Itron, Inc.

TEST REPORT FOR

CCU100 Model: CCU100TD

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928MHz)

Report No.: 107462-2

Date of issue: December 5, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 111 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	11
15.247(a) Transmitter Characteristics	11
15.247(a)(1)(i) 20 dB Bandwidth	12
15.247(a)(1) Carrier Separation	19
15.247(a)(1)(i) Number of Channels	21
15.247(a) Transmitter Characteristics Test Setup Photos	25
15.247(b)(2) Output Power	26
15.247(d) RF Conducted Emissions & Band Edge	40
15.247(d) Radiated Emissions & Band Edge	60
15.207 AC Conducted Emissions	97
Appendix A: Customer Provided Data	
15.35(c) Duty Cycle Correction Factor	
Supplemental Information	
Measurement Uncertainty	
Emissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019 **REPORT PREPARED BY:**

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Jack McPeck Customer Reference Number: 266646 Project Number: 107462

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: October 26, 2022 October 26-31 and November 1, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NP = CKC Laboratories Inc. was not contracted to preform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

DSP Power was set to 255 for all tests except Fundamental and Conducted Spurs/Conducted Band Edge, where it was reduced to 200 at time of test to fine tune the power of the unit for Fundamental compliance. The higher power used for other testing is representative of worst-case. This is a test software setting and the manufacturer performs a calibration of each production unit with its appropriate software.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 (Tower) = Remote SuperRaptor, Remote GPS, Remote Cellular

Equipment Tested:			
Device	Manufacturer	Model #	S/N
CCU100	ltron, Inc.	CCU100TD	74049603

Support Equipment:

Support Equipment			
Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (remote ISM)	PCTEL	BOA9028	NA
1dB Attenuator (Qty: 2)	Mini-Circuits	15542 UNAT-1+	NA
Surge Protector	Times Microwave Systems	LP-BTRW-NMP	NA
Antenna (remote WAN)	Taoglas	OMB.6912.03F21	NA
Antenna (remote GPS)	Trimble	101898-00	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	903-926.8MHz
Number of Hopping Channels:	80 channels (AM), 120 channels (FM)
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	16kbit/sec AM (OOK) 12.5kbit/sec FM (FSK) 37.5 kbit/sec FM (FSK)
Maximum Duty Cycle:	Tested at 100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Omni-Directional / 8.15 dBi
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	115VAC/60Hz
Firmware / Software used for Test:	ARM FW 2.27.0.0 DSP FW 7.22.0.0 FPGA FW 4.14 SRTest100 4.11.1.99 TeraTerm 4.62
The validity of results is dependen assumes full responsibility.	t on the stated product details, the accuracy of which the manufacturer

EUT Photo(s)

CCU Tower

Page 7 of 111 Report No.: 107462-2

Support Equipment Photo(s)

Laptop and Switch

Remote ISM Antenna

Remote WAN and GPS antennas

Page 9 of 111 Report No.: 107462-2

Block Diagram of Test Setup(s)

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Harrison/M. Atkinson		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/27/2022 to 10/31/2022		
Configuration:	1				
Test Setup:	Test Setup:EUT is setup for conducted measurements. It is directly connected to the Signal Analyzer via an Attenuator and a Cable.				
	For the AM channel plan, normal AM modulation is used.				
For the FM channel plan, a test mode with CW modulation was used.					

Environmental Conditions				
Temperature (^o C) 22-24 Relative Humidity (%): 43-50				

Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
02872	Spectrum Analyzer	Agilent	E4440A	11/29/2021	11/29/2023	
P05503	Attenuator	Narda	766-10	6/8/2021	6/8/2023	
P06008	Cable	Andrew	Heliax	9/2/2022	9/2/2024	

15.247(a)(1)(i) 20 dB Bandwidth

	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
908.0	1	AM	182.5	≤500	Pass	
915.0	1	AM	198.7	≤500	Pass	
923.8	1	AM	170.5	≤500	Pass	
903.0	1	FM 12.5k	142.1	≤500	Pass	
915.0	1	FM 12.5k	142.7	≤500	Pass	
926.8	1	FM 12.5k	142.8	≤500	Pass	
903.0	1	FM 37.5k	84.4	≤500	Pass	
915.0	1	FM 37.5k	85.7	≤500	Pass	
926.8	1	FM 37.5k	86.4	≤500	Pass	

Plot(s)

Low Channel

High Channel

Low Channel

High Channel

<u>FM 37.5k</u>

Low Channel

High Channel

15.247(a)(1) Carrier Separation

	Test Data Summary									
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.									
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results						
1	AM channel plan	200.1	>198.7	Pass						
1	FM channel plan	200.1	>142.8	Pass						

Plot(s)

AM Channel Plan

FM Channel Plan

15.247(a)(1)(i) Number of Channels

	Test Data Summary										
$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW \ < 250 kHz \\ 25 \ Channels \ 20 \ dB \ BW \ \ge 250 kHz \end{cases}$											
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results							
1	AM channel plan	80	≥50	Pass							
1	FM channel plan	120	≥50	Pass							

Plot(s)

AM Number Channels

1 to 20

21 to 40

41 to 60

61 to 80

FM Number Channels

¹ to 60

61 to 120

15.247(a) Transmitter Characteristics

Test Setup Photo(s)

15.247(b)(2) Output Power

	Test Data Summary - Voltage Variations										
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)						
908.0	AM	29.8	29.8	29.8	0.0						
903.0	FM 12.5k	29.5	29.5	29.5	0.0						
903.0	FM 37.5k	29.4	29.4	29.4	0.0						

Test performed using operational mode with the highest output power, representing worst-case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	115
VMinimum:	90
V _{Maximum} :	265

	Test Data Summary - RF Conducted Measurement											
$1 m_1 t - 1$	$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \ge 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min \ 25) \end{cases}$											
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results							
908.0	AM	Omni-Directional / 8.15dBi*	29.8	≤ 30	Pass							
915.0	AM	Omni-Directional / 8.15dBi*	29.6	≤ 30	Pass							
923.8	AM	Omni-Directional / 8.15dBi*	29.6	≤ 30	Pass							
903.0	FM 12.5k	Omni-Directional / 8.15dBi*	29.5	≤ 30	Pass							
915.0	FM 12.5k	Omni-Directional / 8.15dBi*	29.3	≤ 30	Pass							
926.8	FM 12.5k	Omni-Directional / 8.15dBi*	29.3	≤ 30	Pass							
903.0	FM 37.5k	Omni-Directional / 8.15dBi*	29.4	≤ 30	Pass							
915.0	FM 37.5k	Omni-Directional / 8.15dBi*	29.2	≤ 30	Pass							
926.8	FM 37.5k	Omni-Directional / 8.15dBi*	29.3	≤ 30	Pass							

* Net gain is 5.95 dBi. Manufacturer declares minimum of 2.2dB of path loss to remote 8.15dBi antenna.

Plots

<u>AM</u>

Low Channel

High Channel

Low Channel

High Channel

<u>FM 37.5k</u>

Low Channel

High Channel

Test Setup / Conditions / Data

Test Location: Customer: Specification:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717 Itron, Inc. 15.247(b) Power Output (902-928 MHz DTS)									
Work Order #:	107462	D	ate: 10/31/2022							
Test Type:	Conducted Emissions	Ti	me: 12:33:17							
Tested By:	Matt Harrison	Sequence	ce#: 1							
Software:	EMITest 5.03.20		120VAC							
Equipment Teste	ed:									
Device	Manufacturer	Model #	S/N							
Configuration 1										
Support Equipm	ent:									
Device	Manufacturer	Model #	S/N							
Configuration 1										
Test Conditions										
Test Environmer										
Temperature: 21	°C									
Humidity: 40%										
Pressure: 102.5k	Pa									
Frequency Range	e: Fundamental									
	d: 908, 915, 923.8									
Firmware Power	Setting: 200									
Protocol /MCS/N	Modulation: AM									
Antenna Type: C	Omni-Directional									
Duty Cycle: Test	ted at 100%									
Test Method: AN	NSI C63.10 (2013)									
	tinuously Transmitting									
	is setup for Conducted Measureme	ents. It is directly conn	ected to the SA via an Attenuator.							

Itron, Inc. WO#: 107462 Sequence#: 1 Date: 10/31/2022 15.247(b) Power Output (902-928 MHz DTS) Test Lead: 120VAC Antenna Port

Average Readings
 Software Version: 5.03.20

- 1 - 15.247(b) Power Output (902-928 MHz DTS)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
Т3	ANP06008	Cable	Heliax	9/2/2022	9/2/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Antenna	Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	907.955M	126.1	+10.1	+0.0	+0.6		+0.0	136.8	137.0	-0.2	Anten
									DSP ISM	Power	
									200		
2	915.035M	125.9	+10.1	+0.0	+0.6		+0.0	136.6	137.0	-0.4	Anten
									DSP ISM	Power	
									200		
3	923.860M	125.9	+10.1	+0.0	+0.6		+0.0	136.6	137.0	-0.4	Anten
									DSP ISM	Power	
									200		

Test Location:	CKC Laboratories, Inc. • 2211	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717								
Customer:	Itron, Inc.									
Specification:	15.247(b) Power Output (902	2-928 MHz DTS)								
Work Order #:	107462	Date:	10/31/2022							
Test Type:	Conducted Emissions	Time:	15:40:48							
Tested By:	Matt Harrison	Sequence#:	2							
Software:	EMITest 5.03.20		120VAC							

Equipment Tested: Device Manufacturer Configuration 1

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Model #

S/N

Test Conditions / Notes: Test Environment Conditions:

Temperature: 21°C Humidity: 40% Pressure: 102.5kPa

Frequency Range: Fundamental Frequency Tested: 903, 915, 926.8 Firmware Power Setting: 200 EUT Firmware: Protocol /MCS/Modulation: **FM 12.5k**

Antenna Type: Omni-Directional

Duty Cycle: Tested at 100%

Test Method: ANSI C63.10 (2013) Test Mode: Continuously Transmitting Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron, Inc. WO#: 107462 Sequence#: 2 Date: 10/31/2022 15.247(b) Power Output (902-928 MHz DTS) Test Lead: 120VAC Antenna Port

^{*} Average Readings Software Version: 5.03.20

Ambient
 1 - 15.247(b) Power Output (902-928 MHz DTS)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024

<i>Measurement Data:</i> Reading listed by margin.						Test Lead	l: Antenna	Port			
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	903.015M	125.8	+10.1	+0.6			+0.0	136.5	137.0	-0.5	Anten
2	914.930M	125.6	+10.1	+0.6			+0.0	136.3	137.0	-0.7	Anten
3	926.815M	125.6	+10.1	+0.6			+0.0	136.3	137.0	-0.7	Anten

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(b) Power Output (902	2-928 MHz DTS)	
Work Order #:	107462	Date:	10/31/2022
Test Type:	Conducted Emissions	Time:	15:43:45
Tested By:	Matt Harrison	Sequence#:	3
Software:	EMITest 5.03.20		120VAC

Equipment Tested: Monufacturor

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / Note	s:		
Test Environment Cond	litions:		
Temperature: 21°C			
Humidity: 40%			
Pressure: 102.5kPa			
Frequency Range: Fund Frequency Tested: 903, Firmware Power Settin EUT Firmware: Protocol /MCS/Modula	, 915, 926.8 g: 200		
Antenna Type: Omni-D	Directional		
Duty Cycle: Tested at 1			
Test Method: ANSI C6 Test Mode: Continuous Test Setup: EUT is setu	ly Transmitting	ents. It is directly connect	cted to the SA via an Attenuator.

Itron, Inc. WO#: 107462 Sequence#: 3 Date: 10/31/2022 15.247(b) Power Output (902-928 MHz DTS) Test Lead: 120VAC Antenna Port

^{*} Average Readings Software Version: 5.03.20

Ambient
 1 - 15.247(b) Power Output (902-928 MHz DTS)

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024

rement Data:	Re	eading lis	ted by ma	rgin.			Test Lead	l: Antenna	l Port	
Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
902.945M	125.7	+10.1	+0.6			+0.0	136.4	137.0	-0.6	Anten
926.820M	125.6	+10.1	+0.6			+0.0	136.3	137.0	-0.7	Anten
915.005M	125.5	+10.1	+0.6			+0.0	136.2	137.0	-0.8	Anten
	Freq MHz 902.945M	Freq Rdng MHz dBμV 902.945M 125.7 926.820M 125.6	$\begin{array}{c cccc} Freq & Rdng & T1 \\ MHz & dB\mu V & dB \\ \hline 902.945M & 125.7 & +10.1 \\ \hline 926.820M & 125.6 & +10.1 \\ \end{array}$	$\begin{array}{c cccccc} Freq & Rdng & T1 & T2 \\ MHz & dB\mu V & dB & dB \\ 902.945M & 125.7 & +10.1 & +0.6 \\ \hline 926.820M & 125.6 & +10.1 & +0.6 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq Rdng T1 T2 Dist MHz dB μ V dB dB dB dB Table 902.945M 125.7 +10.1 +0.6 +0.0 926.820M 125.6 +10.1 +0.6 +0.0	FreqRdngT1T2DistCorrMHzdB μ VdBdBdBdBdBTabledB μ V902.945M125.7+10.1+0.6+0.0136.4926.820M125.6+10.1+0.6+0.0136.3	FreqRdngT1T2DistCorrSpecMHzdB μ VdBdBdBdBdBTabledB μ VdB μ V902.945M125.7+10.1+0.6+0.0136.4137.0926.820M125.6+10.1+0.6+0.0136.3137.0	FreqRdngT1T2DistCorrSpecMarginMHzdB μ VdBdBdBdBTabledB μ VdB μ VdB902.945M125.7+10.1+0.6+0.0136.4137.0-0.6926.820M125.6+10.1+0.6+0.0136.3137.0-0.7

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107462	Date:	10/31/2022
Test Type:	Conducted Emissions	Time:	16:45:26
Tested By:	Michael Atkinson	Sequence#:	1
Software:	EMITest 5.03.20	_	120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21°C Humidity: 48% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-10GHz

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation

Itron, Inc. WO#: 107462 Sequence#: 1 Date: 10/31/2022 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Antenna Port

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

	rement Data:		eading list		argin.				1: Antenna		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1815.990M	77.0	+10.2	+0.9			+0.0	88.1	116.5	-28.4	Anten
2	1830.003M	76.8	+10.2	+0.9			+0.0	87.9	116.5	-28.6	Anten
3	1847.603M	75.2	+10.2	+0.9			+0.0	86.3	116.5	-30.2	Anten
4	3695.205M	72.6	+10.3	+1.3			+0.0	84.2	116.5	-32.3	Anten
5	3631.996M	72.4	+10.3	+1.3			+0.0	84.0	116.5	-32.5	Anten
6	3660.008M	72.4	+10.3	+1.3			+0.0	84.0	116.5	-32.5	Anten
7	2771.391M	71.2	+10.2	+1.2			+0.0	82.6	116.5	-33.9	Anten
8	2723.971M	71.1	+10.2	+1.2			+0.0	82.5	116.5	-34.0	Anten
9	6355.981M	80.7	+0.0	+1.6			+0.0	82.3	116.5	-34.2	Anten
10	6404.990M	80.5	+0.0	+1.6			+0.0	82.1	116.5	-34.4	Anten
11	5448.009M	80.6	+0.0	+1.5			+0.0	82.1	116.5	-34.4	Anten
12	6466.596M	80.3	+0.0	+1.6			+0.0	81.9	116.5	-34.6	Anten
13	5490.000M	80.4	+0.0	+1.5			+0.0	81.9	116.5	-34.6	Anten
14	5542.790M	80.2	+0.0	+1.5			+0.0	81.7	116.5	-34.8	Anten
15	2744.999M	70.3	+10.2	+1.2			+0.0	81.7	116.5	-34.8	Anten
16	4619.008M	73.0	+0.0	+1.6			+0.0	74.6	116.5	-41.9	Anten
17	4575.001M	71.7	+0.0	+1.6			+0.0	73.3	116.5	-43.2	Anten
18	4539.997M	71.5	+0.0	+1.6			+0.0	73.1	116.5	-43.4	Anten
19	7390.377M	68.7	+0.0	+1.6			+0.0	70.3	116.5	-46.2	Anten
20	7263.973M	68.1	+0.0	+1.6			+0.0	69.7	116.5	-46.8	Anten
21	7320.000M	68.0	+0.0	+1.6			+0.0	69.6	116.5	-46.9	Anten
22	8314.197M	64.4	+0.0	+2.0			+0.0	66.4	116.5	-50.1	Anten
23	8234.952M	63.5	+0.0	+1.9			+0.0	65.4	116.5	-51.1	Anten
24	8171.976M	63.4	+0.0	+1.9			+0.0	65.3	116.5	-51.2	Anten

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107462	Date:	10/31/2022
Test Type:	Conducted Emissions	Time:	16:49:57
Tested By:	Michael Atkinson	Sequence#:	2
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21°C Humidity: 48% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-10GHz

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation

Itron, Inc. WO#: 107462 Sequence#: 2 Date: 10/31/2022 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Antenna Port

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

	rement Data:			ted by ma	argin.				d: Antenna		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1829.900M	76.6	+10.2	+0.9			+0.0	87.7	116.5	-28.8	Anten
2	1805.897M	76.5	+10.2	+0.9			+0.0	87.6	116.5	-28.9	Anten
3	1853.700M	75.4	+10.2	+0.9			+0.0	86.5	116.5	-30.0	Anten
4	3707.010M	72.3	+10.3	+1.3			+0.0	83.9	116.5	-32.6	Anten
5	3660.190M	72.1	+10.3	+1.3			+0.0	83.7	116.5	-32.8	Anten
6	2780.546M	71.7	+10.2	+1.2			+0.0	83.1	116.5	-33.4	Anten
7	6487.954M	81.1	+0.0	+1.6			+0.0	82.7	116.5	-33.8	Anten
8	6320.664M	81.0	+0.0	+1.6			+0.0	82.6	116.5	-33.9	Anten
9	5418.306M	81.0	+0.0	+1.5			+0.0	82.5	116.5	-34.0	Anten
10	5560.504M	80.5	+0.0	+1.5			+0.0	82.0	116.5	-34.5	Anten
11	6404.648M	80.2	+0.0	+1.6			+0.0	81.8	116.5	-34.7	Anten
12	2744.838M	70.3	+10.2	+1.2			+0.0	81.7	116.5	-34.8	Anten
13	5490.290M	80.2	+0.0	+1.5			+0.0	81.7	116.5	-34.8	Anten
14	2708.843M	70.2	+10.2	+1.2			+0.0	81.6	116.5	-34.9	Anten
15	4634.250M	73.6	+0.0	+1.5			+0.0	75.1	116.5	-41.4	Anten
16	4574.756M	71.5	+0.0	+1.6			+0.0	73.1	116.5	-43.4	Anter
17	4515.260M	70.8	+0.0	+1.6			+0.0	72.4	116.5	-44.1	Anter
18	7413.966M	68.4	+0.0	+1.6			+0.0	70.0	116.5	-46.5	Anter
19	7319.602M	67.6	+0.0	+1.6			+0.0	69.2	116.5	-47.3	Anter
20	7224.380M	67.5	+0.0	+1.6			+0.0	69.1	116.5	-47.4	Anter
21	8341.658M	64.6	+0.0	+2.0			+0.0	66.6	116.5	-49.9	Anter
22	8127.445M	64.4	+0.0	+1.9			+0.0	66.3	116.5	-50.2	Anter
23	8235.494M	63.1	+0.0	+1.9			+0.0	65.0	116.5	-51.5	Anter

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717					
Customer:	Itron, Inc.					
Specification:	15.247(d) Conducted Spurious Emissions					
Work Order #:	107462	Date:	10/31/2022			
Test Type:	Conducted Emissions	Time:	16:52:39			
Tested By:	Michael Atkinson	Sequence#:	3			
Software:	EMITest 5.03.20		120V 60Hz			

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21°C Humidity: 48% Pressure: 100.9kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-10GHz

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

Itron, Inc. WO#: 107462 Sequence#: 3 Date: 10/31/2022 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Antenna Port

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

	rement Data:		eading list		argin.				1: Antenna		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1830.036M	76.5	+10.2	+0.9			+0.0	87.6	116.5	-28.9	Anten
2	1806.028M	76.4	+10.2	+0.9			+0.0	87.5	116.5	-29.0	Anten
3	1853.558M	75.4	+10.2	+0.9			+0.0	86.5	116.5	-30.0	Anten
4	3612.078M	72.9	+10.3	+1.3			+0.0	84.5	116.5	-32.0	Anten
5	3707.272M	72.3	+10.3	+1.3			+0.0	83.9	116.5	-32.6	Anten
6	3660.076M	72.1	+10.3	+1.3			+0.0	83.7	116.5	-32.8	Anten
7	2780.442M	71.9	+10.2	+1.2			+0.0	83.3	116.5	-33.2	Anten
8	6487.474M	81.0	+0.0	+1.6			+0.0	82.6	116.5	-33.9	Anten
9	6320.882M	80.9	+0.0	+1.6			+0.0	82.5	116.5	-34.0	Anten
10	5418.084M	80.9	+0.0	+1.5			+0.0	82.4	116.5	-34.1	Anten
11	5560.692M	80.4	+0.0	+1.5			+0.0	81.9	116.5	-34.6	Anten
12	6405.118M	80.2	+0.0	+1.6			+0.0	81.8	116.5	-34.7	Anten
13	5489.906M	80.3	+0.0	+1.5			+0.0	81.8	116.5	-34.7	Anten
14	2745.050M	70.3	+10.2	+1.2			+0.0	81.7	116.5	-34.8	Anten
15	2709.056M	70.1	+10.2	+1.2			+0.0	81.5	116.5	-35.0	Anten
16	4633.920M	73.5	+0.0	+1.5			+0.0	75.0	116.5	-41.5	Anten
17	4574.928M	71.6	+0.0	+1.6			+0.0	73.2	116.5	-43.3	Anten
18	4515.068M	70.8	+0.0	+1.6			+0.0	72.4	116.5	-44.1	Anten
19	7414.512M	69.1	+0.0	+1.6			+0.0	70.7	116.5	-45.8	Anten
20	7319.892M	67.7	+0.0	+1.6			+0.0	69.3	116.5	-47.2	Anten
21	7224.150M	67.4	+0.0	+1.6			+0.0	69.0	116.5	-47.5	Anten
22	8341.372M	63.8	+0.0	+2.0			+0.0	65.8	116.5	-50.7	Anten
23	8127.148M	63.5	+0.0	+1.9			+0.0	65.4	116.5	-51.1	Anten
24	8235.152M	63.3	+0.0	+1.9			+0.0	65.2	116.5	-51.3	Anten

Band Edge

	Band Edge Summary										
Limit applied:	Limit applied: Max Power/100kHz - 20dB.										
Operating Mo	ode: Single Channel (Low and High)										
Frequency	Modulation	Measured	Limit	Results							
(MHz)	Woddiation	(dBµV)	(dBµV)	Results							
902	AM	91.2	<116.5	Pass							
928	AM	100.4	<116.5	Pass							
902	FM 12.5	103.0	<116.5	Pass							
928	FM 12.5	96.8	<116.5	Pass							
902	FM 37.5	102.3	<116.5	Pass							
928	FM 37.5	97.0	<116.5	Pass							

Note: Limit converted to $dB\mu V$ from dBm, for 50ohm system dBm-107 = $dB\mu V$

	Band Edge Summary										
Limit applied: Max Power/100kHz - 20dB. Operating Mode: Hopping											
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results							
902	AM	93.4	<116.5	Pass							
928	AM	99.4	<116.5	Pass							
902	FM 12.5	99.8	<116.5	Pass							
928	FM 12.5	96.9	<116.5	Pass							
902	FM 37.5	100.6	<116.5	Pass							
928	FM 37.5	97.5	<116.5	Pass							

Note: Limit converted to $dB\mu V$ from dBm, for 50ohm system dBm-107 = $dB\mu V$

Band Edge Plots

Single Channel (Low and High)

Hopping

Page 54 of 111 Report No.: 107462-2

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717					
Customer:	Itron, Inc.					
Specification:	15.247(d) Conducted Spurious Emissions					
Work Order #:	107462	Date:	11/1/2022			
Test Type:	Conducted Emissions	Time:	16:42:02			
Tested By:	Michael Atkinson	Sequence#:	4			
Software:	EMITest 5.03.20		120V 60Hz			

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21.7°C Humidity: 48% Pressure: 100.8kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

Measu	Measurement Data:		Reading listed by margin.				Test Lead: Antenna Port				
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	928.000M	89.7	+10.1	+0.6			+0.0	100.4	116.5	-16.1	Anten
									SC		
2	928.000M	88.7	+10.1	+0.6			+0.0	99.4	116.5	-17.1	Anten
									Hopping		
3	902.000M	82.7	+10.1	+0.6			+0.0	93.4	116.5	-23.1	Anten
									Hopping		
4	902.000M	80.5	+10.1	+0.6			+0.0	91.2	116.5	-25.3	Anten
									SC		

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107462	Date:	11/1/2022
Test Type:	Conducted Emissions	Time:	16:52:13
Tested By:	Michael Atkinson	Sequence#:	5
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21.7°C Humidity: 48% Pressure: 100.8kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.	. Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	902.000M	92.3	+10.1	+0.6			+0.0	103.0	116.5	-13.5	Anten
									SC		
2	902.000M	89.1	+10.1	+0.6			+0.0	99.8	116.5	-16.7	Anten
									Hopping		
3	928.000M	86.2	+10.1	+0.6			+0.0	96.9	116.5	-19.6	Anten
									Hopping		
4	928.000M	86.1	+10.1	+0.6			+0.0	96.8	116.5	-19.7	Anten
									SC		

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107462	Date:	11/1/2022
Test Type:	Conducted Emissions	Time:	17:04:08
Tested By:	Michael Atkinson	Sequence#:	6
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21.7°C Humidity: 48% Pressure: 100.8kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023

Measu	rement Data:	Re	Reading listed by margin.				. Test Lead: Antenna Port				
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	902.000M	91.6	+10.1	+0.6			+0.0	102.3	116.5	-14.2	Anten
									SC		
2	902.000M	89.9	+10.1	+0.6			+0.0	100.6	116.5	-15.9	Anten
									Hopping		
3	928.000M	86.8	+10.1	+0.6			+0.0	97.5	116.5	-19.0	Anten
									Hopping		
4	928.000M	86.3	+10.1	+0.6			+0.0	97.0	116.5	-19.5	Anten
									SC		

Test Setup Photo(s)

Page 59 of 111 Report No.: 107462-2

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories, Inc. • 22116 Itron, Inc. 15.247(d) / 15.209 Radiated Sp 107462 Maximized Emissions Matt Harrison EMITest 5.03.20	urious Emissions Date:	othell, WA 98021 • (425) 402-1717 10/28/2022 13:04:37 1
<u>Equipment Teste</u>	ed:		
Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipm	ent:		
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions	Notes:		
Test Environmen	it Conditions:		
Temperature: 24	°C		
Humidity: 51%			
Pressure: 101.5k	Pa		
Test Method: Al	NSI C63.10 (2013)		
Frequency: 9kHz	z-9.28GHz		
	t is on foam table 80cm high for polarities investigated, worst-case		high for above 1GHz. Horizontal and asly transmitting with modulation.
AM Modulation	n, LMH channels.		

Itron, Inc. WO#: 107462 Sequence#: 1 Date: 10/28/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

	rement Data:		eading lis						e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dBµV	dB	dB	dB	dB		dBµV/m		dB	Ant
1	3695.080M	51.3	+0.0	+0.6	+3.3	+0.0	+0.0	53.8	54.0	-0.2	Horiz
			+0.0	+0.0	-33.8	+31.9					
			+0.3	+0.2	+0.0					• •	
2	5447.935M	44.4	+0.0	+0.8	+4.0	+0.0	+0.0	51.2	54.0	-2.8	Horiz
			+0.0	+0.0	-33.6	+34.7					
	110 50016		+0.5	+0.4	+0.0	0.7		40.4	10.7		**
3		25.0	+0.0	+0.1	+0.5	+0.7	+0.0	40.4	43.5	-3.1	Vert
	QP		+14.1	+0.0	+0.0	+0.0					
•	110 700 1	20.0	+0.0	+0.0	+0.0	.07	. 0. 0	16.0	12.5	. 0.7	X 7 /
۸	110.780M	30.8	+0.0	+0.1	+0.5	+0.7	+0.0	46.2	43.5	+2.7	Vert
			+14.1	+0.0	+0.0	+0.0					
_	4540.0001	155	+0.0	+0.0	+0.0	.0.0	.0.0	40.0	540	5.0	TT
5	4540.020M	45.5	+0.0	+0.6	+3.5	+0.0	+0.0	49.0	54.0	-5.0	Horiz
			+0.0	+0.0	-33.6	+32.1					
-	4574 (05)4	44.0	+0.3	+0.6	+0.0	.0.0	.0.0	17.6	540	<i>C</i> 1	TT
6	4574.685M	44.0	+0.0	+0.6	+3.5	+0.0	+0.0	47.6	54.0	-6.4	Horiz
			+0.0	+0.0	-33.6	+32.2					
7	9225 1601	44.0	+0.4	+0.5	+0.0	.0.0	.0.0	42.0	540	10.1	N.C
	8235.160M	44.9	+0.0	+1.2	+5.1	+0.0	+0.0	43.9	54.0	-10.1	Vert
	Ave		+0.0	+0.0	-34.9	+38.6					
٨	9225 1COM	44.0	+0.7	+0.8	+12.5	10.0	10.0	561	540	12.4	Vert
7	8235.160M	44.9	+0.0	$^{+1.2}_{+0.0}$	+5.1 -34.9	+0.0 +38.6	+0.0	56.4	54.0	+2.4	Vert
			+0.0			+38.0					
0	2771.450M	44.6	+0.7 +0.0	+0.8 +0.5	+0.0 +2.7	+0.0	+0.0	43.8	54.0	-10.2	Horiz
9	2771.430101	44.0	$^{+0.0}_{+0.0}$	+0.3 +0.0	-34.1	+0.0 +29.3	+0.0	43.8	54.0	-10.2	HOLIZ
			+0.0 +0.5	+0.0 +0.3	+0.0	+29.3					
10	8172.100M	44.4	+0.0	+0.3 +1.2	+0.0 +5.1	+0.0	+0.0	43.2	54.0	-10.8	Vert
	Ave	44.4	$^{+0.0}_{+0.0}$	$^{+1.2}_{+0.0}$	+3.1 -35.0	+38.6	+0.0	43.2	54.0	-10.8	ven
	Ave		+0.0 +0.7	+0.0 +0.7	+12.5	+30.0					
٨	8172.100M	44.4	+0.7 +0.0	+0.7 +1.2	+12.3 +5.1	+0.0	+0.0	55.7	54.0	+1.7	Vert
	01/2.100WI	44.4	$^{+0.0}_{+0.0}$	$^{+1.2}_{+0.0}$	+3.1 -35.0	+38.6	± 0.0	55.1	54.0	± 1.7	veit
			+0.0 +0.7	+0.0 +0.7	+0.0	+30.0					
12	4618.955M	51.5	+0.0	+0.6	+3.5	+0.0	+0.0	42.7	54.0	-11.3	Horiz
	Ave	51.5	+0.0	+0.0	-33.6	+32.4	10.0	72.7	54.0	-11.5	110112
	1100		+0.0	+0.0	+12.5	152.4					
٨	4618.955M	51.5	+0.0	+0.6	+3.5	+0.0	+0.0	55.2	54.0	+1.2	Horiz
	1010.755141	51.5	+0.0 +0.0	$^{+0.0}_{+0.0}$	-33.6	+32.4	10.0	55.2	54.0	11.4	110112
			+0.0	+0.0	+0.0	1.52.4					
14	2724.335M	43.4	+0.0	+0.5	+2.7	+0.0	+0.0	42.6	54.0	-11.4	Vert
17	2127.333111	ч <i>э</i> .т	+0.0 +0.0	+0.3 +0.0	-34.1	+29.4	10.0	72.0	54.0	11.7	vert
			+0.0 +0.5	+0.0 $+0.2$	+0.0	127.4					
	2745.055M	43.3	+0.3 +0.0	+0.2 +0.5	+0.0 +2.7	+0.0	+0.0	42.5	54.0	-11.5	Vert
15			10.0	10.5	1 4.1	10.0	10.0	74.5	J-T.U	11.5	v Cit
15	2745.055101	10.0	+0.0	+0.0	-34.1	+29.3					

16	8314.440M	43.0	+0.0	+1.2	+5.2	+0.0	+0.0	42.3	54.0	-11.7	Vert
	Ave	45.0	+0.0 $+0.0$	+1.2 +0.0	-34.9	+38.7	± 0.0	42.5	54.0	-11./	ven
	Ave		+0.0	+0.9	+12.5	150.7					
^	8314.440M	43.0	+0.0	+1.2	+5.2	+0.0	+0.0	54.8	54.0	+0.8	Vert
	00111110101	12.0	+0.0	+0.0	-34.9	+38.7	10.0	5 1.0	5 110	10.0	vert
			+0.7	+0.9	+0.0						
18	7390.460M	45.1	+0.0	+1.3	+4.5	+0.0	+0.0	42.3	54.0	-11.7	Horiz
	Ave		+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+12.5						
^	7390.460M	45.1	+0.0	+1.3	+4.5	+0.0	+0.0	54.8	54.0	+0.8	Horiz
			+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+0.0						
20	7263.870M	45.1	+0.0	+1.2	+4.5	+0.0	+0.0	41.6	54.0	-12.4	Vert
	Ave		+0.0	+0.0	-34.9	+37.2					
			+0.7	+0.3	+12.5						
^	7263.870M	45.1	+0.0	+1.2	+4.5	+0.0	+0.0	54.1	54.0	+0.1	Vert
			+0.0	+0.0	-34.9	+37.2					
			+0.7	+0.3	+0.0						
	7320.020M	44.3	+0.0	+1.3	+4.5	+0.0	+0.0	41.5	54.0	-12.5	Horiz
	Ave		+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+12.5						
^	7320.020M	44.3	+0.0	+1.3	+4.5	+0.0	+0.0	54.0	54.0	+0.0	Horiz
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
24	3695.080M	51.3	+0.0	+0.6	+3.3	+0.0	+0.0	41.3	54.0	-12.7	Horiz
			+0.0	+0.0	-33.8	+31.9					
- 25	5447 02514	44.4	+0.3	+0.2	+12.5	.0.0	.0.0	20.7	54.0	15.0	
25	5447.935M	44.4	+0.0	+0.8	+4.0	+0.0	+0.0	38.7	54.0	-15.3	Horiz
			+0.0 +0.5	$^{+0.0}_{+0.4}$	-33.6 +12.5	+34.7					
26	3659.945M	48.0	+0.3 +0.0	+0.4 +0.6	+12.3 $+3.3$	+0.0	+0.0	37.9	54.0	-16.1	Horiz
	Ave	48.0	+0.0 +0.0	$^{+0.0}_{+0.0}$	+3.5 -33.8	+0.0 +31.7	+0.0	57.9	54.0	-10.1	HOUT
	Ave		+0.0 +0.4	+0.0 +0.2	+12.5	+31.7					
^	3659.945M	48.0	+0.4 +0.0	+0.2+0.6	+3.3	+0.0	+0.0	50.4	54.0	-3.6	Horiz
	5059.945IVI	40.0	+0.0 $+0.0$	+0.0 $+0.0$	-33.8	+31.7	± 0.0	50.4	54.0	-5.0	HOUL
			+0.0	+0.2	+0.0	131.7					
28	3632.495M	46.2	+0.0	+0.6	+3.3	+0.0	+0.0	36.2	54.0	-17.8	Horiz
	Ave	10.2	+0.0	+0.0		+31.7	10.0	50.2	21.0	17.0	110112
			+0.4	+0.3	+12.5						
^	3632.495M	46.2	+0.0	+0.6	+3.3	+0.0	+0.0	48.7	54.0	-5.3	Horiz
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
30	829.300M	40.8	+0.0	+0.3	+1.4	+2.2	+0.0	74.0	113.0	-39.0	Vert
			+29.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
31	830.200M	34.9	+0.0	+0.3	+1.4	+2.2	+0.0	68.1	113.0	-44.9	Horiz
			+29.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
32	6466.780M	54.4	+0.0	+0.9	+4.5	+0.0	+0.0	62.0	113.0	-51.0	Vert
1			0.0	0.0	24.0	210					
			+0.0 +0.7	$^{+0.0}_{+0.6}$	-34.0	+34.9					

33	6404.525M	54.4	+0.0	+0.9	+4.5	+0.0	+0.0	61.9	113.0	-51.1	Vert
			+0.0	+0.0	-34.0	+35.0					
			+0.6	+0.5	+0.0						
34	6355.625M	51.5	+0.0	+0.9	+4.4	+0.0	+0.0	58.9	113.0	-54.1	Vert
			+0.0	+0.0	-34.0	+35.1					
			+0.6	+0.4	+0.0						
35	5542.715M	45.1	+0.0	+0.8	+4.0	+0.0	+0.0	51.9	113.0	-61.1	Vert
			+0.0	+0.0	-33.6	+34.6					
			+0.5	+0.5	+0.0						
36	5490.285M	44.1	+0.0	+0.8	+4.0	+0.0	+0.0	50.9	113.0	-62.1	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						
37	1830.145M	53.3	+0.0	+0.4	+2.1	+0.0	+0.0	49.5	113.0	-63.5	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+0.0						
38	1847.715M	52.3	+0.0	+0.4	+2.1	+0.0	+0.0	48.6	113.0	-64.4	Vert
			+0.0	+0.0	-34.7	+27.6					
			+0.3	+0.6	+0.0						
39	1815.760M	50.9	+0.0	+0.4	+2.1	+0.0	+0.0	47.0	113.0	-66.0	Vert
			+0.0	+0.0	-34.7	+27.4					
			+0.3	+0.6	+0.0						
40	68.800M	30.9	+0.0	+0.1	+0.4	+0.5	+0.0	44.8	113.0	-68.2	Vert
			+12.9	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
41	68.800M	25.6	+0.0	+0.1	+0.4	+0.5	+0.0	39.5	113.0	-73.5	Horiz
			+12.9	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
42	19.702M	34.4	+0.0	+0.1	+0.2	+0.0	-40.0	1.1	113.0	-111.9	Perp/
			+0.0	+6.4	+0.0	+0.0					
			+0.0	+0.0	+0.0						
43	27.164M	33.7	+0.0	+0.1	+0.2	+0.0	-40.0	-1.1	113.0	-114.1	Perp/
			+0.0	+4.9	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
44	23.134M	32.2	+0.0	+0.1	+0.2	+0.0	-40.0	-1.4	113.0	-114.4	Perp/
			+0.0	+6.1	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
45	26.597M	32.0	+0.0	+0.1	+0.2	+0.0	-40.0	-2.5	113.0	-115.5	Perp/
			+0.0	+5.2	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
46	33.393k	45.3	+0.0	+0.1	+0.0	+0.0	-80.0	-23.8	113.0	-136.8	Perp/
			+0.0	+10.8	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
с											

Test Location:	CKC Laboratories, Inc. • 221	16 23rd Drive SE, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated	Spurious Emissions	
Work Order #:	107462	Date:	10/29/2022
Test Type:	Maximized Emissions	Time:	08:20:10
Tested By:	Matt Harrison	Sequence#:	2
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Fauinmont				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup: Unit is on foam table 80cm high for below 1GHz and 150cm high for above 1GHz. Horizontal and Vertical antenna polarities investigated, worst-case reported; unit is continuously transmitting with modulation.

FM 12.5k Modulation, LMH channels.

Itron, Inc. WO#: 107462 Sequence#: 2 Date: 10/29/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
Т2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Τ4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

	nent Data:			ted by ma		TT 4			e: 3 Meters		D 1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5 T9	T6 T10	T7 T11	T8					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBuV/m	dB	Ant
1 1	10.780M	25.0	+0.0	+0.1	+0.5	+0.7	+0.0	40.4	43.5	-3.1	Vert
QP		20.0	+14.1	+0.0	+0.0	+0.0	10.0	10.1	10.0	5.1	1011
×-			+0.0	+0.0	+0.0						
^ 1	10.780M	31.0	+0.0	+0.1	+0.5	+0.7	+0.0	46.4	43.5	+2.9	Vert
-			+14.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
3 45	575.450M	43.8	+0.0	+0.6	+3.5	+0.0	+0.0	47.4	54.0	-6.6	Horiz
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
4 45	514.595M	42.2	+0.0	+0.6	+3.5	+0.0	+0.0	45.7	54.0	-8.3	Horiz
			+0.0	+0.0	-33.6	+32.2					
			+0.3	+0.5	+0.0						
5 27	09.130M	45.8	+0.0	+0.5	+2.7	+0.0	+0.0	45.1	54.0	-8.9	Horiz
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
6 27	/80.520M	44.9	+0.0	+0.5	+2.7	+0.0	+0.0	44.1	54.0	-9.9	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
7 27	45.300M	43.9	+0.0	+0.5	+2.7	+0.0	+0.0	43.1	54.0	-10.9	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
8 73	320.365M	44.7	+0.0	+1.3	+4.5	+0.0	+0.0	41.9	54.0	-12.1	Vert
Av	e		+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+12.5						
^ 73	320.365M	44.7	+0.0	+1.3	+4.5	+0.0	+0.0	54.4	54.0	+0.4	Vert
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
	18.365M	47.5	+0.0	+0.8	+4.0	+0.0	+0.0	41.9	54.0	-12.1	Horiz
Av	e		+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+12.5						
^ 54	18.365M	47.5	+0.0	+0.8	+4.0	+0.0	+0.0	54.4	54.0	+0.4	Horiz
			+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+0.0						
	27.360M	43.2	+0.0	+1.2	+5.1	+0.0	+0.0	41.8	54.0	-12.2	Vert
Av	e		+0.0	+0.0	-35.1	+38.6					
			+0.7	+0.6	+12.5						
^ 81	27.360M	43.2	+0.0	+1.2	+5.1	+0.0	+0.0	54.3	54.0	+0.3	Vert
			+0.0	+0.0	-35.1	+38.6					
14 65	24 6003 6	10 -	+0.7	+0.6	+0.0			44.7	F 4 0	12.2	
	234.680M	42.7	+0.0	+1.2	+5.1	+0.0	+0.0	41.7	54.0	-12.3	Horiz
Av	e		+0.0	+0.0	-34.9	+38.6					
• ~ -	04 6063 5		+0.7	+0.8	+12.5	~ ~ ~		<i></i>			
^ 82	234.680M	42.7	+0.0	+1.2	+5.1	+0.0	+0.0	54.2	54.0	+0.2	Horiz
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						

16 0140 62514	40.7	0.0	0.0	5.0	0.0	0.0	41.0	54.0	12.0	
16 9149.635M	42.7	+0.0	+0.9		+0.0	+0.0	41.2	54.0	-12.8	Horiz
Ave		+0.0	+0.0	-34.4	+37.7					
A 0140 (25) /	40.7	+0.7	+1.1	+12.5	.0.0	.0.0	527	54.0	0.2	II!
^ 9149.635M	42.7	+0.0	+0.9	+5.0	+0.0	+0.0	53.7	54.0	-0.3	Horiz
		+0.0	+0.0	-34.4	+37.7					
19,0000,21514	42.0	+0.7	+1.1	+0.0	.0.0	.0.0	41.0	54.0	12.0	II!
18 9029.315M	43.0	+0.0	+0.9	+4.9	+0.0	+0.0	41.0	54.0	-13.0	Horiz
Ave		+0.0	+0.0	-34.7	+38.0					
A 0020 215M	42.0	+0.7	+0.7	+12.5	.0.0	.0.0	52 E	54.0	0.5	II!
^ 9029.315M	43.0	+0.0	+0.9	+4.9	+0.0	+0.0	53.5	54.0	-0.5	Horiz
		+0.0	+0.0	-34.7	+38.0					
20 7412 710 4	12.2	+0.7	+0.7	+0.0	0.0		10 5	54.0	125	II.a.el-
20 7413.710M	43.3	+0.0	+1.3	+4.5	+0.0	+0.0	40.5	54.0	-13.5	Horiz
Ave		+0.0	+0.0	-34.9	+37.4					
^ 7413.710M	43.3	+0.7	+0.7	+12.5	10.0		53.0	54.0	-1.0	II.ai
^ /415./10M	45.5	$^{+0.0}_{+0.0}$	+1.3	+4.5 -34.9	+0.0	+0.0	35.0	54.0	-1.0	Horiz
		+0.0 +0.7	$^{+0.0}_{+0.7}$	-54.9 +0.0	+37.4					
22 8340.780M	41.2	+0.7 +0.0	+0.7 +1.2	+0.0 +5.2	+0.0	+0.0	40.4	54.0	-13.6	Homin
	41.2	+0.0 +0.0	$^{+1.2}_{+0.0}$	+3.2 -34.9	+0.0 +38.6	+0.0	40.4	54.0	-15.0	Horiz
Ave		+0.0 +0.7	+0.0 +0.9	-34.9 +12.5	+30.0					
^ 8340.780M	41.2	+0.7 +0.0	+0.9 +1.2	+12.3 +5.2	+0.0	+0.0	52.9	54.0	-1.1	Horiz
0340.700M	41.2	$^{+0.0}_{+0.0}$	+1.2 $+0.0$	+3.2 -34.9	+38.6	+0.0	52.9	54.0	-1.1	HOUL
		+0.0 +0.7	+0.0 $+0.9$	-34.9 +0.0	+30.0					
24 4633.750M	47.2	+0.7 +0.0	+0.9 +0.6	+0.0 +3.6	+0.0	+0.0	38.5	54.0	-15.5	Vert
Ave	47.2	$^{+0.0}_{+0.0}$	+0.0 $+0.0$	-33.6	+32.4	± 0.0	56.5	54.0	-15.5	ven
Ave		+0.0 +0.4	+0.0 $+0.4$	+12.5	+32.4					
^ 4633.750M	47.2	+0.4	+0.6	+3.6	+0.0	+0.0	51.0	54.0	-3.0	Vert
4033.750141	47.2	+0.0 $+0.0$	+0.0 $+0.0$	-33.6	+32.4	± 0.0	51.0	54.0	-5.0	ven
		+0.4	+0.0	+0.0	152.4					
26 3660.155M	48.5	+0.0	+0.6	+3.3	+0.0	+0.0	38.4	54.0	-15.6	Horiz
Ave	-0.5	+0.0	+0.0	-33.8	+31.7	10.0	50.4	54.0	-15.0	HOHZ
Ave		+0.4	+0.2	+12.5	131.7					
^ 3660.155M	48.5	+0.0	+0.6	+3.3	+0.0	+0.0	50.9	54.0	-3.1	Horiz
5000.155141	40.5	+0.0	+0.0	-33.8	+31.7	10.0	50.7	54.0	5.1	HOHZ
		+0.4	+0.2	+0.0	131.7					
28 3707.055M	46.3	+0.0	+0.6	+3.3	+0.0	+0.0	36.4	54.0	-17.6	Horiz
Ave		+0.0			+32.0		20.1	2	11.0	
		+0.3	+0.2	+12.5	2.0					
^ 3707.055M	46.3	+0.0	+0.6	+3.3	+0.0	+0.0	48.9	54.0	-5.1	Horiz
		+0.0	+0.0	-33.8	+32.0		,	20		
		+0.3	+0.2	+0.0						
30 3612.095M	46.1	+0.0	+0.5	+3.2	+0.0	+0.0	35.9	54.0	-18.1	Horiz
Ave		+0.0	+0.0	-33.8	+31.7			20		
		+0.4	+0.3	+12.5						
^ 3612.095M	46.1	+0.0	+0.5	+3.2	+0.0	+0.0	48.4	54.0	-5.6	Horiz
		+0.0	+0.0	-33.8	+31.7					
		+0.4	+0.3	+0.0						
32 6487.225M	56.2	+0.0	+0.9	+4.5	+0.0	+0.0	63.8	108.0	-44.2	Vert
		+0.0	+0.0	-34.0	+34.9		-			
		+0.7	+0.6	+0.0						

22	C404 C75N	510		10.0	. 1 5			(2.2	100.0	15 7	Hania
	6404.675M	54.8	+0.0	$^{+0.9}_{+0.0}$	+4.5	+0.0 +35.0	+0.0	62.3	108.0	-45.7	Horiz
			$^{+0.0}_{+0.6}$	+0.0 +0.5	-34.0 +0.0	+55.0					
3/	6321.330M	51.8	+0.0	+0.9	+4.4	+0.0	+0.0	59.3	108.0	-48.7	Horiz
54	0521.550101	51.0	+0.0	+0.0	-34.0	+35.2	10.0	57.5	100.0	-+0.7	HOHZ
			+0.6	+0.4	+0.0	155.2					
35	7224.295M	45.7	+0.0	+1.2	+4.6	+0.0	+0.0	54.5	108.0	-53.5	Horiz
55	7224.295101	43.7	+0.0	+0.0	-34.9	+37.0	10.0	54.5	100.0	55.5	HOHZ
			+0.0	+0.2	+0.0	15710					
36	9267.585M	41.5	+0.0	+1.0	+5.0	+0.0	+0.0	53.4	108.0	-54.6	Horiz
20	, _ , , , , , , , , , , , , , , , , , ,		+0.0	+0.0	-34.2	+38.0	1010	0011	10010	0.110	110112
			+0.7	+1.4	+0.0						
37	5489.735M	45.3	+0.0	+0.8	+4.0	+0.0	+0.0	52.1	108.0	-55.9	Horiz
			+0.0	+0.0	-33.6	+34.7		•			
			+0.5	+0.4	+0.0						
38	5560.560M	44.7	+0.0	+0.8	+4.0	+0.0	+0.0	51.4	108.0	-56.6	Vert
			+0.0	+0.0	-33.6	+34.5					
			+0.5	+0.5	+0.0						
39	68.800M	33.4	+0.0	+0.1	+0.4	+0.5	+0.0	47.3	108.0	-60.7	Vert
			+12.9	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
40	1853.615M	50.8	+0.0	+0.4	+2.1	+0.0	+0.0	47.2	108.0	-60.8	Vert
			+0.0	+0.0	-34.7	+27.7					
			+0.3	+0.6	+0.0						
41	1805.820M	51.0	+0.0	+0.4	+2.1	+0.0	+0.0	47.0	108.0	-61.0	Vert
			+0.0	+0.0	-34.7	+27.3					
			+0.3	+0.6	+0.0						
42	1829.935M	50.3	+0.0	+0.4	+2.1	+0.0	+0.0	46.5	108.0	-61.5	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+0.0						
43	50.400M	28.9	+0.0	+0.1	+0.3	+0.5	+0.0	42.2	108.0	-65.8	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
44	19.702M	35.4	+0.0	+0.1	+0.2	+0.0	-40.0	2.1	108.0	-105.9	Perp/
			+0.0	+6.4	+0.0	+0.0					
4 -	22.12.43.5	22.2	+0.0	+0.0	+0.0	0.0	40.0	0.4	100.0	100.1	D (
45	23.134M	33.2	+0.0	+0.1	+0.2	+0.0	-40.0	-0.4	108.0	-108.4	Perp/
			+0.0	+6.1	+0.0	+0.0					
4.0	07 16404	24.2	+0.0	+0.0	+0.0	.0.0	40.0	0.7	100.0	100 5	D. /
46	27.164M	34.3	+0.0	+0.1	+0.2	+0.0	-40.0	-0.5	108.0	-108.5	Perp/
			+0.0	+4.9	+0.0	+0.0					
47	27 24214	22.0	+0.0	+0.0	+0.0	.0.0	40.0	2.0	100.0	110.0	Dawy /
47	27.343M	32.0	+0.0	+0.1	+0.2	+0.0	-40.0	-2.9	108.0	-110.9	Perp/
			$^{+0.0}_{+0.0}$	+4.8	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated	Spurious Emissions	
Work Order #:	107462	Date:	10/29/2022
Test Type:	Maximized Emissions	Time:	09:22:40
Tested By:	Matt Harrison	Sequence#:	3
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Fauinmont				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup: Unit is on foam table 80cm high for below 1GHz and 150cm high for above 1GHz. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

FM 37.5k Modulation, LMH channels.

Itron, Inc. WO#: 107462 Sequence#: 3 Date: 10/29/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

	rement Data:	Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1 T5	T2 T6	T3 T7	T4 T8	Dist	Corr	Spec	Margin	Pola
			13 T9	T10	T11	18					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBuV/m	dB	Ant
1	110.760M	25.0	+0.0	+0.1	+0.5	+0.7	+0.0	40.4	43.5	-3.1	Vert
-	QP	25.0	+0.0 +14.1	$^{+0.1}_{+0.0}$	+0.3 +0.0	+0.7 +0.0	± 0.0	40.4	45.5	-3.1	ven
	Qr		+14.1 +0.0	$^{+0.0}_{+0.0}$	+0.0 +0.0	± 0.0					
٨	110.760M	30.2	+0.0 +0.0	+0.0 +0.1	+0.0 +0.5	+0.7	+0.0	45.6	43.5	+2.1	Vert
	110.700101	50.2	+14.1	+0.1 $+0.0$	+0.0	+0.0	10.0	+J.0	-J.J	12.1	ven
			+0.0	+0.0	+0.0	10.0					
3	4575.115M	44.4	+0.0	+0.6	+3.5	+0.0	+0.0	48.0	54.0	-6.0	Hori
5	1979.119101		+0.0	+0.0	-33.6	+32.2	10.0	10.0	51.0	0.0	11011
			+0.4	+0.5	+0.0						
4	3611.935M	45.1	+0.0	+0.5	+3.2	+0.0	+0.0	47.4	54.0	-6.6	Hori
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
5	4514.960M	41.4	+0.0	+0.6	+3.5	+0.0	+0.0	44.9	54.0	-9.1	Hori
			+0.0	+0.0	-33.6	+32.2					
			+0.3	+0.5	+0.0						
6	2709.035M	44.8	+0.0	+0.5	+2.7	+0.0	+0.0	44.1	54.0	-9.9	Hori
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
7	2780.155M	44.8	+0.0	+0.5	+2.7	+0.0	+0.0	44.0	54.0	-10.0	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
8	2745.210M	43.7	+0.0	+0.5	+2.7	+0.0	+0.0	42.9	54.0	-11.1	Ver
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
9	8234.960M	42.7	+0.0	+1.2	+5.1	+0.0	+0.0	41.7	54.0	-12.3	Hori
	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
^	8234.960M	42.7	+0.0	+1.2	+5.1	+0.0	+0.0	54.2	54.0	+0.2	Hori
			+0.0	+0.0	-34.9	+38.6					
1.1	0140.05535	40.0	+0.7	+0.8	+0.0	. 0. 0	. 0. 0	44.4	540	10.6	
	9149.865M	42.9	+0.0	+0.9	+5.0	+0.0	+0.0	41.4	54.0	-12.6	Hori
	Ave		+0.0	+0.0	-34.4	+37.7					
^	0140 96514	42.0	+0.7	+1.1	+12.5			52.0	54.0	0.1	Uar
	9149.865M	42.9	$^{+0.0}_{+0.0}$	$^{+0.9}_{+0.0}$	+5.0 -34.4	+0.0 +37.7	+0.0	53.9	54.0	-0.1	Hori
			+0.0 +0.7	$^{+0.0}_{+1.1}$	-34.4 +0.0	+37.7					
12	7320.015M	44.1	+0.7 +0.0	+1.1 +1.3	+0.0 +4.5	+0.0	+0.0	41.3	54.0	-12.7	Ver
	Ave	44.1	+0.0 +0.0	$^{+1.5}_{+0.0}$	+4.3 -34.9	+0.0 +37.5	± 0.0	41.3	54.0	-12.1	ver
	AVU		+0.0 +0.7	$^{+0.0}_{+0.6}$	-34.9 +12.5	<i>⊤31.3</i>					
٨	7320.015M	44.1	+0.7 +0.0	+0.0 +1.3	+12.3 +4.5	+0.0	+0.0	53.8	54.0	-0.2	Ver
	1520.015101	44.1	$^{+0.0}_{+0.0}$	$^{+1.3}_{+0.0}$	-34.9	+0.0 +37.5	± 0.0	55.0	54.0	-0.2	V CI
			+0.0 +0.7	+0.0 +0.6	-34.9 +0.0	±37.3					

15 5417.995M	46.6	+0.0	+0.8	+4.0	+0.0	+0.0	41.0	54.0	-13.0	Horiz
Ave	40.0	+0.0 $+0.0$	+0.8 +0.0	-33.6	+34.7	+0.0	41.0	54.0	-15.0	TIOUTZ
Ave		+0.6	+0.0	+12.5	134.7					
^ 5417.995M	46.6	+0.0	+0.8	+4.0	+0.0	+0.0	53.5	54.0	-0.5	Horiz
5117.555011	10.0	+0.0	+0.0	-33.6	+34.7	10.0	00.0	5 110	0.0	HOLL
		+0.6	+0.4	+0.0						
17 8126.470M	42.0	+0.0	+1.2	+5.1	+0.0	+0.0	40.6	54.0	-13.4	Vert
Ave		+0.0	+0.0	-35.1	+38.6					
		+0.7	+0.6	+12.5						
^ 8126.470M	42.0	+0.0	+1.2	+5.1	+0.0	+0.0	53.1	54.0	-0.9	Vert
		+0.0	+0.0	-35.1	+38.6					
		+0.7	+0.6	+0.0						
19 7414.270M	43.1	+0.0	+1.3	+4.4	+0.0	+0.0	40.2	54.0	-13.8	Horiz
Ave		+0.0	+0.0	-34.9	+37.4					
		+0.7	+0.7	+12.5						
^ 7414.270M	43.1	+0.0	+1.3	+4.4	+0.0	+0.0	52.7	54.0	-1.3	Horiz
		+0.0	+0.0	-34.9	+37.4					
		+0.7	+0.7	+0.0						
21 9030.530M	42.0	+0.0	+0.9	+4.9	+0.0	+0.0	40.0	54.0	-14.0	Vert
Ave		+0.0	+0.0	-34.7	+38.0					
		+0.7	+0.7	+12.5						
^ 9030.530M	42.0	+0.0	+0.9	+4.9	+0.0	+0.0	52.5	54.0	-1.5	Vert
		+0.0	+0.0	-34.7	+38.0					
		+0.7	+0.7	+0.0						
23 8341.160M	40.7	+0.0	+1.2	+5.2	+0.0	+0.0	39.9	54.0	-14.1	Vert
Ave		+0.0	+0.0	-34.9	+38.6					
		+0.7	+0.9	+12.5						
^ 8341.160M	40.7	+0.0	+1.2	+5.2	+0.0	+0.0	52.4	54.0	-1.6	Vert
		+0.0	+0.0	-34.9	+38.6					
		+0.7	+0.9	+0.0						
25 4634.135M	47.1	+0.0	+0.6	+3.6	+0.0	+0.0	38.4	54.0	-15.6	Vert
Ave		+0.0	+0.0	-33.6	+32.4					
		+0.4	+0.4	+12.5	0.0					
^ 4634.135M	47.1	+0.0	+0.6	+3.6	+0.0	+0.0	50.9	54.0	-3.1	Vert
		+0.0	+0.0	-33.6	+32.4					
27 2650 06014	10.0	+0.4	+0.4	+0.0	100	+0.0	20.1	54.0	15.0	He!-
27 3659.960M	48.2	+0.0	+0.6	+3.3	+0.0	+0.0	38.1	54.0	-15.9	Horiz
Ave		+0.0	+0.0 +0.2		+31.7					
^ 3659.960M	48.2	+0.4		+12.5			50.6	54.0	-3.4	Uoria
·· 2029.900101	48.2	+0.0	+0.6	+3.3	+0.0	+0.0	30.6	54.0	-3.4	Horiz
		+0.0 +0.4	+0.0 +0.2	-33.8 +0.0	+31.7					
29 3707.240M	46.1	+0.4 +0.0	+0.2 +0.6	+0.0 +3.3	+0.0	+0.0	36.2	54.0	-17.8	Horiz
29 3707.240M Ave	40.1	+0.0 +0.0	$^{+0.0}_{+0.0}$	+3.5 -33.8	+0.0 +32.0	± 0.0	50.2	54.0	-1/.0	TIOUZ
AVC		+0.0 +0.3	+0.0 +0.2	-55.8 +12.5	± 32.0					
^ 3707.240M	46.1	+0.3 +0.0	+0.2 +0.6	+12.3 +3.3	+0.0	+0.0	48.7	54.0	-5.3	Horiz
5707.240IVI	40.1	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+3.5 -33.8	+0.0 +32.0	± 0.0	40./	54.0	-5.5	TIOUZ
		+0.0 +0.3	+0.0 +0.2	-55.8 +0.0	± 32.0					
31 6487.280M	55.2	+0.3 +0.0	+0.2 +0.9	+0.0 +4.5	+0.0	+0.0	62.8	111.0	-48.2	Vert
JI 0407.200101	55.2	+0.0 +0.0	+0.9 +0.0	-34.0	+0.0 +34.9	± 0.0	02.0	111.0	-40.2	VEIL
		+0.0 +0.7	+0.0 $+0.6$	-34.0 +0.0	TJ4.7					
		FU./	FU.U	τ0.0						

32	6404.950M	52.3	+0.0	+0.9	+4.5	+0.0	+0.0	59.8	111.0	-51.2	Vert
			+0.0	+0.0	-34.0	+35.0					
			+0.6	+0.5	+0.0						
33	6321.295M	51.0	+0.0	+0.9	+4.4	+0.0	+0.0	58.5	111.0	-52.5	Vert
			+0.0	+0.0	-34.0	+35.2					
			+0.6	+0.4	+0.0						
34	7224.205M	45.1	+0.0	+1.2	+4.6	+0.0	+0.0	53.9	111.0	-57.1	Horiz
			+0.0	+0.0	-34.9	+37.0					
			+0.7	+0.2	+0.0						
35	5489.815M	45.1	+0.0	+0.8	+4.0	+0.0	+0.0	51.9	111.0	-59.1	Horiz
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						
36	5560.390M	44.2	+0.0	+0.8	+4.0	+0.0	+0.0	50.9	111.0	-60.1	Vert
			+0.0	+0.0	-33.6	+34.5					
			+0.5	+0.5	+0.0						
37	1853.575M	48.4	+0.0	+0.4	+2.1	+0.0	+0.0	44.8	111.0	-66.2	Vert
			+0.0	+0.0	-34.7	+27.7					
			+0.3	+0.6	+0.0						
38	68.800M	30.8	+0.0	+0.1	+0.4	+0.5	+0.0	44.7	111.0	-66.3	Vert
			+12.9	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
39	1806.035M	48.1	+0.0	+0.4	+2.1	+0.0	+0.0	44.1	111.0	-66.9	Horiz
			+0.0	+0.0	-34.7	+27.3					
			+0.3	+0.6	+0.0						
40	50.400M	28.5	+0.0	+0.1	+0.3	+0.5	+0.0	41.8	111.0	-69.2	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
41	85.300M	27.6	+0.0	+0.1	+0.4	+0.6	+0.0	41.1	111.0	-69.9	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
42	60.100M	26.3	+0.0	+0.1	+0.4	+0.5	+0.0	39.9	111.0	-71.1	Horiz
			+12.6	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
43	1830.155M	49.5	+0.0	+0.4	+2.1	+0.0	+0.0	33.2	111.0	-77.8	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+12.5						
44	19.702M	35.8	+0.0	+0.1	+0.2		-40.0	2.5	111.0	-108.5	Perp/
			+0.0	+6.4		+0.0					
			+0.0	+0.0	+0.0						
45	23.134M	31.0	+0.0	+0.1	+0.2	+0.0	-40.0	-2.6	111.0	-113.6	Perp/
			+0.0	+6.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
46	27.164M	32.1	+0.0	+0.1	+0.2	+0.0	-40.0	-2.7	111.0	-113.7	Perp/
			+0.0	+4.9	+0.0	+0.0					
			+0.0	+0.0	+0.0						
47	27.881M	30.9	+0.0	+0.1	+0.2	+0.0	-40.0	-4.2	111.0	-115.2	Perp/
			+0.0	+4.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Band Edge

	Band Edge Summary								
Operating Mo	Operating Mode: Single Channel (Low and High)								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	AM	Omnidirectional	38.8	<46	Pass				
902	AM	Omnidirectional	68.0	<113	Pass				
928	AM	Omnidirectional	58.2	<113	Pass				
960	AM	Omnidirectional	42.8	<54	Pass				
614	FM 12.5k	Omnidirectional	38.5	<46	Pass				
902	FM 12.5k	Omnidirectional	56.7	<108	Pass				
928	FM 12.5k	Omnidirectional	58.2	<111	Pass				
960	FM 12.5k	Omnidirectional	42.8	<54	Pass				
614	FM 37.5k	Omnidirectional	38.6	<46	Pass				
902	FM 37.5k	Omnidirectional	58.7	<108	Pass				
928	FM 37.5k	Omnidirectional	57.7	<111	Pass				
960	FM 37.5k	Omnidirectional	42.9	<54	Pass				

	Band Edge Summary							
Operating Mo	Operating Mode: Hopping							
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	AM	Omnidirectional	38.5	<46	Pass			
902	AM	Omnidirectional	58.2	<113	Pass			
928	AM	Omnidirectional	58.3	<113	Pass			
960	AM	Omnidirectional	42.7	<54	Pass			
614	FM 12.5k	Omnidirectional	38.5	<46	Pass			
902	FM 12.5k	Omnidirectional	58	<108	Pass			
928	FM 12.5k	Omnidirectional	58.1	<111	Pass			
960	FM 12.5k	Omnidirectional	42.7	<54	Pass			
614	FM 37.5k	Omnidirectional	38.5	<46	Pass			
902	FM 37.5k	Omnidirectional	57.3	<108	Pass			
928	FM 37.5k	Omnidirectional	59.0	<111	Pass			
960	FM 37.5k	Omnidirectional	42.8	<54	Pass			

Band Edge Plots

Single Channel (Low and High)

Page 81 of 111 Report No.: 107462-2

<u>Hopping</u>

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717						
Customer:	Itron, Inc.						
Specification:	15.247(d) / 15.209 Radiated	l Spurious Emissions					
Work Order #:	107462	Date:	10/27/2022				
Test Type:	Maximized Emissions	Time:	17:39:40				
Tested By:	Michael Atkinson	Sequence#:	1				
Software:	EMITest 5.03.20						

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup: Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

AM Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measur	ement Data:	Re	eading list	ted by ma	rgin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	614.000M	8.2	+0.0	+0.3	+1.2	+1.9	+0.0	38.8	46.0	-7.2	Vert
(QP		+27.2						SC		
2	614.000M	7.9	+0.0	+0.3	+1.2	+1.9	+0.0	38.5	46.0	-7.5	Vert
(QP		+27.2						Hopping		
3	960.000M	7.9	+0.0	+0.3	+1.5	+2.4	+0.0	42.8	54.0	-11.2	Vert
(QP		+30.7						SC		
4	960.000M	7.8	+0.0	+0.3	+1.5	+2.4	+0.0	42.7	54.0	-11.3	Vert
(QP		+30.7						Hopping		
5	902.000M	34.4	+0.0	+0.3	+1.4	+2.3	+0.0	68.0	113.0	-45.0	Vert
			+29.6						SC		
6	928.000M	23.5	+0.0	+0.3	+1.5	+2.4	+0.0	58.3	113.0	-54.7	Vert
			+30.6						Hopping		
7	928.000M	23.4	+0.0	+0.3	+1.5	+2.4	+0.0	58.2	113.0	-54.8	Vert
			+30.6						SC		
8	902.000M	24.6	+0.0	+0.3	+1.4	+2.3	+0.0	58.2	113.0	-54.8	Vert
			+29.6						Hopping		

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717						
Customer:	Itron, Inc.						
Specification:	15.247(d) / 15.209 Radiated S	purious Emissions					
Work Order #:	107462	Date:	10/27/2022				
Test Type:	Maximized Emissions	Time:	19:15:23				
Tested By:	Michael Atkinson	Sequence#:	2				
Software:	EMITest 5.03.20						

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup: Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

FM12.5 Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measur	rement Data:	Re	eading list	ted by ma	rgin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	614.000M	7.9	+0.0	+0.3	+1.2	+1.9	+0.0	38.5	46.0	-7.5	Vert
(QP		+27.2						Hopping		
2	614.000M	7.9	+0.0	+0.3	+1.2	+1.9	+0.0	38.5	46.0	-7.5	Vert
(QP		+27.2						SC		
3	960.000M	7.9	+0.0	+0.3	+1.5	+2.4	+0.0	42.8	54.0	-11.2	Vert
(QP		+30.7						SC		
4	960.000M	7.8	+0.0	+0.3	+1.5	+2.4	+0.0	42.7	54.0	-11.3	Vert
(QP		+30.7						Hopping		
5	902.000M	24.4	+0.0	+0.3	+1.4	+2.3	+0.0	58.0	108.0	-50.0	Vert
			+29.6						Hopping		
6	902.000M	23.1	+0.0	+0.3	+1.4	+2.3	+0.0	56.7	108.0	-51.3	Vert
			+29.6						SC		
7	928.000M	23.4	+0.0	+0.3	+1.5	+2.4	+0.0	58.2	111.0	-52.8	Vert
			+30.6						SC		
8	928.000M	23.3	+0.0	+0.3	+1.5	+2.4	+0.0	58.1	111.0	-52.9	Vert
			+30.6						Hopping		

Test Location:	CKC Laboratories, Inc. • 22116	5 23rd Drive SE, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	purious Emissions	
Work Order #:	107462	Date:	10/27/2022
Test Type:	Maximized Emissions	Time:	20:06:55
Tested By:	Michael Atkinson	Sequence#:	3
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup: Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

FM37.5 Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	eading list	ted by ma	rgin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	614.000M	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	46.0	-7.4	Vert
	QP								SC		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
3	960.000M	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	54.0	-11.1	Vert
	QP								SC		
4	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								Hopping		
5	902.000M	25.1	+0.3	+1.4	+2.3	+29.6	+0.0	58.7	108.0	-49.3	Vert
									SC		
6	902.000M	23.7	+0.3	+1.4	+2.3	+29.6	+0.0	57.3	108.0	-50.7	Vert
									Hopping		
7	928.000M	24.2	+0.3	+1.5	+2.4	+30.6	+0.0	59.0	111.0	-52.0	Vert
									Hopping		
8	928.000M	22.9	+0.3	+1.5	+2.4	+30.6	+0.0	57.7	111.0	-53.3	Vert
									SC		

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

GPS Antenna Investigation

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd	d Drive SE, Suite A • B	othell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	107462	Date:	10/26/2022
Test Type:	Conducted Emissions	Time:	19:40:44
Tested By:	Michael Atkinson	Sequence#:	4
Software:	EMITest 5.03.20	-	120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 43% Pressure: 101.9kPa

Test Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

Test Setup: Wi-Fi On (802.11b 2442MHz), Cell On (1880MHz), ISM on (FM12.5, 915)

AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Also investigated with GPS antenna PN 57861-20, investigated with RV50 and RV50x cell modems, worst-case data reported.

Itron, Inc. WO#: 107462 Sequence#: 4 Date: 10/26/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

#	rement Data: Freq	Rdng	ading lis T1	T2	T3	T4	Dist	Test Lead Corr	Spec	Margin	Pola
π	Tieq	Kulig	T5	12	13	14	Dist	Coll	Spec	Wargin	FOIA
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	3.433M	24.6	+0.0	+0.1	+0.1	+9.1	+0.0	34.0	46.0	-12.0	Line
1	Ave		+0.1								
۸	3.433M	42.4	+0.0	+0.1	+0.1	+9.1	+0.0	51.8	46.0	+5.8	Line
			+0.1								
3	3.523M	24.4	+0.0	+0.1	+0.1	+9.1	+0.0	33.8	46.0	-12.2	Line
1	Ave		+0.1								
^	3.523M	43.2	+0.0	+0.1	+0.1	+9.1	+0.0	52.6	46.0	+6.6	Line
			+0.1								
5	3.535M	24.4	+0.0	+0.1	+0.1	+9.1	+0.0	33.8	46.0	-12.2	Line
1	Ave		+0.1								
۸	3.535M	43.3	+0.0	+0.1	+0.1	+9.1	+0.0	52.7	46.0	+6.7	Line
			+0.1								
7	3.699M	24.3	+0.0	+0.1	+0.1	+9.1	+0.0	33.7	46.0	-12.3	Lin
1	Ave		+0.1								
8	3.707M	24.2	+0.0	+0.1	+0.1	+9.1	+0.0	33.6	46.0	-12.4	Lin
1	Ave		+0.1								
٨	3.699M	44.8	+0.0	+0.1	+0.1	+9.1	+0.0	54.2	46.0	+8.2	Line
			+0.1								
۸	3.707M	44.7	+0.0	+0.1	+0.1	+9.1	+0.0	54.1	46.0	+8.1	Line
			+0.1								
11	3.656M	24.1	+0.0	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Line
	Ave		+0.1								
۸	3.656M	44.8	+0.0	+0.1	+0.1	+9.1	+0.0	54.2	46.0	+8.2	Line
			+0.1								
13	3.332M	24.1	+0.0	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Line
	Ave		+0.1								
٨	3.332M	42.3	+0.0	+0.1	+0.1	+9.1	+0.0	51.7	46.0	+5.7	Line
			+0.1								
15	3.676M	24.0	+0.0	+0.1	+0.1	+9.1	+0.0	33.4	46.0	-12.6	Lin
	Ave		+0.1			.,,,,,	1010	0011	1010	1210	2
٨	3.676M	44.0	+0.0	+0.1	+0.1	+9.1	+0.0	53.4	46.0	+7.4	Lin
	5.070101	11.0	+0.1	10.1	10.1	17.1	10.0	00.1	10.0		Lin
17	3.552M	23.8	+0.0	+0.1	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Line
	Ave	23.0	+0.1	10.1	10.1	17.1	10.0	00.2	10.0	12.0	2111
^	3.552M	43.1	+0.0	+0.1	+0.1	+9.1	+0.0	52.5	46.0	+6.5	Line
	0.002111		+0.0				. 5.0	02.0	.0.0	. 0.0	2
19	3.575M	23.8	+0.0	+0.1	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Line
	Ave	20.0	+0.0				. 5.0	20.2	.0.0	12.0	2
^	3.575M	43.0	+0.0	+0.1	+0.1	+9.1	+0.0	52.4	46.0	+6.4	Line
	5.575111	43.0	+0.0 +0.1	10.1	10.1	17.1	10.0	52.7	-U.U	10.7	
21	3.727M	23.8	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Line
	Ave	23.0	+0.0 +0.1	10.1	10.1	19.1	10.0	55.4	-0.0	-12.0	
	3.727M	44.9	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	54.3	46.0	+8.3	Line
	$\mathcal{D}_{1}/\mathcal{L}/\mathcal{W}$	44.7	+0.0	+0.1	± 0.1	+9.1	+0.0	.)4)	40.0	+0	

23	3.739M	23.6	+0.0	+0.1	+0.1	+9.1	+0.0	33.0	46.0	-13.0	Line
A	Ave 3.739M	44.1	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	53.5	46.0	+7.5	Line
25	3.597M	23.5	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	32.9	46.0	-13.1	Line
A	Ave 3.597M	43.2	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	52.6	46.0	+6.6	Line
			+0.1								
27	3.777M Ave	22.9	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	32.3	46.0	-13.7	Line
^	3.777M	44.4	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	53.8	46.0	+7.8	Line
29	3.822M	22.4	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	31.8	46.0	-14.2	Line
/	Ave 3.822M	42.9	+0.0	+0.1	+0.1	+9.1	+0.0	52.3	46.0	+6.3	Line
31	3.863M Ave	22.1	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	31.5	46.0	-14.5	Line
32	3.855M Ave	22.0	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	31.4	46.0	-14.6	Line
^	3.855M	42.7	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	52.1	46.0	+6.1	Line
34	3.187M Ave	21.8	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	31.2	46.0	-14.8	Line
^ <u>1</u>	3.187M	39.9	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	49.3	46.0	+3.3	Line
36	3.867M	21.6	+0.0	+0.1	+0.1	+9.1	+0.0	31.0	46.0	-15.0	Line
^	Ave 3.867M	42.5	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	51.9	46.0	+5.9	Line
^	3.863M	42.5	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	51.9	46.0	+5.9	Line
39	3.929M	21.3	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	30.7	46.0	-15.3	Line
^	Ave 3.929M	39.2	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	48.6	46.0	+2.6	Line
41	3.068M	20.8	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	30.2	46.0	-15.8	Line
A	Ave 3.068M	38.3	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	47.7	46.0	+1.7	Line
43	2.957M	20.4	+0.0	+0.1	+0.1	+9.1	+0.0	29.8	46.0	-16.2	Line
^ F	Ave 2.957M	37.1	+0.1 +0.0	+0.1	+0.1	+9.1	+0.0	46.5	46.0	+0.5	Line
L			+0.1								

45	4.003M	19.6	+0.0	+0.1	+0.1	+9.1	+0.0	29.0	46.0	-17.0	Line
A	Ave		+0.1								
۸	4.003M	37.1	+0.0	+0.1	+0.1	+9.1	+0.0	46.5	46.0	+0.5	Line
			+0.1								
47	2.891M	19.2	+0.0	+0.1	+0.1	+9.1	+0.0	28.6	46.0	-17.4	Line
A	Ave		+0.1								
٨	2.891M	36.1	+0.0	+0.1	+0.1	+9.1	+0.0	45.5	46.0	-0.5	Line
			+0.1								
49	4.047M	18.7	+0.0	+0.1	+0.1	+9.1	+0.0	28.1	46.0	-17.9	Line
A	Ave		+0.1								
^	4.047M	37.2	+0.0	+0.1	+0.1	+9.1	+0.0	46.6	46.0	+0.6	Line
			+0.1								

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717						
Customer:	Itron, Inc.						
Specification:	15.207 AC Mains - Average						
Work Order #:	107462	Date: 10/26/2022					
Test Type:	Conducted Emissions	Time: 19:18:02					
Tested By:	Michael Atkinson	Sequence#: 3					
Software:	EMITest 5.03.20	120V 60Hz					

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 43% Pressure: 101.9kPa

Test Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

Test Setup: Wi-Fi On (802.11b 2442MHz), Cell On (1880MHz), ISM on (FM12.5, 915)

AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Also investigated with GPS antenna PN 57861-20, investigated with RV50 and RV50x cell modems, worst-case data reported.

Itron, Inc. WO#: 107462 Sequence#: 3 Date: 10/26/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

	rement Data:		eading lis			T 4	Dist		1: Neutral	Manain	Dalas
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	3.473M	24.9	+0.0	+0.1	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Neut
	Ave		+0.1								
۸	3.473M	42.9	+0.0	+0.1	+0.1	+9.1	+0.0	52.3	46.0	+6.3	Neut
			+0.1								
3	3.452M	24.8	+0.0	+0.1	+0.1	+9.1	+0.0	34.2	46.0	-11.8	Neut
	Ave		+0.1								
^	3.452M	42.8	+0.0	+0.1	+0.1	+9.1	+0.0	52.2	46.0	+6.2	Neut
			+0.1								
5	3.428M	24.6	+0.0	+0.1	+0.1	+9.1	+0.0	34.0	46.0	-12.0	Neut
	Ave		+0.1								
^	3.428M	43.3	+0.0	+0.1	+0.1	+9.1	+0.0	52.7	46.0	+6.7	Neut
			+0.1								
7	3.562M	24.2	+0.0	+0.1	+0.1	+9.1	+0.0	33.6	46.0	-12.4	Neut
	Ave		+0.1								
۸	3.562M	41.3	+0.0	+0.1	+0.1	+9.1	+0.0	50.7	46.0	+4.7	Neut
			+0.1								
9	3.634M	24.1	+0.0	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Neut
	Ave		+0.1								
۸	3.634M	43.9	+0.0	+0.1	+0.1	+9.1	+0.0	53.3	46.0	+7.3	Neut
			+0.1								
11	3.697M	24.1	+0.0	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Neut
	Ave		+0.1								
12	3.618M	23.9	+0.0	+0.1	+0.1	+9.1	+0.0	33.3	46.0	-12.7	Neut
	Ave		+0.1								
۸	3.618M	44.0	+0.0	+0.1	+0.1	+9.1	+0.0	53.4	46.0	+7.4	Neut
			+0.1								
14	3.732M	23.9	+0.0	+0.1	+0.1	+9.1	+0.0	33.3	46.0	-12.7	Neut
	Ave		+0.1								
۸	3.732M	43.6	+0.0	+0.1	+0.1	+9.1	+0.0	53.0	46.0	+7.0	Neut
			+0.1								
16	3.707M	23.8	+0.0	+0.1	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Neut
	Ave		+0.1								
^	3.697M	45.3	+0.0	+0.1	+0.1	+9.1	+0.0	54.7	46.0	+8.7	Neut
			+0.1								
^	3.707M	44.7	+0.0	+0.1	+0.1	+9.1	+0.0	54.1	46.0	+8.1	Neut
			+0.1								
19	3.580M	23.6	+0.0	+0.1	+0.1	+9.1	+0.0	33.0	46.0	-13.0	Neut
	Ave		+0.1								
۸	3.580M	40.4	+0.0	+0.1	+0.1	+9.1	+0.0	49.8	46.0	+3.8	Neut
			+0.1								
21	3.248M	23.4	+0.0	+0.1	+0.1	+9.1	+0.0	32.8	46.0	-13.2	Neut
	Ave		+0.1								
^	3.248M	40.4	+0.0	+0.1	+0.1	+9.1	+0.0	49.8	46.0	+3.8	Neut
			+0.1								

23	3.342M	23.4	+0.0	+0.1	+0.1	+9.1	+0.0	32.8	46.0	-13.2	Neutr
A	Ave	40.0	+0.1	.0.1	.0.1	.0.1	.0.0	51 C	16.0		NT (
X	3.342M	42.2	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	51.6	46.0	+5.6	Neutr
25	3.811M	22.5	+0.0	+0.1	+0.1	+9.1	+0.0	31.9	46.0	-14.1	Neutr
	Ave		+0.1								
^	3.811M	43.9	+0.0	+0.1	+0.1	+9.1	+0.0	53.3	46.0	+7.3	Neutr
			+0.1								
27	3.870M	21.9	+0.0	+0.1	+0.1	+9.1	+0.0	31.3	46.0	-14.7	Neutr
A	Ave		+0.1								
^	3.870M	41.8	+0.0	+0.1	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Neutr
			+0.1								
29	3.860M	21.8	+0.0	+0.1	+0.1	+9.1	+0.0	31.2	46.0	-14.8	Neutr
A	Ave		+0.1								
^	3.860M	41.7	+0.0	+0.1	+0.1	+9.1	+0.0	51.1	46.0	+5.1	Neutr
			+0.1								
31	3.890M	21.7	+0.0	+0.1	+0.1	+9.1	+0.0	31.1	46.0	-14.9	Neutr
A	Ave		+0.1								
^	3.890M	41.4	+0.0	+0.1	+0.1	+9.1	+0.0	50.8	46.0	+4.8	Neutr
			+0.1								
33	3.108M	21.4	+0.0	+0.1	+0.1	+9.1	+0.0	30.8	46.0	-15.2	Neutr
A	Ave		+0.1								
^	3.108M	38.1	+0.0	+0.1	+0.1	+9.1	+0.0	47.5	46.0	+1.5	Neutr
			+0.1								
35	3.125M	21.1	+0.0	+0.1	+0.1	+9.1	+0.0	30.5	46.0	-15.5	Neutr
A	Ave		+0.1								
^	3.125M	38.6	+0.0	+0.1	+0.1	+9.1	+0.0	48.0	46.0	+2.0	Neutr
			+0.1								
37	3.079M	20.9	+0.0	+0.1	+0.1	+9.1	+0.0	30.3	46.0	-15.7	Neutr
A	Ave		+0.1								
^	3.079M	37.3	+0.0	+0.1	+0.1	+9.1	+0.0	46.7	46.0	+0.7	Neutr
			+0.1								
39	3.036M	20.8	+0.0	+0.1	+0.1	+9.1	+0.0	30.2	46.0	-15.8	Neutr
A	Ave		+0.1								
^	3.036M	37.2	+0.0	+0.1	+0.1	+9.1	+0.0	46.6	46.0	+0.6	Neutr
			+0.1								
41	3.945M	20.7	+0.0	+0.1	+0.1	+9.1	+0.0	30.1	46.0	-15.9	Neutr
	Ave		+0.1								
^	3.945M	38.4	+0.0	+0.1	+0.1	+9.1	+0.0	47.8	46.0	+1.8	Neutr
			+0.1								
43	3.970M	20.3	+0.0	+0.1	+0.1	+9.1	+0.0	29.7	46.0	-16.3	Neutr
	Ave		+0.1								
^	3.970M	36.8	+0.0	+0.1	+0.1	+9.1	+0.0	46.2	46.0	+0.2	Neutr
			+0.1				0.5				
45	3.059M	20.3	+0.0	+0.1	+0.1	+9.1	+0.0	29.7	46.0	-16.3	Neutr
	Ave	a= -	+0.1	<u> </u>	<u> </u>		0.0	4.5 -	1.5.5	~ ~	
^	3.059M	37.1	+0.0	+0.1	+0.1	+9.1	+0.0	46.5	46.0	+0.5	Neutr
		40.0	+0.1				0.0		4.5.0		
47	2.961M	19.9	+0.0	+0.1	+0.1	+9.1	+0.0	29.3	46.0	-16.7	Neutr
-	Ave	24.0	+0.1	.0.1	.0.1	.0.1	.0.0	16.2	16.0		NT -
^	2.961M	36.8	+0.0	+0.1	+0.1	+9.1	+0.0	46.2	46.0	+0.2	Neutr
			+0.1								

49	4.017M	19.3	+0.0	+0.1	+0.1	+9.1	+0.0	28.7	46.0	-17.3	Neutr
A	ve		+0.1								
^	4.017M	37.5	+0.0	+0.1	+0.1	+9.1	+0.0	46.9	46.0	+0.9	Neutr
			+0.1								
51	2.902M	19.0	+0.0	+0.1	+0.1	+9.1	+0.0	28.4	46.0	-17.6	Neutr
A	ve		+0.1								
^	2.902M	35.6	+0.0	+0.1	+0.1	+9.1	+0.0	45.0	46.0	-1.0	Neutr
			+0.1								

Test Setup Photo(s)

Appendix A: Customer Provided Data

15.35(c) Duty Cycle Correction Factor

	Test Data Summary							
Antenna Port	Operational Mode	Measured On Time (mS / P _{obs})	Declared DCCF (dB)					
1	Operating	23.8	12.5					

Observation Period, P_{obs} is the duration of the pulse train or maximum 100mS

Measured results are calculated as follows:

$$On Time = \left(\sum_{Bursts} RF Burst On Time + \sum_{Control} Control Signal On time \right) \Big|_{P_{obs} (\max 100ms)}$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100
Number of RF Bursts / Pobs:	1
On time of RF Burst:	23.8
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	23.8

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$DCCF = 20 \cdot Log\left(\frac{On Time}{P_{obs}}\right)$$

Duty Cycle Correction Factor Test Data

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst-case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	(dBµV)	
+	Antenna Factor	(dB/m)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
=	Corrected Reading	(dBµV/m)	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.