Itron, Inc.

TEST REPORT FOR
CCU100
Model: CCU100TD

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(FHSS 902-928MHz)

Report No.: 107462-2

Date of issue: December 5, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.01

TABLE OF CONTENTS

Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results5
Modifications During Testing5
Conditions During Testing5
Equipment Under Test 6
General Product Information 6
FCC Part 15 Subpart C 11
15.247(a) Transmitter Characteristics 11
15.247(a)(1)(i) 20 dB Bandwidth 12
15.247(a)(1) Carrier Separation 19
15.247(a)(1)(i) Number of Channels 21
15.247(a) Transmitter Characteristics Test Setup Photos 25
15.247(b)(2) Output Power 26
15.247(d) RF Conducted Emissions \& Band Edge 40
15.247(d) Radiated Emissions \& Band Edge 60
15.207 AC Conducted Emissions 97
Appendix A: Customer Provided Data 108
15.35(c) Duty Cycle Correction Factor 108
Supplemental Information 110
Measurement Uncertainty 110
Emissions Test Details 110

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jack McPeck
Customer Reference Number: 266646

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Viviana Prado
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 107462

October 26, 2022
October 26-31 and November 1, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configuration (s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
Canyon Park
22116 23rd Drive S.E., Suite A
Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .20

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082 C	A-0136
Brea, CA	US0103	US1024	3082 D	A-0136
Fremont, CA	US0103	US1024	3082 B	A-0136
Mariposa, CA	US0103	US1024	3082 A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

TVesting the Future

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	Pass
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable
NP = CKC Laboratories Inc. was not contracted to preform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

DSP Power was set to 255 for all tests except Fundamental and Conducted Spurs/Conducted Band Edge, where it was reduced to 200 at time of test to fine tune the power of the unit for Fundamental compliance. The higher power used for other testing is representative of worst-case. This is a test software setting and the manufacturer performs a calibration of each production unit with its appropriate software.

LABORATORIES, INC.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 (Tower) = Remote SuperRaptor, Remote GPS, Remote Cellular
Equipment Tested:

Device	Manufacturer	Model \#	S/N
CCU100	Itron, Inc.	CCU100TD	74049603

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (remote ISM)	PCTEL	BOA9028	NA
1dB Attenuator (Qty: 2)	Mini-Circuits	15542 UNAT-1+	NA
Surge Protector	Times Microwave Systems	LP-BTRW-NMP	NA
Antenna (remote WAN)	Taoglas	OMB.6912.03F21	NA
Antenna (remote GPS)	Trimble	$101898-00$	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	$903-926.8 \mathrm{MHz}$
Number of Hopping Channels:	80 channels (AM), 120 channels (FM)
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	$16 \mathrm{kbit} / \mathrm{sec}$ AM (OOK) $12.5 \mathrm{kbit} / \mathrm{sec}$ FM (FSK) 37.5 kbit/sec FM (FSK)
Maximum Duty Cycle:	Tested at 100\%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Omni-Directional / 8.15 dBi
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	$115 \mathrm{VAC} / 60 \mathrm{~Hz}$
Firmware / Software used for Test:	```ARM FW 2.27.0.0 DSP FW 7.22.0.0 FPGA FW 4.14 SRTest100 4.11.1.99 TeraTerm 4.62```
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.	

EUT Photo(s)

Support Equipment Photos)

Laptop and Switch

Remote ISM Antenna

Remote WAN and GPS antennas

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions			
Test Location:	Bothell Lab Bench	Test Engineer:	M. Harrison/M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$10 / 27 / 2022$ to 10/31/2022
Configuration:	1	EUT is setup for conducted measurements. It is directly connected to the Signal Analyzer via an Attenuator and a Cable. Test Setup: For the AM channel plan, normal AM modulation is used. For the FM channel plan, a test mode with CW modulation was used.	

Environmental Conditions			
Temperature (으)	$22-24$	Relative Humidity (\%):	$43-50$

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02872	Spectrum Analyzer	Agilent	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$	
P05503	Attenuator	Narda	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$	
P06008	Cable	Andrew	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$	

15.247(a)(1)(i) $\mathbf{2 0 ~ d B ~ B a n d w i d t h ~}$

Test Data Summary						
Frequency $\mathbf{(M H z)}$	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $\mathbf{(k H z)}$	Results	
908.0	1	AM	182.5	≤ 500	Pass	
915.0	1	AM	198.7	≤ 500	Pass	
923.8	1	AM	170.5	≤ 500	Pass	
903.0	1	FM 12.5k	142.1	≤ 500	Pass	
915.0	1	FM 12.5k	142.7	≤ 500	Pass	
926.8	1	FM 12.5k	142.8	≤ 500	Pass	
903.0	1	FM 37.5k	84.4	≤ 500	Pass	
915.0	1	FM 37.5k	85.7	≤ 500	Pass	
926.8	1	FM 37.5k	86.4	≤ 500	Pass	

Plot(s)

AM

Low Channel

Medium Channel

High Channel

FM 12.5k

Low Channel

Medium Channel

High Channel

FM 37.5k

Low Channel

Medium Channel

High Channel
15.247(a)(1) Carrier Separation

Test Data Summary

Limit applied: 20dB bandwidth of the hopping channel.					
Antenna Port	Operational Mode	Measured $\mathbf{(k H z)}$	Limit $(\mathbf{k H z})$	Results	
1	AM channel plan	200.1	>198.7	Pass	
1	FM channel plan	200.1	>142.8	Pass	

Plot(s)

AM Channel Plan

FM Channel Plan
15.247(a)(1)(i) Number of Channels

Test Data Summary
Limit $=\left\{\begin{array}{l}50 \text { Channels } \mid 20 \mathrm{~dB} B W<250 \mathrm{kHz} \\ 25 \text { Channels } \mid 20 \mathrm{~dB} B W \geq 250 \mathrm{kHz}\end{array}\right.$

Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results
1	AM channel plan	80	≥ 50	Pass
1	FM channel plan	120	≥ 50	Pass

Plot(s)

AM Number Channels

1 to 20

41 to 60

61 to 80

FM Number Channels

1 to 60

61 to 120

15.247(a) Transmitter Characteristics

Test Setup Photo(s)

LABORATORIES, INE.

15.247(b)(2) Output Power

Test Data Summary - Voltage Variations

Frequency $(\mathbf{M H z})$	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Maximum }}$ $(\mathbf{d B m})$	Max Deviation from $\mathbf{V}_{\text {Nominal }}(\mathbf{d B})$
908.0	AM	29.8	29.8	29.8	0.0
903.0	FM 12.5k	29.5	29.5	29.5	0.0
903.0	FM 37.5k	29.4	29.4	29.4	0.0

Test performed using operational mode with the highest output power, representing worst-case.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
V $_{\text {Nominal }}:$	115
V $_{\text {Minimum }}:$	90
$\mathrm{~V}_{\text {Maximum: }}$	265

Test Data Summary - RF Conducted Measurement
Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels (min 25) }\end{array}\right.$

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
908.0	AM	Omni-Directional / $8.15 \mathrm{dBi}^{*}$	29.8	≤ 30	Pass
915.0	AM	Omni-Directional / 8.15dBi*	29.6	≤ 30	Pass
923.8	AM	Omni-Directional / 8.15dBi*	29.6	≤ 30	Pass
903.0	FM 12.5k	Omni-Directional / $8.15 \mathrm{dBi}^{*}$	29.5	≤ 30	Pass
915.0	FM 12.5k	Omni-Directional / 8.15dBi*	29.3	≤ 30	Pass
926.8	FM 12.5k	Omni-Directional / 8.15dBi*	29.3	≤ 30	Pass
903.0	FM 37.5k	Omni-Directional / 8.15dBi*	29.4	≤ 30	Pass
915.0	FM 37.5k	Omni-Directional / 8.15dBi*	29.2	≤ 30	Pass
926.8	FM 37.5k	Omni-Directional / $8.15 \mathrm{dBi}^{*}$	29.3	≤ 30	Pass

* Net gain is 5.95 dBi . Manufacturer declares minimum of 2.2 dB of path loss to remote 8.15 dBi antenna.

Plots
AM

Low Channel

Medium Channel

High Channel

FM 12.5k

Low Channel

Medium Channel

High Channel

FM 37.5k

Low Channel

Medium Channel

High Channel

Test Setup / Conditions / Data

Test Location:
Customer:
Specification Work Order \#:
Test Type:
Tested By:
Software:

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(b) Power Output (902-928 MHz DTS)

107462
Conducted Emissions
Matt Harrison
EMITest 5.03.20

Date: 10/31/2022
Time: 12:33:17
Sequence\#: 1
120 VAC

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 40%
Pressure: 102.5 kPa

Frequency Range: Fundamental
Frequency Tested: 908, 915, 923.8
Firmware Power Setting: 200
Protocol /MCS/Modulation: AM
Antenna Type: Omni-Directional
Duty Cycle: Tested at 100\%
Test Method: ANSI C63.10 (2013)
Test Mode: Continuously Transmitting
Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron, Inc. WO\#: 107462 Sequence\#: 1 Date: 10/31/2022 15.247 (b) Power Output ($902-928 \mathrm{MHz}$ DTS) Test Lead: 120VAC Antenna Port

Sweep Data
Peak Readings
Average Readings
Software Version: 5.03 .20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T3	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$

Measu	ement Data:	Reading listed by margin.				Test Lead: Antenna Port					
\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	907.955M	126.1	+10.1	+0.0	+0.6		+0.0	136.8	$\begin{aligned} & \quad 137.0 \\ & \text { DSP ISM } \\ & 200 \end{aligned}$		Anten
2	915.035M	125.9	+10.1	+0.0	+0.6		+0.0	136.6	137.0 DSP ISM 200	-0.4 Power	Anten
3	923.860M	125.9	+10.1	+0.0	+0.6		+0.0	136.6	137.0 DSP ISM 200		Anten

LABORATORIES, INC.

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Itron, Inc.
15.247(b) Power Output (902-928 MHz DTS)

107462 Date: 10/31/2022
Conducted Emissions
Matt Harrison
EMITest 5.03.20

Time: 15:40:48
Sequence\#: 2
120VAC

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 40\%
Pressure: 102.5 kPa
Frequency Range: Fundamental
Frequency Tested: 903, 915, 926.8
Firmware Power Setting: 200
EUT Firmware:
Protocol/MCS/Modulation: FM 12.5k
Antenna Type: Omni-Directional

Duty Cycle: Tested at 100\%
Test Method: ANSI C63.10 (2013)
Test Mode: Continuously Transmitting
Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron, Inc. WO\#: 107462 Sequence\#: 2 Date: 10/31/2022
15.247(b) Power Output ($902-928 \mathrm{MHz}$ DTS) Test Lead: 120VAC Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$

Measu	ement Data	Reading listed by margin.					Test Lead: Antenna Port				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	903.015M	125.8	+10.1	+0.6			+0.0	136.5	137.0	-0.5	Anten
2	914.930M	125.6	+10.1	+0.6			+0.0	136.3	137.0	-0.7	Anten
3	926.815M	125.6	+10.1	+0.6			+0.0	136.3	137.0	-0.7	Anten

LABORATORIES, INC.

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Itron, Inc.
15.247(b) Power Output (902-928 MHz DTS)

107462 Date: 10/31/2022
Conducted Emissions
Matt Harrison
EMIT est 5.03.20

Time: 15:43:45
Sequence\#: 3
120VAC

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 40%
Pressure: 102.5 kPa
Frequency Range: Fundamental
Frequency Tested: 903, 915, 926.8
Firmware Power Setting: 200
EUT Firmware:
Protocol/MCS/Modulation: FM 37.5k
Antenna Type: Omni-Directional
Duty Cycle: Tested at 100\%
Test Method: ANSI C63.10 (2013)
Test Mode: Continuously Transmitting
Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron, Inc. WO\#: 107462 Sequence\#: 3 Date: 10/31/2022
15.247 (b) Power Output ($902-928 \mathrm{MHz}$ DTS) Test Lead: 120VAC Antenna Port

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$

Measu	ement Data	Reading listed by margin.					Test Lead: Antenna Port				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	902.945M	125.7	+10.1	+0.6			+0.0	136.4	137.0	-0.6	Anten
2	926.820M	125.6	+10.1	+0.6			+0.0	136.3	137.0	-0.7	Anten
3	915.005M	125.5	+10.1	+0.6			+0.0	136.2	137.0	-0.8	Anten

Test Setup Photo(s)

15.247(d) RF Conducted Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification: Work Order \#: Test Type: Tested By:
Software:

Itron, Inc.
15.247(d) Conducted Spurious Emissions 107462
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/31/2022
Time: 16:45:26
Sequence\#: 1
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 100.9 kPa

Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-10 \mathrm{GHz}$
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation

Itron, Inc. WO\#: 107462 Sequence\#: 1 Date: 10/31/2022 15.247(d) Conducted Spurious Emissions Test Lead: 120 V 60 Hz Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$

Measurement Data:	Reading listed by margin.					Test Lead: Antenna Port				
\# \quadFreq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1 1815.990M	77.0	+10.2	+0.9			+0.0	88.1	116.5	-28.4	Anten
2 1830.003M	76.8	+10.2	+0.9			+0.0	87.9	116.5	-28.6	Anten
3 1847.603M	75.2	+10.2	+0.9			+0.0	86.3	116.5	-30.2	Anten
4 3695.205M	72.6	+10.3	+1.3			+0.0	84.2	116.5	-32.3	Anten
53631.996 M	72.4	+10.3	+1.3			+0.0	84.0	116.5	-32.5	Anten
63660.008 M	72.4	+10.3	+1.3			+0.0	84.0	116.5	-32.5	Anten
7 2771.391M	71.2	+10.2	+1.2			+0.0	82.6	116.5	-33.9	Anten
8 2723.971M	71.1	+10.2	+1.2			+0.0	82.5	116.5	-34.0	Anten
9 6355.981M	80.7	+0.0	+1.6			+0.0	82.3	116.5	-34.2	Anten
$10 \quad 6404.990 \mathrm{M}$	80.5	+0.0	+1.6			+0.0	82.1	116.5	-34.4	Anten
$11 \quad 5448.009 \mathrm{M}$	80.6	+0.0	+1.5			+0.0	82.1	116.5	-34.4	Anten
12 6466.596M	80.3	+0.0	+1.6			+0.0	81.9	116.5	-34.6	Anten
$13 \quad 5490.000 \mathrm{M}$	80.4	+0.0	+1.5			+0.0	81.9	116.5	-34.6	Anten
145542.790 M	80.2	+0.0	+1.5			+0.0	81.7	116.5	-34.8	Anten
15 2744.999M	70.3	+10.2	+1.2			+0.0	81.7	116.5	-34.8	Anten
16 4619.008M	73.0	+0.0	+1.6			+0.0	74.6	116.5	-41.9	Anten
17 4575.001M	71.7	+0.0	+1.6			+0.0	73.3	116.5	-43.2	Anten
18 4539.997M	71.5	+0.0	+1.6			+0.0	73.1	116.5	-43.4	Anten
19 7390.377M	68.7	+0.0	+1.6			+0.0	70.3	116.5	-46.2	Anten
$20 \quad 7263.973 \mathrm{M}$	68.1	+0.0	+1.6			+0.0	69.7	116.5	-46.8	Anten
$21 \quad 7320.000 \mathrm{M}$	68.0	+0.0	+1.6			+0.0	69.6	116.5	-46.9	Anten
22 8314.197M	64.4	+0.0	+2.0			+0.0	66.4	116.5	-50.1	Anten
$23 \quad 8234.952 \mathrm{M}$	63.5	+0.0	+1.9			+0.0	65.4	116.5	-51.1	Anten
24 8171.976M	63.4	+0.0	+1.9			+0.0	65.3	116.5	-51.2	Anten

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Itron, Inc.
15.247(d) Conducted Spurious Emissions

107462
Conducted Emissions
Michael Atkinson
EMIT est 5.03.20

Date: 10/31/2022
Time: 16:49:57
Sequence\#: 2
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Configuration 1			
Support Equipment:		Model \#	S/N
Device Manufacturer Configuration 1 \mathbf{l}			

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 100.9 kPa
Test Method: ANSI C63.10 (2013)
Frequency: 9kHz-10GHz
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation

Itron, Inc. WO\#: 107462 Sequence\#: 2 Date: 10/31/2022
15.247(d) Conducted Spurious Emissions Test Lead: 120 V 60 Hz Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$

Measurement Data:	Reading listed by margin.					Test Lead: Antenna Port				
\# $\begin{aligned} & \text { Freq } \\ & \\ & \\ & \mathrm{MHz}\end{aligned}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1829.900 M	76.6	+10.2	+0.9			+0.0	87.7	116.5	-28.8	Anten
2 1805.897M	76.5	+10.2	+0.9			+0.0	87.6	116.5	-28.9	Anten
3 1853.700M	75.4	+10.2	+0.9			+0.0	86.5	116.5	-30.0	Anten
4 3707.010M	72.3	+10.3	+1.3			+0.0	83.9	116.5	-32.6	Anten
53660.190 M	72.1	+10.3	+1.3			+0.0	83.7	116.5	-32.8	Anten
6 2780.546M	71.7	+10.2	+1.2			+0.0	83.1	116.5	-33.4	Anten
7 6487.954M	81.1	+0.0	+1.6			+0.0	82.7	116.5	-33.8	Anten
8 6320.664M	81.0	+0.0	+1.6			+0.0	82.6	116.5	-33.9	Anten
95418.306 M	81.0	+0.0	+1.5			+0.0	82.5	116.5	-34.0	Anten
$10 \quad 5560.504 \mathrm{M}$	80.5	+0.0	+1.5			+0.0	82.0	116.5	-34.5	Anten
11 6404.648M	80.2	+0.0	+1.6			+0.0	81.8	116.5	-34.7	Anten
12 2744.838M	70.3	+10.2	+1.2			+0.0	81.7	116.5	-34.8	Anten
13 5490.290M	80.2	+0.0	+1.5			+0.0	81.7	116.5	-34.8	Anten
14 2708.843M	70.2	+10.2	+1.2			+0.0	81.6	116.5	-34.9	Anten
$15 \quad 4634.250 \mathrm{M}$	73.6	+0.0	+1.5			+0.0	75.1	116.5	-41.4	Anten
16 4574.756M	71.5	+0.0	+1.6			+0.0	73.1	116.5	-43.4	Anten
17 4515.260M	70.8	+0.0	+1.6			+0.0	72.4	116.5	-44.1	Anten
18 7413.966M	68.4	+0.0	+1.6			+0.0	70.0	116.5	-46.5	Anten
19 7319.602M	67.6	+0.0	+1.6			+0.0	69.2	116.5	-47.3	Anten
$20 \quad 7224.380 \mathrm{M}$	67.5	+0.0	+1.6			+0.0	69.1	116.5	-47.4	Anten
218341.658 M	64.6	+0.0	+2.0			+0.0	66.6	116.5	-49.9	Anten
228127.445 M	64.4	+0.0	+1.9			+0.0	66.3	116.5	-50.2	Anten
23 8235.494M	63.1	+0.0	+1.9			+0.0	65.0	116.5	-51.5	Anten

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23 rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Itron, Inc.
15.247(d) Conducted Spurious Emissions

107462
Conducted Emissions
Michael Atkinson
EMIT est 5.03.20

Date: 10/31/2022
Time: 16:52:39
Sequence\#: 3
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Configuration 1			
Support Equipment:		Model \#	S/N
Device Manufacturer Configuration 1 \mathbf{l}			

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 100.9 kPa
Test Method: ANSI C63.10 (2013)
Frequency: 9kHz-10GHz
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

Itron, Inc. WO\#: 107462 Sequence\#: 3 Date: 10/31/2022
15.247 (d) Conducted Spurious Emissions Test Lead: 120 V 60 Hz Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$

Measurement Data:	Reading listed by margin.					Test Lead: Antenna Port				
\# $\begin{aligned} \text { Freq } \\ \text { MHz }\end{aligned}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1 1830.036M	76.5	+10.2	+0.9			+0.0	87.6	116.5	-28.9	Anten
2 1806.028M	76.4	+10.2	+0.9			+0.0	87.5	116.5	-29.0	Anten
31853.558 M	75.4	+10.2	+0.9			+0.0	86.5	116.5	-30.0	Anten
4 3612.078M	72.9	+10.3	+1.3			+0.0	84.5	116.5	-32.0	Anten
53707.272 M	72.3	+10.3	+1.3			+0.0	83.9	116.5	-32.6	Anten
63660.076 M	72.1	+10.3	+1.3			+0.0	83.7	116.5	-32.8	Anten
7 2780.442M	71.9	+10.2	+1.2			+0.0	83.3	116.5	-33.2	Anten
8 6487.474M	81.0	+0.0	+1.6			+0.0	82.6	116.5	-33.9	Anten
9 6320.882M	80.9	+0.0	+1.6			+0.0	82.5	116.5	-34.0	Anten
$10 \quad 5418.084 \mathrm{M}$	80.9	+0.0	+1.5			+0.0	82.4	116.5	-34.1	Anten
$11 \quad 5560.692 \mathrm{M}$	80.4	+0.0	+1.5			+0.0	81.9	116.5	-34.6	Anten
12 6405.118M	80.2	+0.0	+1.6			+0.0	81.8	116.5	-34.7	Anten
13 5489.906M	80.3	+0.0	+1.5			+0.0	81.8	116.5	-34.7	Anten
14 2745.050M	70.3	+10.2	+1.2			+0.0	81.7	116.5	-34.8	Anten
15 2709.056M	70.1	+10.2	+1.2			+0.0	81.5	116.5	-35.0	Anten
16 4633.920M	73.5	+0.0	+1.5			+0.0	75.0	116.5	-41.5	Anten
17 4574.928M	71.6	+0.0	+1.6			+0.0	73.2	116.5	-43.3	Anten
184515.068 M	70.8	+0.0	+1.6			+0.0	72.4	116.5	-44.1	Anten
197414.512 M	69.1	+0.0	+1.6			+0.0	70.7	116.5	-45.8	Anten
$20 \quad 7319.892 \mathrm{M}$	67.7	+0.0	+1.6			+0.0	69.3	116.5	-47.2	Anten
21 7224.150M	67.4	+0.0	+1.6			+0.0	69.0	116.5	-47.5	Anten
228341.372 M	63.8	+0.0	+2.0			+0.0	65.8	116.5	-50.7	Anten
23 8127.148M	63.5	+0.0	+1.9			+0.0	65.4	116.5	-51.1	Anten
24 8235.152M	63.3	+0.0	+1.9			+0.0	65.2	116.5	-51.3	Anten

LABORATORIES, INC.

Band Edge

Band Edge Summary

Limit applied: Max Power/100kHz-20dB.
Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Measured $(\mathrm{dB} \boldsymbol{\mu} \mathbf{V})$	Limit $(\mathrm{dB} \boldsymbol{\mathrm { V })} \mathbf{)}$	Results
902	AM	91.2	<116.5	Pass
928	AM	100.4	<116.5	Pass
902	FM 12.5	103.0	<116.5	Pass
928	FM 12.5	96.8	<116.5	Pass
902	FM 37.5	102.3	<116.5	Pass
928	FM 37.5	97.0	<116.5	Pass

Note: Limit converted to $\mathrm{dB} \mu \mathrm{V}$ from dBm , for 50 ohm system $\mathrm{dBm}-107=\mathrm{dB} \mu \mathrm{V}$

Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.
Operating Mode: Hopping

Frequency (MHz)	Modulation	Measured $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Results
902	AM	93.4	<116.5	Pass
928	AM	99.4	<116.5	Pass
902	FM 12.5	99.8	<116.5	Pass
928	FM 12.5	96.9	<116.5	Pass
902	FM 37.5	100.6	<116.5	Pass
928	FM 37.5	97.5	<116.5	Pass

Note: Limit converted to $\mathrm{dB} \mu \mathrm{V}$ from dBm , for 50 ohm system $\mathrm{dBm}-107=\mathrm{dB} \mu \mathrm{V}$

Band Edge Plots

Single Channel (Low and High)

Hopping

CondBE 928 Hopping Fu12.5 (Imt corrected for system factors)
Ref Level $136.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 40 dB
RES BW: 100.0 kHz VD BW: 300.0 kNz SWP, 20.0 msec
Marker 928.0 MHz 88.2017 dBuV

- 15.247 (d) Conducted Spurious Emissions

Test Setup / Conditions / Data

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) Conducted Spurious Emissions

107462
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 11/1/2022
Time: 16:42:02
Sequence\#: 4
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21.7^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 100.8 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$

Measu	ment Data	Reading listed by margin.					Test Lead: Antenna Port				
\#	Freq MHz	$\begin{aligned} & \hline \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	928.000 M	89.7	+10.1	+0.6			+0.0	100.4	$\begin{aligned} & 116.5 \\ & \text { SC } \end{aligned}$	-16.1	Anten
2	928.000 M	88.7	+10.1	+0.6			+0.0	99.4	116.5 Hopping	-17.1	Anten
3	902.000 M	82.7	+10.1	+0.6			+0.0	93.4	116.5 Hopping	-23.1	Anten
4	902.000 M	80.5	+10.1	+0.6			+0.0	91.2	SC	-25.3	Anten

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) Conducted Spurious Emissions 107462
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 11/1/2022
Time: 16:52:13
Sequence\#: 5
5
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21.7^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 100.8 kPa

Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$

Measurement Data: \quad Reading listed by margin. Test Lead: Antenna Port

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	dB	dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	902.000 M	92.3	+10.1	+0.6		+0.0	103.0	116.5	-13.5	Anten	
2	902.000 M	89.1	+10.1	+0.6			+0.0	99.8	116.5 Hopping	-16.7	Anten
3	928.000 M	86.2	+10.1	+0.6			+0.0	96.9	116.5 Hopping	-19.6	Anten
4	928.000 M	86.1	+10.1	+0.6	+0.0	96.8	116.5	-19.7	Anten		

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) Conducted Spurious Emissions

107462
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 11/1/2022
Time: 17:04:08
Sequence\#:
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21.7^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 100.8 kPa

Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$

Measurement Data: \quad Reading listed by margin. Test Lead: Antenna Port
$\left.\begin{array}{|cccccccccccc|}\hline \# & \begin{array}{c}\text { Freq } \\ \mathrm{MHz}\end{array} & \begin{array}{c}\text { Rdng } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \begin{array}{c}\mathrm{T} 1 \\ \mathrm{~dB}\end{array} & \begin{array}{c}\mathrm{T} 2 \\ \mathrm{~dB}\end{array} & \mathrm{~dB} & \mathrm{~dB} & \begin{array}{c}\text { Dist } \\ \text { Table }\end{array} & \begin{array}{c}\text { Corr } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \begin{array}{c}\text { Spec } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \begin{array}{c}\text { Margin } \\ \mathrm{dB}\end{array} & \begin{array}{c}\text { Polar } \\ \text { Ant }\end{array} \\ \hline 1 & 902.000 \mathrm{M} & 91.6 & +10.1 & +0.6 & & & +0.0 & 102.3 & 116.5 & -14.2 & \text { Anten } \\ \hline 2 & 902.000 \mathrm{M} & 89.9 & +10.1 & +0.6 & & & +0.0 & 100.6 & \begin{array}{rl}116.5 \\ \text { Hopping }\end{array} & -15.9 & \text { Anten } \\ \hline 3 & 928.000 \mathrm{M} & 86.8 & +10.1 & +0.6 & & & +0.0 & 97.5 & 116.5 & -19.0 & \text { Anten } \\ \hline 4 & 928.000 \mathrm{M} & 86.3 & +10.1 & +0.6 & & & & & & & \\ \text { Hopping }\end{array}\right]$

Test Setup Photo(s)

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107462 Date: 10/28/2022
Maximized Emissions Time: 13:04:37
Matt Harrison
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup: Unit is on foam table 80 cm high for below 1 GHz and 150 cm high for above 1 GHz . Horizontal and Vertical antenna polarities investigated, worst-case reported; unit is continuously transmitting with modulation.

AM Modulation, LMH channels.

Itron, Inc. WO\#: 107462 Sequence\#: 1 Date: 10/28/2022
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

—— Readings
\times QP Readings
$\times \quad$ Ambient
$1-15.247(\mathrm{~d}) / 15.209$ Radiated Spurious Emissions
O Peak Readings

* Average Readings
Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

$\begin{gathered} 16 \text { 8314.440M } \\ \text { Ave } \end{gathered}$	43.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.7 \end{array}$	+0.0	42.3	54.0	-11.7	Vert
$\wedge 8314.440 \mathrm{M}$	43.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.7 \end{array}$	+0.0	54.8	54.0	+0.8	Vert
$\begin{aligned} & 187390.460 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	42.3	54.0	-11.7	Horiz
$\wedge 7390.460 \mathrm{M}$	45.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	54.8	54.0	+0.8	Horiz
$\begin{gathered} 207263.870 \mathrm{M} \\ \text { Ave } \end{gathered}$	45.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.2 \end{array}$	+0.0	41.6	54.0	-12.4	Vert
$\wedge 7263.870 \mathrm{M}$	45.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.2 \end{array}$	+0.0	54.1	54.0	+0.1	Vert
$\begin{aligned} & 227320.020 \mathrm{M} \\ & \text { Ave } \end{aligned}$	44.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	41.5	54.0	-12.5	Horiz
$\wedge 7320.020 \mathrm{M}$	44.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	54.0	54.0	+0.0	Horiz
24 3695.080M	51.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.9 \end{array}$	+0.0	41.3	54.0	-12.7	Horiz
255447.935 M	44.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	38.7	54.0	-15.3	Horiz
$\begin{aligned} & 26 \text { 3659.945M } \\ & \text { Ave } \end{aligned}$	48.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	37.9	54.0	-16.1	Horiz
$\wedge 3659.945 \mathrm{M}$	48.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	50.4	54.0	-3.6	Horiz
$\begin{aligned} & 283632.495 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	36.2	54.0	-17.8	Horiz
$\wedge 3632.495 \mathrm{M}$	46.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	48.7	54.0	-5.3	Horiz
$30 \quad 829.300 \mathrm{M}$	40.8	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	+0.0	74.0	113.0	-39.0	Vert
$31 \quad 830.200 \mathrm{M}$	34.9	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	+0.0	68.1	113.0	-44.9	Horiz
32 6466.780M	54.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	+0.0	62.0	113.0	-51.0	Vert

Page 63 of 111

33	6404.525M	54.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	61.9	113.0	-51.1	Vert
34	6355.625M	51.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.1 \end{array}$	+0.0	58.9	113.0	-54.1	Vert
35	5542.715 M	45.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.6 \end{array}$	+0.0	51.9	113.0	-61.1	Vert
36	5490.285M	44.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	50.9	113.0	-62.1	Vert
37	1830.145M	53.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	+0.0	49.5	113.0	-63.5	Vert
38	1847.715M	52.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.6 \end{array}$	+0.0	48.6	113.0	-64.4	Vert
39	1815.760M	50.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +27.4 \end{array}$	+0.0	47.0	113.0	-66.0	Vert
40	68.800M	30.9	$\begin{array}{r} +0.0 \\ +12.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	44.8	113.0	-68.2	Vert
41	68.800M	25.6	$\begin{array}{r} +0.0 \\ +12.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	39.5	113.0	-73.5	Horiz
42	19.702M	34.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +6.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	1.1	113.0	-111.9	Perp/
43	27.164M	33.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +4.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-1.1	113.0	-114.1	Perp/
44	23.134M	32.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-1.4	113.0	-114.4	Perp/
45	26.597 M	32.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +5.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-2.5	113.0	-115.5	Perp/
46	33.393 k	45.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-23.8	113.0	-136.8	Perp/

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107462
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/29/2022
Time: 08:20:10
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa

Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup: Unit is on foam table 80 cm high for below 1 GHz and 150 cm high for above 1 GHz . Horizontal and Vertical antenna polarities investigated, worst-case reported; unit is continuously transmitting with modulation.

FM 12.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107462 Sequence\#: 2 Date: 10/29/2022
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings
\times QP Readings
\times Ambient
$1-15.247$ (d) / 15.209 Radiated Spurious Emissions
O Peak Readings
* Average Readings
Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

$\begin{aligned} & 169149.635 \mathrm{M} \\ & \text { Ave } \end{aligned}$	42.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	+0.0	41.2	54.0	-12.8	Horiz
$\wedge 9149.635 \mathrm{M}$	42.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +1.1 \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	+0.0	53.7	54.0	-0.3	Horiz
$\begin{gathered} 18 \text { 9029.315M } \\ \text { Ave } \end{gathered}$	43.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.7 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	41.0	54.0	-13.0	Horiz
$\wedge 9029.315 \mathrm{M}$	43.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	53.5	54.0	-0.5	Horiz
$\begin{gathered} 207413.710 \mathrm{M} \\ \text { Ave } \end{gathered}$	43.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	40.5	54.0	-13.5	Horiz
$\wedge 7413.710 \mathrm{M}$	43.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$+0.0$	53.0	54.0	-1.0	Horiz
$\begin{aligned} & 22 \text { 8340.780M } \\ & \text { Ave } \end{aligned}$	41.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	40.4	54.0	-13.6	Horiz
$\wedge 8340.780 \mathrm{M}$	41.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	52.9	54.0	-1.1	Horiz
$\begin{aligned} & 24 \begin{array}{l} 4633.750 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	47.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	38.5	54.0	-15.5	Vert
$\wedge 4633.750 \mathrm{M}$	47.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	51.0	54.0	-3.0	Vert
$\begin{aligned} & 26 \text { 3660.155M } \\ & \text { Ave } \end{aligned}$	48.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	38.4	54.0	-15.6	Horiz
$\wedge 3660.155 \mathrm{M}$	48.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	50.9	54.0	-3.1	Horiz
$\begin{aligned} & 283707.055 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	$+0.0$	36.4	54.0	-17.6	Horiz
$\wedge 3707.055 \mathrm{M}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	$+0.0$	48.9	54.0	-5.1	Horiz
$\begin{aligned} & 303612.095 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.2 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	35.9	54.0	-18.1	Horiz
$\wedge 3612.095 \mathrm{M}$	46.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.2 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	48.4	54.0	-5.6	Horiz
326487.225 M	56.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	63.8	108.0	-44.2	Vert

33	6404.675M	54.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	62.3	108.0	-45.7	Horiz
34	6321.330M	51.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	+0.0	59.3	108.0	-48.7	Horiz
35	7224.295M	45.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	+0.0	54.5	108.0	-53.5	Horiz
36	9267.585M	41.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	53.4	108.0	-54.6	Horiz
37	5489.735M	45.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	52.1	108.0	-55.9	Horiz
38	5560.560 M	44.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	51.4	108.0	-56.6	Vert
39	68.800M	33.4	$\begin{array}{r} +0.0 \\ +12.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	+0.0	47.3	108.0	-60.7	Vert
40	1853.615M	50.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.7 \end{array}$	+0.0	47.2	108.0	-60.8	Vert
41	1805.820M	51.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	+0.0	47.0	108.0	-61.0	Vert
42	1829.935M	50.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	+0.0	46.5	108.0	-61.5	Vert
43	50.400 M	28.9	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	42.2	108.0	-65.8	Vert
44	19.702M	35.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	2.1	108.0	-105.9	Perp/
45	23.134M	33.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-0.4	108.0	-108.4	Perp/
46	27.164 M	34.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +4.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	-0.5	108.0	-108.5	Perp/
47	27.343 M	32.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +4.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	-2.9	108.0	-110.9	Perp/

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107462
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/29/2022
Time: 09:22:40
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup: Unit is on foam table 80 cm high for below 1 GHz and 150 cm high for above 1 GHz . Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

FM 37.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107462 Sequence\#: 3 Date: 10/29/2022
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# $\begin{array}{rr}\text { Freq } \\ & \\ & \mathrm{MHz}\end{array}$	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
		T9	$\mathrm{T} 10$	$\mathrm{T} 11$						
	$\mathrm{dB} \mu \mathrm{V}$					Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
$1 \quad 110.760 \mathrm{M}$	25.0	+0.0	+0.1	+0.5	+0.7	+0.0	40.4	43.5	-3.1	Vert
QP		+14.1	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
$\wedge 110.760 \mathrm{M}$	30.2	+0.0	+0.1	+0.5	+0.7	+0.0	45.6	43.5	+2.1	Vert
		+14.1	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
34575.115 M	44.4	+0.0	+0.6	+3.5	+0.0	+0.0	48.0	54.0	-6.0	Horiz
		+0.0	+0.0	-33.6	+32.2					
		+0.4	+0.5	+0.0						
43611.935 M	45.1	+0.0	+0.5	+3.2	+0.0	+0.0	47.4	54.0	-6.6	Horiz
		+0.0	+0.0	-33.8	+31.7					
		+0.4	+0.3	+0.0						
54514.960 M	41.4	+0.0	+0.6	+3.5	+0.0	+0.0	44.9	54.0	-9.1	Horiz
		+0.0	+0.0	-33.6	+32.2					
		+0.3	+0.5	+0.0						
62709.035 M	44.8	+0.0	+0.5	+2.7	+0.0	+0.0	44.1	54.0	-9.9	Horiz
		+0.0	+0.0	-34.1	+29.5					
		+0.5	+0.2	+0.0						
7 2780.155M	44.8	+0.0	+0.5	+2.7	+0.0	+0.0	44.0	54.0	-10.0	Vert
		+0.0	+0.0	-34.1	+29.3					
		+0.5	+0.3	+0.0						
82745.210 M	43.7	+0.0	+0.5	+2.7	+0.0	+0.0	42.9	54.0	-11.1	Vert
		+0.0	+0.0	-34.1	+29.3					
		+0.5	+0.3	+0.0						
$\begin{aligned} & 9 \text { 8234.960M } \\ & \text { Ave } \end{aligned}$	42.7	+0.0	+1.2	+5.1	+0.0	+0.0	41.7	54.0	-12.3	Horiz
		+0.0	+0.0	-34.9	+38.6					
		+0.7	+0.8	+12.5						
$\wedge 8234.960 \mathrm{M}$	42.7	+0.0	+1.2	+5.1	+0.0	+0.0	54.2	54.0	+0.2	Horiz
		+0.0	+0.0	-34.9	+38.6					
		+0.7	+0.8	+0.0						
$\begin{aligned} & 11 \text { 9149.865M } \\ & \text { Ave } \end{aligned}$	42.9	+0.0	+0.9	+5.0	+0.0	+0.0	41.4	54.0	-12.6	Horiz
		+0.0	+0.0	-34.4	+37.7					
		+0.7	+1.1	+12.5						
$\wedge 9149.865 \mathrm{M}$	42.9	+0.0	+0.9	+5.0	+0.0	+0.0	53.9	54.0	-0.1	Horiz
		+0.0	+0.0	-34.4	+37.7					
		+0.7	+1.1	+0.0						
$\begin{aligned} & 13 \text { 7320.015M } \\ & \text { Ave } \end{aligned}$	44.1	+0.0	+1.3	+4.5	+0.0	+0.0	41.3	54.0	-12.7	Vert
		+0.0	+0.0	-34.9	+37.5					
		+0.7	+0.6	+12.5						
$\wedge 7320.015 \mathrm{M}$	44.1	+0.0	+1.3	+4.5	+0.0	+0.0	53.8	54.0	-0.2	Vert
		+0.0	+0.0	-34.9	+37.5					
		+0.7	+0.6	+0.0						

$\begin{aligned} & 155417.995 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	41.0	54.0	-13.0	Horiz
$\wedge 5417.995 \mathrm{M}$	46.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	53.5	54.0	-0.5	Horiz
$\begin{aligned} & 17 \text { 8126.470M } \\ & \text { Ave } \end{aligned}$	42.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	40.6	54.0	-13.4	Vert
$\wedge 8126.470 \mathrm{M}$	42.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	53.1	54.0	-0.9	Vert
$\begin{aligned} & 197414.270 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	40.2	54.0	-13.8	Horiz
$\wedge 7414.270 \mathrm{M}$	43.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	52.7	54.0	-1.3	Horiz
$\begin{aligned} & 21 \text { 9030.530M } \\ & \text { Ave } \end{aligned}$	42.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.7 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	$+0.0$	40.0	54.0	-14.0	Vert
$\wedge 9030.530 \mathrm{M}$	42.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	52.5	54.0	-1.5	Vert
$\begin{aligned} & 23 \text { 8341.160M } \\ & \text { Ave } \end{aligned}$	40.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	39.9	54.0	-14.1	Vert
$\wedge 8341.160 \mathrm{M}$	40.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	52.4	54.0	-1.6	Vert
$\begin{aligned} & 25 \text { 4634.135M } \\ & \text { Ave } \end{aligned}$	47.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	38.4	54.0	-15.6	Vert
$\wedge 4634.135 \mathrm{M}$	47.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	50.9	54.0	-3.1	Vert
$\begin{aligned} & 27 \text { 3659.960M } \\ & \text { Ave } \end{aligned}$	48.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	38.1	54.0	-15.9	Horiz
$\wedge 3659.960 \mathrm{M}$	48.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	50.6	54.0	-3.4	Horiz
$\begin{aligned} & 293707.240 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	$+0.0$	36.2	54.0	-17.8	Horiz
$\wedge 3707.240 \mathrm{M}$	46.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	+0.0	48.7	54.0	-5.3	Horiz
31 6487.280M	55.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	62.8	111.0	-48.2	Vert

32	6404.950M	52.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	59.8	111.0	-51.2	Vert
33	6321.295 M	51.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	+0.0	58.5	111.0	-52.5	Vert
34	7224.205M	45.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	+0.0	53.9	111.0	-57.1	Horiz
35	5489.815M	45.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	51.9	111.0	-59.1	Horiz
36	5560.390 M	44.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.8 \\ +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	50.9	111.0	-60.1	Vert
37	1853.575M	48.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} \hline+2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.7 \end{array}$	+0.0	44.8	111.0	-66.2	Vert
38	68.800M	30.8	$\begin{array}{r} +0.0 \\ +12.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	+0.0	44.7	111.0	-66.3	Vert
39	1806.035M	48.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.4 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	+0.0	44.1	111.0	-66.9	Horiz
40	50.400 M	28.5	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	+0.0	41.8	111.0	-69.2	Vert
41	85.300 M	27.6	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	+0.0	41.1	111.0	-69.9	Vert
42	60.100M	26.3	$\begin{array}{r} +0.0 \\ +12.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	39.9	111.0	-71.1	Horiz
43	1830.155M	49.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	+0.0	33.2	111.0	-77.8	Vert
44	19.702M	35.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	2.5	111.0	-108.5	Perp/
45	23.134 M	31.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	-2.6	111.0	-113.6	Perp/
46	27.164M	32.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.1 \\ +4.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-2.7	111.0	-113.7	Perp/
47	27.881M	30.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +4.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	-4.2	111.0	-115.2	Perp/

LIABORATORIES, INC.

Band Edge

Band Edge Summary

Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 \mathrm{~m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	AM	Omnidirectional	38.8	<46	Pass
902	AM	Omnidirectional	68.0	<113	Pass
928	AM	Omnidirectional	58.2	<113	Pass
960	AM	Omnidirectional	42.8	<54	Pass
614	FM 12.5k	Omnidirectional	38.5	<46	Pass
902	FM 12.5k	Omnidirectional	56.7	<108	Pass
928	FM 12.5k	Omnidirectional	58.2	<111	Pass
960	FM 12.5k	Omnidirectional	42.8	<54	Pass
614	FM 37.5k	Omnidirectional	38.6	<46	Pass
902	FM 37.5k	Omnidirectional	58.7	<108	Pass
928	FM 37.5k	Omnidirectional	57.7	<111	Pass
960	FM 37.5k	Omnidirectional	42.9	<54	Pass

Band Edge Summary

Operating Mode: Hopping

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 \mathrm{~m})$	Limit $(\mathbf{d B u V} / \mathrm{m} @ 3 m)$	Results
614	AM	Omnidirectional	38.5	<46	Pass
902	AM	Omnidirectional	58.2	<113	Pass
928	AM	Omnidirectional	58.3	<113	Pass
960	AM	Omnidirectional	42.7	<54	Pass
614	FM 12.5k	Omnidirectional	38.5	<46	Pass
902	FM 12.5k	Omnidirectional	58	<108	Pass
928	FM 12.5k	Omnidirectional	58.1	<111	Pass
960	FM 12.5k	Omnidirectional	42.7	<54	Pass
614	FM 37.5k	Omnidirectional	38.5	<46	Pass
902	FM 37.5k	Omnidirectional	57.3	<108	Pass
928	FM 37.5k	Omnidirectional	59.0	<111	Pass
960	FM 37.5k	Omnidirectional	42.8	<54	Pass

Band Edge Plots

Single Channel (Low and High)

Hopping

M
LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location:
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A •Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions 107462
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/27/2022
Time: 17:39:40
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51\%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup: Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

AM Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
$1 \quad 614.000 \mathrm{M}$	8.2	+0.0	+0.3	+1.2	+1.9	+0.0	38.8	46.0	-7.2	Vert
QP		+27.2						SC		
2 614.000M	7.9	+0.0	+0.3	+1.2	+1.9	+0.0	38.5	46.0 Hopping	-7.5	Vert
QP		+27.2								
$3 \quad 960.000 \mathrm{M}$	7.9	+0.0	+0.3	+1.5	+2.4	+0.0	42.8	$\mathrm{SC}^{54.0}$	-11.2	Vert
QP		+30.7								
$4 \quad 960.000 \mathrm{M}$QP50902.000 M	7.8	+0.0	+0.3	+1.5	+2.4	+0.0	42.7	54.0 Hopping	-11.3	Vert
		+30.7								
$5 \quad 902.000 \mathrm{M}$	34.4	+0.0	+0.3	+1.4	+2.3	+0.0	68.0	$\mathrm{SC}^{113.0}$	-45.0	Vert
		+29.6								
$6 \quad 928.000 \mathrm{M}$	23.5	+0.0	+0.3	+1.5	+2.4	+0.0	58.3	113.0 Hopping	-54.7	Vert
		+30.6								
$7 \quad 928.000 \mathrm{M}$	23.4	+0.0	+0.3	+1.5	+2.4	+0.0	58.2	$\mathrm{SC}^{113.0}$	-54.8	Vert
		+30.6								
$8 \quad 902.000 \mathrm{M}$	24.6	+0.0	+0.3	+1.4	+2.3	+0.0	58.2	113.0 Hopping	-54.8	Vert
		+29.6								

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107462
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/27/2022
Time: 19:15:23
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa

Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup: Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

FM12.5 Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107462
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/27/2022
Time: 20:06:55
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

```
Test Environment Conditions:
Temperature: }2\mp@subsup{4}{}{\circ}\textrm{C
Humidity: 51%
Pressure: 101.5kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup: Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case
reported, unit is continuously transmitting with modulation.
```

FM37.5 Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	$\text { SC }{ }^{46.0}$	-7.4	Vert
$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	$\begin{gathered} 46.0 \\ \text { Hopping } \end{gathered}$ Hopping	-7.5	Vert
$\begin{aligned} & 3960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	$\text { SC }{ }^{54.0}$	-11.1	Vert
$\begin{aligned} & 4960.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0 Hopping	-11.2	Vert
$5 \quad 902.000 \mathrm{M}$	25.1	+0.3	+1.4	+2.3	+29.6	+0.0	58.7	$\begin{aligned} & 108.0 \\ & \text { SC } \end{aligned}$	-49.3	Vert
$6 \quad 902.000 \mathrm{M}$	23.7	+0.3	+1.4	+2.3	+29.6	+0.0	57.3	108.0 Hopping	-50.7	Vert
$7 \quad 928.000 \mathrm{M}$	24.2	+0.3	+1.5	+2.4	+30.6	+0.0	59.0	111.0 Hopping	-52.0	Vert
$8 \quad 928.000 \mathrm{M}$	22.9	+0.3	+1.5	+2.4	+30.6	+0.0	57.7	SC	-53.3	Vert

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

GPS Antenna Investigation

LABORATORIES, INC.

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order \#: Test Type: Tested By: Software:

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.207 AC Mains - Average

107462
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/26/2022
Time: 19:40:44
Sequence\#: 4
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 43%
Pressure: 101.9 kPa

Test Method: ANSI C63.10 (2013)
Frequency: $0.15-30 \mathrm{MHz}$
Test Setup: Wi-Fi On (802.11b 2442 MHz), Cell On (1880MHz), ISM on (FM12.5, 915)

AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Also investigated with GPS antenna PN 57861-20, investigated with RV50 and RV50x cell modems, worst-case data reported.

Itron, Inc. WO\#: 107462 Sequence\#: 4 Date: 10/26/2022 15.207 AC Mains - Average Test Lead: 120 V 60 Hz Line

	Sweep Data
$\times \quad$ QP Readings	
	Software Version. 5.0320

Readings

* Average Readings
1-15.207 AC Mains - Average

Software Version: 5.03.20
0 Peak Readings

- Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANO2872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	AN02611	High Pass Filter	HE9615-150K- $50-720 B$	$1 / 5 / 2022$	$1 / 5 / 2024$
			Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP06540	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05305	Cable	$768-10$	$3 / 23 / 2022$	$3 / 23 / 2024$
T4	ANP06219	Attenuator	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 23 / 2022$
T5	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 23 / 2024$	
	AN01311	50u/2022	$2 / 23 / 2024$		

Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	$\mathrm{T} 2$ dB	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	$3.433 \mathrm{M}$ e	24.6	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	34.0	46.0	-12.0	Line
\wedge	3.433 M	42.4	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	51.8	46.0	+5.8	Line
3	$3.523 \mathrm{M}$	24.4	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	33.8	46.0	-12.2	Line
\wedge	3.523 M	43.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	52.6	46.0	+6.6	Line
5	3.535M	24.4	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	33.8	46.0	-12.2	Line
\wedge	3.535 M	43.3	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	52.7	46.0	+6.7	Line
7	$3.699 \mathrm{M}$ e	24.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.7	46.0	-12.3	Line
8	$3.707 \mathrm{M}$	24.2	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	33.6	46.0	-12.4	Line
\wedge	3.699M	44.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	54.2	46.0	+8.2	Line
\wedge	3.707 M	44.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	54.1	46.0	+8.1	Line
	$3.656 \mathrm{M}$	24.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Line
\wedge	3.656M	44.8	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	54.2	46.0	+8.2	Line
	$3.332 \mathrm{M}$	24.1	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Line
\wedge	3.332M	42.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	51.7	46.0	+5.7	Line
	$3.676 \mathrm{M}$	24.0	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.4	46.0	-12.6	Line
\wedge	3.676 M	44.0	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	53.4	46.0	+7.4	Line
	$3.552 \mathrm{M}$	23.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Line
\wedge	3.552 M	43.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	52.5	46.0	+6.5	Line
	$3.575 \mathrm{M}$	23.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Line
\wedge	3.575 M	43.0	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	52.4	46.0	+6.4	Line
	$3.727 \mathrm{M}$	23.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$+0.1$	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Line
\wedge	3.727 M	44.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	54.3	46.0	+8.3	Line

${ }^{23}$ Ave $^{3.739 \mathrm{M}}$		23.6	$\begin{array}{r} \hline+0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	33.0	46.0	-13.0	Line
\wedge	3.739M	44.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	53.5	46.0	+7.5	Line
25	$\mathrm{e}^{3.597 \mathrm{M}}$	23.5	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	32.9	46.0	-13.1	Line
\wedge	3.597M	43.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	52.6	46.0	+6.6	Line
27	$3.777 \mathrm{M}$	22.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	32.3	46.0	-13.7	Line
\wedge	3.777M	44.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	53.8	46.0	+7.8	Line
Ave		22.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.8	46.0	-14.2	Line
\wedge	3.822M	42.9	$\begin{array}{r} \hline+0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	52.3	46.0	+6.3	Line
Ave		22.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.5	46.0	-14.5	Line
32	$\mathrm{e}^{3.855 \mathrm{M}}$	22.0	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.4	46.0	-14.6	Line
3.855M		42.7	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	52.1	46.0	+6.1	Line
	$3.187 \mathrm{M}$	21.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.2	46.0	-14.8	Line
\wedge	3.187M	39.9	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	49.3	46.0	+3.3	Line
36	$\mathrm{e}^{3.867 \mathrm{M}}$	21.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.0	46.0	-15.0	Line
\wedge	3.867M	42.5	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	51.9	46.0	+5.9	Line
\wedge	3.863M	42.5	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	51.9	46.0	+5.9	Line
Ave	$3.929 \mathrm{M}$	21.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	30.7	46.0	-15.3	Line
\wedge	3.929M	39.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	48.6	46.0	+2.6	Line
41	$\mathrm{e}^{3.068 \mathrm{M}}$	20.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	30.2	46.0	-15.8	Line
\wedge	3.068M	38.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	47.7	46.0	+1.7	Line
Ave	$\mathrm{e}^{2.957 \mathrm{M}}$	20.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	29.8	46.0	-16.2	Line
\wedge	2.957M	37.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	46.5	46.0	+0.5	Line

Ave		19.6	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	29.0	46.0	-17.0	Line
\wedge	4.003 M	37.1	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	46.5	46.0	+0.5	Line
Ave		19.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	28.6	46.0	-17.4	Line
\wedge	2.891 M	36.1	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	45.5	46.0	-0.5	Line
	$4.047 \mathrm{M}$	18.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	28.1	46.0	-17.9	Line
\wedge	4.047 M	37.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	46.6	46.0	+0.6	Line

LABORATORIES, INC.

Test Location: \quad CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.207 AC Mains - Average

107462
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/26/2022
Time: 19:18:02
Sequence\#: 3
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 43%
Pressure: 101.9 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $0.15-30 \mathrm{MHz}$
Test Setup: Wi-Fi On (802.11b 2442MHz), Cell On (1880MHz), ISM on (FM12.5, 915)
AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Also investigated with GPS antenna PN 57861-20, investigated with RV50 and RV50x cell modems, worst-case data reported.

Itron, Inc. WO\#: 107462 Sequence\#: 3 Date: 10/26/2022 15.207 AC Mains - Average Test Lead: 120 V 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANO2872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	$1 / 5 / 2022$	$1 / 5 / 2024$
			Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP06540	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05305	Cable	$768-10$	$3 / 23 / 2022$	$3 / 23 / 2024$
T4	ANP06219	Attenuator	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 23 / 2022$
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 23 / 2024$	
T5	AN01311	5020	$2 / 2022$	$2 / 23 / 2024$	

Measu	ent Data	Reading listed by margin.				Test Lead: Neutral					
\#	Freq	Rdng		T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
1	3.473 M	24.9	+0.0	+0.1	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Neutr
Ave			+0.1								
\wedge	3.473 M	42.9	+0.0	+0.1	+0.1	+9.1	+0.0	52.3	46.0	+6.3	Neutr
			+0.1								
3	3.452 M	24.8	+0.0	+0.1	+0.1	+9.1	+0.0	34.2	46.0	-11.8	Neutr
	Ave		+0.1								
\wedge	3.452 M	42.8	+0.0	+0.1	+0.1	+9.1	+0.0	52.2	46.0	+6.2	Neutr
			+0.1								
5	3.428 M	24.6	+0.0	+0.1	+0.1	+9.1	+0.0	34.0	46.0	-12.0	Neutr
	Ave		+0.1								
\wedge	3.428 M	43.3	+0.0	+0.1	+0.1	+9.1	+0.0	52.7	46.0	+6.7	Neutr
			+0.1								
7	3.562 M	24.2	+0.0	+0.1	+0.1	+9.1	+0.0	33.6	46.0	-12.4	Neutr
	Ave		+0.1								
\wedge	3.562 M	41.3	+0.0	+0.1	+0.1	+9.1	+0.0	50.7	46.0	+4.7	Neutr
			+0.1								
9	3.634 M	24.1	+0.0	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Neutr
	Ave		+0.1								
\wedge	3.634 M	43.9	+0.0	+0.1	+0.1	+9.1	+0.0	53.3	46.0	+7.3	Neutr
			+0.1								
11	3.697 M	24.1	+0.0	+0.1	+0.1	+9.1	+0.0	33.5	46.0	-12.5	Neutr
Ave			+0.1								
12	3.618 M	23.9	+0.0	+0.1	+0.1	+9.1	+0.0	33.3	46.0	-12.7	Neutr
Ave			+0.1								
\wedge	3.618 M	44.0	+0.0	+0.1	+0.1	+9.1	+0.0	53.4	46.0	+7.4	Neutr
			+0.1								
14	3.732 M	23.9	+0.0	+0.1	+0.1	+9.1	+0.0	33.3	46.0	-12.7	Neutr
	Ave		+0.1								
\wedge	3.732 M	43.6	+0.0	+0.1	+0.1	+9.1	+0.0	53.0	46.0	+7.0	Neutr
			+0.1								
$16{ }^{16}$ Ave ${ }^{3.707 \mathrm{M}}$		23.8	+0.0	+0.1	+0.1	+9.1	+0.0	33.2	46.0	-12.8	Neutr
			+0.1								
\wedge	3.697 M	45.3	+0.0	+0.1	+0.1	+9.1	+0.0	54.7	46.0	+8.7	Neutr
			+0.1								
\wedge	3.707 M	44.7	+0.0	+0.1	+0.1	+9.1	+0.0	54.1	46.0	+8.1	Neutr
			+0.1								
19	3.580 M	23.6	+0.0	+0.1	+0.1	+9.1	+0.0	33.0	46.0	-13.0	Neutr
	Ave		+0.1								
\wedge	3.580 M	40.4	+0.0	+0.1	+0.1	+9.1	+0.0	49.8	46.0	+3.8	Neutr
			+0.1								
2	3.248M	23.4	+0.0	+0.1	+0.1	+9.1	+0.0	32.8	46.0	-13.2	Neutr
	Ave		+0.1								
\wedge	3.248 M	40.4	+0.0	+0.1	+0.1	+9.1	+0.0	49.8	46.0	+3.8	Neutr
			+0.1								

	$3.342 \mathrm{M}$	23.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	32.8	46.0	-13.2	Neutr
\wedge	3.342 M	42.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	51.6	46.0	+5.6	Neutr
	$3.811 \mathrm{M}$	22.5	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.9	46.0	-14.1	Neutr
\wedge	3.811 M	43.9	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	53.3	46.0	+7.3	Neutr
27	3.870M	21.9	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.3	46.0	-14.7	Neutr
\wedge	3.870 M	41.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	51.2	46.0	+5.2	Neutr
	$3.860 \mathrm{M}$	21.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.2	46.0	-14.8	Neutr
\wedge	3.860 M	41.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	51.1	46.0	+5.1	Neutr
	3.890M	21.7	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	31.1	46.0	-14.9	Neutr
\wedge	3.890 M	41.4	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	50.8	46.0	+4.8	Neutr
	$3.108 \mathrm{M}$ e	21.4	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	30.8	46.0	-15.2	Neutr
\wedge	3.108M	38.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	47.5	46.0	+1.5	Neutr
	$3.125 \mathrm{M}$	21.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	30.5	46.0	-15.5	Neutr
\wedge	3.125 M	38.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	48.0	46.0	+2.0	Neutr
	$3.079 \mathrm{M}$	20.9	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	30.3	46.0	-15.7	Neutr
\wedge	3.079 M	37.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	46.7	46.0	+0.7	Neutr
	$3.036 \mathrm{M}$	20.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	30.2	46.0	-15.8	Neutr
\wedge	3.036 M	37.2	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	46.6	46.0	+0.6	Neutr
	$3.945 \mathrm{M}$	20.7	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	30.1	46.0	-15.9	Neutr
\wedge	3.945M	38.4	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	47.8	46.0	+1.8	Neutr
	$3.970 \mathrm{M}$	20.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	29.7	46.0	-16.3	Neutr
\wedge	3.970 M	36.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	46.2	46.0	+0.2	Neutr
	3.059M	20.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	29.7	46.0	-16.3	Neutr
\wedge	3.059 M	37.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	46.5	46.0	+0.5	Neutr
	$2.961 \mathrm{M}$	19.9	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	29.3	46.0	-16.7	Neutr
\wedge	2.961 M	36.8	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	$+0.1$	+0.1	+9.1	+0.0	46.2	46.0	+0.2	Neutr

Page 105 of 111

Ave		19.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	28.7	46.0	-17.3	Neutr
\wedge	4.017 M	37.5	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	46.9	46.0	+0.9	Neutr
Ave	$\mathrm{e}^{2.902 \mathrm{M}}$	19.0	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	28.4	46.0	-17.6	Neutr
\wedge	2.902 M	35.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	$+0.0$	45.0	46.0	-1.0	Neutr

Test Setup Photo(s)

LABORATORIES, INC.

Appendix A: Customer Provided Data

15.35(c) Duty Cycle Correction Factor

Test Data Summary			
Antenna Port	Operational Mode	Measured On Time $(\mathrm{mS} /$ Pobs)	Declared DCCF (dB)
1	Operating	23.8	12.5

Observation Period, Pobs is the duration of the pulse train or maximum 100 mS

Measured results are calculated as follows:

$$
\text { On Time }=\left.\left(\sum_{\text {Bursts }} R F \text { Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{o b s}(\max 100 \mathrm{~ms})}
$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100
Number of RF Bursts / Pobs::	1
On time of RF Burst:	23.8
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	23.8

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$
D C C F=20 \cdot \log \left(\frac{\text { On Time }}{P_{\text {obs }}}\right)
$$

Duty Cycle Correction Factor Test Data

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst-case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

