
			+4.8	+0.0	+0.3	+0.0	182		Low Channel	149
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
12	7327.778M	42.5	-34.6	+35.9	+0.5	+3.2	+0.0	45.6	54.0 -8.4	Horiz
			+4.8	+0.0	+0.2	+0.0	187		Mid Channel	135
			+0.0	+0.0	+0.0	+0.0	1			
10	70/2 55014	41.0	-6.9	+0.0	.0.5	. 2.2		f 110	54.0 0.1	X 7 (
13	7263.552M	41.8	-34.5	+35.7	+0.5	+3.2	+0.0	44.9	54.0 -9.1	Vert
			+4.8	+0.0	+0.3		Lap		Low Channel	121
			+0.0	+0.0	+0.0	/1000/	≥ 1			
14	1570 565M	17 0	-0.9	+0.0	\mathbf{h}			44.0	54.0 0.1	Horiz
14	4379.303M	47.0	-35.5 -13.6	+31.4		+00	+0.0	44.9	J4.0 -9.1 Mid Channel	170
			+3.0				1//		What Chaliner	1/9
			-6.9		// 78.9/ /	10.0				
15	2747 831M	52.5	-33.9	+17/3	1405	+1.6	+0.0	44.6	54.0 -9.4	Horiz
15	2747.051101	52.5	+3.2	400	$V_{+0.3}^{+0.3}$	+0.0	198	44.0	Mid Channel	99
			+0.0	+0.0	+0.0	+0.0	170			,,,
			-6.9	+0.0	1010					
16	7390.428M	40.8	-34.5	+36.0	+0.6	+3.3	+0.0	44.4	54.0 -9.6	Horiz
_			+4.9	+0.0	+0.2	+0.0	172		High Channel	149
			+0.0	+0.0	+0.0	+0.0			C	
			-6.9	+0.0						
17	4619.064M	46.8	-33.5	+31.5	+0.1	+2.1	+0.0	44.0	54.0 -10.0	Vert
			+3.6	+0.0	+0.3	+0.0	137		High Channel	128
			+0.0	+0.0	+0.0	+0.0			-	
			-6.9	+0.0						
18	8172.000M	38.7	-34.6	+36.1	+0.8	+4.0	+0.0	43.9	54.0 -10.1	Horiz
			+5.6	+0.0	+0.2	+0.0	185		Low Channel	129
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
19	7390.428M	40.0	-34.5	+36.0	+0.6	+3.3	+0.0	43.6	54.0 -10.4	Vert
			+4.9	+0.0	+0.2	+0.0	225		High Channel	107
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
20	8171.905M	37.9	-34.6	+36.1	+0.8	+4.0	+0.0	43.1	54.0 -10.9	Vert
			+5.6	+0.0	+0.2	+0.0	183		Low Channel	179
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						

21	4619.000M	45.8	-33.5	+31.5	+0.1	+2.1	+0.0	43.0	54.0 -11.0	Horiz
			+3.6	+0.0	+0.3	+0.0	141		High Channel	155
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
22	4539.695M	45.8	-33.4	+31.3	+0.2	+2.1	+0.0	42.9	54.0 -11.1	Vert
			+3.5	+0.0	+0.3	+0.0	183		Low Channel	233
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
23	4580.000M	45.6	-33.5	+31.4	+0.1	+2.1	+0.0	42.7	54.0 -11.3	Vert
			+3.6	+0.0	+0.3	+0.0	206		Mid Channel	106
			+0.0	+0.0	+0.0	+0.0				
24	2662.94014	46.0	-6.9	+0.0	.0.4	.1.0	.0.0	12.0	54.0 12.0	N. C. and
24	3003.840M	46.9	-33.0	+29.4	+0.4	+1.9	+0.0	42.0	54.0 -12.0 Mid Channal	vert
			+3.0	+0.0	+0.5	+0.0	203		Mid Channel	105
			+0.0	+0.0	+0.0	+0.0				
25	4540 244M	/3.0	-0.9	+0.0	+0.2	±2.1	+0.0	41.0	54.0 13.0	Horiz
23	4340.244101	43.9	-33. 4 +3.5	+0.0	+0.2	+2.1	+0.0 191	41.0	Low Channel	118
			+0.0	+0.0	+0.0	+0.0	171		Low Channel	110
			-6.9	+0.0	10.0	10.0	1	2		
26	5448.294M	40.0	-33.5	+33.2	+0.4	+2.3	+0.61	40.3	54.0 -13.7	Horiz
			+4.5	+0.0	+0.3	H0.0	180		Low Channel	193
			+0.0	+0.0	+0.0	/+0.0/				
			-6.9	+0.0	$\int d$	////				
27	3695.027M	45.1	-33.6	+29.5	+0.4/	419	+0.0	40.3	54.0 -13.7	Horiz
			+3.6	+þ.øj	+0. 3	+00	145		High Channel	189
			+0.0	+0.0	// #Ø.Q/	10.0				
			-6.9	+0 0	$ \nu$					
28	3695.434M	44.8	-33.6	+29,\$/	J+0.4	+1.9	+0.0	40.1	54.0 -13.9	Vert
			+3.6	+0.9⁄	+0.3	+0.0	199		High Channel	101
			+0.0	H0 .0	+0.0	+0.0				
			-6.9	+0.0				• • • •		
29	2771.074M	47.7	-33.9	+27.4	+0.5	+1.6	+0.0	39.9	54.0 -14.1	Vert
			+3.2	+0.0	+0.3	+0.0	168		High Channel	101
			+0.0	+0.0	+0.0	+0.0				
20	2771 607M	47.0	-0.9	+0.0	10.5	+1.6	+0.0	20.2	540 149	Homia
50	2//1.09/101	47.0	-33.9 	+27.4	+0.3	+1.0	+0.0 105	39.2	J4.0 -14.8 High Channel	123
			+0.0	+0.0 +0.0	+0.3	+0.0 +0.0	195		Tingii Channei	125
			-6.9	+0.0	10.0	10.0				
31	3663 975M	44.0	-33.6	+29.4	+0.4	+1 9	+0.0	39.1	54.0 -14.9	Horiz
51	3003.97514	11.0	+3.6	+0.0	+0.3	+0.0	136	57.1	Mid Channel	99
			+0.0	+0.0	+0.0	+0.0	100			
			-6.9	+0.0						
32	5447.775M	38.3	-33.5	+33.2	+0.4	+2.3	+0.0	38.6	54.0 -15.4	Vert
			+4.5	+0.0	+0.3	+0.0	178		Low Channel	144
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
33	3632.026M	43.0	-33.6	+29.3	+0.4	+1.9	+0.0	37.9	54.0 -16.1	Horiz
			+3.5	+0.0	+0.3	+0.0	182		Low Channel	199
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						

34	3631.744M	42.2	-33.6	+29.3	+0.4	+1.9	+0.0	37.1	54.0 -16.9	Vert
			+3.5	+0.0	+0.3	+0.0	172		Low Channel	177
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
35	896.100M	49.6	+0.0	+0.0	+0.0	+0.9	+0.0	52.0	98.0 -46.0	Vert
			+0.0	+0.0	+0.0	-29.1	360		Low Channel	171
			+23.0	+1.9	+2.3	+0.0				
			-6.9	+10.3						
36	920.050M	66.8	+0.0	+0.0	+0.0	+0.9	+0.0	69.7	118.0 -48.3	Vert
			+0.0	+0.0	+0.0	-29.0	360		Low Channel	171
			+23.3	+2.0	+2.3	+0.0				
			-6.9	+10.3						
37	927.950M	62.4	+0.0	+0.0	+0.0	+0.9	+0.0	65.4	118.0 -52.6	Vert
			+0.0	+0.0	+0.0	-29.0	360		Mid Channel	151
			+23.4	+2.0	+2.3	+0.0				
			-6.9	+10.3						
38	911.741M	62.6	+0.0	+0.0	+0.0	+0.9	+0.0	65.3	118.0 -52.7	Vert
			+0.0	+0.0	+0.0	-29.1	81		High Channel	175
			+23.2	+2.0	+2.3	+0.0	1)		
20	025 01014	40.1	-6.9	+10.3	.0.0	.0.0		<u> </u>	00.0 50.0	X 7 /
39	935.810M	42.1	+0.0	+0.0	+0.0	+0.9	+0.0	45.2	98.0 -52.8	Vert
			+0.0	+0.0	+0.0	729.0	De 1		High Channel	166
			+25.5	+2.0	+2.5	/1000/	211			
40	004.050M	61.6	-0.9	+10.5		Hold		64.1	1120 520	Vort
40	904.030M	01.0	+0.0	+0.0		201	360	04.1	Mid Channel	151
			± 23.1		A	-201	500			151
			-6.9	+103	†:\/ ,	10.0				
41	6356 432M	40.5	-34.0	+84.5	1405	+2.8	+0.0	43.2	98.0 -54.8	Horiz
	000010200	10.2	+5.4	40.0	$V_{+0.4}^{+0.3}$	+0.0	165	13.2	Low Channel	144
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
42	6355.712M	39.6	-34.0	+34.5	+0.5	+2.8	+0.0	42.3	98.0 -55.7	Vert
			+5.4	+0.0	+0.4	+0.0	167		Low Channel	170
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
43	6411.713M	38.3	-34.0	+34.4	+0.5	+2.8	+0.0	40.8	98.0 -57.2	Horiz
			+5.3	+0.0	+0.4	+0.0	165		Mid Channel	145
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
44	6466.318M	37.6	-34.0	+34.4	+0.5	+2.8	+0.0	40.0	98.0 -58.0	Vert
			+5.3	+0.0	+0.3	+0.0	158		High Channel	121
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
45	5543.147M	39.7	-33.6	+33.4	+0.4	+2.4	+0.0	40.0	98.0 -58.0	Vert
			+4.3	+0.0	+0.3	+0.0	208		High Channel	99
			+0.0	+0.0	+0.0	+0.0				
4.5	000 0503 6	540	-6.9	+0.0	.0.0		.0.0	50.7	110.0 50.2	TT '
46	920.050M	56.8	+0.0	+0.0	+0.0	+0.9	+0.0	59.7	118.0 -58.3	Horiz
			+0.0	+0.0	+0.0	-29.0	300		Low Channel	1/3
			+23.3	+2.0	+2.5	+0.0				
			-6.9	+10.3						

47	5496.000M	39.0	-33.5	+33.3	+0.4	+2.4	+0.0	39.4	98.0 -58.6	Vert
			+4.4	+0.0	+0.3	+0.0	44		Mid Channel	103
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
48	6412.440M	35.6	-34.0	+34.4	+0.5	+2.8	+0.0	38.1	98.0 -59.9	Vert
			+5.3	+0.0	+0.4	+0.0	58		Mid Channel	99
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
49	911.747M	55.3	+0.0	+0.0	+0.0	+0.9	+0.0	58.0	118.0 -60.0	Horiz
			+0.0	+0.0	+0.0	-29.1	351		High Channel	163
			+23.2	+2.0	+2.3	+0.0				
			-6.9	+10.3						
50	5543.147M	37.3	-33.6	+33.4	+0.4	+2.4	+0.0	37.6	98.0 -60.4	Horiz
			+4.3	+0.0	+0.3	+0.0	207		High Channel	121
			+0.0	+0.0	+0.0	+0.0				
51	(1((010)))	22.2	-6.9	+0.0	0.5	2.0	0.0	25.6	00.0	
51	6466.318M	33.2	-34.0	+34.4	+0.5	+2.8	+0.0	35.6	98.0 -62.4	Horiz
			+5.5	+0.0	+0.3	+0.0	185	1	High Channel	134
			+0.0	+0.0	+0.0	+0.0	1			
52	027.050M	526	-0.9	+0.0			C alt	55.6	1120 624	Horiz
52	927.930IVI	52.0	+0.0	+0.0	+0.0	500	≠0.0 k∈0	55.0	Mid Channel	171
			± 23.4	+0.0 +2.0	+0.0	729.0	Dep			1/1
			-6.9	+10.3			$\langle $			
53	904 050M	51.6	+0.0	+00	+6h/	1404	+0	54.1	118.0 -63.9	Horiz
55	904.050M	51.0	+0.0	+0.00	$ _{+0} \neq $	-291	360	54.1	Mid Channel	171
			+23.1	+1.9	+2.3	A0b	200			1,1
			-6.9	+1031	[[]T"V]					
54	1847.740M	40.7	-34.6	+251	1+0.3	+1.3	+0.0	28.8	98.0 -69.2	Vert
_			+2.5	+0.0	+0.4	+0.0	111		High Channel	105
			+0.0	+0.0	+0.0	+0.0			C	
			-6.9	+0.0						
55	1831.911M	39.9	-34.6	+24.9	+0.3	+1.3	+0.0	27.8	98.0 -70.2	Vert
			+2.5	+0.0	+0.4	+0.0	78		Mid Channel	99
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
56	1847.720M	38.9	-34.6	+25.1	+0.3	+1.3	+0.0	27.0	98.0 -71.0	Horiz
			+2.5	+0.0	+0.4	+0.0	203		High Channel	99
			+0.0	+0.0	+0.0	+0.0				
			-6.9	+0.0						
57	1832.115M	38.6	-34.6	+24.9	+0.3	+1.3	+0.0	26.5	98.0 -71.5	Horiz
			+2.5	+0.0	+0.4	+0.0	206		Mid Channel	99
			+0.0	+0.0	+0.0	+0.0				
50	1015 02 01 6	261	-6.9	+0.0	0.0	1.0	0.0	22.0	00.0 74.1	X 7 .
58	1815.936M	36.1	-34.6	+24.8	+0.3	+1.3	+0.0	23.9	98.0 -74.1	Vert
			+2.5	+0.0	+0.4	+0.0	143		Low Channel	155
			+0.0	+0.0	+0.0	+0.0				
50	1015 00/14	24.4	-0.9	+0.0	+0.2	+1.2		22.2	000 750	II.
59	1013.890M	34.4	-34.0	+24.8	+0.3	+1.3	+0.0 1.47	22.2	70.0 -/3.8	110
			+2.3 ±0.0	+0.0	+0.4 ±0.0	+0.0	14/		Low Channel	119
			+0.0	+0.0	+0.0	+0.0				
<u> </u>			-0.9	+0.0						

	10.00535		0.0	0.0	0.0	0.1	10.0	2.0	00.0	101.2	D
60	13.325M	33.5	+0.0	+0.0	+0.0	+0.1	-40.0	-3.8	98.0	-101.8	Perpe
			+0.2	+0.0	+0.0	+0.0	360		Low Chan	inel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
61	13.318M	33.5	+0.0	+0.0	+0.0	+0.1	-40.0	-3.8	98.0	-101.8	Perpe
			+0.2	+0.0	+0.0	+0.0	360		High Chai	nnel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
62	13.321M	33.2	+0.0	+0.0	+0.0	+0.1	-40.0	-4.1	98.0	-102.1	Perpe
			+0.2	+0.0	+0.0	+0.0			Mid Chan	nel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
63	13.325M	22.9	+0.0	+0.0	+0.0	+0.1	-40.0	-14.4	98.0	-112.4	Paral
			+0.2	+0.0	+0.0	+0.0			Low Chan	inel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0							
64	13.321M	22.6	+0.0	+0.0	+0.0	+0.1	-40.0	-14.7	98.0	-112.7	Paral
			+0.2	+0.0	+0.0	+0.0		1	High Chai	nnel	100
			+0.0	+0.0	+0.0	+9.3					
			-6.9	+0.0			\square .	$\langle \rangle$			
65	13.322M	22.4	+0.0	+0.0	+0.0	+0.1	-40.0	-14.9	98.0	-112.9	Paral
			+0.2	+0.0	+0.0	<i>4</i> 0.0	360	1	Mid Chan	nel	100
			+0.0	+0.0	+0.0	/ + 9.3/					
			-6.9	+0.0	$\lfloor a \rfloor$		\int				
				D	L.Y						

CKC Laboratories, Inc. Date: 5/16/2012 Time: 12:46:11 Itron, Inc. WO#: 93174 RSS-210 - 8 Radiated Spurious Emissions Test Distance: 3 Meters Perpendicular Sequence#: 1 Ext ATTN: 0 dB

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS										
	Meter reading (dBµV)									
+	Antenna Factor	(dB)								
+	Cable Loss	(dB)								
-	Distance Correction	(dB)								
-	Preamplifier Gain	(dB)								
=	Corrected Reading	(dBµV/m)								

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	1 / >1 6Hz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.