REGULATORY TEST REPORT

TITLE: Mobile Collector Data Logger FCC part 101/Industry Canada RSS-119 AUTHOR: W. Raymond Stoner

REV	CCO	DESCRIPTION OF CHANGE	DATE	APPROVALS	
001 INITIAL RELEASE				Engineering	
		INITIAL RELEASE		Engineering	

REVISION HISTORY

001		Initial Release	1/14/09	Engineering	Ray Stoner			
002	002 Changes made to deal with non- conformities from the FCC		2/4/09	Engineering	Ray Stoner			
				Engineering				

NOTICE OF PROPRIETARY INFORMATION

Information contained herein is proprietary and is property of **ITRON**, **Inc.** where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer it shall be used solely for the purposes of inspection, installation or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted for this company. The information shall not be used or disclosed by the recipient for any other purpose, whatsoever.

Summary Test Data Summary

FCC Part 101 / RSS-119 Transceiver 952-960 MHz

FCC ID: EO9-DCU-5310 / IC: 864A-DCU-5310

Device Model (for IC): MC3-DL10

Model Numbers: DCU-5310

Serial Numbers: 74005504

OATS Registration Number: FCC 90716, IC 5615

Rule	Description	Max. Reading	Pass/Fail
FCC 101.113 /	EIRP of Fundamental	13.1dbW	Р
RSS-119 sec. 5.4.1	Emissions	20.42W	
FCC 101.111a(5)	Transmit Mask - FCC	NA	Р
RSS-119 Sec. 5.8.3(d)	Transmit Mask – Canada	NA	Р
FCC 101.109 /	Occupied Bandwidth	3.6379khz	Р
RSS-119 Table 3	-		
FCC 101.111(a)(5)(iv) /	EIRP of Transmitter	-24.48dbm	Р
RSS-119 Sec. 5.8.3(d)	Spurious emissions		
FCC 101.107 /	Frequency Stability	0.00002%	Р
RSS-119 Table 1	1 7 7		
FCC 1.1310 /	MPE evaluation	22.72cm	Р
Health Canada Safety Code 6			
RSS-119 Sec. 5.11 (RSS-GEN Sec. 6)	Receiver spurious emissions	49.5 dBuV/m	Р

Cognizant Personnel					
W. Raymond Stoner	Engineer				
Name	Title				
Jay Holcolmb	Regulatory Manager				
Name	Title				
Drew Rosenburg Name	Project Lead Title				

Test 1: FCC Part 101.113 RSS-119 Sec. 5.4.1

Output Power Limits

- 1. Output power must be +/- 1db of rated power
- 2. EIRP Limit is 14 dbW for mobile devices
- 3. IC limit is 110 W for Base stations, 30W for mobile stations.

Equipment Used					Serial Number		Cal Date	Cal Due
Agilent E	E44(07B Spect	u	m Analyzer	MY4	5107856	3/07	3/09
ltro	onix	Laptop co	m	puter	ZZGEG	7201ZZ7266	na	na
Leader a	djus	table Lab	Pc	ower Supply	93	00525	na	na
Date	Date Temp/Humidity ⁻ °F / %		Tested by					
11/18/08		60/35%		Ray Stoner				
					Power	Rated		
		Reading	ŀ	Attenuation	Level	Power	Devia	ation
Frequency		(dBm)		(dB)	(dBm)	(dBm)	(dB)	
952Mhz 38.14 0		0	38.14	38.14	0			
956Mh	١Ζ	37.83		0	37.83	38.14	-0.3	31
960		38		0	38	38.14	-0.1	14

Loss in the 20 db attenuator and cable is 21.2 db. This loss was entered as an external gain of 21.2 db

This device uses a third party OEM antenna with a gain of 5 dbi

EIRP for this device is: Antenna conducted power = 6.5W (38.14 dbm) Antenna Gain = 5dbi EIRP = 43.14 dbm (20.6W or 13.1 dbW)

Mkr1 952.000	MHz Peak Search
MKT1 952.0000	MRZ
Ref 40 dBm Atten 50 dB 38.14 d Peak Marker	Bm Meas Tools∙
¹⁰ 952.000000 MHz ^{dB/} 38.14 dBm	Next Peak
	Next Pk Right
	Next Pk Left
W1 S2 S3 FC A AA	Min Search
	Pk-Pk Search
Center 952 MHz Span 1 #Res BW 100 kHz #VBW 100 kHz Sweep 5 ms (401 p	1Hz ts) 1 of 2

🔆 Agilent 12:32:22 De	ec 4, 2008		Peak Search
Ref 40 dBm Atte	en 50 dB	Mkr1 960.0000 MHz 38 dBm	
Peak Marker			Meas Tools•
¹⁰ 960.000000 ^{dB/} 38_dBm_	MHZ		Next Peak
			Next Pk Right
			Next Pk Left
W1 \$2 \$3 FC A AA			Min Search
			Pk-Pk Search
Center 960 MHz #Res BW 100 kHz	#VBW 100 kHz Sr	Span 1 MHz veep 5 ms (401 pts)	More 1 of 2
C:\SCREN173.GIF file s	saved		

Test 2: FCC 101.109/RSS-119 Table 3 Occupied Bandwidth

Measure the occupied bandwidth (99% bandwidth). The Occupied bandwidth may not exceed 12.5kHz (US) or 11.25kHz (Canada).

	Equipment	Serial Number	Cal	Cal	
	Used			Date	Due
Agilent	E4407B Spectru	MY45107856	3/07	3/09	
lt	ronix Laptop com	nputer	ZZGEG7201ZZ7266	na	na
Leader	adjustable Lab P	ower Supply	9300525	na	na
Date	Date Temp/Humidity Tested by				
°F / %					
12/4/08	72/40%	Ray Stoner			

Loss in the 20 db attenuator and cable is 21.2 db. This loss was entered as an external gain of 21.2 db

Screen captures of the measurement below:

Test 3: FCC Part 101.111a(5) Transmitter Mask (US)

		0					-		
					At	tenuation			
	Minin	num	Maxim	num		below			
	Displac	ement	Displace	ement	unr	nodulated			
	Frequ	ency	Freque	ency		carrier			
	(k⊢	lz)	(kHz	z)		(dB)			
	2.	5	6.2	5	53*	log(fd/2.5)			
	6.2	25	9.5	5	103	*log(fd/3.9)			
	9.	5	15		157	*log(fd/5.3)			
	1	5	>15	5	50+L	.og(P) or 70			
Γ		Eq	uipment			Serial Nu	mber	Cal	Cal
			Used					Date	Due
Γ	Agilent	E4407E	3 Spectru	im Ana	lyzer	MY4510	7856	3/07	3/09
ľ	ltr	onix La	ptop com	nputer		ZZGEG7201	ZZ7266	na	na
	Leader a	adjustab	ole Lab P	ower S	Supply	93005	25	na	na
	Date	Temp/	Humidity	Teste	ed by				
		°F	/%						
Γ	12/4/08	72/	/40%	Ray S	Stoner				
L									

Measure the transmitter mask, referenced to an unmodulated carrier, according to the following schedule:

Loss in the 20 db attenuator and cable is 21.2 db. This loss was entered as an external gain of 21.2 db

Test 3: RSS-119 Sec. 5.8.3(d) Transmitter Mask (Canada)

				Att	enuation			
Minir	num	Maxim	num		below			
Displac	ement	Displace	ement	unn	nodulated			
Frequ	iency	Freque	ency		carrier			
(k⊦	lz)	(kHz	z)		(dB)			
C)	5.62	25		0			
5.6	25	12.	5	7.27	7*(fd-2.88)			
12	.5	> 12	.5	50+le	og(P) or 70			
	Eq	luipment			Serial Nu	Cal	Cal	
		Used					Date	Due
Agilent	E4407E	3 Spectru	ım Ana	lyzer	MY45107856		3/07	3/09
lti	ronix La	aptop com	nputer		ZZGEG720	1ZZ7266	na	na
Leader a	Leader adjustable Lab Power Supp			Supply	93005	525	na	na
Date	Temp/ °F	Humidity / %	Teste	ed by				
12/4/08	72/	/40%	Ray S	Stoner				

Measure the transmitter mask, referenced to an unmodulated carrier, according to the following schedule:

Loss in the 20 db attenuator and cable is 21.2 db. This loss was entered as an external gain of 21.2 db

Test 5: FCC Part 101.111(a)(5)(iv) Spurious Emissions

Measure the EIRP of all transmitter spurious emissions that are >15kHz away from the center of the fundamental peak. The EIRP of these emissions may not exceed $50+10\log(P)$ or 70dB below the EIRP of the fundamental (measured in test 1). Use the procedure in appendix B to determine field strength then use the antenna substitution procedure in appendix A to determine EIRP levels.

Equipm	ent Used		Serial Number	Cal Date	Due	
AH systems preamp	lifier model PAM	0126		135	12/8/07	12/8/08
H/S Sucofle	ex 40ft cable			220297001	12/3/07	12/3/09
Agilent E7405A S	Spectrum Analyz	er		MY45113415	8/12/08	8/12/09
Emco 6502 Loop	o (9kHz to 30Mhz	z)		9509-2970	10/15/08	10/15/10
Emco 3110B Biconic	al (30MHz-to 300	0MHz)		9807-3129	10/4/07	10/4/09
Emco 3146 Log Perio	odic (200Mhz to	1GHz)		9203-3358	10/4/07	10/409
Emco 3115 wave g	juide (1GHz-18G	GHz)		9205-3878	3/17/08	3/17/09
Itronix Lapt	op computer	ZZ	ZGEG7201ZZ7266	na	na	
Leader adjustable	Lab Power Sup		9300525	na	na	
Date	Temp/Humidity % / %	Tested	by			

	°F / %	
18-19 November 2008	65/25%	Ray Stoner

6.5 watts = 38.14 dbm From test 1 EIRP is 43.14dbm or 20.6W 50+Log(p)=50+10log(20.6W)=63.14db > 70db Limit = 43.14dbm-63.14db = -20dbm Frequency range investigated was 9 kHz to 9.6GHz

		Analyzer Reading of	Analyzer Reading of				
		Device	Generator	Difference	Substitution	Generator	
Frequency		Emissions	Emissions	(add to	Antenna Gain	Output	EIRP
(MHz)	Polarity	(dBm)	(dBm)	ERP reading)	(dBi)	(dBm)	(dBm)
245.6	Vertical	-33.45	-33.23	-0.22	6	-47.3	-41.52
252.24	Vertical	-34.49	-35.54	1.05	5.9	-47.12	-40.17
252.24	Horizontal	-35.45	-35.48	0.03	5.9	-56.5	-50.57
304.2	Vertical	-43.76	-43.58	-0.18	5.2	-57.8	-52.78
304.2	Horizontal	-36.73	-36.76	0.03	5.2	-52.88	-47.65
308.2	Horizontal	-43.30	-43.51	-0.39	4.7	-55.4	-51.3
340.3	Vertical	-48.76	-48.82	0.06	5.5	-64.9	-59.34
340.3	Horizontal	-44.05	-44.19	0.14	5.5	-61.26	-55.62
1904	Vertical	-39.49	-38.08	-1.41	8.5	-39.59	-32.5
1904	Horizontal	-37.28	-35.67	-1.61	8.5	-37.6	-30.71
1912	Horizontal	-39.70	-39.93	0.17	8.6	-42.14	-33.67
1920	Vertical	-38.66	-38.81	0.15	8.6	-39.63	-30.88
1920	Horizontal	-36.77	-36.57	-0.2	8.6	-37.59	-29.19
2856	Vertical	-40.41	-43.44	3.03	9.5	-43.12	-30.59
2856	Horizontal	-45.13	-44.71	-0.42	9.5	-46.2	-37.12
2000	Horizontal	-36.02	-30.25	0.23	9.5	-37.92	-28.19
2880	Vertical	-41.73	-43.1	1.37	9.5	-43.17	-32.3
2880	Horizontal	-47.66	-45.15	-2.51	9.5	-46.25	-39.26
3808	Vertical	-37.62	-37.12	-0.5	9.2	-33.18	-24.48
3808	Horizontal	-40.85	-41.4	0.55	9.2	-38.35	-28.6
3824	Vertical	-38.76	-36.68	-2.08	9.2	-33.32	-26.2
3840	Vertical	-32.91	-33.27	0.36	9.2	-37.91	-28.35
3840	Horizontal	-41.37	-42.27	0.9	9.2	-38.42	-28.32
4760	Vertical	-56.57	-54.24	-2.33	11	-45.52	-36.85
4760	Horizontal	-59.77	-54.19	-5.58	11	-50.5	-45.08
4780	Vertical	-57.84	-57.14	-0.7	11	-56.25	-45.95 -47.62
4800	Vertical	-52.64	-54.92	2.28	11	-45.6	-32.32
4800	Horizontal	-57.38	-54.39	-2.99	11	-50.56	-42.55
5712	Vertical	-56.45	-55.61	-0.84	11.4	-45.81	-35.25
5712	Horizontal	-58.51	-56.95	-1.56	11.4	-53.1	-43.26
5736	Horizontal	-63.30	-63.30	0.03	11.4	-60.36	-49.9
5760	Vertical	-54.98	-54.86	-0.12	11.4	-46	-34.72
5760	Horizontal	-59.12	-57.81	-1.31	11.4	-53.25	-43.16
6664	Vertical	-56.11	-57.81	1.7	11.8	-48.35	-34.85
6664	Horizontal	-58.7	-56.08	-2.62	11.8	-46.77	-37.59
6692	Horizontal	-58.63	-58.41	-0.22	11.6	-50.21	-39.79
6720	Vertical	-55.22	-57.12	1.9	11.6	-48.57	-35.07
6720	Horizontal	-56.62	-56.36	-0.26	11.6	-49.03	-37.69
7616	Vertical	-56.08	-55.29	-0.79	11.5	-46.4	-35.69
7616	Vertical	-50.02	-52.08	-4.54	11.5	-43.12	-30.10
7648	Horizontal	-61	-60.89	-0.11	11.5	-54.07	-42.68
7680	Vertical	-54.04	-52.48	-1.56	11.5	-43.77	-33.83
7680	Horizontal	-54.69	-52.49	-2.2	11.5	-43.22	-33.92
8568	Vertical	-58.55	-54./5	-3.8	11.6 11.6	-45.84	-38.04
8604	Vertical	-60.09	-62.59	-4.03	11.6	-40.34	-46.78
8604	Horizontal	-67.55	-67.33	-0.22	11.6	-62.3	-50.92
8640	Vertical	-59.36	-53.31	-6.05	11.6	-46.17	-40.62
8640	Horizontal	-59.93	-56.21	-3.72	11.6	-46.63	-38.75
9520	Vertical	-60.11	-60.18	0.07	11.9	-46.6	-34.63
9520	Vertical	-68.21	-68.32	0.11	12.1	-49.01	-51.28
9560	Horizontal	-68.47	-68.38	-0.09	12.1	-63.53	-51.52
9600	Vertical	-58.99	-58.41	-0.58	12.3	-48.8	-37.08
9600	Horizontal	-60.69	-59.59	-1.1	12.3	-49.2	-38

Test 6: FCC Part 2.1051 Conducted Spurious Emissions

Measure the spurious emissions of the EUT at the output terminal of the transmitter loaded with a suitable artificial antenna (50 ohm). Record the frequency and magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in FCC 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified. Use the appropriate bandwidth and detector settings as specified in appendix B.

			- <i>8</i> °		
Equipment			Serial Number	Cal	Cal
Used				Date	Due
Agilent E4407B Spectrum Analyzer			MY45107856	3/07	3/09
K&L Microwave Inc. tunable bandreject filter			PB269-1	na	na
Itronix Laptop computer			ZZGEG7201ZZ7266	na	na
Lead	er adjustable Lab Po	wer Supply	9300525	na	Na
Date Temp/Humidity Tested by					
°F / %					
2/4/09	72/40%	Ray Stoner			

6.5 watts = 38.14 dbm 50+Log(p)=50+10log(6.5W)=58.14db > 70db Limit = 38.14dbm-58.14db = -20dbm Frequency range investigated was 9 kHz to 9.6GHz

Loss in the 20 db attenuator, band reject filter and cable is 21.9 db. This loss was entered as an external gain of 21.9 db

Frequency	Level	Limit	Margin
	dBm	dBm	
4780	-43.7	-20	-23.7
5736	-44.1	-20	-24.1
7648	-42.9	-20	-22.9
9560	-49.6	-20	-29.6
4760	-49.6	-20	-29.6
5712	-44	-20	-24
7616	-49.9	-20	-29.9
4800	-42.2	-20	-22.2
5760	-46.4	-20	-26.4
7680	-40	-20	-20

Test 7: FCC Part 101.107 Frequency Stability

At the device's rated voltage level, measure the carrier frequency at every 10 degrees from -30° C to $+50^{\circ}$ C. At $+20^{\circ}$ C, measure the carrier frequency with the device powered at 85% and 115% of the device's rated voltage level. If the device is battery powered, then measurements should be made at the maximum and cutoff battery voltages.

The carrier frequency may not deviate from the reference level measured at $+20^{\circ}$ C and with the device powered at its rated voltage level by more than +/-0.00015%.

Equipment used	Serial #	Cal Date	Cal Due
Agilent E4405B Spectrum Analyzer	MY45112158	3/07	3/09
Agilent U1242A Multimeter	TW48280139	7/08	7/09
HP53181A Frequency Counter	3548A01784	3/08	3/09
MCH-33333-H/AC Env. Chamber	MC0728042	1/08	1/09
Leader adjustable Lab Power Supply	9300525	na	na
Itronix Laptop computer	ZZGEG7201ZZ7266	na	na

Date	Temp/Humidity ºF / %	Tested by
11/14/08	72/40%	Alex Cory

Fill in the white spaces in the following tables. For tables that do not apply, enter a "-":

Temperature (°C)	20	-30	-20	-10	0
Frequency (MHz)	954.499372	954.4992747	954.4993756	954.4993623	954.4994610
Deviation (%)	0.00000%	-0.00001%	0.00000%	0.00000%	0.00001%

Temperature (°C)	20	10	30	40	50
Frequency (MHz)	954.499372	954.4994868	954.4995330	954.4995632	954.4995498
Deviation (%)	0.00000%	0.00001%	0.00002%	0.00002%	0.00002%

Battery Voltage	Peak 18V	Cut Off 8V
Frequency (Hz)	954.499328	954.499361
Deviation (%)	0.00000%	0.00000%

Test 8: FCC 1.1310(A) / RSS 102; MPE evaluation

Determine the minimum safe distance for a controlled population from the transmitter where a power density of: FCC - f_{MHz} / 300 mW/cm² IC - f_{MHz} / 30W/m²

The minimum safe distance for FCC is calculated as:

$$P_d = \frac{P_t \times G}{4 \times \pi \times r^2}$$

 P_d = power density in watts P_t = transmit power in milliwatts G = numeric antenna gain r = distance between body and transmitter in centimeters.

The minimum safe distance for IC is calculated as:

$$P_d = \frac{P_t \times G}{4 \times \pi \times r^2}$$

 P_d = power density in watts P_t = transmit power in watts G = numeric antenna gain r = distance between body and transmitter in meters.

Max output power = 6.516W Max Antenna Gain =5 dBi = 3.16 numeric

FCC; ($f_{MHz}/300$)mW/cm² = (952/300)mW/cm² = 3.173mW/cm² $P_d = P_t * G/4\pi r^2$ 0.003173W = 6.516*3.16/12.57r² r=22.72cm

Industry Canada; $(f_{MHz}/30)W/m^2 = (952/30)W/m^2 = 31.73W/m^2$ $P_d = P_t * G/4\pi r^2$ $31.73 = 6.516 * 3.16/12.57 r^2 = .2272m = 22.72cm$ Test 9: RSS-119 Sec. 5.11 (RSS-GEN Sec. 6)

Receiver Spurious Emissions

Use procedure in appendix B to determine field strengths. Receiver spurious emissions may not exceed the following limits:

<u> </u>		
Frequency	Field Strength	in
(MHz)	(microvolts/meter)	dBuV/m
30-88	100	40
88-216	200	43.5
216-960	200	46
Above 960	500	54

Equipment Used	Serial Number	Cal Date	Due
AH systems preamplifier model PAM 0126	135	12/8/07	12/8/08
H/S Sucoflex 40ft cable	220297001	12/3/07	12/3/09
Agilent E7405A Spectrum Analyzer	MY45113415	8/12/08	8/12/09
Emco 6502 Loop (9kHz to 30Mhz)	9509-2970	10/15/08	10/15/10
Emco 3110B Biconical (30MHz-to 300MHz)	9807-3129	10/4/07	10/4/09
Emco 3146 Log Periodic (200Mhz to 1GHz)	9203-3358	10/4/07	10/409
Emco 3115 wave guide (1GHz-18GHz)	9205-3878	3/17/08	3/17/09
Itronix Laptop computer	ZZGEG7201ZZ7266	na	na
Leader adjustable Lab Power Supply	9300525	na	na

Date	Temp/Humidity ºF / %	Tested by
18-19 November 2008	65/25%	Ray Stoner

Frequency range investigated was 9 kHz to 9.6GHz

Emissions from the Receiver were below the noise floor. Measurements in both the horizontal and vertical antenna orientation were performed.

	Reading			Amp	Corrected	
Frequency	dbm	ACF	Coax corr.	corr.	dbm	dbuV/m
35	-48.77	12.8	.92	-36.95	-72	35
150	-48.09	12.6	1.14	-36.03	-70.38	36.62
500	-65.34	17.9	1.82	-35.87	-81.49	25.51
2000	-65.32	27.4	3.85	-35.53	-69.6	37.4
5000	-66.36	33.1	7.27	-36.5	-62.49	44.51
9000	-70.53	37.8	10.69	-35.46	-57.5	49.5

Appendix A

Antenna Substitution Method of EIRP Measurement

First, measure the field strength of the device in accordance with the procedure in Appendix B. Second, replace the device with an antenna and connect the antenna to the output of a signal generator. Set the signal generator to the same frequency as the device emission that is being measured. Adjust the height of receiving antenna to give the highest reading. Repeat with the substitution antenna in the vertical position. Bring the position back to the polarity and height that results in the highest field strength reading. Set the signal generator to a power that results in the same field strength reading as that of the device emission. The gain of the transmitting antenna, output power of the generator, and loss of the cable can then be used to determine the EIRP of the device.

Field Strength = ACF1 + Cable Loss1 + Ground Plane + Cable Loss2 + Antenna2 Gain + RF Source which produces a level equivalent to DUT

Appendix B

Field Strength Measurement Procedure

This test measures the field strength of radiated emissions using a spectrum analyzer and a receiving antenna in accordance with ANSI C63.4-2003. During the test, the EUT is to be placed on a non-conducting support at 80 cm above the horizontal ground plane of the OATS. The horizontal distance between the antenna and the EUT is to be exactly 3 meters. The bandwidths used shall be; 200 Hz from 9 kHz to 150 kHz, 9 kHz from 150 kHz to 30 MHz, 100 kHz from 30 MHz to 1000 MHz, and 1 MHz from 1 GHz to 40 GHz, with the detector set to peak hold.

1) Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.

2) If appropriate, manipulate the system cables to produce the highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.

3) Rotate the EUT 360° to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat step b). Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.

4) Move the antenna over its fully allowed range of travel to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to step b) with the antenna fixed at this height. Otherwise, move the antenna to the height that repeats the highest amplitude observation and proceed.5) Change the polarity of the antenna and repeat step b), step c), and step d). Compare the resulting suspected highest amplitude signal with that found for the other polarity. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.

